
Select Geometry Qual Problems

Yan Tao

1 Preface

This is a compilation of solutions to many of the past UCLA Geometry/Topology Qual problems I have
written up while preparing for the exam. The problems are sorted into two sections, focusing on the
differential aspect of geometry and the algebraic aspect of topology respectively. The problems tend to be
sorted by the year but there’s no particular order I stuck to. You can find a problem by Ctrl+F and looking
for the exam and problem in the format yyF.# (for Fall exams) and yyS.# (for Spring exams). Not all
problems are solved here.

Many thanks to Josh Enwright for helpful discussions while compiling these.

2 Geometry

01S.2 On the compact connected n-manifold M , suppose α is a p-form and β is a (n− p− 1)-form. Suppose
∂M has two components: ∂0M and ∂1M . Let i0 and i1 be the inclusion of ∂0M and ∂1M into M .
Given that i∗0α = i∗1β = 0, prove that∫

M

dα ∧ β = (−1)p+1

∫
M

α ∧ dβ

Solution By Stokes’ Theorem, we have that∫
M

d(α ∧ β) =

∫
∂M

α ∧ β =

∫
M

i∗0(α ∧ β) +

∫
M

i∗1(α ∧ β)

But then

i∗0(α ∧ β) = i∗0α ∧ i∗0β = 0 and i∗1(α ∧ β) = i∗1α ∧ i∗1β = 0

so that d(α ∧ β) must integrate to zero. Now we have that

0 =

∫
M

d(α ∧ β) =

∫
M

[dα ∧ β + (−1)pα ∧ dβ]⇒
∫
M

dα ∧ β = (−1)p+1

∫
M

α ∧ dβ

01S.3 Suppose f, g : S1 → R are smooth embeddings and let

M = {(a, b,−→v ) ∈ S1 × S1 × R | f(a)− g(b) = −→v }

Show that M is a compact submanifold of S1×S1×R2. Let π : M → R2 be the projection π(a, b−→v ) =
−→v . Apply Sard’s Theorem to π and deduce that for almost every −→v ∈ R2, f(S1) is transverse to
g(S1) +−→v .
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Solution M is a smooth submanifold of S1×S1×R2 because it is a level set of the smooth function (a, b,−→v ) 7→
f(a)− g(b)−−→v . To show that M is compact, it will suffice by Heine-Borel to show that M is closed
and bounded. If (a, b,−→v ) ∈M then by the triangle inequality,

|−→v | ≤ sup
a∈S1

|f(a)|+ sup
b∈S1

|g(b)| =: R <∞

since f, g are smooth and S1 is compact, so that |(a, b,−→v )| ≤
√
R2 + 2 <∞, so M is bounded. Next,

suppose that (an, bn,
−→vn) is a sequence in M converging to some (a, b,−→v ) ∈ S1×S1×Rn. Then a ∈ S1,

b ∈ S1, and

−→v = lim
n→∞

−→v n = lim
n→∞

[f(an)− g(bn)] = lim
n→∞

f(an)− lim
n→∞

g(bn) = f(a)− g(b)

since f, g are smooth, so that (a, b,−→v ) ∈ M . Hence M is closed, so M is compact. Now let π be as
given; then π is smooth so by Sard’s Theorem, almost every −→v ∈ R2 is a regular value of π. Now
suppose −→v ∈ R2 is a regular value of π, and let (a, b,−→v ) be any element in π−1(−→v ). Then

T(a,b,−→v )M = {(v, w, dfa(v)− dgb(w)) | v ∈ TaS1, w ∈ TbS1} so that

dπ(a,b,−→v )(T(a,b,−→v )M) = dfa(TaS
1) + dgb(TbS

1)

Since −→v is a regular value of π, the left-hand side has dimension 2 so that the two subspaces
dfa(TaS

1), dgb(TbS
1) must be transverse subspaces of R2, for all such a, b. But these are precisely

the a and b for which f(a) = g(b) +−→v , corresponding to all intersections of f(S1) and g(S1) +−→v , so
that these two curves must be transverse.

10F.2, 16S.2 Let X and Y be submanifolds of Rn. Prove that for almost every a ∈ Rn, the translate X+a intersects
Y transversely.

Solution Let f : X × Y → Rn be defined by f(x, y) = y − x. Then f is smooth, so by Sard’s Theorem almost
every a ∈ Rn is a regular value of f . Take such an a, and let (x, y) be any element in f−1(a). Then

T(x,y)X × Y = TxX ⊕ TyY so that

df(x,y)(T(x,y)X × Y ) = TxX + TyY

Since a is a regular value of f , the left-hand side is n-dimensional so that TxX and TyY are transverse
subspaces of Rn, for all such x, y. But these are precisely the x and y for which x+a = y, corresponding
to all intersections of X + a and Y , so that X and Y intersect transversely.
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19F.1 State the classical Divergence Theorem for a compact 3-dimensional submanifold of R3 with smooth
boundary. Derive it from Stokes’ Theorem for differential forms.

Solution The classical divergence theorem states that for any compact 3-dimensional submanifold M of R3 with
smooth boundary and any smooth vector field F in M ,∫

∂M

F · dS =

∫
M

divFdV

where S denotes the outward normal vector to ∂M and dV is the standard volume form. To obtain
this, we first write F(x, y, z) := (F1(x, y, z), F2(x, y, z), F3(x, y, z)); then each of F1, F2, F3 is a smooth
function because F is smooth. Now,

F · dS = F1dy ∧ dz + F2dz ∧ dx+ F3dx ∧ dy

⇒ d(F · dS) = (
∂F1

∂x
+
∂F2

∂y
+
∂F3

∂z
)dx ∧ dy ∧ dz = divFdV

The outward normal S gives an orientation of M , so that by Stokes’ Theorem∫
∂M

F · dS =

∫
M

d(F · dS) =

∫
M

divFdV

19F.3 For which n > 0 does the real projective space RPn admit a nowhere-vanishing vector field? If it exists,
give an explicit one.

Solution If n is even, then consider π : Sn → RPn defined by π(x0, ..., xn) = [x0 : ... : xn]. π is a covering map
which identifies antipodal points of Sn (and therefore has degree 2), so that the Euler characteristic is
χ(RPn) = 1

2χ(Sn) = 1
22 = 1. Thus by Poincaré-Hopf no even-dimensional RPn can admit a nowhere-

vanishing vector field.

If n is odd, then Sn admits the nowhere-vanishing vector field (x0, x1, ..., xn−1, xn)
7→ (−x1, x0,−x3, x2, ...,−xn, xn−1), which gives (after applying the same covering map π as above) the
nowhere-vanishing vector field [x0, x1, ..., xn−1, xn] 7→ [−x1, x0,−x3, x2, ...,−xn, xn−1] on RPn for odd
n. Thus the n for which RPn admits a nowhere-vanishing vector field are precisely the odd n.

19F.5 A vector field X on a Lie group G is left-invariant (Lg)∗X = X for all g ∈ G, where Lg : G → G
denotes left-multiplication by g. Show that if X,Y are left-invariant, so is [X,Y ]. You must prove any
fact about Lie brackets that you use.

Solution This will follow immediately from the fact that for any smooth f : G → G, f∗[X,Y ] = [f∗X, f∗Y ], as
then we will have that

(Lg)∗[X,Y ] = [(Lg)∗X, (Lg)∗Y ] = [X,Y ]

In order to show this fact, take any smooth h : G→ R. Then

f∗[X,Y ](h) = [X,Y ](h ◦ f)

= X(Y (h ◦ f))− Y (X(h ◦ f))

= X(f∗Y (h) ◦ f)− Y (f∗X(h) ◦ f)

= f∗X(f∗Y (h))− f∗Y (f∗X(h)) = [f∗X, f∗Y ](h)
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17F.1 Let M be a smooth manifold. Verify the following identities for vector fields X,Y and a smooth 1-form
on M :

dω(X,Y ) = X(ω(Y ))− Y (ω(X))− ω([X,Y ])

Solution Fix Y and let X1, X2 be two vector fields and f : M → R be any smooth function. Then

(fX1 +X2)ω(Y )− Y ω(fX1 +X2)− ω([fX1 +X2, Y ])

= (fX1 +X2)ω(Y )− Y ω(fX1 +X2)− ω(−Y (f)X1 + f [X1, Y ] + [X2, Y ])

= fX1ω(Y ) +X2ω(Y )− fY ω(X1)− Y ω(X2)− Y (f)ω(X1) + Y (f)ω(X1)− fω([X1, Y ])− ω([X2, Y ])

= f(X1ω(Y )− Y ω(X1)− ω([X1, Y ])) + (X2ω(Y )− Y ω(X2)− ω([X2, Y ]))

Similarly fix X and let Y1, Y2 be two vector fields, f : M → R be any smooth function. Then

Xω(fY1 + Y2)− (fY1 + Y2)ω(X)− ω([X, fY1 + Y2])

= Xω(fY1 + Y2)− (fY1 + Y2)ω(X)− ω(X(f)Y1 + f [X,Y1] + [X,Y2])

= fXω(Y1) +X(f)ω(Y1) +Xω(Y2)− fY1ω(X)− Y2ω(X)−X(f)ω(Y1)− fω([X,Y1])− ω([X,Y2])

= f(Xω(Y1)− Y1ω(X)− ω([X,Y1])) + (Xω(Y2)− Y2ω(X)− ω([X,Y2]))

The above computations show that the right-hand side of the desired identity is tensorial, so it will
suffice to check the desired result on X = ∂

∂xj
, Y = ∂

∂xk
, where [X,Y ] = 0 by Clairaut’s Theorem.

Write ω =
∑
ωidxi, so that

dω(X,Y ) =
∂ωk
∂xj
− ∂ωj
∂xk

= X(ω(Y ))− Y (ω(X))

17F.2 Let Mn(R) be the space of all n× n matrices with real coefficients.
a) Show that O(n) = {A ∈Mn(R) |AAT = Id} is a smooth submanifold of Mn(R).
b) Show that O(n) has a trivial tangent bundle.

Solution a) O(n) is smooth as it is the level set at the identity of the smooth function f : Mn(R) → Mn(R)
defined by f(A) = AAT .

b) Let π : TO(n) → O(n) be the canonical projection. For each A ∈ O(n), let LA : O(n) → O(n)
where LA(B) = AB. Then LA is smooth and its inverse function is LA−1 which is smooth, so LA
is a diffeomorphism for each A ∈ O(n). Now let F : O(n) × TIdO(n) → TO(n) be defined by
F (A, v) = (LA)∗v. Then F is a bijection since LA is a diffeomorphism, so it will suffice to show that
F is smooth.

Since TO(n) is locally trivial, let U be a trivializing neighborhood of Id. Then any chart of U gives a
chart of each V := LA(U) via LA, which together gives the atlas of O(n). This then gives charts {V ×
TIdO(n), φ} in O(n)×TIdO(n) and {π−1(V ), ψ} in TO(n), where by construction F = ψ−1 ◦φ(because
this is certainly true for V = U and the others follow since LA is a diffeomorphism), so in particular
F is smooth. Thus F is a bundle isomorphism, so O(n) has a trivial tangent bundle.

17F.4, 20S.3 Consider the differential 1-form ω = xdy − ydx+ dz in R3 with coordinates (x, y, z). Prove that fω is
not closed for any nowhere zero function f : R3 → R.

