The two sources for notes are http://www.math.ubc.ca/~ilaba/wolff/and http://www.its.caltech.edu/~schlag/notes_033002.pdf

1. Let us define

$$J_0(x) = \frac{1}{2\pi} \int_0^{2\pi} \cos(x \sin(\theta)) d\theta$$

Show that

$$f(x) \mapsto F(\xi) = 2\pi \int J_0(2\pi \xi x) f(x) x \, dx$$

defines a unitary map from $L^2([0,\infty), r dr)$ to itself. Describe the relation to the Fourier transform of radial functions in two dimensions.

2. Let $d\rho$ be a probability measure on \mathbb{R} with $\int x d\mu(x) = 0$ and $\int x^4 d\rho(x) < \infty$. Prove the central limit theorem for the sum of independent random variables with this distribution.

Specifically, if X_1, X_2, \ldots are $d\rho$ -distributed, show that for any Schwartz function f,

$$\mathbb{E}\left\{f\left(\frac{X_1+\dots+X_n}{n^{1/2}}\right)\right\} \longrightarrow \frac{1}{\sqrt{2\pi\sigma^2}} \int \exp\left\{-\frac{x^2}{2\sigma^2}\right\} f(x) dx$$

as $n \to \infty$. Hint: first show convergence for $f(x) = e^{-2\pi i x \xi}$ uniformly for ξ in a compact set.

- 3. Show that every continuous (group) homomorphism from \mathbb{T} into \mathbb{C}^* (the non-zero complex numbers under multiplication) takes the form $x \mapsto e^{2\pi i n x}$ with n an integer. What is the analogous statement for continuous homomorphisms $\mathbb{R} \to \mathbb{C}^*$.
- 4. Let us define a sequence functions on \mathbb{R} by

$$\psi_n(x) = \left[\frac{d}{dx} - 2\pi x\right]^n e^{-\pi x^2}$$

where $n = 0, 1, \ldots$ Show that $\psi_n(x)$ form an orthogonal sequence of eigenfunctions for the Fourier transform on $L^2(\mathbb{R})$.

In fact they are a basis, but this is much harder to prove. One approach to this latter problem is to realize that they are the eigenfunctions of the harmonic oscillator:

$$u(x) \mapsto \left[\frac{d}{dx} - 2\pi x \right] \left[-\frac{d}{dx} - 2\pi x \right] u(x) = -\frac{d^2u}{dx^2} + (4\pi^2 x^2 - 2\pi)u(x).$$

5. Let G be a finite cyclic group and H a subgroup. For $\chi \in \hat{G}$ we write

$$\hat{f}(\chi) = \sum_{g} f(g)\bar{\chi}(g).$$

We say $\chi \in \hat{G}^H$ if χ is constant on the cosets of H.

Prove the following analogue of the classical Poisson Summation formula:

$$\frac{1}{|G|} \sum_{\chi \in \hat{G}^H} \hat{f}(\chi) = \frac{1}{|H|} \sum_{h \in H} f(h).$$

(The classical version has $G = \mathbb{R}$ and $H = \mathbb{Z}$, which leads to $\hat{G}^H = \{e^{2\pi i n x} : n \in \mathbb{Z}\}.$)

6. Suppose $f \in L^2(\mathbb{R})$ is supported on $\left[-\frac{1}{2}, \frac{1}{2}\right]$ then we know that f can be recovered from the values of $\hat{f}(n)$ for $n \in \mathbb{Z}$ (the characters form an orthonormal basis). Prove the Shannon Sampling Theorem:

$$\hat{f}(\xi) = \sum_{n} \hat{f}(n) \frac{\sin[\pi(n-\xi)]}{\pi(n-\xi)}$$

(which includes proving convergence of this infinite sum).

Remark: The audible spectrum extends only to about 20kHz. Consequently, as heard by a human, one may regard music as a function whose Fourier transform is supported on a finite interval. The above theorem says that to faithfully reproduce music, one need only sample the signal forty thousand times per second. This is what happens in CD recording.

- 7. Given $\omega \in \mathbb{R}^d$, show that the following are equivalent: (a) For $m \in \mathbb{Z}^d$, $m \cdot \omega = 0$ implies m = 0.

 - (b) The curve $t \mapsto t\omega + \mathbb{Z}^d$ is dense in $\mathbb{R}^d/\mathbb{Z}^d$.
 - (c) For any continuous function f on $\mathbb{R}^d/\mathbb{Z}^d$,

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(t\omega + \mathbb{Z}^d) dt = \int_{0}^{1} \cdots \int_{0}^{1} f(x + \mathbb{Z}^d) dx.$$

[Hint: prove (a) \Leftrightarrow (c) and then (c) \Rightarrow (b) \Rightarrow (a).]

