HOMEWORK 9

- 1. Let \mathcal{A} be an invertible linear operator on a finite dimensional inner product space. Prove that \mathcal{A}^* is also invertible and $(\mathcal{A}^{-1})^* = (\mathcal{A}^*)^{-1}$.
- 2. Let \mathcal{A} be a linear operator on an inner product space. Prove that $N(\mathcal{A}^* \circ \mathcal{A}) = N(\mathcal{A})$.
- 3. Let \mathcal{A} be a linear operator on a finite dimensional inner product space. Prove that $rank(\mathcal{A}^*) = rank(\mathcal{A})$.
- 4. Let \mathcal{A} be a linear operator on a finite dimensional inner product space. Prove that $R(\mathcal{A}^*)^{\perp} = N(\mathcal{A})$ and $R(\mathcal{A}^*) = N(\mathcal{A})^{\perp}$.
- 5. Let \mathcal{A} be a linear operator on an inner product space. Let $W \subset V$ be a subspace such that $\mathcal{A}(W) \subset W$. Prove that $\mathcal{A}^*(W^{\perp}) \subset W^{\perp}$.
- 6. Let $\mathcal{A}: V \to W$ be a linear map of inner product spaces such that $\langle \mathcal{A}(v), \mathcal{A}(v') \rangle = \langle v, v' \rangle$ for all $v, v' \in V$. Prove that \mathcal{A} is injective.
- 7. Let W and W' be two finite dimensional subspaces of an inner product space such that $\dim(W) < \dim(W')$. Prove that there is a nonzero vector $x \in W'$ orthogonal to W.
- 8. Let \mathcal{A} be a normal linear operator on a finite dimensional inner product space. Prove that $N(\mathcal{A}^*) = N(\mathcal{A})$ and $R(\mathcal{A}^*) = R(\mathcal{A})$.
- 9. Let \mathcal{A} be a normal linear operator on a finite dimensional real inner product space V. Suppose that the characteristic polynomial of \mathcal{A} splits. Prove that there is an orthonormal basis for V consisting of eigenvectors of \mathcal{A} .
- 10(*). Let \mathcal{A} be a normal linear operator on a finite dimensional complex inner product space V. Let $W \subset V$ be a subspace such that $\mathcal{A}(W) \subset W$. Prove that $\mathcal{A}^*(W) \subset W$.