Solution We have that

d(fω) = df ∧ ω + fdω = (2f − x∂f
∂x
− y ∂f

∂y
)dx ∧ dy +

∂f

∂x
dx ∧ dz +

∂f

∂y
dy ∧ dz

If this is zero, then ∂f
∂x = ∂f

∂y = 0, but then 2f = 0 as well which contradicts the fact that f is nowhere
zero. Thus fω is not closed for any such f .
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17F.5 Let x, y, z denote the standard Euclidean coordinates on R3 and let dA denote the standard area form
on S2 = {x2 + y2 + z2 = 1} ⊂ R3. Determine the values of n = 0, 1, 2, ... for which ω = zndA is exact.

Solution Let i : S2 → R3 be the standard inclusion. We have that

ω = zni∗(zdx ∧ dy + ydz ∧ dx+ xdy ∧ dz) =: zni∗η

Let B ⊆ R3 denote the closed ball of unit 1. Then B is a compact orientable manifold with boundary
∂B = S2, so that by Stokes’ Theorem∫

S2

ω =

∫
B

d(znη) =

∫
B

(n+ 3)zndx ∧ dy ∧ dz

ω is exact if and only if [ω] ∈ H2
deRham(S2) is trivial, if and only if this integral is zero. When n is

odd, zn is an odd function so since B is symmetric about the xy-plane, this integral is zero. When n
is even, zn ≥ 0 on B with a positive volume set (B ∩ {1/2 ≤ z ≤ 1/2}}) on which it is bounded from
below by 2−n, so that the integral is nonzero. Thus ω is exact if and only if n is odd.

17F.6, 21F.7 a) Define what it means for a manifold M to be orientable.
b) Show that every connected nonorientable manifold M admits a connected, oriented double cover.

Solution a) The set of ordered bases on TpM can be divided into two equivalence classes by orientation-preserving
isomorphisms. An orientation of TpM is an assigment of each equivalence class to {±1}. M is orientable
if there exists a smooth (in p) choice of orientations for each TpM .

b) Let M̃ = {(p, o) |p ∈M,o is an orientation on TpM}. Let π : M̃ →M be defined by π(p, o) = p. In
a sufficiently small neighborhood of each (p, o), every o corresponds to the standard basis { ∂

∂x1
, ..., ∂

∂xn
}

for TpM ordered in the same way, so that π is a diffeomorphism on this neighborhood and is thus the

desired double cover, and furthermore, (dπ)−1 induces a local orientation on M̃ .

Now suppose M̃ is not connected. Then it can be written as M̃ = U ∪ V where U, V are disjoint open
sets, and since π is a double cover, this means that πU : U →M is a diffeomorphism. But then since U
is orientable, so is M , which is a contradiction, so M̃ must be our desired connected, oriented double
cover.

16S.1 Consider the space of all straight lines in R2 (not necessarily those passing through the origin). Explain
how to give it the structure of a smooth manifold. Is it orientable?

Solution Let [a : b : c] ∈ RP2. If a, b are not both zero, then the equation ax + by + c = 0 defines a line
in R2. If [d : e : f ] = [a : b : c] then (d, e, f) is a scalar multiple (call this scalar λ) of (a, b, c)
so that dx + ey + f = λ(ax + by + c) = 0 ⇒ ax + by + c = 0 so it gives the same line. Thus
[a : b : c] 7→ ax + by + c = 0 is a well-defined injective function from RP2 \ {[0 : 0 : 1]} into the set of
lines in R2, and moreover every line can be represented this way so we can give the space of all straight
lines a smooth structure such that this is a diffeomorphism.

Let M be the orientation cover (see 17F.6) of RP2. Then since M is a degree 2 cover, the orientation
cover of RP2 \ {[0 : 0 : 1]} is M with two points removed. Since RP2 is nonorientable, M is connected,
so M with two points removed is still connected, so RP2 \ {[0 : 0 : 1]} is nonorientable.

16S.3 Consider the vector field X(z) = z2016 + 2016z2015 + 2016 on C = R2. (By this we mean the following:
take a complex coordinate z on C, identify TzC = C, and let X(z) ∈ TzC.) Compute the sum of indices
of X over all the zeroes of X.

Solution All the zeroes of X (which must all be isolated) are contained in some compact disk D. Then by
Poincaré-Hopf the sum of indices of X over all of its zeroes is equal to the Euler characteristic of D,
which is 1.
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16S.10 Consider the 3-form on R4 given by

α = x1dx2 ∧ dx3 ∧ dx4 − x2dx1 ∧ dx3 ∧ dx4 + x3dx1 ∧ dx2 ∧ dx4 − x4dx1 ∧ dx2 ∧ dx3

Let S3 be the unit sphere in R4 and ι : S3 → R4 be its inclusion map.
a) Evaluate

∫
S3 ι
∗α.

b) Let γ be the 3-form on R4 \ {0} given by

γ =
α

(x2
1 + x2

2 + x2
3 + x2

4)k

for k ∈ R. Determine the values of k for which γ is closed and those for which it is exact.

Solution a) Let B ⊆ R4 denote the closed ball of unit 1. Then B is a compact orientable manifold with boundary
∂B = S3, so that by Stokes’ Theorem∫

S3

ι∗α =

∫
B

dα =

∫
B

4dx1 ∧ dx2 ∧ dx3 ∧ dx4 = 2π2

b) We have that

dγ =
−2k(x1dx1 + x2dx2 + x3dx3 + x4dx4)

(x2
1 + x2

2 + x2
3 + x2

4)k+1
∧ α+

dα

(x2
1 + x2

2 + x2
3 + x2

4)k

=

[
−2k(x2

1 + x2
2 + x2

3 + x2
4)

(x2
1 + x2

2 + x2
3 + x2

4)k+1
+

4

(x2
1 + x2

2 + x2
3 + x2

4)k

]
dx1 ∧ dx2 ∧ dx3 ∧ dx4

=
4− 2k

(x2
1 + x2

2 + x2
3 + x2

4)k
dx1 ∧ dx2 ∧ dx3 ∧ dx4

so that γ is closed if and only if k = 2. Now,∫
S3

ι∗γ =

∫
S3

ι∗α 6= 0

by part (a), so that H3
deRham(S3) 3 [ι∗γ] 6= 0. But since π : R4\{0} → S3 defined by π(x1, x2, x3, x4) =

(x1, x2, x3, x4)/(x2
1 +x2

2 +x2
3 +x2

4)2 is a deformation retraction, it induces an isomorphism of de Rham
cohomologies. Since π∗(ι∗γ)) = γ, we thus have that

H3
deRham(R4 \ {0}) 3 [γ] 6= 0 so that γ is not exact.

Therefore, there does not exist a k for which γ is exact.

14S.2 Let M be a smooth manifold with boundary, and f : ∂M → Rn a smooth map for some n ≥ 1. Show
that there is a smooth map F : M → Rn such that F |∂M = f .

Solution Let U be a tubular neighborhood of ∂M in M , with the function π : U → ∂M projecting along the
normal vector. Let φ be a smooth bump function which is identically 1 on ∂M and identically 0 outside
U . Let F : M → Rn by F (x) = φ(x)f(π(x)) (which is well-defined since φ is zero outside of U where
π is defined). F is smooth, and for all x ∈ ∂M we have that π(x) = x so that F (x) = 1 · f(x) so that
F |∂M = f as desired.
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14S.4 Let ω1, ..., ωn be 1-forms on a smooth manifold M . Show that {ωi} is linearly independent if and only
if ω1 ∧ ... ∧ ωn 6= 0.

Solution Suppose that the ωi are linearly dependent. Then write ωn =
∑n−1
i=1 aiωi, so that

ω1 ∧ ... ∧ ωn = ω1 ∧ ... ∧ ωn−1 ∧ (

n−1∑
i=1

aiωi) =

n−1∑
i=1

(−1)n−1−iω1 ∧ ... ∧ ωi ∧ ωi ∧ ... ∧ ωn−1 = 0

Conversely, suppose the ωi are linearly independent. Then at a given point p, they form a basis for
T ∗pM , so take v1, ..., vn to be their dual basis. Then

(ω1 ∧ ... ∧ ωn)p(v1, ..., vn) = 1 so that ω1 ∧ ... ∧ ωn 6= 0

19S.1 Let M be a smooth manifold. Show that there is a proper map f : M → R.

Solution M has a countable chart (since it is second-countable) where every point lies in finitely many of the
sets (since it is paracompact), so let U1, U2, ... be such a chart and take a partition of unity {φn}
subordinate to this cover. Define f : M → R by f(x) =

∑∞
n=1 nφn(x). Since φn(x) is only nonzero for

finitely many n, 0 < f(x) <∞ so that f is a well-defined smooth function. Now for any real number

R, if f(x) ≤ R, then x ∈
⋃bRc
n=1 Un, since otherwise

φn(x) = 0 for all n = 1, ..., bRc ⇒ f(x) =

∞∑
n=bRc+1

nφn(x) ≥ bRc+ 1 > R which is a contradiction.

Therefore f−1([−R,R]) ⊆
⋃bRc
n=1 Un. Since the former set is closed and the latter is compact, the

former must be closed. Now any compact K ⊆ R is bounded, so it is contained in some [−R,R], and
therefore f−1(K) is a closed subset of f−1([−R,R]) which is compact, so it too is compact. Hence f
is proper.

19S.2 Let f : Rn+1 → R be smooth and suppose 0 is a regular value of f . Let M = f−1({0}). Show that
M × S1 is parallelizable.

Solution S1 is parallelizable, since it admits a nowhere vanishing vector field (x, y) 7→ (y,−x). Then

T (M × S1) ' TM × TS1 ' TM × S1 × R

M is a codimension 1 submanifold of Rn+1, so it has a 1-dimensional normal bundle. ∇f is a normal
vector field which cannot be zero in M because 0 is a regular value of f , so it spans each normal space
and so the normal bundle NM is trivial. Hence

TM × R ' {(p, v, w) | p ∈M,v ∈ TpM,w ∈ NpM} ' TM × R 'M × Rn+1

since TpM ⊕NpM = Rn+1 at each p ∈M . Therefore

T (M × S1) ' TM × S1 × R 'M × S1 × Rn+1

so that the tangent bundle of M × S1 is trivial and hence M × S1 is parallelizable.

19F.4 Prove that for any vector fields X,Y with Lie derivatives acting on k-forms,

[LX ,LY ] = L[X,Y ]

Solution

[LX ,LY ] = [LX , d ◦ iY + iY ◦ d] by Cartan’s formula

= LX ◦ d ◦ iY − d ◦ iY ◦ LX + LX ◦ iY ◦ d− iY ◦ d ◦ LX
= d ◦ [LX , iY ] + [LX , iY ] ◦ d
= d ◦ i[X,Y ] + i[X,Y ] ◦ d = L[X,Y ] by Cartan’s formula again.
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19S.5 Show that a closed 1-form on a manifold M is exact if and only if
∫
S1 f

∗ω = 0 for every smooth
f : S1 →M .

