
NOTES FOR 197, SPRING 2018

We work in ZFDC, Zermelo-Frankel Theory with Dependent Choices,
whose axioms are Zermelo’s I - VII, the Replacement Axiom VIII and the
axiom DC of dependent choices; when we need AC, we will list it among
the hypotheses.

§1. Ordinal numbers.

Def. 1. A set α is an ordinal number if it is transitive, pure, grounded
and connected, i.e.,

x = y ∨ x ∈ y ∨ y ∈ x (x, y ∈ α).

#1. The class ON of all ordinals is transitive,

α ∈ β ∈ ON =⇒α ∈ ON.

Def. 2. On each ordinal α we define the binary relation

x ≤α y ⇐⇒df [x = y ∨ x ∈ y]

#2. The relation ≤α is a wellordering of α.

• When we say “ordinal” we will mean either the set α or the well
ordered set (α,≤α).

#3. For each ordinal α and x ∈ α, segα(x) = x.

#4. Every well ordered set U = (Field(U),≤U ) is similar to a unique
ordinal,

ord(U) = the unique α ∈ ON)[U =o α].

Def. 3. For any two ordinals α, β, we put

α ≤ β ⇐⇒df (α,≤α) ≤o (β,≤β)

⇐⇒ there is an order-preserving bijection

of α with an initial segment of β.

#5. For any two α, β ∈ ON,

α ≤ β ⇐⇒ (∃π : α � β)[x ∈ y ∈ α =⇒π(x) ∈ π(y)].
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#6 (Lemma 12.14 in NST). For any two ordinals α, β,

α ≤ β ⇐⇒ α = β ∨ α ∈ β ⇐⇒ α v β ⇐⇒ α ⊆ β;

moreover, α < β ⇐⇒ α ∈ β.

#7. The class ON is well ordered by the condition ≤, i.e.,

α ≤ α, [α ≤ β ≤ γ] =⇒α ≤ γ, [α ≤ β ≤ γ] =⇒α = γ,

α < β ∨ α = β ∨ β < α,

(∃α)P (α) =⇒ (∃α)[P (α) & (∀β < α)[¬P (β)]],

where P (α) is any definite condition on ordinals.

#8. If E is a (non-empty) set of ordinals, then

sup E = the least β (∀α ∈ E)[α ≤ β] =
⋃
E ,

min E =
⋂
E .

#9. The class ON is not a set.

#10. 0 = ∅ is the least ordinal; S(α) = α∪{α} is the successor of α, the
least ordinal > α; and if λ is not 0 and not the successor of any α, than
λ is a limit ordinal and

λ = sup{α | α < λ}.

• The least limit ordinal is called ω.

#11 (Proof by ordinal induction). If P (α) is a definite condition on
ordinals and for all α ∈ ON

(∀β ∈ α)P (β) =⇒P (α),

then P (α) is true for all α ∈ ON.

#12 (Definition by ordinal recursion). For every definite operation H(w, α),
there is exactly one definite operation F : ON → ON such that

F (α) = H(F �α, α),

where F �α is the restriction of F to α,

F �(α) = {(ξ, F (ξ)) | ξ ∈ α}.

Similarly with a parameter: For every definite operation H(w, α, x),
there is exactly one definite operation F (α, x) such that

F (α, x) = H({(ξ, F (ξ, x) | ξ < α}, α, x)).
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Def. 4 (Addition of ordinals). By ordinal recursion with parameters,

α + 0 = α,

α + S(β) = S(α + β),

α + λ = sup{α + β | β < λ} (Limit(λ)).

#13 (Ord addition is associative). For all α, β, γ ∈ ON,

α + (β + γ) = (α + β) + γ.

#14. There are ordinals α, β, such that α + β 6= β + α.

#15. Problem x12.7 in NST.

#16. Problem x12.8 in NST.

#17. Problem x12.9 in NST.

Def. 5 (Multiplication of ordinals). By ordinal recursion with parame-
ters,

α · 0 = 0,

α · S(β) = (α · β) + α,

α · λ = sup{α · β | β < λ} (Limit(λ)).

#18 (Ord multiplication is associative). For all α, β, γ ∈ ON,

α · (β · γ) = (α · β) · γ.

#19. There are ordinals α, β such that α · β 6= β · α.

#20. Problem x12.10 in NST.

#21. Problem x12.11 in NST.

#22 (Right distributive law). For all α, β, γ ∈ ON,

α · (β + γ) = α · β + α · γ.

#23 (Failure of left distributivity). Give an example where

(α + β) · γ 6= α · γ + α · γ.

• The first few ordinals are

0, 1, . . . , ω, ω + 1, ω + 2, . . . ω2, ω2 + 1, . . . , ω3 . . . , ω4 . . . , . . .

ω2, ω2 + 1, . . . ω3, . . . Ω1 = the least uncountable ordinal, Ω1 + 1, . . . . . .
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§2. Cardinal numbers.

Def. 6. The cardinal number of a well-orderable set:

|A| = (µξ ∈ ON)[A =c ξ].

#24. For any well-orderable set A,

|A| = ord(A,≤),

where ≤ is any best wellordering of A.

