
247A Homework.

The two sources for notes are http://www.math.ubc.ca/~ilaba/wolff/
and http://www.its.caltech.edu/~schlag/notes_033002.pdf

1. Let us define

J0(x) = 1
2π

∫ 2π

0

cos
(
x sin(θ)

)
dθ

Show that

f(x) 7→ F (ξ) = 2π
∫
J0(2πξx)f(x)x dx

defines a unitary map from L2
(
[0,∞), r dr

)
to itself. Describe the relation to the

Fourier transform of radial functions in two dimensions.

2. Let dρ be a probability measure on R with
∫
x dµ(x) = 0 and

∫
x4 dρ(x) < ∞.

Prove the central limit theorem for the sum of independent random variables with
this distribution.

Specifically, ifX1, X2, . . . are dρ-distributed, show that for any Schwartz function
f ,

E
{
f
(

X1+···+Xn

n1/2

)}
−→ 1√

2πσ2

∫
exp{− x2

2σ2 }f(x) dx

as n → ∞. Hint: first show convergence for f(x) = e−2πixξ uniformly for ξ in a
compact set.

3. Show that every continuous (group) homomorphism from T into C∗ (the non-zero
complex numbers under multiplication) takes the form x 7→ e2πinx with n an integer.
What is the analogous statement for continuous homomorphisms R → C∗.

4. Let us define a sequence functions on R by

ψn(x) =
[ d
dx

− 2πx
]n

e−πx2

where n = 0, 1, . . . . Show that ψn(x) form an orthogonal sequence of eigenfunctions
for the Fourier transform on L2(R).

In fact they are a basis, but this is much harder to prove. One approach to
this latter problem is to realize that they are the eigenfunctions of the harmonic
oscillator:

u(x) 7→
[ d
dx

− 2πx
][
− d

dx
− 2πx

]
u(x) = −d

2u

dx2
+ (4π2x2 − 2π)u(x).

5. Let G be a finite cyclic group and H a subgroup. For χ ∈ Ĝ we write

f̂(χ) =
∑

g

f(g)χ̄(g).

We say χ ∈ ĜH if χ is constant on the cosets of H.
Prove the following analogue of the classical Poisson Summation formula:

1
|G|

∑
χ∈ĜH

f̂(χ) =
1
|H|

∑
h∈H

f(h).

(The classical version has G = R and H = Z, which leads to ĜH = {e2πinx : n ∈
Z}.)
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6. Suppose f ∈ L2(R) is supported on [− 1
2 ,

1
2 ] then we know that f can be recovered

from the values of f̂(n) for n ∈ Z (the characters form an orthonormal basis). Prove
the Shannon Sampling Theorem:

f̂(ξ) =
∑

n

f̂(n)
sin[π(n− ξ)]
π(n− ξ)

(which includes proving convergence of this infinite sum).
Remark: The audible spectrum extends only to about 20kHz. Consequently, as
heard by a human, one may regard music as a function whose Fourier transform is
supported on a finite interval. The above theorem says that to faithfully reproduce
music, one need only sample the signal forty thousand times per second. This is
what happens in CD recording.

7. Given ω ∈ Rd, show that the following are equivalent:
(a) For m ∈ Zd, m · ω = 0 implies m = 0.
(b) The curve t 7→ tω + Zd is dense in Rd/Zd.
(c) For any continuous function f on Rd/Zd,

lim
T→∞

1
2T

∫ T

−T

f(tω + Zd) dt =
∫ 1

0

· · ·
∫ 1

0

f(x+ Zd) dx.

[Hint: prove (a)⇔(c) and then (c)⇒(b)⇒(a).]

8. Let dµ be a finite complex measure on R.
(a) Show that

lim
L→∞

1
2L

∫ L

−L

∣∣µ̂(ξ)
∣∣2dξ =

∑
x∈R

∣∣µ({x})
∣∣2

(finiteness of the measure implies that only countably many terms in the sum are
non-zero).
(b) Suppose that dµ is purely atomic, that is, dµ is a (countable) linear combination
of delta measures. Show that µ̂ is almost periodic.