- 8. Let $d\mu$ be a finite complex measure on \mathbb{R} .
 - (a) Show that

$$\lim_{L \to \infty} \frac{1}{2L} \int_{-L}^{L} \left| \hat{\mu}(\xi) \right|^2 \! d\xi = \sum_{x \in \mathbb{R}} \! \left| \mu(\{x\}) \right|^2$$

(finiteness of the measure implies that only countably many terms in the sum are

(b) Suppose that $d\mu$ is purely atomic, that is, $d\mu$ is a (countable) linear combination of delta measures. Show that $\hat{\mu}$ is almost periodic.

A function on f on \mathbb{R} is said to be almost periodic if for any $\epsilon > 0$, there exists L>0 so that any interval of length L contains an ϵ -almost period:

$$\forall a \in \mathbb{R} \quad \exists p \in [a, a + L] \quad \text{such that} \quad \sup_{x} |f(x) - f(x + p)| < \epsilon.$$

Hint: For part (b) begin by considering the case $\hat{\mu}(\xi) = e^{i\xi} + e^{2\pi i \xi}$.

9. The dvadic cubes in \mathbb{R}^d are the sets of the form

$$Q_{n,k} = [k_1 2^n, (k_1 + 1)2^n) \times \cdots \times [k_d 2^n, (k_d + 1)2^n)$$

were n ranges over \mathbb{Z} and $k \in \mathbb{Z}^d$.

- (a) Given a collection of dyadic cubes whose diameters are bounded, show that one may find a sub-collection which covers the same region of \mathbb{R}^d but with all cubes disjoint.
- (b) Define the (uncentered) dyadic maximal function by

$$[M_D f](x) = \sup_{Q \ni x} \frac{1}{|Q|} \int_Q f(y) \, dy$$

where the supremum is over all dyadic cubes that contain x. Show that this operator is of weak type (1,1).

(c) Deduce boundedness of the Hardy-Littlewood maximal function from the above.

Remarks: Part (a) provides a replacement for the Vitali Covering Lemma. I propose you address (c) 'geometrically'; draw some pictures in the planar (d=2) case.

10. (a) Evaluate

$$D_N(x) = \sum_{n=-N}^{N} e^{2\pi i n x}$$

and show that it is not an approximate identity on \mathbb{T} .

- (b) Show that $\frac{1}{2N+1}|D_N(x)|^2$ is an approximate identity and derive its relation to the Fejer kernel.
- (c) Calculate

$$\sum_{n\in\mathbb{Z}} r^{|n|} e^{2\pi i nx}$$

for 0 < r < 1 and show that for $r \to 1$ it gives rise to an approximate identity.

(d) Suppose ϕ_n is an approximate identity and $d\mu$, a finite complex measure on T. Show that $\phi_n * d\mu$ converges weak-* to $d\mu$.

Note: $d\mu_n$ converges weak-* to $d\mu$ iff for every bounded continuous function, f, $\int f d\mu_n \to \int f d\mu$.

- 11. (a) Given $f \in L^p(\mathbb{R})$, $1 \le p < \infty$, show that $t \mapsto f(x+t)$ defines a continuous map of \mathbb{R} into $L^p(\mathbb{R}, dx)$.
 - (b) Show that it is not equi-continuous as f varies over the set of f with $||f||_{L^p} \leq 1$. (That is, ϵ cannot be chosen from δ independently of f.)
 - (c) Show that part (a) is false for L^{∞} and $M(\mathbb{R})$.
- 12. (From Wolff §4.) Find a sequence of Schwartz functions ϕ_n such that (a) $\|\phi_n\|_{L^p}$ and $\|\hat{\phi}_n\|_{L^{p'}}$ are constant. The supports of $\hat{\phi}_n$ are disjoint and those of ϕ_n are almost disjoint. Use $\sum_{n=1}^N \phi_n$ to show that if $\|\hat{f}\|_{L^{p'}} \lesssim \|f\|_{L^p}$ then $p \leq 2$. By almost disjoint we mean $\|\sum_{n=1}^N \phi_n\|_{L^p}^p \leq \frac{100}{99} \sum_{n=1}^N \|\phi_n\|_{L^p}^p$. Notice that if the supports were actually disjoint, then 100/99 could be replaced by 1.

Hint: Take a single C_c^{∞} function and modify it by translation and multiplication by characters.

