NOTES FOR 197, SPRING 2018

We work in ZFDC, Zermelo-Frankel Theory with Dependent Choices,
whose axioms are Zermelo’s I - VII, the Replacement Axiom VIII and the
axiom DC of dependent choices; when we need AC, we will list it among
the hypotheses.

81. Ordinal numbers.

Def. 1. A set « is an ordinal number if it is transitive, pure, grounded
and connected, i.e.,

r=yVzeyVyecz (x,y€ a).

#1. The class ON of all ordinals is transitive,
a€ e ON= aecON.

Def. 2. On each ordinal a we define the binary relation
r<nay <t [xt=yVaey

#2. The relation <, is a wellordering of «.

e When we say “ordinal” we will mean either the set o or the well
ordered set (o, <,).

#3. For each ordinal a and x € «, seg,(z) = x.

#4. Every well ordered set U = (Field(U), <y) is similar to a unique
ordinal,

ord(U) = the unique o € ON)[U =, a.
Def. 3. For any two ordinals «, 3, we put

a < B =gt (Oé, Sa) <o (ﬁv gﬁ)
<= there is an order-preserving bijection

of o with an initial segment of j3.

#5. For any two «, 6 € ON,

a<f << Gr:a—PB)recyeca=mn(z)cn(y)
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2 NOTES FOR 197, SPRING 2018
#6 (Lemma 12.14 in NST). For any two ordinals «, 3,

a<f << a=p0Vaef << alf < aC/f
moreover, o < 3 <= « € .

#7. The class ON is well ordered by the condition <, i.e.,

a<a, 0<f<r]=a<y [a<h<r]=a=1,
a<pBVa=pVE<a,
(Fa) P(a) = (Ja)[P(a) & (VB < a)[~P(B)]],

where P(«a) is any definite condition on ordinals.

#8. If £ is a (non-empty) set of ordinals, then

sup £ = the least § (Va € &)[a < ] =UE,
min& = (€.

7#9. The class ON is not a set.

#10. 0 = 0 is the least ordinal; S(a) = aU{a} is the successor of «, the
least ordinal > «; and if A is not 0 and not the successor of any «, than
A is a limit ordinal and

A =sup{a | a <A}

e The least limit ordinal is called w.

#11 (Proof by ordinal induction). If P(«) is a definite condition on
ordinals and for all o« € ON

(VB € a)P(Bf) = P(«),

then P(«) is true for all « € ON.

#12 (Definition by ordinal recursion). For every definite operation H (w, ),
there is exactly one definite operation F' : ON — ON such that

Fla)=H(F|a, ),
where F'[« is the restriction of I to a,
Fl(a)={(&F())|§€a}.

Similarly with a parameter: For every definite operation H(w,«,x),
there is exactly one definite operation F'(a,x) such that

F(a7$) = H({(f,F(f,fL‘) ’ £ < a}vavx))’
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NOTES FOR 197, SPRING 2018 3
Def. 4 (Addition of ordinals). By ordinal recursion with parameters,

a+0=aq,
a+5(8) = S(a+p),
a+A=sup{a+ | <A} (Limit())).

#13 (Ord addition is associative). For all a, 3, € ON,
at (B4+7) = (a+p8)+7.

#14. There are ordinals «, 3, such that a + 3 # 3 + a.
#15. Problem x12.7 in NST.
#16. Problem x12.8 in NST.
#17. Problem x12.9 in NST.

Def. 5 (Multiplication of ordinals). By ordinal recursion with parame-
ters,

a-0=0,
a-S(B) = (a-B)+a
a-A=sup{a-f|F <A} (Limit(X)).
#18 (Ord multiplication is associative). For all «, 3,7 € ON,
a-(B-7)=(a-B) 7.
#19. There are ordinals «, 8 such that - 8 # 5 - a.
#20. Problem x12.10 in NST.

#21. Problem x12.11 in NST.
#22 (Right distributive law). For all «, 3,7 € ON,

a-(ft+y)=a - B+a-.
#23 (Failure of left distributivity). Give an example where
(@+p)-y#a-v+a-y.
e The first few ordinals are

0,1,... ,w,w+lLw+2, ... w2,w24+1,... ,wW3... ,wWh...,...

wQ, w? + 1,.. .wg, ...81 = the least uncountable ordinal, 2; +1,......
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§2. Cardinal numbers.

Def. 6. The cardinal number of a well-orderable set:

Al = (u€ € ON)[A = £].