A function on f on R is said to be almost periodic if for any ε > 0, there exists
L > 0 so that any interval of length L contains an ε-almost period:

∀a ∈ R ∃p ∈ [a, a+ L] such that sup
x

∣∣f(x)− f(x+ p)
∣∣ < ε.

Hint: For part (b) begin by considering the case µ̂(ξ) = eiξ + e2πiξ.

9. The dyadic cubes in Rd are the sets of the form

Qn,k = [k12n, (k1 + 1)2n)× · · · × [kd2n, (kd + 1)2n)

were n ranges over Z and k ∈ Zd.
(a) Given a collection of dyadic cubes whose diameters are bounded, show that one
may find a sub-collection which covers the same region of Rd but with all cubes
disjoint.
(b) Define the (uncentered) dyadic maximal function by

[MDf ](x) = sup
Q3x

1
|Q|

∫
Q

f(y) dy

where the supremum is over all dyadic cubes that contain x. Show that this operator
is of weak type (1,1).
(c) Deduce boundedness of the Hardy-Littlewood maximal function from the above.
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Remarks: Part (a) provides a replacement for the Vitali Covering Lemma. I propose
you address (c) ‘geometrically’; draw some pictures in the planar (d = 2) case.

10. (a) Evaluate

DN (x) =
N∑

n=−N

e2πinx

and show that it is not an approximate identity on T.
(b) Show that 1

2N+1 |DN (x)|2 is an approximate identity and derive its relation to
the Fejer kernel.
(c) Calculate ∑

n∈Z
r|n|e2πinx

for 0 < r < 1 and show that for r → 1 it gives rise to an approximate identity.
(d) Suppose φn is an approximate identity and dµ, a finite complex measure on T.
Show that φn ∗ dµ converges weak-∗ to dµ.

Note: dµn converges weak-∗ to dµ iff for every bounded continuous function, f ,∫
f dµn →

∫
f dµ.

11. (a) Given f ∈ Lp(R), 1 ≤ p <∞, show that t 7→ f(x+ t) defines a continuous map
of R into Lp(R, dx).
(b) Show that it is not equi-continuous as f varies over the set of f with ‖f‖Lp ≤ 1.
(That is, ε cannot be chosen from δ independently of f .)
(c) Show that part (a) is false for L∞ and M(R).

12. (From Wolff §4.) Find a sequence of Schwartz functions φn such that (a) ‖φn‖Lp

and ‖φ̂n‖Lp′ are constant. The supports of φ̂n are disjoint and those of φn are
almost disjoint. Use

∑N
n=1 φn to show that if ‖f̂‖Lp′ . ‖f‖Lp then p ≤ 2.

By almost disjoint we mean ‖
∑N

n=1 φn‖p
Lp ≤ 100

99

∑N
n=1 ‖φn‖p

Lp . Notice that if
the supports were actually disjoint, then 100/99 could be replaced by 1.
Hint: Take a single C∞c function and modify it by translation and multiplication
by characters.

13. Prove the Rising Sun Lemma: Given a non-negative f ∈ L1(R), define

[MRf ](x) = sup
t>0

1
t

∫ t

0

f(x+ s) ds.

If S = {x : MRf > λ} then |S| = λ−1
∫

S
f(x) dx. [Hint: S is open.]

14. Prove the following theorem of Milicer-Gruzewska: Let dµ be a complex measure
on T with the property that µ̂(n) → 0 as n→∞ (µ is called a Rajchman measure).
If f ∈ L1(d|µ|) and dν = f dµ then ν̂(n) → 0. [Hint: mimic the proof of the
Riemann–Lebesgue Lemma from Schlag’s notes.]

15. Let R(k) be the smallest number such that in any colouring of the edges of the
complete graph on R(k) vertices by two colours, one can find a monochromatic
complete graph on k vertices. These are known as Ramsey numbers; it is not
difficult to show that R(k) ≤ 22k. The problem here is to prove that 2k/2 ≤ R(k),
which is due to Erdős.
(a) Determine the expected number of monochromatic complete graphs on k ver-
tices contained within a random colouring of the complete graph on n vertices.
(b) Show that this is less that one when n = 2k/2 and so complete the problem.
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16. Let f ∈ Cα with α < 1, and let Kn denote the Fejér kernel.
(a) Show that

‖f ∗Kn − f‖C0 . n−α‖f‖Cα .