13. Prove the Rising Sun Lemma: Given a non-negative $f \in L^1(\mathbb{R})$, define

$$[M_R f](x) = \sup_{t>0} \frac{1}{t} \int_0^t f(x+s) \, ds.$$

If $S = \{x : M_R f > \lambda\}$ then $|S| = \lambda^{-1} \int_S f(x) dx$. [Hint: S is open.]

- 14. Prove the following theorem of Milicer-Gruzewska: Let $d\mu$ be a complex measure on \mathbb{T} with the property that $\hat{\mu}(n) \to 0$ as $n \to \infty$ (μ is called a Rajchman measure). If $f \in L^1(d|\mu|)$ and $d\nu = f d\mu$ then $\hat{\nu}(n) \to 0$. [Hint: mimic the proof of the Riemann-Lebesgue Lemma from Schlag's notes.]
- 15. Let R(k) be the smallest number such that in any colouring of the edges of the complete graph on R(k) vertices by two colours, one can find a monochromatic complete graph on k vertices. These are known as Ramsey numbers; it is not difficult to show that $R(k) \leq 2^{2k}$. The problem here is to prove that $2^{k/2} \leq R(k)$, which is due to Erdős.
 - (a) Determine the expected number of monochromatic complete graphs on k vertices contained within a random colouring of the complete graph on n vertices.
 - (b) Show that this is less that one when $n=2^{k/2}$ and so complete the problem.

- 16. Let $f \in C^{\alpha}$ with $\alpha < 1$, and let K_n denote the Fejér kernel.
 - (a) Show that

$$||f * K_n - f||_{C^0} \lesssim n^{-\alpha} ||f||_{C^{\alpha}}.$$

(b)[Optional] Show that $||f * K_n - f||_{C^{\alpha}} \to 0$ may fail. However, it is true if one restricts to those f with

(1)
$$\sup_{|x-y|<\delta} |f(x) - f(y)| = o(\delta^{\alpha}).$$

- (c)[Optional] Show that the set of $f \in C^{\alpha}$ that obey (1) is exactly the closure of C^{∞} in C^{α} .
- 17. Let f be a continuous function on \mathbb{T} . Suppose that for each n > 0 there is a trigonometric polynomial p_n of degree n (or less) such that

$$||f - p_n||_{C^0} \lesssim n^{-\alpha}$$

where $\alpha < 1$. Show that f is α Hölder continuous. Hint: write

$$f = p_1 + \sum_{k=1}^{\infty} (p_{2k} - p_{2k-1}).$$

18. Let Ω be a simply-connected open domain bounded by a Jordan curve. By a theorem of Carathéodory, any conformal map f of \mathbb{D} onto Ω can be extended to a homeomorphism of $\overline{\mathbb{D}}$ onto $\overline{\Omega}$.

We say that a curve $\gamma: S^1 \to \mathbb{C}$ is rectifiable if there exists a constant L so that for any $0 \le \theta_0 < \theta_1 < \dots < \theta_n < 2\pi$,

$$\sum_{k=0}^{n} |\gamma(e^{i\theta_k}) - \gamma(e^{i\theta_{k+1}})| \le L$$

where $\theta_{n+1} = \theta_0$.

Prove the following theorem of F. and M. Riesz: $f' \in H^1$ if and only if $\partial\Omega$ is rectifiable. [Hint: the function $z \mapsto \sum |f(ze^{i\theta_k}) - f(ze^{i\theta_{k+1}})|$ is continuous and sub-harmonic on \mathbb{D} .]

- 19. Prove the following result of Privalov: For $0 < \alpha < 1$, $f \in C^{\alpha}$ implies $\tilde{f} \in C^{\alpha}$.
- 20. (a) Suppose T is a rotation invariant operator on $L^2(\mathbb{R}/\mathbb{Z})$, that is, $R_yT=TR_y$ for any rotation $[R_yf](x)=f(x-y)$. Show that $e^{2\pi inx}$, $n\in\mathbb{Z}$, are eigenfunctions of T.
 - (b) Let T be a bounded operator on $L^2(\mathbb{R}^n)$ such that there is a function K obeying $|K(x,y)| \lesssim |x-y|^{-n}$ so that whenever f and g have disjoint supports,

$$\langle g, Tf \rangle = \int \int \bar{g}(x) K(x, y) f(y) \, dy \, dx.$$

Show that if T is translation invariant, then K(x,y) = F(x-y), which means that T is a convolution operator. [Hint: Treat (a) and (b) independently.]