Solution Suppose ω is exact and let f : S1 → M be any smooth function. Write ω = dg Then f(S1) is a
compact orientable manifold with empty boundary, so by Stokes’ Theorem∫

S1

f∗ω =

∫
f(S1)

ω =

∫
∅

dg = 0

Conversely, suppose
∫
S1 f

∗ω = 0 for every smooth f : S1 →M . Without loss of generality assume M
is path-connected (otherwise, do this for each path-component), and fix a base point x0. For all x ∈M
let g(x) =

∫
γ
ω where γ is a path from x0 to x. g is well-defined because if γ, γ′ are two paths from

x0 to x then attaching them gives a loop Γ, which is smooth up to homotopy and therefore satisfies∫
Γ
ω = 0, so that ∫

γ′
ω =

∫
Γ

ω +

∫
γ

ω =

∫
γ

ω

Now by the Fundamental Theorem of Calculus we have for every x ∈M that

dgx =
d

dt
|t=1

∫
γ

ω = ωx

so that ω is exact.

19S.6 Let f : X → Y be a smooth, finite covering map between smooth manifolds. Show that the induced
map on de Rham cohomology

f∗ : Hn
deRham(Y ;R)→ Hn

deRham(X;R)

is injective.

Solution For each p ∈ Y , there exists a neighborhood U of p such that f−1(U) =
⋃k
j=1 Uj . Define the form g(ω)

by

g(ω)p :=
1

k

k∑
j=1

((f |Uj)−1)∗(ω|U)p

Now consider ω′ = ω + dα. We have that

g(ω′)p =
1

k

k∑
j=1

((f |Uj)−1)∗(ω′|U)p =
1

k

k∑
j=1

((f |Uj)−1)∗(ω|U)p +
1

k

k∑
j=1

((f |Uj)−1)∗(dα|U)p

= g(ω)p + d

1

k

k∑
j=1

((f |Uj)−1)∗(α|U)p

 =: g(ω)p + dβp

so that g is a well-defined map g : Hn
deRham(X;R) → Hn

deRham(Y ;R) on homology. Finally, for any
ω ∈ Hn

deRham(Y ;R),

(g ◦ f∗)(ω)p =
1

k

k∑
j=1

((f |Uj)−1)∗(f∗ω|U)p = (ω|U)p = ωp

so that g ◦ f∗ is the identity on Hn
deRham(Y ;R), and so f∗ must be injective.

8



16F.1 (Smooth Urysohn Lemma) Let M be a smooth manifold. Prove that for any two disjoint closed subsets
A,B ⊆M there is a smooth function f : M → R such that f = 0 on A and f = 1 on B.

Solution Let B ⊆ Rn be an open ball, and let x0, r be its center and radius respectively. Then the function

φx0,r(x) :=

{
exp

(
1

|x−x0|2−r2

)
|x− x0| < r

0 |x− x0| ≥ r

is a smooth function B → R where φ−1
x0,r(0) = Rn \ B. Now for any closed set A, write Rn \ A as a

union of open balls. Since M is paracompact, this can be done in a locally finite way, so take such a
union and for each ball, take its corresponding φy,r and let φ(x) =

∑
φy,r(x). Then φ−1(0) = A.

Now let A ⊆ M be any closed set. By paracompactness, there exists a locally finite open cover of M
by {Uα} such that each Uα is contained in a chart (Vα, ψ). By the above there exists a φ : Rn → R
such that φ−1(0) = ψ(A ∩ Uα). Now extend ψ ◦ φ to fα : M → R by declaring it zero outside of V ,
and let fA :=

∑
fα. Then f−1

A (0) = A. Finally, given any two disjoint closed subsets A,B, fA and fB
cannot both be zero at once, so we have a well-defined smooth function

f(x) =
fA(x)

fA(x) + fB(x)

When x ∈ A, fA(x) = 0 so that f(x) = 0, and when x ∈ B, fB(x) = 0 so that fA(x) = 1, so f is our
desired function.

16F.2 (Whitney’s Immersion Theorem) Let M ⊆ RN be a smooth k-dimensional submanifold. Prove that
M can be immersed into R2k.

Proof Proceed by induction. Suppose there is an immersion f : M → RL, which is certainly true for L = N
since M is embedded. If L ≤ 2k then we are done, so assume that L > 2k. Define

g : TM → RL by g(p, v) = Dfp(v)

By Sard’s Theorem, take a regular value a of g. Since L > 2k, RL has a higher dimension than TM
(which is 2k-dimensional), so a cannot be in the image of g. Let π : RL → RL−1 be the projection
onto the orthogonal complement of span{a}. Now suppose D(π ◦ f)p(v) = 0. Then

0 = D(π ◦ f)p(v) = (π ◦Dfp)(v)⇒ Dfp(v) = g(p, v) ∈ span{a}

Since a is not in the image of g, this implies that v must be zero. Therefore D(π ◦ f)p is injective at
each p ∈M , so that π ◦ f : M → RL−1 is an immersion as well, which completes the induction.
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16F.4 Show that

D = ker(dx3 − x1dx2) ∩ ker(dx1 − x4dx2) ⊆ TR4

is a smooth distribution of rank 2, and determine whether D is integrable.

Solution The differential forms α := dx3 − x1dx2 and β := dx1 − x4dx2 are (pointwise) linear maps TpR4 →
R, so with the standard basis { ∂

∂x1
, ..., ∂

∂x4
} for TpR4 we can represent α and β by the matrices(

0 −x1 1 0
)

and
(
1 −x4 0 0

)
respectively. We see that X =

∑4
i=1 fi

∂
∂xi

lies in D if and only
if

(
0 −x1 1 0
1 −x4 0 0

)
f1

f2

f3

f4

 = 0

For all (x1, ..., x4), the leftmost matrix has rank 2 (because of the 1’s), so its kernel is 2-dimensional.
Hence D is a smooth distribution of rank 2. For all (x1, ..., x4), the vector fields

X1 =
∂

∂x4
and X2 = x4

∂

∂x1
+

∂

∂x2
+ x1

∂

∂x3

are linearly independent, so they form a global basis for D. But

[X1, X2] =
∂

∂x4
(x4

∂

∂x1
) + several terms which are 0 =

∂

∂x1
/∈ D

so that by the Frobenius Integrability Theorem, D is not integrable.

17S.1 Let M be a connected smooth manifold of dimension at least 2. Prove that for any 2n distinct points
x1, ..., xn, y1, ..., yn ∈M there is a diffeomorphism f : M →M such that f(xi) = yi for all i.

Solution By induction on n. First let ∼ be the equivalence relation defined on M by x ∼ y if there exists a
diffeomorphism f : M → M with f(x) = f(y). For any x ∈ M , fix a chart (U, φ) such that φ(x) = 0.
Then φ(y) = a 6= 0 for any x 6= y ∈ U , so let X = a · (

∑n
i=1

∂
∂xi

). Let ψ : Rn → R be a bump function

which is identically 1 on B(0, |a|) and identically 0 outside of B(0, 2|a|). Then ψX is a compactly
supported vector field on φ(U) ⊆ Rn, so that (φ−1)∗(ψX) is a compactly supported vector field on U ,
and can therefore be extended to a vector field Y on M by declaring it zero outside U . Y therefore
has a global flow Φt for all t ∈ R which is a diffeomorphism. In particular, by definition Φ1(x) = y,
so Φ1 is our desired diffeomorphism in the case that n = 1. Additionally, note that Φ1 is the identity
outside of a compact subset of M .

Now suppose that for any connected smooth manifold N of dimension at least 2 and any 2n − 2
distinct points x1, ..., xn−1, y1, ..., yn−1 ∈ N there is a diffeomorphism g : N → N such that g(xi) =
yi for all i which is the identity outside of a compact subset of N . Given any 2n distinct points
x1, ..., xn, y1, ..., yn ∈M , let N = M \{xn, yn}, which is also a connected smooth manifold of dimension
at least 2 if M is. Let g be the diffeomorphism given by the above inductive hypothesis. Since g is the
identity outside a of a compact subset of N , there exist neighborhoods of xn, yn where g is the identity.
Therefore g extends to a diffeomorphism g̃ : M → M by (̃g)(xn) = xn and (̃g)(yn) = yn. Similarly,
returning to the n = 1 case we consider N ′ = M \ {x1, ..., xn−1, y1, ..., yn−1}, and let h : N ′ → N ′

be a diffeomorphism with h(xn) = yn which is the identity outside a compact subset of N ′. Then
again there exist neighborhoods of x1, ..., xn−1, y1, ..., yn−1 where h is the identity, so h extends to a
diffeomorphism h̃ : M →M by h̃(xi) = xi and h̃(yi) = yi for 1 ≤ i ≤ n− 1. Then f := g̃ ◦ h̃ : M →M
is a diffeomorphism which is the identity outside a compact subset of M which satisfies f(xi) = yi for
each 1 ≤ i ≤ n, which completes the induction.
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17S.2 Let M2n×2n(R) = R4n2

be the space of 2n× 2n real matrices. Consider the following matrix in block
form (

0 In
−In 0

)
∈M2n×2n(R)

where In is the n× n identity matrix. Show that the subspace

S = {A ∈M2n×2n(R) |ATΩA = Ω}

is a smooth submanifold of M2n×2n(R), and compute its dimension.

Solution Let Skew2n(R) be the subspace of skew-symmetric 2n × 2n matrices. Since a skew-symmetric ma-
trix is uniquely determined by its (i, j)th entries for i < j, this is a submanifold of M2n×2n(R) of
dimension

(
2n
2

)
. For every A ∈ M2n×2n(R), the matrix ATΩA is skew-symmetric since Ω is, so that

f : M2n×2n(R)→ Skew2n(R can be defined by f(A) = ATΩA. Now,

dfA(B) = lim
h→0

f(A+ hB)− f(A)

h
=

(A+ hB)TΩ(A+ hB)−ATΩA

h

= lim
h=0

ATΩA−ATΩA+ h(BTΩA+ATΩB) + h2BTΩB

h
= BTΩA+ATΩB

For every A ∈ S = f−1({Ω}), we have that det(ATΩA) = det(A2) = 1 = det(Ω), and in particular
that A is invertible, so that for any C ∈ Skew2n(R), if B = 1

2Ω−1(A−1)TC, then by the above formula
dfA(B) = C. Hence

df : M2n×2n(R) = TA(M2n×2n(R))→ TΩ(Skew2n(R) = Skew2n(R)

is surjective for every A ∈ S, so that Ω is a regular value of f and hence S is a smooth submanifold of
M2n×2n(R). Its codimension is dim(Skew2n(R)) =

(
n
2

)
, so its dimension is 4n2 − n(2n− 1) = 2n2 + n.

17S.3 Use the Poincaré-Hopf index theorem to calculate the Euler characteristic of the n-sphere.

Solution For odd n, let Sn ⊆ Rn+1 = C(n+1)/2. Then the vector field p 7→ ip is nonvanishing, so by Poincaré-Hopf
the Euler characteristic of Sn is an empty sum which is zero. For even n, let Sn ⊆ Rn+1 = Cn/2 × R.
Then the vector field X(p, r) = (ip, 0) has only two zeroes, at (0,±1), so by Poincaré-Hopf the Euler
characteristic of Sn is the sum of the indices of X at these two zeroes. Let B be the neighborhood of
(0, 1) consisting of all (p, r) where r ≥ 0. Then B does not contain (0,−1), so the index of X at (0, 1)
is the degree of the map X|∂B : ∂B = Sn−1 → Sn−1, but this map is just p 7→ ip which has degree
1. Therefore X has index 1 at (0, 1), and a similar argument using B′ the lower hemisphere (all (p, r)
where r ≤ 0) shows that X has index 1 at (0,−1) as well. Hence the Euler characteristic of Sn is 2.