(b)[Optional] Show that ‖f ∗Kn − f‖Cα → 0 may fail. However, it is true if one
restricts to those f with

(1) sup
|x−y|<δ

|f(x)− f(y)| = o(δα).

(c)[Optional] Show that the set of f ∈ Cα that obey (1) is exactly the closure of
C∞ in Cα.

17. Let f be a continuous function on T. Suppose that for each n > 0 there is a
trigonometric polynomial pn of degree n (or less) such that

‖f − pn‖C0 . n−α

where α < 1. Show that f is α Hölder continuous. Hint: write

f = p1 +
∞∑

k=1

(
p2k − p2k−1

)
.

18. Let Ω be a simply-connected open domain bounded by a Jordan curve. By a
theorem of Carathéodory, any conformal map f of D onto Ω can be extended to a
homeomorphism of D̄ onto Ω̄.

We say that a curve γ : S1 → C is rectifiable if there exists a constant L so that
for any 0 ≤ θ0 < θ1 < · · · < θn < 2π,

n∑
k=0

|γ(eiθk)− γ(eiθk+1)| ≤ L

where θn+1 = θ0.
Prove the following theorem of F. and M. Riesz: f ′ ∈ H1 if and only if ∂Ω is

rectifiable. [Hint: the function z 7→
∑
|f(zeiθk) − f(zeiθk+1)| is continuous and

sub-harmonic on D.]

19. Prove the following result of Privalov: For 0 < α < 1, f ∈ Cα implies f̃ ∈ Cα.

20. (a) Suppose T is a rotation invariant operator on L2(R/Z), that is, RyT = TRy

for any rotation [Ryf ](x) = f(x− y). Show that e2πinx, n ∈ Z, are eigenfunctions
of T .
(b) Let T be a bounded operator on L2(Rn) such that there is a function K obeying
|K(x, y)| . |x− y|−n so that whenever f and g have disjoint supports,

〈g, Tf〉 =
∫ ∫

ḡ(x)K(x, y)f(y) dy dx.

Show that if T is translation invariant, then K(x, y) = F (x− y), which means that
T is a convolution operator. [Hint: Treat (a) and (b) independently.]

21. (a) Let I ⊆ R be an interval and let z ∈ C+ = {z : Im z > 0}. Show that the
harmonic measure of I ⊆ ∂C+ with respect to z is equal to the angle subtended
by I at z divided by π. Deduce that the the harmonic measure of I is constant on
arcs of circles.
(b) Calculate the conjugate function of χ[0,a](θ) ∈ L2(S1; dθ

2π ).
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22. (a) Suppose f : D → C+ = {z : Im z > 0} is analytic. Show that there exists a
finite positive measure dµ and a real constant a so that

f(z) = a+ i

∫ 2π

0

eiθ + z

eiθ − z
dµ(θ).

This result is due to Herglotz. [Hint: First look at Im(f).]
(b) Deduce that any holomorphic mapping of C+ into itself admits the representa-
tion

f(z) = a+ bz +
∫

R

1 + tz

t− z
dρ(t).

where a ∈ R, b ≥ 0, and dρ is a positive measure.

23. Prove the following theorem of Kolmogorov: suppose 0 < p < 1 then

f(z) =
∫ 2π

0

dµ(θ)
eiθ − z

implies sup
0<r<1

∫
|f(reiθ)|p dθ <∞

for any finite complex measure dµ.

24. Let `pµ denote the weighted `p space

‖c‖p =
∑

(|n|+ 1)−2|cn|p.

Let φn, n ∈ Z, be an orthonormal basis for L2(R/Z) which obeys ‖φn‖L∞ . 1 and
define T : L2 → `2µ by

[Tf ](n) = (|n|+ 1)
〈
φn(x), f(x)

〉
.