- 21. (a) Let $I \subseteq \mathbb{R}$ be an interval and let $z \in \mathbb{C}^+ = \{z : \operatorname{Im} z > 0\}$. Show that the harmonic measure of $I \subseteq \partial \mathbb{C}^+$ with respect to z is equal to the angle subtended by I at z divided by π . Deduce that the harmonic measure of I is constant on arcs of circles.
 - (b) Calculate the conjugate function of $\chi_{[0,a]}(\theta) \in L^2(S^1; \frac{d\theta}{2\pi})$.

22. (a) Suppose $f: \mathbb{D} \to \mathbb{C}^+ = \{z: \operatorname{Im} z > 0\}$ is analytic. Show that there exists a finite positive measure $d\mu$ and a real constant a so that

$$f(z) = a + i \int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} d\mu(\theta).$$

This result is due to Herglotz. [Hint: First look at Im(f).]

(b) Deduce that any holomorphic mapping of \mathbb{C}^+ into itself admits the representation

$$f(z) = a + bz + \int_{\mathbb{R}} \frac{1+tz}{t-z} \, d\rho(t).$$

where $a \in \mathbb{R}$, $b \ge 0$, and $d\rho$ is a positive measure.

23. Prove the following theorem of Kolmogorov: suppose 0 then

$$f(z) = \int_0^{2\pi} \frac{d\mu(\theta)}{e^{i\theta} - z} \quad \text{implies} \quad \sup_{0 < r < 1} \int |f(re^{i\theta})|^p \, d\theta < \infty$$

for any finite complex measure $d\mu$.

24. Let ℓ^p_μ denote the weighted ℓ^p space

$$||c||^p = \sum (|n|+1)^{-2} |c_n|^p.$$

Let ϕ_n , $n \in \mathbb{Z}$, be an orthonormal basis for $L^2(\mathbb{R}/\mathbb{Z})$ which obeys $\|\phi_n\|_{L^{\infty}} \lesssim 1$ and define $T: L^2 \to \ell^2_{\mu}$ by

$$[Tf](n) = (|n|+1)\langle \phi_n(x), f(x) \rangle.$$

- (a) Show that T extends to a bounded map of L^p into ℓ^p_μ for all 1 . This result is due to Hardy and Littlewood. [Hint: Prove a weak-type bound and use Marcinkiewicz.]
- (b) Given a sequence c_j indexed by $j \in \mathbb{Z}$, define the rearrangement c_j^* as follows: For $j \geq 0$, c_j^* is the (j+1)th largest element of the set $\{|c_0|, |c_1|, \dots\}$ while for j < 0, it is the |j|th largest element of $\{|c_{-1}|, |c_{-2}|, \dots\}$. Derive the following inequality of Payley:

$$\sum (1+|j|)^{p-2}|c_j^*|^p \lesssim ||f||_{L^p}^p$$

where $c_j = \hat{f}(j)$.

- (c) By splitting the sum dyadically, show that this implies the usual Hausdorff-Young inequality for 1 .
- 25. Suppose $f \in L^1(\mathbb{R}/\mathbb{Z})$ and let Mf denote its (uncentred) dyadic maximal function. (a) Show that for $\lambda > \int |f|$,

$$\frac{1}{\lambda} \int_{|f| > \lambda} |f(x)| \, dx \lesssim |\{x : Mf > \lambda\}|.$$

[Hint: Do a Calderón–Zygmund style decomposition.]

- (b) Deduce that if $Mf \in L^1$, then $|f| \log[1+|f|] \in L^1$. This result is due to Stein.
- (c) Use the fact that $M: L^{\infty} \to L^{\infty}$ and $L^1 \to L^1_w$ to show

$$|\{x: Mf > \lambda\}| \lesssim \frac{1}{\lambda} \int_{|f| > c\lambda} |f(x)| dx.$$

for some small constant c.

(d) Deduce that if $|f| \log[1 + |f|] \in L^1$ then $Mf \in L^1$.

26. For $1 \leq p < \infty$, let $L^p_w(\mathbb{R})$ denote the set of measurable functions on \mathbb{R} for which

$$||f||_p^* = \sup_{\lambda > 0} \left\{ \lambda^p |\{x : |f| > \lambda\}| \right\}^{1/p}$$

is finite. The * is to warn that this isn't a norm; however,

(a) For $1 , the following defines a norm on <math>L_w^p(\mathbb{R})$:

$$||f||_{p,w} = \sup_{E} \frac{1}{|E|^{(p-1)/p}} \int_{E} |f(x)|.$$

Moreover, $||f||_p^* \lesssim ||f||_{p,w} \lesssim ||f||_p^*$. [Remark: with this norm, $L_w^p(\mathbb{R})$ is actually a Banach space.]