17S.4, 11S.2 a) State (11S.2: and also prove) the Cartan formula (also known as Cartan’s magic formula) for the
Lie derivative of a differential form with respect to a vector field.
b) Use this formula to show that a vector field X on R3 has a flow (defined locally and for a short
time) that preserves volume if and only if the divergence of X is everywhre zero.

Solution a) The Cartan formula states that for each n-form ω,

LXω = d(iXω) + iX(dω)

where LX is the Lie derivative with respect to X and iXω is the (n− 1)-form defined by
iX(ω)(X1, ..., xn−1) = ω(X,X1, ..., Xn−1). The proof can be found in any differential geometry text.

11



b) Let ω = dx ∧ dy ∧ dz. Then if the flow Φ of X preserves volume, Φ∗tω = ω for sufficiently small t,
so that in particular LXω = 0. Conversely, if LXω = 0, then LX(Φ∗tω) = Φ∗tLXω = 0 for all t, so that
Φ∗tω is constant in t so it must equal Φ∗0ω = ω. Thus the flow of X preserves volume if and only if
LXω = 0. Since dω = 0, by Cartan’s formula we have that

LXω = d(iXω) + iX(dω) = d(iXω)

Write X = f ∂
∂x + g ∂

∂y + h ∂
∂z . Then, evaluating on basis vectors gives

iX(ω) = fdy ∧ dz + gdz ∧ dx+ hdx ∧ dy

⇒ d(iXω) = (
∂f

∂x
+
∂g

∂y
+
∂h

∂z
)ω = div(F )ω

We see that the flow of X preserves volume if and only if this is zero, if and only if div(F ) = 0.

17S.5 Let

ω =
−ydx+ xdy

(x2 + y2)α

be a 1-form on R2 \ {0} with the usual coordinates (x, y), and for some α ∈ R. Consider
∫
γ
ω, where

γ : S1 → R2 \ {0} is smooth.
a) For which α ∈ R do we have

∫
γ0
ω =

∫
γ1
ω whenever ω0 and ω1 are smoothly homotopic?

b) What are the possible values of
∫
γ
ω when α is chosen as in part a?

Solution a) Each circle S1(R) ⊆ R2 \ {0} is smoothly homotopic to each other, so the integral of ω cannot
depend on R. Putting polar coordinates x = r cos θ, y = r sin θ gives

∫
S1(R)

ω =

2π∫
0

R2−2αdθ = 2πR2−2α

Since this cannot depend on R, we must have that α = 1. Conversely, if α = 1 then dω = 0, so that ω
is closed and therefore integrates to the same value on smoothly homotopic curves.

b) We have that π1(R2 \ {0} ' π1(S1) ' Z by the usual deformation retraction, so the homotopy
class of any loop corresponds to the homotopy class of the curve γn which wraps around S1 n times.
Therefore all the possible values are (where we use the integral from part a)∫

γ

ω =

∫
γn

ω = n

∫
S1

ω = 2πn, n ∈ Z

17S.10, 12S.9 Let G be a finite group and X be a smooth manifold on which G acts smoothly. If the action of G on X
is free, then show that the natural quotient map X → X/G is a covering map (of smooth manifolds).

Solution Let G = {g1, ..., gn}. Under the natural quotient π : X → X/G, write π−1(y) = {g1x, ..., gnx}. By
the freeness of the action, these are all distinct points. Choose charts (Wi, φi) ⊆ Vi. Now π(Wi) =
π(giW1) = π(W1) =: W for each i, so that π−1(W ) is the disjoint union of the Wi (and so W is open).

Suppose π(x) = π(y) for x, y ∈ Wi. Then there exists gj ∈ G with gjx = y, so y ∈ gjWi = Wk where
gjgi = gk. But then y ∈ Wk ∩Wi, so since these sets are disjoint for k 6= i we must have that k = i.
But then gjgi = gi so gj = e so y = gjx = x. Therefore π|Wi

is injective for each i, and since it is
surjective by construction, it is a bijection. π|Wi is an open map since for each open set U ⊆ Wi,
π−1π(U) is the disjoint union of gjU ⊆ Wj for each j, which is certainly open. Therefore π|Wi is a
homeomorphism for each i. (Cont’d on next page)
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Finally, note that W
(π|Wi

)−1

−−−−−−→ Wi
φi−→ Rn gives a chart on W the open neighborhood of y ∈ X/G,

and repeating this construction gives a chart about each point so that X/G is a smooth manifold.
Therefore, π is a smooth covering map of manifolds.

18F.1 Let M be a compact smooth n-manifold and f : M → Rn be a smooth map. Let

S = {p ∈M | rank(dfp) < n}

a) Show that S 6= ∅.
b) Show that f(S) ∈ Rn has empty interior.

Solution a) If S = ∅, then f is a local diffeomorphism, so in particular it is an open map, so that f(M) is an
open and compact subset of Rn, contradiction.

b) By definition, if y ∈ Rn \ f(S) then y is a regular value of f , so by Sard’s Theorem f(S) has empty
interior.

Recurring Let Mn be the space of n× n matrices, viewed as the smooth manifold Rn2

. Let Mk
n be the subset of

matrices of rank k. Prove that Mk
n is a smooth submanifold of Mn. (18F.2, 15S.1, 13S.1)

Solution Each rank k matrix has an invertible k × k minor, so without loss of generality assume it’s in the top
left (otherwise just permute the rows and columns until this is the case). Let

A =

(
B C
D E

)
where B is the invertible k × k minor. Then we see that

rank(A) = k ⇐⇒ rank

[
A

(
Ik −B−1C
0 In−k = k

)]
⇐⇒ rank

(
B 0
D E −DB−1C

)
⇐⇒ E −DB−1C = 0

where Ik, In−k are the respective square identities, since the matrix we multiplied A by is clearly

invertible. Now define f : Mn → Mn−k by f(A) = f

(
B C
D E

)
= E − DB−1C. Then for each

B ∈Mn−k,

dfA

(
0 0
0 B

)
= lim
h→0

f(A+ h

(
0 0
0 B

)
)− f(A)

h
= lim
h→0

hB + E −DB−1C − E +DB−1C

h
= B

so that dfA is surjective for any A, and in particular that 0 is a regular value of f . Therefore Mk
n =

f−1(0) is a smooth submanifold of Mn.

18F.3 Let θ be the restriction of

(x2dx1 − x1dx2) + (x4dx3 − x3dx4) + ...+ (x2ndx2n−1 − x2n−1dx2n)

to the unit sphere S2n−1 ⊆ R2n. Prove ker(θ) is a distribution on S2n−1. Is it integrable?
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Solution Let X be the vector field X(x1, x2, ..., x2n−1, x2n) = (−x2, x1, ...,−x2n, x2n−1); then

θ(X) =

2n∑
i=1

(xi)2 = 1

so that θ is nonvanishing on S2n−1, and therefore ker(θ) has the same dimension everywhere so it is a
distriution. Now,

dθ = −2

n∑
j=1

dx2j−1 ∧ dx2j so that

θ ∧ dθ = 2

n∑
j=1

∑
k 6=j

x2j−1dx2j ∧ dx2k−1 ∧ dx2k − x2jdx2j−1 ∧ dx2k−1 ∧ dx2k

If this equals zero, then x1 = ... = x2n = 0 which is a contradiction since (x1, ..., x2n) ∈ Sn−1. Therefore
θ ∧ dθ 6= 0 so that ker(θ) is not integrable by Frobenius.

18F.4 Let M be a compact smooth 3-manifold and ω ∈ Ω1(M) a nowhere zero 1-form, so that ker(ω) is an
integrable distribution. Prove the following.
(i) ω ∧ dω = 0
(ii) There exists a 1-form α such that dω = α ∧ ω.
(iii) dα ∧ ω = 0.

Solution For all p ∈M , ker(ωp) is 2-dimensional, so pick a basis {X,Y } for it and extend it to a basis {X,Y, Z}
for TpM . Then

(ω ∧ dω)p(X,Y, Z) = ωp(Z)dωp(X,Y )− ωp(Z)dωp(Y,X) = 2ωp(Z)dωp(X,Y )

since all other terms vanish since they are in the kernel of ωp. But if X,Y ∈ ker(ω), then [X,Y ] ∈ ker(ω)
by integrability, so that

0 = ω([X,Y ]) = X(ω(Y ))− Y (ω(X))− dω(X,Y ) = dω(X,Y )

⇒ (ω ∧ dω)(X,Y, Z) = 2ω(Z)dω(X,Y ) = 0

which proves (i). Now find local coordinates (x, y, z) such that ω = fdx locally. Then f is never zero
since ω is nonvanishing, so

dω =
∂f

∂y
dy ∧ dx+

∂f

∂z
dz ∧ dx =

1

f

[
∂f

∂y
dy +

∂f

∂z
dz

]
∧ ω =: α ∧ ω

locally. Taking enough neighborhoods where this is true to make a locally finite cover of M (which
exists by paracompactness) and extending α globally over M via a partition of unity on this cover
proves (ii). Finally,

0 = d(dω) = dα ∧ ω − α ∧ dω = dα ∧ ω − α ∧ α ∧ ω = dα ∧ ω

by (ii), so this gives (iii).

14



18F.5 Let M ⊆ Rn be a compact (n − 1)-dimensional manifold, let ι : M → Rn be the inclusion map, and
let D ⊆ Rn be the n-dimensional compact region with ∂D = M . Let dV = dx1 ∧ ... ∧ dxn ∈ Ωn(Rn)
be the standard volume form.
a) Define dA ∈ Ωn−1(M), the standard volume form on M induced by ι.
b) Prove that ι∗(iX(dV )) = 〈X,N〉dA for any smooth vector field X on Rn, where N is the outward
unit normal to M .
c) Prove that ∫

D

LXdV =

∫
M

〈X,N〉dA

d) Derive Gauss’s Divergence Theorem in the case n = 3.

Solution a) dA = ι∗(iN (dV )).

b) Let T = X − 〈X,N〉N . Then T is tangent to M because we have subtracted off the projection
onto the normal space, so ι∗(iT (dV ))(X1, ..., Xn−1) = dV (T, dιX1, ..., dιXn−1) = 0 since these vector
fields are all tangent to M and therefore are linearly dependent since there are n of them and M is
(n− 1)-dimensional. Therefore

0 = ι∗(iT (dV )) = ι∗(iX(dV )− i〈X,N〉N (dV )) = ι∗(iX(dV ))− 〈X,N〉ι∗(iN (dV ))

= ι∗(iX(dV ))− 〈X,N〉dA⇒ ι∗(iX(dV )) = 〈X,N〉dA

c) We have ∫
M

〈X,N〉dA =

∫
M

ι∗(iX(dV ))

=

∫
D

d(iX(dV )) by Stokes’ Theorem

=

∫
D

(LX − iX ◦ d)(dV ) by Cartan’s Formula

=

∫
D

LX(dV ) since d(dV ) = 0

d) Write X = f∂x + g∂y + h∂z. Then

LX(dV ) = LX(dx) ∧ dy ∧ dz + dx ∧ LX(dy) ∧ dz + dz ∧ dy ∧ LX(dz)

= d(LX(x)) ∧ dy ∧ dz + dx ∧ d(LX(y)) ∧ dz + dx ∧ dy ∧ d(LX(z))

= df ∧ dy ∧ dz + dx ∧ dg ∧ dz + dx ∧ dy ∧ dh

=
∂f

∂x
dx ∧ dy ∧ dz +

∂g

∂y
dx ∧ dy ∧ dz +

∂h

∂z
dx ∧ dy ∧ dz = div(X)dV

so that we have the desired ∫
D

div(X)dV =

∫
M

〈X,N〉dA
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18F.7 Prove that the covering map π : Sn → RPn induces an isomorphism on de Rham cohomology if and
only if n is odd. What is the orientable double cover of RPn?

