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1. INTRODUCTION

My research interests cover a broad spectrum fields, including complex dynamics, Te-
ichmüller theory, Fuchsian groups, and classical complex analysis. The unifying theme of
my work is Thurston’s theory of postcritically-finite rational maps and questions that arise
there from.

Before describing how these subjects tie together, some historical context is needed.
Complex dynamics is the study of dynamical systems obtained by iterating holomorphic
maps. Most would say complex dynamics as a field began with the seminal work of Julia
and Fatou in the late 1910s. While some work continued in the years after, interest in the
subject waned in the midcentury. This changed in the 1980s. The discovery of the Man-
delbrot set, the advent computer graphics, and multiple major breakthroughs sparked a
renaissance in complex dynamics, and the field has had a vibrant and active research com-
munity ever since.

One of the breakthroughs of 1980s was the development of combinatorial models of
polynomials and rational maps to better understand their dynamics. One such model is
Thurston’s model for postcritically-finite rational maps. A Thurston map is an orientation-
preserving branched cover f : S2 → S2 that is not a homeomorphism and such that each
of its critical points has finite forward orbit; it is considered together with the data of a
finite set of marked points A that contains said forward orbits. In 1982 Thurston presented
his celebrated characterization theorem, which gives necessary and sufficient conditions
for when such a map is “realized” by a rational map in a suitable sense. The proof, as
explicated by Douady and Hubbard [DH93], uses an analytic map on Teichmüller space
σf : TA → TA which is induced by f by pulling back complex structures. The question of
whether f is realized by a rational map then reduces to whether σf has a fixed point in TA.

Interestingly, the main requirement in Thurston’s theorem is the (non)existence of Jor-
dan curves in S2 \ A with certain invariance properties. More generally, every Thurston
map induces a pullback relation on isotopy classes of Jordan curves in S2 \ A. The restric-
tion f : S2 \ f−1(A) → S2 \ A is a covering map, so if γ ⊂ S2 \ A is a Jordan curve, then
a component γ̃ of f−1(γ) will also be a Jordan curve in S2 \ A. We say that γ̃ is a pullback
of γ by f . Lifting isotopies shows that the set of isotopy classes of f−1(γ) rel. A depends
only on the isotopy class of γ rel. A.
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FIGURE 1. Generic picture of some curve pullbacks in a sphere with four
marked points.
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With this in mind, understanding the dynamics of Thurston maps f , finding suitable
invariants by which to classify such maps, and understanding the dynamics of the associ-
ated pullback map σf are all closely related to the curve pullback relation described above.
See, for example, [BEKP09],[Sel12], [Koc13], [KPS16], and [Pil22].

f

FIGURE 2. A combinatorial depiction of a Thurston map with four marked
points. White tiles are mapped to the front face of the “pillow” on the right
(which is a copy of S2), and gray tiles are mapped to the back face.
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FIGURE 3. Some iterates of the pullback relation for the previous map,
where the isotopy class relative to the marked points is redrawn in the
square pillow after each pullback. Using the bijection between essential
curve classes and the extended rationals described later, this represents
µ f : 8/1 7→ 4/1 7→ 2/1 7→ o, where o denotes the “trivial” curve classes.

One of the major open problems in the study of the pullback relation on curves is the
following (see [Lod13] and [Pil22]):

Conjecture 1.1 (Finite Global Curve Attractor Conjecture). Let f : S2 → S2 be a Thurston
map with hyperbolic orbifold that is realized by a rational map. Then there is a finite set A( f ) of
Jordan curves in S2 \ A with the following property: for every Jordan curve γ in S2 \ A there is
a positive integer N(γ) such that, for n > N(γ), all pullbacks γ̃ of γ under f n are contained in
A( f ) up to isotopy rel. A.

Stated less formally, if one iterates the pullback relation on curves, then one eventually
lands in a finite set of isotopy classes. This problem appears to be quite difficult, as even
if one restricts to the case of four marked points (so |A| = 4) there are relatively few
classes of rational maps for which it has been verified. Searching for partial solutions of
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this conjecture is the primary focus of my research and I discuss it, and my results, further
in Section 2.

