Mathematics 121 Midterm Terence Tao April 30, 1997

All questions are of equal value.	There is plenty of working space, and a blank page at the
end.	

Good luck!

!	
Full name: -	
Student ID: _	
Signature: _	
	Problem 1.
	Problem 2.
	Problem 3.
	Problem 4.
	Problem 5.

Problem 1. Let l^{∞} be the space of all bounded sequences of real numbers $(x_n)_{n=1}^{\infty}$, with the sup norm

$$||x||_{\infty} = \sup_{n=1}^{\infty} |x_n|.$$

Show that $(l^{\infty}, |||_{\infty})$ is a Banach space. (You may assume that this space satisfies the conditions for a normed vector space).

Problem 2. Let $(a_n)_{n=1}^{\infty}$ be a bounded sequence of real numbers. Prove that there exists a bounded sequence $(b_n)_{n=1}^{\infty}$ such that

$$b_{n-1} + 4b_n + b_{n+1} = a_n \tag{*}$$

for all $n=1,2,\ldots$, where we take b_0 to equal 0. [You may assume the result of Problem 1].

Hint: Use the Contraction Mapping theorem. You may need to rewrite the recurrence (*).

Problem 3.

Let T_1, T_2, \ldots be a sequence of continuous linear transformations from a Banach space X to a normed vector space Y. Assume that none of the T_i are identically zero; in other words, for every i there exists a $x \in X$ such that $T_i x \neq 0$. Show that there exists a single $x \in X$ (which does not depend on i) such that $T_i x \neq 0$ for every i.

Hint: use the Baire Category theorem.

_			
\mathbf{Prc}	١h١	lem	4

(a) Show that the product of two totally bounded sets is totally bounded.

(b) Show that every bounded set in \mathbf{R}^n is totally bounded.

Problem 5. Suppose $f: X \to Y$ is a continuous map from a metric space X to a metric space Y.

(a) Is the inverse image of a closed set under f always closed? Justify your answer.

(b) Is the inverse image of a compact set under f always compact? Justify your answer.