Solution By the universal coefficient theorem and de Rham’s Theorem we see that

Hk
deRham(Sn) =

{
R k = 0, n

0 otherwise
and Hk

deRham(RPn) =


R k = 0

R k = n and n is odd

0 otherwise

Since π is a finite-sheeted covering map, π∗ : Hk
deRham(RPn) → Hk

deRham(Sn) is injective, so by
dimensionality we see that it is an isomorphism for all k except n, where it is an isomorphism if and
only if n is odd. For n even, x 7→ −x is a nontrivial deck transformation for π which is orientation-
reversing, so Sn is the orientable double cover of RPn if n is even. If n is odd, RPn is already orientable,
so its orientable double cover is the disjoint union of two copies of itself.

15S.3 Consider two collections of 1-forms ω1, ..., ωk and φ1, ..., φk on an n-dimensional manifold M . Assume
that

ω1 ∧ ... ∧ ωk = φ1 ∧ ... ∧ φk

never vanishes on M . Show that there are smooth functions fij : M → R such that

ωi =

k∑
j=1

fijφj

Solution Since φ1∧ ...∧φk 6= 0 they are all linearly independent, but then φ1∧ ...∧φk∧ωi = ω1∧ ...∧ωi∧ ...∧ωk∧
ωi = 0, so adding ωi makes them linearly dependent, and therefore ωi must be a linear combination of
{φ1, ..., φk}.

15S.6 Let

ω =
xdy ∧ dz + ydz ∧ dx+ zdx ∧ dy

(x2 + y2 + z2)3/2

be a 2-form defined on R3 \ {0}. If i : S2 = {x2 + y2 + z2 = 1} → R3 is the inclusion, compute
∫
S2 i
∗ω.

Also compute
∫
S2 j

∗ω, where j : S2 → R3 maps (x, y, z)→ (3x, 2y, 8z).
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Solution Let α = xdy ∧ dz + ydz ∧ dx + zdx ∧ dy. Then α = i∗ω on S2 and α is globally defined on R3. Let
B ⊆ R3 be the closed ball of radius 1. Then B is compact and orientable and ∂B = S2, so that by
Stokes’ Theorem, ∫

S2

i∗ω =

∫
B

dα =

∫
B

3dx ∧ dy ∧ dz = 4π

Note that j is a diffeomorphism onto its image because its inverse is clearly (x, y, z) 7→ (x/3, y/2, z/8),

so j factors as j : S2 φ−→ j(S2)
k−→ R3 \ {0} where k is the inclusion map. Let A be the region outside

S2 inside j(S2), which is a well-defined annular region since S2 lies inside j(S2), and we have that
∂A = j(S2) ∪ S2, but with these two components oriented oppositely. Now by Stokes’ Theorem, we
have that ∫

j(S2)

k∗ω −
∫
S2

i∗ω =

∫
A

dω

But computing dω gives that

dω = (
x2 + y2 + z2 − 3x2

(x2 + y2 = z2)5/2
+
x2 + y2 + z2 − 3y2

(x2 + y2 = z2)5/2
+
x2 + y2 + z2 − 3z2

(x2 + y2 = z2)5/2
)dx ∧ dy ∧ dz = 0

so that ∫
S2

j∗ω =

∫
j(S2)

φ∗(k∗ω) =

∫
j(S2)

k∗ω =

∫
iS2

i∗ω = 4π

15S.7 Define the de Rham cohomology groups Hi
dR(M) of a manifold M and compute Hi

dR(S1) for i = 0, 1, ...

Solution Hi
dR(M) = {closed i − forms on M}/{exact i − forms on M}, so in particular Hi

dR(S1) = 0 for all
i ≥ 2 since every i-form for i ≥ 2 is zero, so it remains to consider i = 0 and 1. No nonzero 0-form is
exact, so a 0-form f ∈ H0

dR(S1) if and only if df = 0, if and only if f is a constant function, so that we
must have H0

dR(S1) = {f : M → R constant} = R.

Let I : H1
dR(S1)→ R be defined by I([ω]) =

∫
S1 ω. This is well-defined since by Stokes’ Theorem∫

S1

dα =

∫
∂S1

α =

∫
∅

α = 0

Furthermore, I is R-linear and injective, since if
∫
S1 ω = 0 then ω is exact. Let i : S1 → R2 be the

inclusion. Then let B ⊆ R2 be the closed ball of radius 1, which is compact, orientable, and safisties
∂B = S1. Then

I(i∗(−ydx+ xdy)) =

∫
S1

i∗(−ydx+ xdy) =

∫
B

d(−ydx+ xdy) =

∫
B

2dx ∧ dy = 2π 6= 0

so that I is surjective since any multiple of this form gives any real number. Therefore I is an
isomorphism, so H1

dR(S1) = R.
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15S.10, 12F.7, 21F.5 Let M be a compact orientable smooth manifold of dimension 4n+ 2. Show that dimH2n+1(M ;R) is
even.

Solution Suppose dimH2n+1(M ;R) ' Rk. By de Rham’s Theorem it suffices to consider the de Rham cohomol-
ogy groups, where we have the natural map

∧ : H2n+1(M)×H2n+1(M)→ H4n+2(M)

where we know that H4n+2(M) ' R by Poincaré duality. Since ∧ is alternating and bilinear, we can
represent it by a skew-symmetric k × k matrix A where Rk × Rk 3 (v, w) 7→ vTAw. SUppose that
Aw = 0; then vTAw = 0 for all v, which corresponds to a (2n+ 1)-form ω such that for every (2n+ 1)-
form α, α ∧ ω = 0. Taking local coordinates, let α = dxi1 ∧ ... ∧ dxi2n+1

so that the corresponding
term aj1...j2n+1

dxj1 ∧ ... ∧ dxj2n+1
in ω (where {i1, ..., i2n+1, j1, ..., j2n+1} = {1, ..., 4n + 2} is zero.

Therefore ω is zero since every term is zero, so w = 0 so that A must be invertible as well. Now
det(A) = det(AT ) = (−1)kdet(A), so since A is invertible we must have that k is even as desired.

15F.1, 10F.3 Let Mn(R) be the space of n× n matrices with real coefficients.
a) Show that SL(n,R) = {A ∈Mn(R) | det(A) = 1} is a smooth submanifold of Mn(R).
b) Show that SL(n,R) has trivial Euler characteristic.

Solution a) It will suffice to show that 1 is a regular value of the smooth function det : Mn(R)→ R. We have,
for any A ∈ SL(n,R) and any r ∈ R,

d(det)A(
r

n
A) = lim

h→0

det(A+ h(r/n)A)− det(A)

h
= lim
h→0

det(A)(det(I + h(r/n)A−1A)− 1)

h

= lim
h→0

(1 + h(r/n))n − 1

h
= lim
h→0

r(1 + h
r

n
)n−1 = r

so that d(det)A is surjective. Therefore 1 is a regular value of det and therefore SL(n,R) = det−1(1)
is a smooth submanifold of Mn(R).

b) Let A = UP be the polar decomposition (where U is unitary and P is positive definite since A is
invertible) of any A ∈ SL(2,R). Then A 7→ U = AP−1 is a smooth function SL(2,R)→ SO(2,R) such
that if A is already orthogonal then U = A. In fact this is a deformation retract since A is homotopic
to AP−1 via A(tP−1 + (1 − t)I), so it suffices to compute the Euler characteristic of SO(2,R). But
this is compact since O(2,R) is, so let Bt be the matrix with 1’s along the diagonal and t in the top
right corner, and ft(A) = BtA. Then f0 = id and f1 has no fixed points since A is invertible, so
the identity map is homotopic (via ft) to a map with no fixed points, so by the Lefschetz fixed point
theorem χ(SL(2,R)) = χ(SO(2,R)) = 0.

15F.3 For two smooth vector fields X,Y on a smooth manifold M , prove

[LX , iX ]ω = i[X,Y ]ω

where ω is a k-form for k ≥ 1.
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Solution For any k − 1 vector fields V1, ..., Vk−1 we have that

LX(iY (ω))(V1, ..., Vk−1) = X(iY (ω)(V1, ..., Vk))−
k−1∑
i=1

iY (ω)(V1, ..., Vi−1, [X,Vi], Vi+1, ..., Vk−1)

= X(ω(Y, V1, ..., Vk))−
k−1∑
i=1

ω(Y, V1, ..., Vi−1, [X,Vi], Vi+1, ..., Vk−1)

and

iY (LX(ω))(V1, ..., Vk−1) = LX(ω)(Y, V1, ..., Vk−1)

= X(ω(Y, V1, ..., Vk))−−ω([X,Y ], V1, ..., Vk−1)

−
k−1∑
i=1

ω(Y, V1, ..., Vi−1, [X,Vi], Vi+1, ..., Vk−1)

so that subtracting cancels most terms and gives

[LX , iX ]ω(V1, ..., Vk−1) = LX(iY (ω))(V1, ..., Vk−1)− iY (LX(ω))(V1, ..., Vk−1)

= ω([X,Y ], V1, ..., Vk−1) = i[X,Y ]ω(V1, ..., Vk−1)

15F.4 Let M = R3/Z3 be the 3-dimensional torus and C = π(L) where L ⊆ R3 is the oriented line segment
from (0, 1, 1) to (1, 3, 5) and π : R3 → M is the quotient map. Find a differential form on M that
represents the Poincaré dual of C.

Solution Write π = (π1, π2, π3) and θ be the 1-form on S1 such that
∫
S1
θ = 1. Then let dx = π∗1θ, dy = π∗2θ, dz =

π∗3θ be 1-forms on R3. Then dx ∧ dy, dy ∧ dz, dz ∧ dx are linearly independent in H2
deRham(M), so

they form a basis since the latter is 3-dimensional, so it suffices to write the Poincaré dual of C as
ω = adx ∧ dy + bdy ∧ dz + cdz ∧ dx. Letting i : C →M be the inclusion we have, for example, that

a =

∫
M

adx ∧ dy ∧ dz =

∫
M

dz ∧ ω =

∫
C

i∗dz =

∫
C

i∗π∗3θ = deg(π3 ◦ i)
∫
S1

θ = deg(π3 ◦ i) = 4

Similarly, π1 is a degree 1 cover of C while π2 is a degree 2 cover, so that b = 1 and c = 2 and

ω = 4dx ∧ dy + dy ∧ dz + 2dz ∧ dx

15F.6, 12F.3 Let Mm ⊂ Rn be a smooth manifold of dimension m < n − 2. Show that its complement Rn \M is
connected and simply connected.
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Solution Let p, q ∈ Rn \M and select a path γ : [0, 1] → Rn. {0, 1} is a closed submanifold of [0, 1] and since
p, q /∈ M , γ|{0,1} t M trivially, so by the Extension Theorem there exists a path γ′ : [0, 1]→ Rn such
that γ′ tM . If there exists x ∈ [0, 1] such that γ′(x) ∈M , then by transversality

dγ′x(Tx[0, 1])⊕ Tγ′(x)M = Tγ′(x)Rn

But the left-hand side is m+ 1 < n dimensional, which is a contradiction. Therefore γ′ is a path from
p to q in Rn \M , so that Rn \M is path-connected.