(b) Show that there is no norm on $L^1_w(\mathbb{R})$ comparable to $||f||_1^*$ by considering the following family of functions

$$\sum_{k=0}^{N} \frac{1}{|x-k|}$$

as $N \to \infty$.

27. (a) Let c_n denote the surface area of $S^{n-1} \subseteq \mathbb{R}^n$. Show that for $n \geq 3$,

$$G(x) = \frac{1}{(n-2)c_n|x|^{n-2}}$$

is the Green function for the Laplace equation in \mathbb{R}^n : if $f \in \mathcal{S}$, then $-\Delta(G*f) = f$.

(b) For any $f, g \in \mathcal{S}$,

$$\left| \int f(x)g(x) \, dx \right|^2 \le \|\nabla f\|_{L^2}^2 \iint g(x)G(x-y)g(y) \, dx \, dy.$$

(c) Deduce the following Sobolev inequality:

$$\forall f \in \mathcal{S}, \qquad ||f||_{L^q} \lesssim ||\nabla f||_{L^2} \qquad \text{where } q = 2n/(n-2)$$

by choosing g appropriately.

(d) Show that on \mathbb{R} , one does not have

$$||f||_{L^{\infty}}^2 \leq ||f'||_{L^2}^2$$

however it is true that

$$||f||_{L^{\infty}}^2 \lesssim ||f'||_{L^2}^2 + ||f||_{L^2}^2.$$

[Remark: In this regard, \mathbb{R}^2 is like \mathbb{R} ; there is no estimate without adding $||f||_{L^2}$. However, one has only

$$||f||_{L^q}^2 \lesssim ||\nabla f||_{L^2}^2 + ||f||_{L^2}^2$$

for all $2 \le q < \infty$.

28. Suppose $a: \mathbb{R}^2 \to \mathbb{R}$ obeys

$$\frac{\partial^{n+m}}{\partial x^n\partial \xi^m}a(x,\xi)\in L^\infty$$

for all $n, m \geq 0$. We then define an operator on $L^2(\mathbb{R})$ by

$$[Tf](x) = \int a(x,\xi)e^{2\pi ix\xi}\hat{f}(\xi) d\xi.$$

(This is the pseudo-differential operator with symbol, a, which belongs to the exotic symbol class $S_{0,0}^0$.) Show that it is bounded. [Hint: let ψ_i be a partition of unity

adapted to the partition of \mathbb{R} by [j, j+1), then apply the Cotlar-Stein Lemma using the operators with symbols $a_{i,j}(x,\xi) = \psi(x-i)a(x,\xi)\psi(\xi-j)$.]

29. (a) Prove that

$$\left| \int_{\mathbb{R}^n} f(x)g(x) \, dx \right| \le \int_{\mathbb{R}^n} f^*(x)g^*(x) \, dx$$

(b) Suppose $f \mapsto f * K$ is a bounded operator on $L^2(\mathbb{R}^n)$ and $K(x) \lesssim |x|^{-n}$. Show that there exists C so that

$$\int_{\epsilon < |x| < N} K(x) \, dx \le C$$

for all $0 < \epsilon < N < \infty$.

30. Given a measurable function $t: \mathbb{R} \to (0, \infty)$, let us define

$$[T_t f](x) = \frac{1}{\sqrt{2\pi t(x)}} \int \exp\{-\frac{(x-y)^2}{2t(x)}\} f(y) \, dy.$$

- (a) Determine the adjoint of the operator T_t ; write it as an integral operator.
- (b) Consider $T_t T_t^{\dagger}$ and show that for $f \geq 0$,

$$[T_t T_t^{\dagger} f](x) \lesssim [T_{2t} f](x) + [T_{2t}^{\dagger} f](x).$$

(c) Deduce that maximal operator

$$[Mf](x) = \sup_{t>0} \frac{1}{\sqrt{2\pi t}} \int \exp\{-\frac{(x-y)^2}{2t}\} f(y) \, dy.$$

is bounded on $L^2(\mathbb{R})$. [Remark: There is nothing special about the Gaussian, it was just chosen for concreteness.]

31. Given $n \in \mathbb{Z}^3$, let us write |n| for the ℓ^1 norm: $|n| = |n_1| + |n_2| + |n_3|$. Consider the following operator on $\ell^2(\mathbb{Z}^3)$:

$$[Hu](n) = \sum_{|n-m|=1} u(m).$$

Schur's test (or part (b)) shows that this is a bounded operator.