(a) Show that T extends to a bounded map of Lp into `pµ for all 1 < p ≤ 2. This
result is due to Hardy and Littlewood. [Hint: Prove a weak-type bound and use
Marcinkiewicz.]
(b) Given a sequence cj indexed by j ∈ Z, define the rearrangement c∗j as follows:
For j ≥ 0, c∗j is the (j+1)th largest element of the set {|c0|, |c1|, . . . } while for j < 0,
it is the |j|th largest element of {|c−1|, |c−2|, . . . }. Derive the following inequality
of Payley: ∑

(1 + |j|)p−2|c∗j |p . ‖f‖p
Lp

where cj = f̂(j).
(c) By splitting the sum dyadically, show that this implies the usual Hausdorff–
Young inequality for 1 < p ≤ 2.

25. Suppose f ∈ L1(R/Z) and let Mf denote its (uncentred) dyadic maximal function.
(a) Show that for λ >

∫
|f |,

1
λ

∫
|f |>λ

|f(x)| dx . |{x : Mf > λ}|.

[Hint: Do a Calderón–Zygmund style decomposition.]
(b) Deduce that if Mf ∈ L1, then |f | log[1 + |f |] ∈ L1. This result is due to Stein.
(c) Use the fact that M : L∞ → L∞ and L1 → L1

w to show

|{x : Mf > λ}| . 1
λ

∫
|f |>cλ

|f(x)| dx.

for some small constant c.
(d) Deduce that if |f | log[1 + |f |] ∈ L1 then Mf ∈ L1.
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26. For 1 ≤ p <∞, let Lp
w(R) denote the set of measurable functions on R for which

‖f‖∗p = sup
λ>0

{
λp|{x : |f | > λ}|

}1/p

is finite. The ∗ is to warn that this isn’t a norm; however,
(a) For 1 < p <∞, the following defines a norm on Lp

w(R):

‖f‖p,w = sup
E

1
|E|(p−1)/p

∫
E

|f(x)|.

Moreover, ‖f‖∗p . ‖f‖p,w . ‖f‖∗p. [Remark: with this norm, Lp
w(R) is actually a

Banach space.]
(b) Show that there is no norm on L1

w(R) comparable to ‖f‖∗1 by considering the
following family of functions

N∑
k=0

1
|x− k|

as N →∞.

27. (a) Let cn denote the surface area of Sn−1 ⊆ Rn. Show that for n ≥ 3,

G(x) =
1

(n− 2)cn|x|n−2

is the Green function for the Laplace equation in Rn: if f ∈ S, then −∆(G∗f) = f .
(b) For any f, g ∈ S,∣∣∣∣∫ f(x)g(x) dx

∣∣∣∣2 ≤ ‖∇f‖2L2

∫ ∫
g(x)G(x− y)g(y) dx dy.

(c) Deduce the following Sobolev inequality:

∀ f ∈ S, ‖f‖Lq . ‖∇f‖L2 where q = 2n/(n− 2)

by choosing g appropriately.
(d) Show that on R, one does not have

‖f‖2L∞ . ‖f ′‖2L2

however it is true that
‖f‖2L∞ . ‖f ′‖2L2 + ‖f‖2L2 .

[Remark: In this regard, R2 is like R; there is no estimate without adding ‖f‖L2 .
However, one has only

‖f‖2Lq . ‖∇f‖2L2 + ‖f‖2L2

for all 2 ≤ q <∞.]

28. Suppose a : R2 → R obeys

∂n+m

∂xn∂ξm
a(x, ξ) ∈ L∞

for all n,m ≥ 0. We then define an operator on L2(R) by

[Tf ](x) =
∫
a(x, ξ)e2πixξ f̂(ξ) dξ.

(This is the pseudo-differential operator with symbol, a, which belongs to the exotic
symbol class S0

0,0.) Show that it is bounded. [Hint: let ψj be a partition of unity
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adapted to the partition of R by [j, j+1), then apply the Cotlar-Stein Lemma using
the operators with symbols ai,j(x, ξ) = ψ(x− i)a(x, ξ)ψ(ξ − j).]