Let γ : [0, 1]→ Rn \M be a loop with γ(0) = γ(1) =: p. Since Rn is simply connected, γ is homotopic
(say, via H : [0, 1]2 → Rn) to the constant map at p. Since γ does not intersect M and p /∈M , H|∂[0,1]2

does not intersect M , and ∂[0, 1]2 is a closed submanifold of [0, 1]2 so that by the Extension Theorem
again there exists

G : [0, 1]2 → Rn such that G|∂[0,1]2 = H|∂[0,1]2 and G tM

⇒


G(0, x) = H(0, x) = γ(x)

G(1, x) = H(1, x) = p

G(t, 0) = H(t, 0) = p

G(t, 1) = H(t, 1) = p

so that G is also a path homotopy between γ and the constant loop at p. If there exists (t, x) ∈ [0, 1]2

such that G(t, x) ∈M , then by transversality

dG(t,x)(T(t,x)[0, 1]2)⊕ TG(t,x)M = TG(t,x)Rn

But the left-hand side is m+ 2 < n dimensional, which is a contradiction. Therefore G also does not
intersect M , so γ is homotopic to the constant loop in Rn \M and therefore it is simply connected.

21F.1 Let Vk(Rn) denote the space of k-tuples of orthonormal vectors in Rn. Show that Vk(Rn) is a manifold
of dimension k(n− k+1

2

Solution Let F : Mn×k(R)→ Symk×k(R) ' Rk(k+1)/2 (where Symk×k(R) is the space of symmetric k × k real
matrices) defined by F (A) = ATA. The columns of A form an orthonormal k-tuple in Rn if and only
if ATA = Ik, so that Vk(Rn) = F−1(I) and it remains to prove that I is a regular value of F . For
every A ∈ Vk(Rn),

dfA(B) = lim
h→0

f(A+ hB)− f(A)

h
=

(A+ hB)T (A+ hB)−ATA
h

= lim
h=0

ATA−ATA+ h(BTA+ATB) + h2BTB

h
= BTA+ATB

For every A ∈ Vk(Rn), rank(A) = k since ATA = I. Let C be any symmetric k × k matrix. Then the
matrix C ′ constructed by taking the upper triangular entries and half the diagonal entries can be written
as BTA for some B ∈Mn×k(R) since A has sufficient rank. But then C = C ′ + (C ′)T = BTA+ATB.
Therefore dfA is surjective for every A, so that I is indeed a regular value of F . By the Preimage
Theorem, Vk(Rn) is a smooth manifold of codimension k(k + 1)/2, so it has dimension

dim(Vk(Rn)) = nk − k(k + 1)

2
= k(n− k + 1

2
)
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21F.2 (Kevaire’s Theorem) Show that Sp × Sq is parallelizable if p or q is odd.

Solution Consider both Sp and Sq embedded in Rp+1 and Rq+1 respectively. Without loss of generality suppose
p is odd (otherwise just relabel p, q). Then the normal bundle NSq is trivial because Sq is orientable.
Additionally, Sp admits a nonvanishing vector field because p is odd so it has Euler characteristic zero,
so its tangent bundle can be written as α⊕ ξ where ξ is a trivial line bundle. Now let πSp , πSq

denote
the projections onto the respective factors, so that

T (Sp × Sq) = π∗Sp(TSp)⊕ π∗Sq (TSq) = π∗Sp(α⊕ ξ)⊕ π∗Sq (TSq)

= π∗Sp(α)⊕ (ξ ⊕ π∗Sq (TSq))

But since NSq is trivial, ξ = π∗Sq (NSq), so we obtain

T (Sp × Sq) = π∗Sp(α)⊕ (ξ ⊕ π∗Sq (TSq)) = π∗Sp(α)⊕ (ξ ⊕ π∗Sq (TSq)) = πSp(α)⊕ (π∗Sq (TSq)⊕ π∗Sq (NSq))

= π∗Sp(α)⊕ π∗Sq (TRq+1) = π∗Sp(α)⊕ ξq+1

since Rq+1 is parallelizable. Now we have that

T (Sp × Sq) = π∗Sp(α)⊕ ξq+1 = π∗Sp(α⊕ ξ)⊕ ξq

= π∗Sp(TSp)⊕ ξq = π∗Sp(TSp ⊕ ξ)⊕ ξq−1

But NSp is also trivial (again because Sp is orientable) so just as before ξ = π∗Sq (NSq) so that

T (Sp × Sq) = π∗Sp(TSp ⊕ ξ)⊕ ξq−1 = π∗Sp(TSp ⊕NSp)⊕ ξq−1

= π∗Sp(TRp+1)⊕ ξq−1 = ξp+1 ⊕ ξq−1 = ξp+q

so that T (Sp × Sq) is trivial, and therefore Sp × Sq is parallelizable.

21F.4 Let ω ∈ Ωnc (Rn) be a compactly supported n-form. Show that ω = dη for some compactly supported
(n− 1)-form η ∈ Ωn−1

c (Rn) if and only if
∫
Rn ω = 0.

Solution By Poincaré duality, the compactly supported cohomology group Hn
c (Rn) is isomorphic to the de Rham

cohomology group H0(Rn) ' R. First, if ω = dη then for any compact subset C of Rn whose interior
contains the support of η, by Stokes’ Theorem∫

C

ω =

∫
∂C

dη = 0

But if η is supported inside C, so is ω, so that
∫
Rn ω =

∫
C
ω = 0.

For the converse direction, consider f : Hn
c (Rn)→ R defined by f(ω) =

∫
Rn ω. This is well-defined by

the previous direction since exact forms integrate to zero. f is linear, and if ϕ : Rn → [0, 1] is a smooth
function supported inside the cube [0, 1]n which is identically 1 on the smaller cube [1/3, 2/3]n (which
exists by the smooth Urysohn Lemma), then

0 < 3−n ≤
∫
Rn

ϕdx1 ∧ dx2 ∧ ... ∧ dxn ≤ 1

so that f is nonzero, and hence (because the dimension of its domain and codomain are both 1) is a
linear isomorphism. Therefore ω ∈ Ωnc (Rn) is exact if and only if f(ω) = 0, if and only if

∫
Rn ω = 0.
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3 Topology

10F.8 Let G be a connected topological group. Show that π1(G) is an abelian group.

Solution Let f, g ∈ π1(G) be parametrized by t such that f(0) = f(1) = g(0) = g(1) = 1 the identity element of
G. Let e be the loop e(t) = 1 for all t ∈ [0, 1]. Then for all t ∈ [0, 1]

(fg)(t) =

{
f(2t) t ≤ 1

2

g(2t− 1) t > 1
2

=

{
f(2t) · e(2t) t ≤ 1

2

e(2t) · g(2t− 1) t > 1
2

= (fe)(t) · (eg)(t)

where · denotes multiplication of elements of G. Similarly, we have that

(gf)(t) =

{
g(2t) t ≤ 1

2

f(2t− 1) t > 1
2

=

{
e(2t) · g(2t) t ≤ 1

2

f(2t− 1) · e(2t− 1) t > 1
2

= (ef)(t) · (ge)(t)

Since e is the identity loop, we have that ef = fe and eg = ge up to path homotopy, so that the above
gives fg = gf as desired. Hence π1(G) is abelian.

10F.9 Show that if Rm and Rn are homeomorphic, then m = n.

Solution Suppose f : Rm → Rn is a homeomorphism. Then f extends to a homeomorphism f̃ : Sm → Sn

viewing each as the one-point compactification of Rm and Rn respectively, and thus f̃∗ : Hk(Sm) →
Hk(Sn) is an isomorphism of integer homology groups for each k. But we have that

Hk(Sm) =

{
Z k = 0,m

0 otherwise
and Hk(Sn) =

{
Z k = 0, n

0 otherwise

so m must be equal to n.

17F.8 Let M = [0, 1] × [0, 1]/ ∼0 where (x, 1) ∼0 (1 − x, 0) for all x ∈ [0, 1], and let X = (M × {0, 1})/ ∼1

where (y, 1) ∼1 (y, 0) for all y ∈ ∂M .

Solution M deformation retracts onto a circle by (x, y) 7→ ( 1
2 , y), so that π1(M) = Z. ∂M is the union of

{0} × [0, 1] and {1} × [0, 1], which maps onto two copies of the circle by the deformation retraction.
Now consider X, which contains two copies of M joined along their boundary. Call the two copies
U1 and U2, which by above both have infinite cyclic fundamental group, so let their generators be a, b
respectively. Let i1, i2 denote the inclusion of each U1, U2 and the path homotopy class of the boundary
curve be c. Then (i1)∗(c) = a2, (i2)∗(c) = b2 by above, so by Van Kampen’s Theorem,

π1(X) = π1(U1 ∪ U2) = 〈a, b | a2b−2〉

16S.4 Let M be a compact odd-dimensional manifold with nonempty boundary ∂M . Show that the Euler
characteristics of M and ∂M are related by

χ(M) =
1

2
χ(∂M)

Solution Let M̃ = M1 ∪M2 be the manifold given by gluing two copies of the interior of M along ∂M . Mayer-
Vietoris gives the following long exact sequence,

...→ Hk+1(M̃ ;F2)→ Hk(∂M ;F2)→ Hk(M1;F2)⊕Hk(M2;F2)→ Hk(M̃ ;F2)→ ...

(where F2 = Z/2Z is the field of order 2) which terminates at H0(M1;F2)⊕H0(M2;F2) = H0(M ;F2)⊕
H0(M ;F2) = F2

2 and H0(M̃ ;F2) = F2, so that for each k, we have by induction that

dim(Hk(M̃ ;F2)) = 2dim(Hk(M ;F2))− dim(Hk(∂M ;F2))
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so that summing over all k gives that

χ(M̃) =

n∑
k=0

(−1)kdim(Hk(M̃ ;F2))

= 2

n∑
k=0

(−1)kdim(Hk(M ;F2))−
n∑
k=1

(−1)kdim(Hk(∂M ;F2))

= 2χ(M)− χ(∂M)

M̃ is an odd-dimensional manifold with no boundary and every manifold is always orientable mod 2,
so by Poincaré duality,

χ(M̃) =

n∑
k=0

(−1)kdim(Hk(M̃ ;F2)) =

n∑
k=0

(−1)kdim(Hn−k(M̃ ;F2))

= −
n∑
k=0

(−1)n−kdim(Hn−k(M̃ ;F2)) = −χ(M̃)

(since n = dim(M̃) is odd) so that χ(M̃) = 0 and we have χ(∂M) = 2χ(M) as desired.

16S.6 Let T 2 = R2/Z2 be the 2-dimensional torus with coordinates (x, y) ∈ R2 and let p ∈ T 2.
a) Compute the de Rham cohomology of the punctured torus T 2 \ {p}.
b) Is the volume form dx ∧ dy exact on T 2 \ {p}?

Solution a) The punctured torus deformation retracts onto S1 ∨ S1 (for instance, by taking any longitude and
meridian circles not passing through p), so it has the same singular homology with any coefficients. In
particular, using real coefficients, by de Rham’s Theorem we have that

Hk
deRham(T 2 \ {p}) = Hk(T 2 \ {p};R) = Hk(S1 ∨ S1) =


R k = 0

R2 k = 1

0 k ≥ 2

b) ω (in fact any volume form) is exact because it is closed and by part a H2
deRham(T 2 \ {p}) = 0.

