HOMEWORK 9

1. Let \mathcal{A} be an invertible linear operator on a finite dimensional inner product space. Prove that \mathcal{A}^{*} is also invertible and $\left(\mathcal{A}^{-1}\right)^{*}=\left(\mathcal{A}^{*}\right)^{-1}$.
2. Let \mathcal{A} be a linear operator on an inner product space. Prove that $N\left(\mathcal{A}^{*} \circ \mathcal{A}\right)=N(\mathcal{A})$.
3. Let \mathcal{A} be a linear operator on a finite dimensional inner product space. Prove that $\operatorname{rank}\left(\mathcal{A}^{*}\right)=\operatorname{rank}(\mathcal{A})$.
4. Let \mathcal{A} be a linear operator on a finite dimensional inner product space. Prove that $R\left(\mathcal{A}^{*}\right)^{\perp}=N(\mathcal{A})$ and $R\left(\mathcal{A}^{*}\right)=N(\mathcal{A})^{\perp}$.
5. Let \mathcal{A} be a linear operator on an inner product space. Let $W \subset V$ be a subspace such that $\mathcal{A}(W) \subset W$. Prove that $\mathcal{A}^{*}\left(W^{\perp}\right) \subset W^{\perp}$.
6. Let $\mathcal{A}: V \rightarrow W$ be a linear map of inner product spaces such that $\left\langle\mathcal{A}(v), \mathcal{A}\left(v^{\prime}\right)\right\rangle=\left\langle v, v^{\prime}\right\rangle$ for all $v, v^{\prime} \in V$. Prove that \mathcal{A} is injective.
7. Let W and W^{\prime} be two finite dimensional subspaces of an inner product space such that $\operatorname{dim}(W)<\operatorname{dim}\left(W^{\prime}\right)$. Prove that there is a nonzero vector $x \in W^{\prime}$ orthogonal to W.
8. Let \mathcal{A} be a normal linear operator on a finite dimensional inner product space. Prove that $N\left(\mathcal{A}^{*}\right)=N(\mathcal{A})$ and $R\left(\mathcal{A}^{*}\right)=R(\mathcal{A})$.
9. Let \mathcal{A} be a normal linear operator on a finite dimensional real inner product space V. Suppose that the characteristic polynomial of \mathcal{A} splits. Prove that there is an orthonormal basis for V consisting of eigenvectors of \mathcal{A}.
$10\left({ }^{*}\right)$. Let \mathcal{A} be a normal linear operator on a finite dimensional complex inner product space V. Let $W \subset V$ be a subspace such that $\mathcal{A}(W) \subset W$. Prove that $\mathcal{A}^{*}(W) \subset W$.