- (a) Given $n \in \mathbb{Z}^d$, let us write δ_n for the function $k \mapsto \delta_{k,n}$. Show that $\langle \delta_m | H^N \delta_n \rangle$ is equal to the number of paths of length N from n to m in the \mathbb{Z}^3 lattice.
- (b) As H is translation invariant, we know that we can write it as a Fourier multiplier. Find the Fourier multiplier.
- (c) Determine the leading term in the $t \to \infty$ asymptotics of

$$\langle \delta_0 | e^{tH} \delta_0 \rangle$$
.

- (d) [Optional] Use the Borel–Cantelli Lemma to deduce that in three dimensions, a random walker starting at the origin will return to the origin only finitely many times (with probability one).
- 32. Let Ω denote a hyperplane in \mathbb{R}^d and let $d\sigma$ denote the induced Lebesgue measure. For $s \geq 0$, H^s denotes the Sobolev space of functions $f \in L^2$ for which

$$||f||_{H^s}^2 = \int |\hat{f}|^2 (1+|\xi|^2)^s d\xi$$

is finite.

Show that for $\epsilon > 1/2$, $f \mapsto f|_{\Omega}$ defines a continuous map from $H^s(\mathbb{R}^d)$ to $H^{s-\epsilon}(\Omega)$. Also show that for $\epsilon \leq 1/2$, it does not.

- 33. Let Ω denote the cone $|\xi_0|^2 = |\xi_1|^2 + \cdots + |\xi_d|^2$ in \mathbb{R}^{d+1} and let $d\sigma$ denote the induced surface measure.
 - (a) If f is a smooth function supported in a compact subset of $\mathbb{R}^{d+1} \setminus \{0\}$, show that Fourier transform of f $d\sigma$ has a natural interpretation as a solution of the wave equation:

$$\frac{d^2u}{dt^2} = \sum_{j} \frac{d^2u}{dx_j^2}.$$

- (b) Calculate the leading term asymptotics of $\widehat{fd\sigma}$ as $|\xi| \to \infty$ in a fixed direction. For simplicity, just treat the case d=2 with f supported in the region $\{\xi_0>0\}$. Warning: the cone does not have non-vanishing Gaussian curvature!
- 34. (a) Given ψ_0 with $\hat{\psi}_0 \in C_c^{\infty}(\mathbb{R})$, write the solution of the free Schrödinger equation

$$i\frac{\partial\psi}{\partial t} = -\frac{\partial^2\psi}{\partial^2x}, \qquad \psi(x,t=0) = \psi_0(x)$$

as an integral involving $\hat{\psi}_0$.

(b) Study the asymptotics in the regime $t \to \infty$ with x = vt and $v \in \mathbb{R}$ fixed. Specifically, prove that

$$\left| \psi(x,t) - \frac{1}{\sqrt{4\pi t}} e^{-i\pi/4} e^{ix^2/4t} \hat{\psi}_0(\frac{x}{4\pi t}) \right| \lesssim (t^2 + x^2)^{-3/4}$$

for t sufficiently large.

- (c) Let us call the map of ψ_0 into the leading asymptotic behaviour V(t). That is, the LHS of the equation above is $|\psi(x,t) V(t)\psi_0|$. Check that this determines a unitary map and that $\psi(t) V(t)\psi_0$ converges to zero in L^2 .
- (d) Use the fact that for t fixed, $\psi_0 \mapsto \psi(t)$ is also a unitary map to deduce that the above asymptotic holds in L^2 sense for any initial data $\psi_0 \in L^2$.
- 35. Prove the van der Corput Lemma: (a) Suppose ϕ is real-valued and smooth in (a, b) and that for some $k \geq 1$, $\phi^{(k)}(x) \geq 1$ on [a, b]. Show that

$$\left| \int_{a}^{b} e^{i\lambda\phi(x)} \, dx \right| \le 3^{k} \lambda^{-1/k}$$

for $k \geq 2$ and also for k = 1 if we assume that ϕ' is monotone. [Hints: Proceed by induction. For k = 1, integrate by parts wisely. For the step from k to k + 1, treat any interval with $|\phi^{(k)}(x)| \leq \delta(\lambda)$ separately from those where it is bigger than $\delta(\lambda)$.]

(b) Deduce that

$$\left| \int_a^b e^{i\lambda\phi(x)} \psi(x) \, dx \right| \lesssim \lambda^{-1/k} \left[|\psi(b)| + \int_a^b |\psi'(x)| \, dx \right].$$

36. (a) Prove Debye's asymptotics for Bessel functions: given $\alpha \in (0, \infty)$,

$$J_{\nu}(\nu \operatorname{sech}(\alpha)) = \frac{e^{\nu[\tanh(\alpha) - \alpha]}}{\sqrt{2\pi\nu \tanh(\alpha)}} \left[1 + O(\nu^{-1}) \right]$$

as $\nu \to \infty$.