16S.7 Exhibit a space whose fundamental group is isomorphic to (Z/mZ) ∗ (Z/nZ). Exhibit another space
whose fundamental group is isomorphic to (Z/mZ)× (Z/nZ).

Solution For each positive integer k ≥ 2, let Mk be the union of S1 with a closed disk B such that ∂B coincides
with k loops around S1. Then π1(Mk) is generated by the homotopy class of the boundary loop (call
it c) since any loop in the interior of B can be contracted since B is contractible. By construction cp

corresponds to a loop in B (which is then contractible) if and only if k divides p, so that [c] has order
k in π1(Mk), and thus π1(Mk) ' Z/kZ. Now letting X = Mm ∨Mn gives a space X with fundamental
group isomorphic to (Z/mZ) ∗ (Z/nZ) by Van Kampen’s Theorem.

Now denote the generators of π1(Mm) and π1(Mn) be a, b respectively. Then let Y = Mm ∪Mn where
the two spaces are glued along a loop corresponding to aba−1b−1. Then by Van Kampen’s Theorem,

π1(Y ) ' 〈a, b | am, bn, aba−1b−1 = (Z/mZ)× (Z/nZ)

16S.8 Let Lx be the x-axis, Ly be the y-axis, and Lz be the z-axis of R3. Compute

π1(R3 \ Lx \ Ly \ Lz)
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Solution Since R3 \ Lx \ Ly \ Lz does not contain 0, it deformation retracts onto a subset of S2 via the map
x 7→ x/||x||. The image of each axis is {±(1, 0, 0)}, {±(0, 1, 0)}, {±(0, 0, 1)} respectively, so the image
of R3 \ Lx \ Ly \ Lz is S2 with these six points removed. This punctured sphere is then homotopic
to R2 with five points removed by stereographic projection about one of the removed points. Thus
π1(R3\Lx\Ly\Lz) is isomorphic to π1(R2\{five distinct points}) which is isomorphic to Z∗Z∗Z∗Z∗Z,
the free group on five generators.

14S.3, 19F.3 Let Sn ⊆ Rn+1 be the unit sphere. Determine the values of n ≥ 0 for which the antipodal map
Sn → Sn is isotopic to the identity.

Solution If n is even, then the identity map has degree 1 while the antipodal map has degree −1 so they
cannot be isotopic. If n is odd, consider Rn+1 ' C(n+1)/2. Then H : [0, 1] × Sn → Sn defined by
H(t, x) = eiπtx is a homotopy between the identity H(0, x) and the antipodal map H(1, x). Thus the
identity and antipodal maps on Sn are isotopic if and only if n is odd.

19F.8 a) Show that any continuous map RP2 → S1 × S1 is nullhomotopic.
a) Find, with proof, a continuous map S1 × S1 → RP2 that is not nullhomotopic.

Solution a) Since π1(RP2) ' Z/2Z, we see that f∗π1(RP2) ⊆ π1(S1×S1) = Z2 must map to the trivial subgroup
(the only finite subgroup of Z2). Therefore, by the lifting criterion f lifts to f̃ : RP2 → R2 since R2 is
the universal cover of S1×S1. Let p : R2 → S1×S1 be the universal covering map and let ft := p◦(tf̃).
Then f0 = 0 and f1 = f so f is nullhomotopic.

b) View as RP2 as S2 with antipodal points identified, and consider f : S1×S1 → RP2 by f(eiθ, eiφ) =
[cos(θ/2) : sin(θ/2) : 0]. Considering the latter as a point of S2, we see that f covers half of the
equator, so that if γ is a loop in S1×S1 winding once around the first coordinate, f∗γ is a loop in RP2

which corresponds to a curve in S2 which is half of the equator, and so f∗γ is a nontrivial element of
π1(RP2), and so f cannot be nullhomotopic.

16F.3 (Ham Sandwich Theorem) Let U1, ..., Un be n bounded, connected, open subsets of Rn. Prove that
there exists an (n− 1)-dimensional hyperplane H ⊆ Rn that bisects every Ui; i.e. if A and B are the
two components of Rn \H, then

volume(Ui ∩A) = volume(Ui ∩B) for each i

Solution Let Sn−1 ⊆ Rn be the unit sphere. Then for each p ∈ Sn−1 and each r ∈ R, there exists a unique
hyperplane perpendicular to the vector rp oriented in the direction of p. Fix p ∈ Sn−1, and for each
r ∈ R let f(r) denote the area of the part of Un on the positive side of the hyperplane defined by rp.
Then f : R→ R is continuous, and since Un is bounded, for sufficiently large negative r f(r) = 0 and
for sufficiently large positive r f(r) = volume(Un), so by the Intermediate Value Theorem there exists
r∗ ∈ R such that f(r) = 1

2volume(Un). Let the hyperplane defined by r∗p be H(p); this is well-defined
since f is increasing in r so that r∗ is unique. Now define g : Sn−1 → Rn−1 by

g(p) = (volume of U1 on the positive side of H(p), ..., volume of Un−1 on the positive side of H(p))

g is continuous, so by the Borsuk-Ulam theorem there is p ∈ Sn−1 such that g(p) = g(−p). But the
hyperplane H(p) determined by r∗p is the same as that determined by (−r∗)(−p), (which then must
be H(−p)), just oriented oppositely. Therefore each side of the hyperplane H = H(p) is the positive
side of either H(p) or H(−p). Then, since g(p) = g(−p), we see that each of U1, ..., Un−1 has the same
volume on both sides of H, and so does Un by definition, so H is the desired hyperplane.
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16F.7 Let X be a connected CW-complex with π1(X,x) finite. Show that any continuous map X → (S1)n

is nullhomotopic.

Solution Let f : X → (S1)n be continuous. Since π1(X) is finite, we see that f∗π1(X) ⊆ π1((S1)n) = Z2 must
map to the trivial subgroup (the only finite subgroup of Zn). Therefore, by the lifting criterion f lifts
to f̃ : X → Rn since Rn is the universal cover of (S1)n. Let p : Rn → (S1)n be the universal covering
map and let ft := p ◦ (tf̃). Then f0 = 0 and f1 = f so f is nullhomotopic.

16F.9 Let S2 q1←− S2 ∨S2 q2−→ S2 be the maps that crush out one of the two summands. Let f : S2 → S2 ∨S2

be a map such that qi ◦ f : S2 → S2 is a map of degree di. Compute the homology groups of
X = (S2 ∨ S2) ∪f D3.

Solution X has one 3-cell, two 2-cells, and one 0-cell, which gives the chain complex

0→ Z ∂3−→ Z2 ∂2−→ 0
∂1−→ Z→ 0

Let the 2-cells be e1, e2 and the 3-cell be F . Then the only nontrivial map is ∂3(F ) = d1e1 + d2e2 by
the cellular boundary formula. If d1 and d2 are not both zero, ∂3 is injective, and H2(X) = X2/Im(∂3).
The Smith normal form of the matrix

(
d1 d2

)
is
(
gcd(d1, d2) 0

)
so that H2(X) = X2/Im(∂3) =

(Z/gcd(d1, d2)Z)× Z. Therefore, when d1, d2 are not both zero,

Hn(X) =


Z n = 0

0 n = 1

(Z/gcd(d1, d2)Z)× Z n = 2

0 n > 2

When d1 = d2 = 0, ∂3 = 0 so all chain maps are trivial, so we have that

Hn(X) =



Z n = 0

0 n = 1

Z2 n = 2

Z n = 3

0 n > 3
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17S.7 Let X = S1 ×D2 with boundary ∂X = S1 × S1. Compute Hk(X, ∂X;Z).

Solution Since (S1, D2) is a good pair, so is (∂X,X). Using the long exact sequence of reduced homology groups

...→ H̃k(∂X)→ H̃k(X)→ Hk(X, ∂X)→ H̃k−1(∂X)→ ...

Since D2 is contractible to a point, Hk(X) = Hk(S1) for all k, and so we have that

H̃k(∂X) =


0 k = 0, k ≥ 3

Z2 k = 1

Z k = 2

and H̃k(X) =

{
0 k 6= 1

Z k = 1

For k > 3, every term of the long exact sequence is zero, so our long exact sequence becomes

0→ H3(X, ∂X)→ Z→ 0→ H2(X, ∂X)→ Z2 → Z→ H1(X, ∂X)→ 0→ 0→ H0(X, ∂X)→ 0

Clearly, H0(X, ∂X) = 0 and H3(X, ∂X) = Z. The map Z2 → Z corresponds to the map H1(S1×S1)→
H1(S1×D2) induced by the inclusion map. Under the inclusion map, one generator of the homology of
S1×S1 (the meridian) is contractible while the other generator (the longitude) maps to the generator
of the homology of S1×D2, so that this map is a surjection with kernel Z. Hence H1(X, ∂X) = 0 and
H2(X, ∂X) = Z, so that we have

Hk(X, ∂X) =

{
0 k = 0, 1, k ≥ 4

Z k = 2, 3

17S.8 LetX be a CW complex and let X̃ → X be a covering space. LetG be the group of deck transformations
on X̃ → X.
a) Show that for any k and for any abelian group M , the group G acts naturally on Hk(X̃;M).
b) Show that the map p∗ : Hk(X̃;M)→ Hk(X;M) through the quotient of Hk(X̃;M) by the subgroup
S generated by m− g ·m for all m ∈ Hk(X̃;M) and g ∈ G.
c) Give an example for which the induced map Hk(X̃;M)/S → Hk(X;M) in (b) is not surjective.

Solution a) Each g ∈ G gives a homeomorphism (deck transformation) g : X̃ → X̃, which naturally induces a
map g∗ : Hk(X̃;M)→ Hk(X̃;M).

b) pg = p for all g ∈ G, so that p∗(m − mg∗) = 0 for all m ∈ M, g ∈ G so p∗ factors through the
quotient by (m− g ·m).

c) Take p : R→ S1 by p(t) = eit. Then H1(R;M) = 0 but H1(S1;M) = Z, so the morphism from (b)
cannot be surjective.
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17S.9, 11S.8 a) Find Hk(RPn;Z) for all k.
b) Describe a cell decomposition for RP2 × RP2. Use it to show (without appealing to the Künneth
theorem) that H3(RP2 × RP2;Z) is nontrivial.

Solution a) Give RPn the following CW structure. Let p : Sn−1 → RPn−1 be the standard double cover; then
RPn−1 ∪p Dn ' RPn. Therefore RPn has one cell in each dimension. Now consider the map

Sn−1 p−→ RPn−1 π−→ RPn−1/RPn−2 = Sn−1

Preimages in π (of points not in RPn−2) are single points, so preimages of the total map are antipodal
points of Sn−1. If n is even, these points have the same orientation, and if n is odd, they have opposite
orientations, so this total map has degree 2 if n is even and 0 if n is odd. Therefore by the cellular
boundary formula, we have the following chain complex

0→ Z→ ...
0−→ Z 2−→ Z 0−→ Z→ 0

(where the map k denotes multiplication by k) If n is even, the top map is 2 which is injective so
Hn(RPn) = 0. If n is odd, the top map is 0 so that Hn(RPn) = Z. Hence,

Hk(RPn) =



Z k = 0

Z/2Z 0 < k < n even

0 0 < k < n odd

Z k = n even

0 k = n odd

b) Write RP2 = e0 ∪ e1 ∪ e2 and RP2 = f0 ∪ f1 ∪ f2 as the cell decompositions, where by part (a) we
have that ∂e2 = 2e1, ∂e1 = 0 and similarly for f0, f1, f2. Then RP2 ×RP2 has (i+ j)-cells ei × fj with
∂(ei × fj) = ∂ei × fj + (−1)dim(ei)ei × ∂fj . In particular,

∂3(e1 × f2) = −2e1 × f1 and ∂3(e2 × f1) = 2e1 × f1

so that ker(∂3) is generated by e1 × f2 + e2 × f1. We also have

∂4(e2 × f2) = 2e1 × f2 + 2e2 × f1

so that im(∂4) is generated by 2(e1 × f2 + e2 × f1), and therefore H3(RP2 × RP2) = Z/2Z 6= 0.