#24. For any well-orderable set A,
|A] = ord(4, <),

where < is any best wellordering of A.
#25. For any well-orderablesets A, B, A =, |A|; A=, B < |A| = |B|.
Def. 7. The class of cardinal numbers: Card(x) <= (3A4)[rk = |A]].

#26. A set is a cardinal number if and only if it is an initial ordinal,

Card(k) <= a € ON& (Va € k)[a <. K.

#27. The class Card is not a set.
#28 (AC). Every set A is well-orderable, and so | A| is defined.
Def. 8 (AC). Cardinal arithmetic:

K+ A= kWA,
K-A= |k XA
R = (A= &),
Dierfi = H{(i,z) € I x Uierri |z € Ki}l,
[Ticrri = Mierkal,

(disregarding the double use of the same notation in the last def.)

#29 (AC). Cardinal addition and multiplication are associative and com-
mutative; formulate and prove these laws for both the finite and infinite
sums and products.

#30 (The absorption laws, AC).

(k, A # 0& max(k, A) infinite) =k + X\ = K - A = max(k, \).

Def. 9 (The alephs). By ordinal recursion, we set

Ng=|N|=w = the least infinite cardinal,
agy1 = NZ = the least cardinal > Ng,
Ny =sup{¥g | 8 < A} (Limit(\)).
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#31. Every X, is a cardinal number.
#32 (AC). Card =w J {Ry | @ € ON}.

e (AC). The Continuum Hypothesis and the Generalized Continuum
Hypothesis take the form

oMo = Ny 2Me =R, .

83. Universes.

Def. 10 (The cumulative hierarchy of pure, grounded sets). The partial
von Neumann universes are defined by the ordinal recursion

Vo =0,
Vat1 = P(Va)v
Vi = Uaer Vo (Limit(N).
We also define the class
V= UanN Va-

#33. a < B=V,C V.
#34. V,, comprises all the pure, grounded, hereditarily finite sets.

#35. The class V = [J,con Va comprises exactly all sets which are pure
and grounded.

#36. V satisfies all the axioms of ZFDC, and also the axioms of Purity
and Foundation; and if we assume the Axiom of Choice, then it also
satisfies AC.

e This means that if by “set” we understand “set in V”, then all the
axioms of ZFDC are true; and if we also assume AC, then we can prove
that V satisfies AC, the proposition

For every set A € V, there is a function € : P(A) \ {0} — A
such that e € V and

(Vo C A)[z # 0= e(x) € z].

Def. 11 (Zermelo universes, 11.19 in NST). A transitive class M is s
Zermelo universe if it satisfies Zermelo’s Axioms I — VI and DC and it
contains Zermelo’s set of natural numbers,

Def. 12 (the least Zermelo universe); this is

Z = UnEN va
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where

Zo=No, Zni1=P(Z).

#37. If A is a limit ordinal, A > w, then V) is a Zermelo universe.

#38. V, ¢ Z.
e This proposition has many consequences about the strength of the

Zermelo axioms, for example:

#39. We cannot prove using only the Zermelo axioms I — VII that there
is a set whose members are exactly all the pure, hereditarily finite sets.
(And making this precise is part of the problem.)

84. The Cantor-Bendixson Theorem. At this point we assume you
have read the basic definitions about N and its topology, through 10.5 of
Chapter 10.

#40. Proposition 10.6 in the book. This is a list of the basic properties
(1) — (5) of the topology of Baire space A/, and their presentation will
be probably split among two or three students. (Try to think of how to
prove each part before reading the proofs; you may end up with a better
argument or presentation than what the book has.)

#41. TFAE for a set F C N:

(a) F is closed.
(b) There is a tree T on N such that F' = [T'] = the body of T.
(c) Thereis a tree T on N such that F' = [T] and T has no finite branches.

#42. Every perfect, non-empty pointset P C A has cardinality ¢ = 20,
This is 10.10 in NST; you may well think up a better solution than the
one given there.

Def. 13. Let A C N be a pointset.

A point z € N is a limit point of A if every nbhd of x contains some
point in A other than z, i.e., for every nbhd N,

x € Ny = there is some y # x in (ANN)
A point x € N is a condensation point of A if for every nbhd N,
z € N, = (AN N,) is uncountable.

e Notice that every condensation point of A is a limit point of A.
#43. If x is a limit point of some A C N, then for every nbhd N/,
x € N, = (ANN,) is infinite.

#44. A pointset F' C N is closed if and only if it contains all its limit
points.
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Def. 14. For any closed set F C A/, put
kernel(F) = {z € N | z is a condensation point of F'}.

Notice that kernel(F') C F.