29. (a) Prove that ∣∣∣∣∫
Rn

f(x)g(x) dx
∣∣∣∣ ≤ ∫

Rn

f∗(x)g∗(x) dx

(b) Suppose f 7→ f ∗K is a bounded operator on L2(Rn) and K(x) . |x|−n. Show
that there exists C so that ∫

ε<|x|<N

K(x) dx ≤ C

for all 0 < ε < N <∞.

30. Given a measurable function t : R → (0,∞), let us define

[Ttf ](x) =
1√

2πt(x)

∫
exp{− (x−y)2

2t(x) }f(y) dy.

(a) Determine the adjoint of the operator Tt; write it as an integral operator.
(b) Consider TtT

†
t and show that for f ≥ 0,

[TtT
†
t f ](x) . [T2tf ](x) + [T †2tf ](x).

(c) Deduce that maximal operator

[Mf ](x) = sup
t>0

1√
2πt

∫
exp{− (x−y)2

2t }f(y) dy.

is bounded on L2(R). [Remark: There is nothing special about the Gaussian, it
was just chosen for concreteness.]

31. Given n ∈ Z3, let us write |n| for the `1 norm: |n| = |n1| + |n2| + |n3|. Consider
the following operator on `2(Z3):

[Hu](n) =
∑

|n−m|=1

u(m).

Schur’s test (or part (b)) shows that this is a bounded operator.
(a) Given n ∈ Zd, let us write δn for the function k 7→ δk,n. Show that 〈δm|HNδn〉
is equal to the number of paths of length N from n to m in the Z3 lattice.
(b) As H is translation invariant, we know that we can write it as a Fourier multi-
plier. Find the Fourier multiplier.
(c) Determine the leading term in the t→∞ asymptotics of

〈δ0|etHδ0〉.
(d) [Optional] Use the Borel–Cantelli Lemma to deduce that in three dimensions,
a random walker starting at the origin will return to the origin only finitely many
times (with probability one).

32. Let Ω denote a hyperplane in Rd and let dσ denote the induced Lebesgue measure.
For s ≥ 0, Hs denotes the Sobolev space of functions f ∈ L2 for which∥∥f∥∥2

Hs =
∫
|f̂ |2(1 + |ξ|2)s dξ

is finite.
Show that for ε > 1/2, f 7→ f |Ω defines a continuous map from Hs(Rd) to

Hs−ε(Ω). Also show that for ε ≤ 1/2, it does not.
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33. Let Ω denote the cone |ξ0|2 = |ξ1|2 + · · · + |ξd|2 in Rd+1 and let dσ denote the
induced surface measure.
(a) If f is a smooth function supported in a compact subset of Rd+1 \ {0}, show
that Fourier transform of f dσ has a natural interpretation as a solution of the wave
equation:

d2u

dt2
=

∑
j

d2u

dx2
j

.

(b) Calculate the leading term asymptotics of f̂dσ as |ξ| → ∞ in a fixed direction.
For simplicity, just treat the case d = 2 with f supported in the region {ξ0 > 0}.
Warning: the cone does not have non-vanishing Gaussian curvature!

34. (a) Given ψ0 with ψ̂0 ∈ C∞c (R), write the solution of the free Schrödinger equation

i
∂ψ

∂t
= −∂

2ψ

∂2x
, ψ(x, t = 0) = ψ0(x)

as an integral involving ψ̂0.
(b) Study the asymptotics in the regime t → ∞ with x = vt and v ∈ R fixed.
Specifically, prove that∣∣∣ψ(x, t)− 1√

4πt
e−iπ/4eix2/4tψ̂0( x

4πt )
∣∣∣ . (t2 + x2)−3/4

for t sufficiently large.
(c) Let us call the map of ψ0 into the leading asymptotic behaviour V (t). That is,
the LHS of the equation above is |ψ(x, t)− V (t)ψ0|. Check that this determines a
unitary map and that ψ(t)− V (t)ψ0 converges to zero in L2.
(d) Use the fact that for t fixed, ψ0 7→ ψ(t) is also a unitary map to deduce that
the above asymptotic holds in L2 sense for any initial data ψ0 ∈ L2.