18F.6 Can a finite rank free group have a finite index subgroup of a smaller rank?

Solution Let X be a wedge sum of n circles; then π1(X) is free on n generators. Every subgroup of π1(X) of
index k corresponds to a covering space Y of X of index k, which must be a graph with k vertices and
one outgoing and incoming edge per vertex, making kn edges. Then Y has a spanning tree which is
k− 1 edges long, so after contracting this to a point we are left with a wedge sum of kn− k+ 1 circles.
Therefore π1(Y ) is free on kn− k+ 1 generators. But (k− 1)n = kn− n ≥ k− 1⇒ kn− k+ 1 ≥ n so
that a finite rank free group cannot have a finite index subgroup of a smaller rank.

18F.9 Let X be a connected CW complex. Show that there is a natural isomorphism

H̃k(ΣX;M) ' H̃k−1(X;M)

for all k and all abelian groups M .

(Related: 15F.9)
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Solution Let p0, p1 be the points where we have collapsed X × {0} and X × {1} respectively in ΣX. Then let
U , V be neighborhoods of p0, p1 respectively avoiding the other point, such that U ∪ V = ΣX. Then
U ∩ V = X × (a, b) where 0 < a < b < 1 which deformation retracts onto a copy of X, while U and
V are both contractible to their respective points p0, p1. By Mayer-Vietoris, we have the long exact
sequence

...→ H̃k(U)⊕ H̃k(V )→ H̃k(ΣX)→ H̃k−1(U ∩ V )→ H̃k−1(U)⊕ H̃k−1(U)→ ...

But since U, V are contractible, their respective terms are zero, giving the exact sequence 0 →
H̃k(ΣX) → H̃k−1(X) →→ 0 for each k, so these are isomorphic for each k. Finally, applying the
universal coefficient theorem gives the desired result for all abelian groups M .

18F.10 Let Y be a connected and simply connected CW complex.
a) Compute the fundamental group of Y ∨ S1.
b) Describe the universal cover of Y ∨ S1, together with the action of deck transformations.
c) Describe all finite covers of Y ∨ S1, again with the action of deck transformations.
d) Describe what changes in the first two parts for Y = RP2

Solution a) By Van Kampen’s Theorem, π1(Y ∨ S1) = π1(Y ) ∗ π1(S1) = 0 ∗ Z = Z.

b) Y is its own universal cover and R is the universal cover of S1, so the universal cover of Y ∨S1 is R
with a copy of Y glued at the base point to every integer. The deck transformations are given by the
deck transformations of R→ S1, so they are all given by translation by an integer.

c) All finite covers are given by finite quotients of subgroups of Z, so they all correspond to Z/kZ for
some integer k. In this case we obtain a circle with k integer points and a copy of Y glued at its base
point to each integer point.

d) Let Y = RP1. Then by Van Kampen’s Theorem, π1(Y ∨S1) = π1(Y )∗π1(S1) = Z/2Z∗Z = 〈a, b|a2〉.
Now the universal cover of Y is S2, so the universal cover of Y ∨ S1 is S2 glued with R at the lifts of
the base points. In particular, we have two copies R and with their integers aligned, and copies of S2

glued between them such that the north pole of each S2 intersects one real line at an integer and the
south pole intersects the other real line at an integer.

15S.4 Consider a smooth map F : RP2 → RP2.
a) When n is even show that F has a fixed point.
b) When n is odd give an example where F does not have a fixed point.

Solution a) Since HomZ(Z,Q) = Q and HomZ(Z/2Z,Q) = 0, we have, for n even, that

Hk(RPn;Q) =

{
Q k = 0

0 otherwise

Since F ∗ is a cohomology ring homomorphism, F ∗(1) = 1 inH0(RPn;Q so that L(F ) = tr(F ∗|H0(RPn;Q) =
1. Now by the Lefschetz fixed point theorem, F has a fixed point.

b) Write n = 2k − 1. Then identify Sn ⊆ Rn = Ck and let f(x) = ix on Sn. Then Sn
f−→ Sn

π−→ RPn
gives a well-defined function F : RPn → RPn by F ([x]) = [f(x)], since π(f(−x)) = π(−ix) = π(ix) =
π(f(x)). Suppose F ([x]) = [x]. Then ix = ±x, which is a contradiction, so F has no fixed points.

15S.8 Let X be a CW complex consisting of one vertex p, 2 edges a and b, and two 2-cells f1 and f2 where
the boundaries of a and b map to p, the boundary of f1 mapsto ab2, and the boundary of f2 is mapped
to ba2.
a) Compute π1(X). Is it finite?
b) Compute the homology Hi(X).
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Solution a) Without the 2-cells X is just a wedge sum of circles, so after adding them we obtain π1(X) =
〈a, b|ab2, ba2〉. But now a = b−2 so that b = a−2 = b4, so b3 = e so that a = b−2 = b. Therefore
π1(X) = 〈b|b3〉 = Z/3Z is indeed finite.

b) There are no cells in dimension higher than 2 so Hi(X) = 0 for i ≥ 3. H1(X) is the abelianization of
π1(X), so it is just Z/3Z. Since ∂a = ∂b = p−p = 0, we must have that H0(X) = Z since the previous
boundary map into Z has zero image. Finally, suppose ∂(nf1+mf2) = 0. Then (n+2m)a+(2n+m)b =
0, so that n+ 2m = 2n+m = 0⇒ n = m = 0, so that the first boundary map has trivial kernel and
so H2(X) = 0. Hence

Hi(X) =


Z i = 0

Z/3Z i = 1

0 i ≥ 2

15S.5 Recall that the Hopf fibration π : S3 → S2 is defined as follows: If we identify

S3 = {(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1}

and S2 = CP1 with homogeneous coordinates [z1, z2], then π(z1, z2) = [z1, z2]. Show that π does not
admit a section.

Solution Suppose s were a section. Then π∗ ◦ s∗ = id∗ so that in particular s∗ is an injection on homology. But
then S∗ : H2(S2) → H2(S3) is an injection from Z to 0, which is a contradiction, so there can be no
such section s.

21F.6 Let f : C → C be a nowhere zero continuous function. Prove that there exists a continuous function
g : C→ C such that f(z) = eg(z) for all z ∈ C.

Solution Consider f : C → C \ {0}. Identify C \ {0} ' R+ × S1 using polar coordinates. Then the imaginary
axis covers S1 ⊆ C via ix 7→ eix, and the real axis covers the positive reals via x 7→ ex (which is a
homeomorphism, so in particular it’s a covering map). Therefore z 7→ ez : C ' R2 → R+×S1 ' C\{0}
is a covering map. But f∗ : π1(C) = 0→ π1(C\{0} must be the zero map, so f lifts to some g : C→ C
under the cover z 7→ ez. But then by definition f(z) = eg(z) for all z ∈ C.

21F.8 Let M be a connected non-orientable manifold whose fundamental group G is simple. Prove that G
must be isomorphic to Z/2Z.

Solution Let π : M̃ → M be its orientable double cover (see 17F.6). Suppose M̃ is not connected. Then it
can be written as M̃ = U ∪ V where U, V are disjoint open sets, and since π is a double cover, this
means that π|U : U → M is a diffeomorphism. But then since U is orientable, so is M , which is
a contradiction, so M̃ must be connected. The function f : M̃ → M̃ defined by f(p, o) = (p,−o) is
continuous by Problem 7 and satisfies π◦f = π so it gives a deck transformation which acts transitively
on the fibers of the cover, so that π is a normal covering of M since M̃ is connected, which defines an
index 2 normal subgroup of G = π1(M). But since G is simple, this normal subgroup must therefore
be trivial, so we must have G ' Z/2Z.
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21F.10 (17F.10 is a similar problem) Consider the following subsets of R3:

Z = {(0, 0, z) | z ∈ R}
C1 = {(cos(θ), sin(θ), 0) | θ ∈ R}
C2 = {(2 + cos(θ), sin(θ), 0) | θ ∈ R}

Prove that there is no self-homeomorphism of R3 that takes Z ∪ C1 to Z ∪ C2.

Solution Take the one-point compactification S3 of R3, in which Z becomes a circle (and C1, C2 remain cir-
cles). If there were a self-homeomorphism of R3 taking Z ∪ C1 to Z ∪ C2, it would extend to a
self-homeomorphism of S3 taking Z ∪ C1 to Z ∪ C2 by taking the point at infinity to itself (since
∞ ∈ Z), so it suffices to show that no such self-homeomorphism of S3 exists. S3 \ Z = R3 \ Z since
∞ ∈ Z, so π1(S3 \ Z) = π1(R3 \ Z). But the latter deformation retracts onto S2 \ {±(0, 0, 1)} via
x 7→ x/|x|, and this is homeomorphic to R2 \ {(0, 0)} via stereographic projection, which again defor-
mation retracts onto S1, so that π1(S3 \ Z) = π1(S1) = Z, and in fact this is true of any circle with
the same argument if we just move the location of ∞.

Now to compute π1(S3 \ (Z ∪ C2)), note that Z and C2 are path homotopic to circles on opposite
hemispheres of S3, so without loss of generality let this be the case and let U, V be each open hemisphere
with the respective circle removed. Then π1(U) = π1(V ) ' π1(R3 \ Z) = Z, and U ∩ V retracts onto
R2 (the equator), which is simply connected, so that by Van Kampen’s Theorem π1(S3 \ (Z ∪ C2)) =
π1(U ∪ V ) = Z ∗ Z the free group on two generators.

To compute π1(S3 \ (Z ∪ C1)), note that S3 \ (Z ∪ C1) = R3 \ (Z ∪ C1) (because ∞ ∈ Z) so that
this deformation retracts onto a torus. To see this, consider the vertical half-plane at each angle (so,
{(r cos θ, r sin θ, z) ∈ R3 | r > 0, θ = θ0}). The half-planes already contain every point except those of
Z, and removing C1 removes one point (cos θ0, sin θ0, 0), so each vertical half-plane is a homeomorphic
copy of R2 minus one point, which deformation retracts onto a circle, which gives a torus. Hence
π1(S3 \ (Z ∪ C1)) = π1(S1 × S1) = Z2.

Finally, since any self-homeomorphism of S3 which sends Z∪C1 to Z∪C2 also sends their complements
to their complements, we must have that Z2 = π1(S3 \ (Z ∪ C1)) ' π1(S3 \ (Z ∪ C2)) = Z ∗ Z. But
this is a contradiction (in particular, the left-hand group is abelian and the right-hand group is not),
so no such self-homeomorphism exists.
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