#45. Give an example where kernel(F)) = F' # () and another where
F # () but kernel(F) = (.

#46. Suppose T is a “pruned” tree on N (no finite branches) with body
[T] = F and let

kT = {u € T | [T,] is uncountable};
then

kT is a tree and [kT] = kernel(F).

#47 (existence of a Cantor-Bendixson decomposition). If F C N is
closed, then there exists a perfect set P and a countable set .S such that

F=PuUS, PNS=10.

#48 (uniqueness of the Cantor-Bendixson decomposition). If F C N is
closed, P is perfect, S is countable and

F=PUS, PnS=0,

then P = kernel(F).

85. Property P. A family I' of pointsets has property P if every un-
countable A € I has a perfect subset. For example, the family

F={F CN | F is closed}

has property P by the Cantor-Bendixson Theorem.
#49. f —=c N.
#50 (AC). F can be indexed on ¢ = 2%, 5o

F={F,|a<c}

#51 (AC). There is a set A C N such that |A] = ¢ but A has no
uncountable closed subset.

#52 (AC). The family P(N) of all subsets of N does not have property
P.
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86. Another proof of the Cantor-Bendixson Theorem. The proof
of #51 involves definition by transfinite (or ordinal) recursion, which can
also be used to prove the Cantor-Bendixson Theorem as follows.

Def. 15. A point z is an isolated point of a pointset A if x € A but z is
not a limit point of A.

Def. 16. We define the derivative F' of any closed pointset F' by
F'={z € F |z is alimit point of F} = F\ {x € F | z is isolated}.

#53. For every closed F, I/ C F and F’ is closed.
#54. A closed set I is perfect if and only if F/ = F.

Def. 17. For a given closed pointset F' and every ordinal number £, we
define F¢ by recursion as follows:

FO = F7
Fep = (F),
(Limit(\) Fy = ﬂ§<)\ Fe.
#55. Each Iy is closed and n < { = I}, D Fr.

#56 (Cantor-Bendixson existence). For each closed pointset F, there is
an ordinal p such that

F,41 = F, and p is countable.

It follows that

(1) The set P = F}, is perfect (perhaps empty).
(2) The set S = (F'\ P) is countable.
(3) F=PUS.

#57. Theorem 10.15 in the book, the characterization of continuous
functions f : AV — A in terms of functions on strings.

#58. For each of the following functions on A, find a monotone string
function 7 : N* — N* such that

f(@) = sup{7(u) | u E z}.
o fi(z)=1(0,2,7) % x.
o fo(z) = tail(tail(tail(x))).

#59. Suppose f(x), g(z) are continuous functions on Baire space and let
h(zx) be their “interweaving”,

h(zx) = (£(x)(0), 9(2)(0), f () (1), g(x)(1), - ).

Define a string representation of h(x) using given string representations
of g(x) and h(x). (The idea is to explain neatly how to compute 77, (u)
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using 77 and 74; don’t look for a formula, it’s really a program that is
needed.)

#60 (Problem 10.21 in the book). Prove that the following are equivalent
for a set K C NV

(1) K = [T] for a finitely branching tree T' C N*.

(2) For every family O of nbhds, if K C [JO, then there is a finite
subset Ny, , ... , Ny, of O such that

K CNy, U---UN,,.
e The next two problems are the two parts of Theorem 10.19 in the

book; so “solving” them means to read and understand he proofs well
enough so you can present them in class.

#61. (1) of Theorem 10.19, that the continuous image of a compact set
is compact. (You can do this using either of the two characterizations of
compact sets in the preceding problem.)

#62. (2) of Theorem 10.19, that the continuous, injective image of a
compact and perfect pointset if compact and perfect.

Def. 18. A pointset A C N is analytic if it is empty or the continuous
image of V.

e Again the next two problems together give us the Perfect Set Theorem
10.20, the second main goal of this class.

#63. The Lemma in the proof of Theorem 10.20, that the tree defined
by (10-18) is splitting.

#64. Every uncountable analytic set has a perfect subset, assuming the
Lemma.

e The remaining problems establish the basic closure properties of the
family of analytic pointsets.

#65 (Lemma 10.21 of NST). Every closed pointset is analytic.

#66 (Lemma 10.22 of NST). The continuous image of an analytic pointset
is analytic.

#67 (Lemma 10.23 of NST). If f,g : N — N are continuous, ten the
pointset

E={zeN|f(z)=g(x)}
is analytic.
#68. Countable unions of analytic sets are analytic.
#69. Every open pointset is analytic.

#70. Countable intersections of analytic sets are analytic.
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