35. Prove the van der Corput Lemma: (a) Suppose φ is real-valued and smooth in (a, b)
and that for some k ≥ 1, φ(k)(x) ≥ 1 on [a, b]. Show that∣∣∣∣∣

∫ b

a

eiλφ(x) dx

∣∣∣∣∣ ≤ 3kλ−1/k

for k ≥ 2 and also for k = 1 if we assume that φ′ is monotone. [Hints: Proceed
by induction. For k = 1, integrate by parts wisely. For the step from k to k + 1,
treat any interval with |φ(k)(x)| ≤ δ(λ) separately from those where it is bigger
than δ(λ).]
(b) Deduce that∣∣∣∣∣

∫ b

a

eiλφ(x)ψ(x) dx

∣∣∣∣∣ . λ−1/k

[
|ψ(b)|+

∫ b

a

|ψ′(x)| dx
]
.

36. (a) Prove Debye’s asymptotics for Bessel functions: given α ∈ (0,∞),

Jν

(
ν sech(α)

)
=

eν[tanh(α)−α]√
2πν tanh(α)

[
1 +O(ν−1)

]
as ν →∞.
(b) Prove that

cos[z sin(θ)] = J0(z) + 2
∞∑

k=1

J2k(z) cos(2kθ)
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for all θ ∈ R. Why does the series converge?

37. Let E be a compact subset of Rn of non-zero α-capacity. In class we proved the
existence of a probability measure dν so that

1
Cα(E)

= inf
supp(µ)⊆E

Iα(µ) = Iα(ν).

Recall that

Vµ(x) =
∫

dµ(y)
|x− y|α

denotes the potential generated by dµ.
(a) Show that Vν(x) ≥ 1/Cα(E) for p.p. x ∈ E. (Recall that ‘p.p.’ means except
for a set of zero capacity.)
(b) Show that for any positive measure µ, Vµ(x) is upper semi-continuous, that is,
for every a ∈ R, the set {x : Vµ(x) > a} is open. Equivalently,

lim inf
xn→x

Vµ(xn) ≥ Vµ(x).

(c) From part (a), it follows that Cα(E)Vν(x) ≥ 1 for ν-almost all x. Explain.
From this and part (b), show that Cα(E)Vν(x) ≤ 1 for all x ∈ supp(ν).
(d) Show that

Cα(E) = sup{‖µ‖ : supp(µ) ⊆ E and ∀x ∈ supp(µ), Vµ(x) ≤ 1}.

38. Let E ⊆ Rn, be a compact set of non-zero α-capacity (0 < α < n). Let us define

Dn = inf 2
n(n−1)

∑
1≤i<j≤n

|xi − xj |−α

and
Mn = sup inf

x∈E

1
n

∑
1≤i≤n

|x− xi|−α.

The infimum in the definition of Dn and the supremum in the definition of Mn are
over {x1, . . . , xn} ⊂ E.

Show that Dn+1 ≤ Mn, that Mn ≤ 1/Cα(E), and that lim infDn ≥ 1/Cα(E).
Conclude that Cα(E) = limDn = limMn. [You may use the results of Question 3.]

39. Functions defined by

f(s) =
∞∑

n=1

an

ns
,

are known as Dirichlet series. The most famous example is the Riemann zeta
function, where an ≡ 1. By writing s = σ + it we have n−s = e−σ log(n)e−it log(n)

which shows the connection to Fourier integrals.
(a) Given f(s) as above and g(s) =

∑
bnn

−s, show that f(s)g(s) can also be
written as a Dirichlet series and find the formula for the coefficients. In this way,
interpret the coefficients of ζ(s)2. (This operation is the multiplicative analogue of
convolution.)
(b) Let f and g be Dirichlet series absolutely convergent for Re(s) > σ0. Show that

lim
T→∞

1
2T

∫ T

−T

f(α+ it)g(β − it) =
∑ anbn

nα+β

for Re(α) and Re(β) larger than σ0. This is the analogue of the Plancherel Theorem.
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(c) Prove the following simple Abelian theorem: Given α < 1,

lim
n→∞

logα(n)an = A =⇒ lim
u↓0

u1−αf(1 + u) = CαA

and determine the value of Cα. What if α = 1?