It turns out that the Thurston pullback map and the pullback operation on curves are
related to each other in a significant way: the map σf : TA → TA admits an extension to the
Weil-Petersson boundary of Teichmüller space, and the pullback operation on curves is then
encoded in the boundary behavior of this extension. This correspondence is demonstrated
by Selinger in [Sel12]. In the case of |A| = 4, there is the pleasingly simple description of all
these objects. The Teichmüller space is just the upper half-plane H and the Weil-Petersson
boundary as just the extended rationals Q̂ = Q ∪ {∞}. On the other hand, the isotopy
classes [γ] of (essential) Jordan curves of S2 are in bijection with Q̂ (one may think of these
as representing curves with rational slopes), and the pullback operation on curves is just
a function µ f : Q̂ → Q̂ ∪ {o}, where o represents isotopy classes of “trivial curves”. These
two pullback maps are essentially the same on the extended rationals (up to conjugation
by negative inversion; see, e.g., [CFPP12, Section 6]).

Thus, in the case where |A| = 4, the existence of a finite global curve attractor is equiv-
alent to the existence of a finite attractor on rational cusps for σf : H → H. I mention this
setting not only because I employ it in Section 2, but also because it is the starting point
for the other major component of my research. The map σf : H → H carries additional
structure in the form of a family of a functional identities:

σf ◦ g = ϕ f (g) ◦ σf

where g ranges over a finite index subgroup H of G = PMod(S2, A), thinking of the latter
as a discrete subgroup of Aut(H), and ϕ f : H → G is a homomorphism (see [KPS16]).
Analytic maps on the upper half-plane H satisfying such a collection of functional iden-
tities (with g ranging over a Fuchsian group) are called polymorphic maps in the classical
literature. The notion of polymorphic maps goes all the way back to Fricke and Klein,
who originally studied them in relation to elliptic modular forms (see, e.g., [Fri12]). More
recently they have been the subject of investigations by Hejhal [Hej75, Hej76], Mejía and
Pommerenke [MP12a, MP12b, MP08], and many others. The framework of polymorphic
maps has not, to my knowledge, been invoked in the context of the Thurston pullback
before. Using it, I have obtained a new proof of Thurston’s characterization theorem in the
|A| = 4 case which uses only classical complex analysis and the fact that σf is polymor-
phic, which is remarkably different in flavor from Thurston’s original proof as presented
in [DH93]. I have also obtained further partial progress on the curve attractor problem
using these methods. I elaborate on this result and others in Section 3.

2. THE FINITE GLOBAL CURVE ATTRACTOR PROBLEM

We will begin this section with a more careful description of Thurston maps. Let f : S2 →
S2 be an orientation-preserving branched covering map with degree deg( f ) > 2. A point
c ∈ S2 where the local mapping degree deg( f , c) is at least 2 is a critical point, and we
denote the set of critical points by C f . A postcritical point of f is a point p ∈ S2 of the
form p = f n(c) where c is a critical point of f and f n denotes the nth iterate of f with n a
nonnegative integer. We denote the set of all postcritical points Pf , so that

Pf =
⋃
n>1

{ f n(c) : c ∈ C f }.
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If |Pf | is finite then f is said to be postcritically-finite.

Definition 2.1. Let f : S2 → S2 be an orientation-preserving postcritically-finite branched
covering map with deg( f ) > 2. Let A ⊂ S2 be a finite set of marked points with the
properties Pf ⊂ A and f (A) ⊂ A. We call the map of pairs f : (S2, A)→ (S2, A) a Thurston
map.

We remark that our definition is a slight extension of the most basic one, where one takes
A = Pf .

We have already described the pullback relation on curves and the finite global curve
attractor conjecture in the introduction. We give a brief overview of the cases for which
it has been verified. Koch, Pilgrim, and Selinger have shown it holds when the virtual
endomorphism is contracting [KPS16]. Belk, Lanier, Margalit, and Winarski have proven it
for all postcritically-finite polynomials [BLMW22]. Hlushchanka has proven it for rational
maps where every critical point is a fixed point [Hlu19]. In the case of four postcritical
points it is also known for certain NET maps [Lod13,FKK+17], for all quadratic non-Lattès
maps [KL19], and for maps obtained from a certain blowup of 2× 2-Lattès maps [BHI21].
The general conjecture—even in the simplest nontrivial case of four marked points—still
remains open.