(b) Prove that

$$\cos[z\sin(\theta)] = J_0(z) + 2\sum_{k=1}^{\infty} J_{2k}(z)\cos(2k\theta)$$

for all $\theta \in \mathbb{R}$. Why does the series converge?

37. Let E be a compact subset of \mathbb{R}^n of non-zero α -capacity. In class we proved the existence of a probability measure $d\nu$ so that

$$\frac{1}{C_{\alpha}(E)} = \inf_{\text{supp}(\mu) \subseteq E} I_{\alpha}(\mu) = I_{\alpha}(\nu).$$

Recall that

$$V_{\mu}(x) = \int \frac{d\mu(y)}{|x - y|^{\alpha}}$$

denotes the potential generated by $d\mu$.

- (a) Show that $V_{\nu}(x) \geq 1/C_{\alpha}(E)$ for p.p. $x \in E$. (Recall that 'p.p.' means except for a set of zero capacity.)
- (b) Show that for any positive measure μ , $V_{\mu}(x)$ is upper semi-continuous, that is, for every $a \in \mathbb{R}$, the set $\{x : V_{\mu}(x) > a\}$ is open. Equivalently,

$$\liminf_{x_n \to x} V_{\mu}(x_n) \ge V_{\mu}(x).$$

- (c) From part (a), it follows that $C_{\alpha}(E)V_{\nu}(x) \geq 1$ for ν -almost all x. Explain. From this and part (b), show that $C_{\alpha}(E)V_{\nu}(x) \leq 1$ for all $x \in \text{supp}(\nu)$.
- (d) Show that

$$C_{\alpha}(E) = \sup\{\|\mu\| : \operatorname{supp}(\mu) \subseteq E \text{ and } \forall x \in \operatorname{supp}(\mu), \ V_{\mu}(x) \le 1\}.$$

38. Let $E \subseteq \mathbb{R}^n$, be a compact set of non-zero α -capacity $(0 < \alpha < n)$. Let us define

$$D_n = \inf \frac{2}{n(n-1)} \sum_{1 \le i \le j \le n} |x_i - x_j|^{-\alpha}$$

and

$$M_n = \sup \inf_{x \in E} \frac{1}{n} \sum_{1 \le i \le n} |x - x_i|^{-\alpha}.$$

The infimum in the definition of D_n and the supremum in the definition of M_n are over $\{x_1, \ldots, x_n\} \subset E$.

Show that $D_{n+1} \leq M_n$, that $M_n \leq 1/C_{\alpha}(E)$, and that $\liminf D_n \geq 1/C_{\alpha}(E)$. Conclude that $C_{\alpha}(E) = \lim D_n = \lim M_n$. [You may use the results of Question 3.]

39. Functions defined by

$$f(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s},$$

are known as Dirichlet series. The most famous example is the Riemann zeta function, where $a_n \equiv 1$. By writing $s = \sigma + it$ we have $n^{-s} = e^{-\sigma \log(n)} e^{-it \log(n)}$ which shows the connection to Fourier integrals.

- (a) Given f(s) as above and $g(s) = \sum b_n n^{-s}$, show that f(s)g(s) can also be written as a Dirichlet series and find the formula for the coefficients. In this way, interpret the coefficients of $\zeta(s)^2$. (This operation is the multiplicative analogue of convolution.)
- (b) Let f and g be Dirichlet series absolutely convergent for $Re(s) > \sigma_0$. Show that

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} f(\alpha + it) g(\beta - it) = \sum_{n} \frac{a_n b_n}{n^{\alpha + \beta}}$$

for $Re(\alpha)$ and $Re(\beta)$ larger than σ_0 . This is the analogue of the Plancherel Theorem.

(c) Prove the following simple Abelian theorem: Given $\alpha < 1$,

$$\lim_{n \to \infty} \log^{\alpha}(n) a_n = A \quad \Longrightarrow \quad \lim_{u \downarrow 0} u^{1-\alpha} f(1+u) = C_{\alpha} A$$

and determine the value of C_{α} . What if $\alpha = 1$?

40. (a) Let $d(n) = \#\{d > 0 : d|n\}$. Prove that if $n = \prod p_i^{a_i}$ then

$$\frac{d(n)}{n^{\delta}} = \prod \left(\frac{a_i + 1}{p_i^{\delta a_i}} \right) < \exp \left\{ \frac{2^{1/\delta}}{\delta \log(2)} \right\}$$

[Hint: be wasteful, $\frac{a+1}{p^{\delta a}} \le 1 + \frac{a}{p^{\delta a}} \le 1 + \frac{1}{\delta \log(2)}$.] (b) Refine the above argument to show that

$$\log[d(n)] \le \frac{(1+\epsilon)\log(2)\log(n)}{\log\log(n)}$$

for n sufficiently large (depending on ϵ).