40. (a) Let d(n) = #{d > 0 : d|n}. Prove that if n =
∏
pai

i then

d(n)
nδ

=
∏(

ai + 1
pδai

i

)
< exp

{
21/δ

δ log(2)

}
[Hint: be wasteful, a+1

pδa ≤ 1 + a
pδa ≤ 1 + 1

δ log(2) .]
(b) Refine the above argument to show that

log[d(n)] ≤ (1 + ε) log(2) log(n)
log log(n)

for n sufficiently large (depending on ε).
(c) By the prime number theorem, ϑ(x) =

∑
p≤x log(p) obeys ϑ(x)/x → 1. Use

this to show that

log[d(n)] ≥ (1− ε) log(2) log(n)
log log(n)

.

infinitely often.
(d) By counting lattice points under the hyperbola xy = n, show that

d(1) + d(2) + d(3) + · · ·+ d(n) = n log(n) +O(n).

While part (c) shows that d(n) can be enormous, this result shows that it is typically
much smaller.

41. Let ω = e2πi/3.
(a) Show that Z[ω] is a Euclidean domain using the norm N(a+ bω) = |a+ bω|2 =
a2 − ab+ b2.
(b) Determine the units (there are six).
(c) Show that the following is a complete list of the primes in Z[ω] (without repe-
tition):

(i) 1− ω and its associates,
(ii) the rational primes of the form 3n+ 2 and their associates, and
(iii) the (non-trivial) factors a+ bω of rational primes of the form 3n+ 1.

(d) Deduce that the number of solutions (n,m) ∈ Z2 to N = n2 + 3m2 is bounded
by CεN

ε. (You may use results from the previous problem.)

42. (a) Use the previous problem to prove the following result of Bourgain1:∥∥∥∥∥∥
∑
|n|≤N

ane
2πi[nx+n2t]

∥∥∥∥∥∥
2

L6

. N ε
∑

|an|2

where L6 denotes L6(R2/Z2; dx dt).
(b) Gauss proved that if a, b are integers and q is an odd prime with a, b ∈ [1, q−1],
then ∣∣∣∣q−1∑

n=0

e2πi[an2+bn]/q

∣∣∣∣ =
√
q.

1‘Fourier transform restriction phenomena for certain lattice subsets and applications to non-

linear evolution equations’, I. Geom. Funct. Analysis, 3 (1993) 107–156.
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(Such sums are known as Gauss sums.) From this we may deduce∣∣∣∣ N∑
n=0

e2πi[an2+bn]/q

∣∣∣∣ &
N
√
q

when N ≥ q2, for example. By studying small regions around x = b/q and t = a/q

with q ∈ [3,
√
N ] show that N ε cannot be replaced by an N -independent constant

in part (a).

43. Prove the following two Strichartz estimates due to Bourgain2:∥∥∥∑
ane

2πi(nx+n2t)
∥∥∥2

L4
.

∑
|an|2

where L4 denotes L4(R2/Z2; dx dt) and∥∥∥∥∥∥
∑

n2+m2≤N2

a(n,m)e2πi[nx+my+(n2+m2)t]

∥∥∥∥∥∥
2

L4

. N ε
∑

|a(n,m)|2

where L4 denotes L4(R3/Z3; dx dy dt). [Hint: Use the method from the proof of
Zygmund’s restriction theorem.]

44. Let dµ and dµn be probability measures on [0,∞).
(a) Show that if dµn converges weak-∗ to dµ, then

lim sup
n→∞

µn(K) ≤ µ(K)

for any closed set K. Also show that for any open set, O,

lim inf
n→∞

µn(O) ≥ µ(O).

(b) Give examples that show that the inequalities in part (a) can fail to be equalities.
(c) If we do not assume that dµ is a probability measure, half of (a) can fail. Which
half and why?
(c) Show that if

lim
n→∞

∫
e−mx dµn(x) =

∫
e−mx dµ(x)

for all m ∈ {0, 1, 2, . . . } then dµn converges weak-∗ to dµ.

2‘Fourier transform restriction phenomena for certain lattice subsets and applications to non-

linear evolution equations’, I. Geom. Funct. Analysis, 3 (1993) 107–156.