I now describe my results. I have proven

Theorem 2.2 (Smith ’23). Let f : Ĉ→ Ĉ be a rational Thurston map with a set A of four marked
points. If the postcritical set Pf ⊂ A has at most three points, then ( f , A) has a finite global curve
attractor.

Here are some of the ideas behind the proof.
As we described in the introduction, it is sufficient to show σf has a finite cusp attractor

(FCA). An FCA is a finite subset A ⊂ Q̂ such that, for each r ∈ Q̂, either σN
f (r) ∈ H

for some N or σn
f (r) ∈ A for all n sufficiently. We thus wish to understand the boundary

dynamics of the map σf .
In our case, the pullback map on Teichmüller space σf covers a map on moduli space,

and this map will essentially be the same as f itself. This allows one to explicitly relate
the dynamics of σf to the dynamics of f . The other major idea is what I call the “leashing
argument”. Roughly speaking, we affix a horoball at each rational cusp, and then attach
this horoball to the fixed point of Teichmüller space by a “leash”. With respect to a clever
choice of metric (specifically, a pullback of a suitably chosen orbifold metric), the length
of this leash coarsely contracts, and hence “tightens” by iterating σf . There will only be
finitely many horoballs that we may land on after this procedure, and the base cusps of
these horoballs will be exactly the desired attractor on cusps.

This result admits several possible extensions to the four postcritical point case. The
easiest one to state uses a criterion due to Kelsey and Lodge for detecting when a rational
Thurston map with four postcritical points is obtained by post-composing a map satis-
fying the previous theorem by a Möbius transformation (see [KL19, Proposition 2.5]). In
particular:

Theorem 2.3 (Smith ’23). Let f : Ĉ → Ĉ be a rational Thurston map with four postcritical
points. If one of the postcritical points of f is statically trivial, then ( f , Pf ) has a finite global curve
attractor.
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It is also possible to construct examples which have a finite global curve attractor by
post-composing maps that satisfy Theorem 2.2 by flexible Lattès maps, but detecting this
situation seems difficult.

Question 2.4. Is there a criterion which detects when a Thurston map is obtained by com-
posing a map (g, A) satisfying the previous theorems with a flexible Lattès map?

Question 2.5. Can any of these techniques be bootstrapped into the setting where there
are four postcritical points and A = Pf ?

3. POLYMORPHIC MAPS

In this section I will discuss some of my work in the theory of polymorphic maps as it
relates to Thurston theory. Here is the formal definition that I will use:

Definition 3.1. Let G be a finite coarea Fuchsian group, and let ϕ : G → Aut(H) be a homo-
morphism. We will say a nonconstant holomorphic function σ : H → H is ϕ-polymorphic
if σ satsifies the intertwining relation

σ ◦ g = ϕ(g) ◦ σ

for all g ∈ G.

It should be noted that this definition is somewhat restricted compared to the definition
used by other authors. A more general definition weakens f to being a meromorphic
function H → Ĉ, and only requires the image of the homomorphism ϕ to be a Möbius
transformation rather than specifically an automorphism of H.

The study of polymorphic maps has a venerable history going all the way back to Fricke
and Klein (see, e.g., [Fri12]). The term “polymorphic” was coined by Fricke (see [BWFH21,
pp. 432]) so as to contrast these functions with automorphic forms.

As stated in the introduction, I have been able to use the framework of polymorphic
maps to produce a new proof of Thurston’s theorem in the case of four postcritical points.
Here is a precise formulation of the theorem in this case:

Theorem 3.2 (Thurston’s Characterization Theorem). Let f : S2 → S2 be a Thurston map
with hyperbolic orbifold and |Pf | = 4. Then f is realized by a rational map if and only if every
invariant essential Jordan curve γ has λ f (γ) < 1, i.e., f has no Thurston obstruction.