(c) By the prime number theorem, $\vartheta(x) = \sum_{p < x} \log(p)$ obeys $\vartheta(x)/x \to 1$. Use this to show that

$$\log[d(n)] \ge \frac{(1-\epsilon)\log(2)\log(n)}{\log\log(n)}.$$

infinitely often.

(d) By counting lattice points under the hyperbola xy = n, show that

$$d(1) + d(2) + d(3) + \dots + d(n) = n \log(n) + O(n).$$

While part (c) shows that d(n) can be enormous, this result shows that it is typically much smaller.

- 41. Let $\omega = e^{2\pi i/3}$.
 - (a) Show that $\mathbb{Z}[\omega]$ is a Euclidean domain using the norm $N(a+b\omega)=|a+b\omega|^2=$
 - (b) Determine the units (there are six).
 - (c) Show that the following is a complete list of the primes in $\mathbb{Z}[\omega]$ (without repetition):
 - (i) 1ω and its associates,
 - (ii) the rational primes of the form 3n+2 and their associates, and
 - (iii) the (non-trivial) factors $a + b\omega$ of rational primes of the form 3n + 1.
 - (d) Deduce that the number of solutions $(n, m) \in \mathbb{Z}^2$ to $N = n^2 + 3m^2$ is bounded by $C_{\epsilon}N^{\epsilon}$. (You may use results from the previous problem.)
- 42. (a) Use the previous problem to prove the following result of Bourgain¹:

$$\left\| \sum_{|n| \le N} a_n e^{2\pi i [nx + n^2 t]} \right\|_{L^6}^2 \lesssim N^{\epsilon} \sum |a_n|^2$$

where L^6 denotes $L^6(\mathbb{R}^2/\mathbb{Z}^2; dx dt)$.

(b) Gauss proved that if a, b are integers and q is an odd prime with $a, b \in [1, q-1]$, then

$$\left| \sum_{n=0}^{q-1} e^{2\pi i [an^2 + bn]/q} \right| = \sqrt{q}.$$

¹'Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations', I. Geom. Funct. Analysis, 3 (1993) 107-156.

(Such sums are known as Gauss sums.) From this we may deduce

$$\left| \sum_{n=0}^{N} e^{2\pi i [an^2 + bn]/q} \right| \gtrsim \frac{N}{\sqrt{q}}$$

when $N \geq q^2$, for example. By studying small regions around x = b/q and t = a/q with $q \in [3, \sqrt{N}]$ show that N^{ϵ} cannot be replaced by an N-independent constant in part (a).

43. Prove the following two Strichartz estimates due to Bourgain²:

$$\left\| \sum a_n e^{2\pi i (nx+n^2t)} \right\|_{L^4}^2 \lesssim \sum |a_n|^2$$

where L^4 denotes $L^4(\mathbb{R}^2/\mathbb{Z}^2; dx dt)$ and

$$\left\| \sum_{n^2 + m^2 \le N^2} a(n, m) e^{2\pi i [nx + my + (n^2 + m^2)t]} \right\|_{L^4}^2 \lesssim N^{\epsilon} \sum |a(n, m)|^2$$

where L^4 denotes $L^4(\mathbb{R}^3/\mathbb{Z}^3; dx \, dy \, dt)$. [Hint: Use the method from the proof of Zygmund's restriction theorem.]

- 44. Let $d\mu$ and $d\mu_n$ be probability measures on $[0, \infty)$.
 - (a) Show that if $d\mu_n$ converges weak-* to $d\mu$, then

$$\limsup_{n \to \infty} \mu_n(K) \le \mu(K)$$

for any closed set K. Also show that for any open set, O,

$$\liminf_{n\to\infty}\mu_n(O)\geq\mu(O).$$

- (b) Give examples that show that the inequalities in part (a) can fail to be equalities.
- (c) If we do not assume that $d\mu$ is a probability measure, half of (a) can fail. Which half and why?
- (c) Show that if

$$\lim_{n \to \infty} \int e^{-mx} d\mu_n(x) = \int e^{-mx} d\mu(x)$$

for all $m \in \{0, 1, 2, ...\}$ then $d\mu_n$ converges weak-* to $d\mu$.

² Fourier transform restriction phenomena for certain lattice subsets and applications to non-linear evolution equations', I. *Geom. Funct. Analysis*, **3** (1993) 107–156.