#25. For any well-orderable sets A, B, A =c |A|; A =c B ⇐⇒ |A| = |B|.

Def. 7. The class of cardinal numbers: Card(κ) ⇐⇒ (∃A)[κ = |A|].

#26. A set is a cardinal number if and only if it is an initial ordinal,

Card(κ) ⇐⇒ α ∈ ON &(∀α ∈ κ)[α <c κ].

#27. The class Card is not a set.

#28 (AC). Every set A is well-orderable, and so |A| is defined.

Def. 8 (AC). Cardinal arithmetic:

κ + λ = |κ ] λ|,

κ · λ = |κ × λ|,

κλ = |(λ → κ)|,
∑

i∈Iκi = |{(i, x) ∈ I ×
⋃

i∈Iκi | x ∈ κi}|,
∏

i∈Iκi = |
∏

i∈Iκi|,

(disregarding the double use of the same notation in the last def.)

#29 (AC). Cardinal addition and multiplication are associative and com-
mutative; formulate and prove these laws for both the finite and infinite
sums and products.

#30 (The absorption laws, AC).

(κ, λ 6= 0&max(κ, λ) infinite) =⇒κ + λ = κ · λ = max(κ, λ).

Def. 9 (The alephs). By ordinal recursion, we set

ℵ0 = |N| = ω = the least infinite cardinal,

αβ+1 = ℵ+
β = the least cardinal > ℵβ,

ℵλ = sup{ℵβ | β < λ} (Limit(λ)).
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#31. Every ℵα is a cardinal number.

#32 (AC). Card = ω
⋃

{ℵα | α ∈ ON}.

• (AC). The Continuum Hypothesis and the Generalized Continuum
Hypothesis take the form

2ℵ0 = ℵ1; 2ℵα = ℵα+1.

§3. Universes.

Def. 10 (The cumulative hierarchy of pure, grounded sets). The partial

von Neumann universes are defined by the ordinal recursion

V0 = ∅,

Vα+1 = P(Vα),

Vλ =
⋃

α<λ Vα (Limit(λ).

We also define the class

V =
⋃

α∈ON Vα.

#33. α < β =⇒Vα ( Vβ .

#34. Vω comprises all the pure, grounded, hereditarily finite sets.

#35. The class V =
⋃

α∈ON Vα comprises exactly all sets which are pure
and grounded.

#36. V satisfies all the axioms of ZFDC, and also the axioms of Purity

and Foundation; and if we assume the Axiom of Choice, then it also
satisfies AC.

• This means that if by “set” we understand “set in V ”, then all the
axioms of ZFDC are true; and if we also assume AC, then we can prove
that V satisfies AC, the proposition

For every set A ∈ V , there is a function ε : P(A) \ {∅} → A
such that ε ∈ V and

(∀x ⊆ A)[x 6= ∅=⇒ ε(x) ∈ x].

Def. 11 (Zermelo universes, 11.19 in NST). A transitive class M is s
Zermelo universe if it satisfies Zermelo’s Axioms I – VI and DC and it
contains Zermelo’s set of natural numbers,

N0 = {∅, {∅}, {{∅}}, . . . }.

Def. 12 (the least Zermelo universe); this is

Z =
⋃

n∈N Zn,
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where

Z0 = N0, Zn+1 = P(Zn).

#37. If λ is a limit ordinal, λ > ω, then Vλ is a Zermelo universe.

#38. Vω /∈ Z.

• This proposition has many consequences about the strength of the
Zermelo axioms, for example:

#39. We cannot prove using only the Zermelo axioms I – VII that there
is a set whose members are exactly all the pure, hereditarily finite sets.
(And making this precise is part of the problem.)

§4. The Cantor-Bendixson Theorem. At this point we assume you
have read the basic definitions about N and its topology, through 10.5 of
Chapter 10.

#40. Proposition 10.6 in the book. This is a list of the basic properties
(1) – (5) of the topology of Baire space N , and their presentation will
be probably split among two or three students. (Try to think of how to
prove each part before reading the proofs; you may end up with a better
argument or presentation than what the book has.)

#41. TFAE for a set F ⊆ N :

(a) F is closed.
(b) There is a tree T on N such that F = [T ] = the body of T .
(c) There is a tree T on N such that F = [T ] and T has no finite branches.

#42. Every perfect, non-empty pointset P ⊆ N has cardinality c = 2ℵ0 .
This is 10.10 in NST; you may well think up a better solution than the
one given there.

Def. 13. Let A ⊆ N be a pointset.

A point x ∈ N is a limit point of A if every nbhd of x contains some
point in A other than x, i.e., for every nbhd Nu,

x ∈ Nu =⇒ there is some y 6= x in (A ∩Nu)

A point x ∈ N is a condensation point of A if for every nbhd Nu,

x ∈ Nu =⇒ (A ∩ Nu) is uncountable.

• Notice that every condensation point of A is a limit point of A.

#43. If x is a limit point of some A ⊆ N , then for every nbhd Nu,

x ∈ Nu =⇒ (A ∩Nu) is infinite.

#44. A pointset F ⊆ N is closed if and only if it contains all its limit
points.
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Def. 14. For any closed set F ⊆ N , put

kernel(F ) = {x ∈ N | x is a condensation point of F}.