I will say a few words about the strategy of the argument in order to convince the reader
my proof really is different in flavor from the standard one. The main idea is to apply the
classical Denjoy-Wolff theorem, which says that if a holomorphic map σ : H→H is not the
identity, then it has unique fixed point τ0 ∈ H with the property |σ′(τ0)| 6 1, where this
derivative is interpreted in the sense of angular derivatives when τ0 ∈ ∂H = R∪{∞}. The
point τ0 is called the Denjoy-Wolff (DW) point. Meanwhile, a Thurston map f is realized
by a rational map when σf : H→H has a fixed point in H. In light of the aforementioned
theorem, it suffices to show that the DW point of σf occurs on the boundary. This can be
established by making a careful study of the angular derivatives of polymorphic maps.
The only particulars about the Thurston pullback that we need beyond the fact that σf is
polymorphic is some knowledge about the lifts of Dehn twists by f , and the data we need
is exactly encoded by the Thurston multiplier.

There are other facts about the pullback operation that can be proven using these calcu-
lations. Here is another example: let c( f ) = max(1/λ(r)− 1) with r ∈ Q̂ ranging over all
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boundary fixed points of σf . Assuming the map is unobstructed, then c( f ) > 0 and one
can use an inequality due to Cowen and Pommerenke [CP82, Theorem 4.1(i)] to show

|Fix(σf ) ∩ Q̂| 6 c( f )
1− |σ′f (τ0)|2

|1− σ′f (τ0)|2

where τ0 is the DW point of σf in H. Put differently, this shows that there are finitely many
isotopy classes of curves fixed by the pullback operation. This reproves a result of Parry
(see [Par18, Theorem 10.1]).

I have also been able to obtain further partial progress on the curve attractor problem by
combining the above analysis with the “leashing” argument used to prove Theorem 2.2.
For a Thurston map ( f , A) with |A| = 4, call f completely unobstructed if all of its Thurston
multipliers have λ f (r) < 1.

Theorem 3.3 (Smith ’23). If ( f , A) is a completely unobstructed Thurston map where A is a set
of four marked points, then ( f , A) has a finite global curve attractor.

It seems that much more can be said using these tools. Work is ongoing.

4. FUTURE DIRECTIONS

As we saw in the previous section, many results in Thurston theory regarding the pull-
back relation on curves in the |A| = 4 can be proven from the perspective of polymorphic
functions and appeals to classical complex analysis. One wonders, then, if there is a for-
mulation of the FCA problem for all polymorphic functions—not just those which arise as
a Thurston pullback map.

Question 4.1. Is there a formulation of the FCA problem for generic polymorphic maps
σ : H→H which is provable using only classical complex analysis techniques?

Here is a first stab at what the analogous problem might look like:

Conjecture 4.2. Let G1, G2 be finite coarea Fuchsian groups with a common set of cusps, let
ϕ : G1 → G2 be a homomorphism, and let σ : H → H be an analytic ϕ-polymorphic map with
interior DW point. Then σ has a finite cusp attractor.

Regardless of whether some generalized variant of the FCA problem holds, it seems that
the theory of boundary dynamics of polymorphic maps is currently underdeveloped and
there should be rich structure in this setting.

Question 4.3. What else can be said about the boundary dynamics of a polymorphic map
σ : H→H?

I conclude by describing one last side project. Another important setting in which poly-
morphic maps appear (using the more general notion of functions from H to Ĉ) is as a ratio
f = α1/α2 of the periods α1 and α2 of certain elliptic integrals. Such functions determine
a second order Fuchsian ODE which can be calculated by finding its Schwarzian deriv-
ative (see, e.g., [Hej75]). On the other hand, differential equations of this type provide a
description of f as a conformal mapping of circular arc polygons (see, e.g., [Neh75, Section
V.7]). Recently, Bonk [Bon22] was able to use a similar technique to give a precise geo-
metric description of the function τ 7→ η1/η2, where η1 and η2 are the pseudo-periods of
the Weierstrass ζ-function and τ = ω1/ω2 is the ratio of the generators of the underlying
lattice. These techniques seem to apply to period ratios of many other naturally appearing
elliptic integrals. I am performing computer calculations to study this further.
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