Notice that kernel(F ) ⊆ F .

#45. Give an example where kernel(F ) = F 6= ∅ and another where
F 6= ∅ but kernel(F ) = ∅.

#46. Suppose T is a “pruned” tree on N (no finite branches) with body
[T ] = F and let

kT = {u ∈ T | [Tu] is uncountable};

then

kT is a tree and [kT ] = kernel(F ).

#47 (existence of a Cantor-Bendixson decomposition). If F ⊆ N is
closed, then there exists a perfect set P and a countable set S such that

F = P ∪ S, P ∩ S = ∅.

#48 (uniqueness of the Cantor-Bendixson decomposition). If F ⊆ N is
closed, P is perfect, S is countable and

F = P ∪ S, P ∩ S = ∅,

then P = kernel(F ).

§5. Property P . A family Γ of pointsets has property P if every un-
countable A ∈ Γ has a perfect subset. For example, the family

F = {F ⊆ N | F is closed}

has property P by the Cantor-Bendixson Theorem.

#49. F =c N .

#50 (AC). F can be indexed on c = 2ℵ0 , so

F = {Fα | α < c}.

#51 (AC). There is a set A ⊂ N such that |A| = c but A has no
uncountable closed subset.

#52 (AC). The family P(N ) of all subsets of N does not have property
P .
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§6. Another proof of the Cantor-Bendixson Theorem. The proof
of #51 involves definition by transfinite (or ordinal) recursion, which can
also be used to prove the Cantor-Bendixson Theorem as follows.

Def. 15. A point x is an isolated point of a pointset A if x ∈ A but x is
not a limit point of A.

Def. 16. We define the derivative F ′ of any closed pointset F by

F ′ = {x ∈ F | x is a limit point of F} = F \ {x ∈ F | x is isolated}.

#53. For every closed F , F ′ ⊆ F and F ′ is closed.

#54. A closed set F is perfect if and only if F ′ = F .

Def. 17. For a given closed pointset F and every ordinal number ξ, we
define Fξ by recursion as follows:

F0 = F,

Fξ+1 = (Fξ)
′,

(Limit(λ) Fλ =
⋂

ξ<λ Fξ.

#55. Each Fξ is closed and η ≤ ξ =⇒Fη ⊇ Fξ.

#56 (Cantor-Bendixson existence). For each closed pointset F , there is
an ordinal µ such that

Fµ+1 = Fµ and µ is countable.

It follows that

(1) The set P = Fµ is perfect (perhaps empty).
(2) The set S = (F \ P ) is countable.
(3) F = P ∪ S.

#57. Theorem 10.15 in the book, the characterization of continuous
functions f : N → N in terms of functions on strings.

#58. For each of the following functions on N , find a monotone string
function τ : N∗ → N∗ such that

f(x) = sup{τ(u) | u v x}.

• f1(x) = 〈0, 2, 7〉 ∗ x.
• f2(x) = tail(tail(tail(x))).

#59. Suppose f(x), g(x) are continuous functions on Baire space and let
h(x) be their “interweaving”,

h(x) = (f(x)(0), g(x)(0), f(x)(1), g(x)(1), · · · ).

Define a string representation of h(x) using given string representations
of g(x) and h(x). (The idea is to explain neatly how to compute τh(u)
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using τf and τg; don’t look for a formula, it’s really a program that is
needed.)

#60 (Problem 10.21 in the book). Prove that the following are equivalent
for a set K ⊂ N :

(1) K = [T ] for a finitely branching tree T ⊂ N∗.
(2) For every family O of nbhds, if K ⊆

⋃
O, then there is a finite

subset Nu1
, . . . ,Nuk

of O such that

K ⊆ Nu1
∪ · · · ∪ Nuk

.

• The next two problems are the two parts of Theorem 10.19 in the
book; so “solving” them means to read and understand he proofs well
enough so you can present them in class.

#61. (1) of Theorem 10.19, that the continuous image of a compact set
is compact. (You can do this using either of the two characterizations of
compact sets in the preceding problem.)

#62. (2) of Theorem 10.19, that the continuous, injective image of a
compact and perfect pointset if compact and perfect.

Def. 18. A pointset A ⊆ N is analytic if it is empty or the continuous
image of N .

• Again the next two problems together give us the Perfect Set Theorem
10.20, the second main goal of this class.

#63. The Lemma in the proof of Theorem 10.20, that the tree defined
by (10-18) is splitting.

#64. Every uncountable analytic set has a perfect subset, assuming the
Lemma.

• The remaining problems establish the basic closure properties of the
family of analytic pointsets.

#65 (Lemma 10.21 of NST). Every closed pointset is analytic.

#66 (Lemma 10.22 of NST). The continuous image of an analytic pointset
is analytic.

#67 (Lemma 10.23 of NST). If f, g : N → N are continuous, ten the
pointset

E = {x ∈ N | f(x) = g(x)}

is analytic.

#68. Countable unions of analytic sets are analytic.

#69. Every open pointset is analytic.

#70. Countable intersections of analytic sets are analytic.
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