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This little gem is stated unbilled and proved (completely) in the last two
lines of §2 of the short note Kleene (1938). In modern notation, with all the
hypotheses stated explicitly and in a strong form, it reads as follows:

Theorem 1 (SRT). Fix a set V ⊆ N, and suppose that for each natural number
n ∈ N = {0, 1, 2, . . .}, ϕn : Nn+1 ⇀ V is a recursive partial function of (n + 1)
arguments with values in V so that the standard assumptions (1) and (2)
hold with

{e}(~x) = ϕn
e (~x) = ϕn(e, ~x) (~x = (x1, . . . , xn) ∈ Nn).

(1) Every n-ary recursive partial function with values in V is ϕn
e for some e.

(2) For all m,n, there is a recursive (total) function S = Sm
n : Nm+1 → N

such that
{S(e, ~y)}(~x) = {e}(~y, ~x) (e ∈ N, ~y ∈ Nm, ~x ∈ Nn).

Then, for every recursive, partial function f(e, ~y, ~x) of (1+m+n) arguments
with values in V, there is a total recursive function z̃(~y) of m arguments such
that

{z̃(~y)}(~x) = f(z̃(~y), ~y, ~x) (~y ∈ Nm, ~x ∈ Nn). (1)

Proof. Fix e so that {e}(m,~y, ~x) = f(S(m,m, ~y), ~y, ~x) and let z̃(~y) = S(e, e, ~y).aa

Kleene states the theorem with V = N, relative to specific ϕn, Sm
n , supplied

by his Enumeration Theorem, m = 0 (no parameters ~y) and n ≥ 1, i.e., not
allowing nullary partial functions. And most of the time, this is all we need;
but there are a few important applications where choosing “the right” ϕn, Sm

n ,
restricting the values to a proper V ( N or allowing m > 0 or n = 0 simplifies
the proof considerably. With V = {{0}} (singleton 0) and m = n = 0, for example,
the characteristic equation

{z̃}( ) = f(z̃) (2)

is a rather “pure” form of self-reference, where the number z̃ produced by the
proof (as a code of a nullary semirecursive relation) has the property f(z̃), at
least when f(z̃)↓ .
? Part of an expository article in preparation, written to commemorate the passage of

100 years since the birth of Stephen Cole Kleene.



Kleene uses the theorem in the very next page to prove that there is a largest
initial segment of the countable ordinals which can be given “constructive nota-
tions”, in the first application of what we now call effective grounded (transfinite)
recursion, one of the most useful methods of proof justified by SRT; but there
are many others, touching most parts of logic and even classical analysis.

My aim in this lecture is to list, discuss, explain and in a couple of simple
cases prove some of the most significant applications of the Second Recursion
Theorem, in a kind of “retrospective exhibition” of the work that it has done
since 1938. It is quite impressive, actually, the power of such a simple fact with
a one-line proof; but part of its wide applicability stems precisely from this
simplicity, which make it easy to formulate and establish it in many contexts
outside ordinary recursion theory on N. Some of the more important applications
come up in Effective Descriptive Set Theory, where the relevant version of SRT
is obtained by replacing N by the Baire space N = (N → N) and applying
recursion theory on N—also developed by Kleene.

Speaking rather loosely, the identity (1) expresses a self-referential property
of z̃(~y) and SRT is often applied to justify powerful, self-referential definitions.
I will discuss some of these first, and then I will turn to applications of effective
grounded recursion.

The lecture will focus on some of the following consequences of SRT:1

A. Self reproducing Turing machines. It is quite simple to show using SRT
that there is a Turing machine which prints its code when it is started on the
blank tape. It takes just a little more work—and a careful choice of ϕn, Sm

n —to
specify a Turing machine (naturally and literally) by a string of symbols in its
own alphabet and then show

Theorem 2. On every alphabet Σ with N ≥ 3 symbols, there is a Turing ma-
chine M which started on the blank tape outputs itself.

B. Myhill’s characterization of r.e. complete sets. Recall that a recur-
sively enumerable (r.e.) set A ⊆ N is complete if for each r.e. set B there is a
recursive (total) function f such that x ∈ B ⇐⇒ f(x) ∈ A.2 An r.e. set A is
creative if there is a unary recursive partial function u(e) such that

We ∩A = ∅ =⇒ u(e)↓ & u(e) /∈ (A ∪We). (3)

The notion goes back to Post (1944) who showed (in effect) that every r.e.-
complete set is creative and implicitly asked for the converse.

1 The choice of these examples was dictated by what I know and what I like, but also
by the natural limitations of space in an extended abstract and time in a lecture.
A more complete list would surely include examples from Recursion in higher types
and Realizability theory. (For the latter, see Moschovakis (2010) which is in some
ways a companion article to this.)

2 And then one can find a one-to-one f with the same property, cf. Theorem VII
in Rogers (1967).
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Theorem 3 (Myhill (1955)). Every creative set is r.e.-complete.

This clever argument of Myhill’s has many applications, but it is also foun-
dationally significant: it identifies creativeness, which is an intrinsic property of
a set A but depends on the coding of recursive partial functions with complete-
ness, which depends on the entire class of r.e. sets but is independent of coding.
I believe it is the first important application of SRT in print by someone other
than Kleene.

C. The Myhill-Shepherdson Theorem. One (modern) interpretation of
this classical result is that algorithms which call their (computable, partial)
function arguments by name can be simulated by non-deterministic algorithms
which call their function arguments by value. It is a rather simple but interesting
consequence of SRT.

Let P1
r be the set of all unary recursive partial functions. A partial operation

Φ : Nn × P1
r ⇀ N (4)

is effective if its partial function associate

f(~x, e) = Φ(~x, ϕ1
e) (5)

is recursive. In programming terms, an effective operation calls its function ar-
gument by name, i.e., it needs a code of any p ∈ P1

r to compute the value Φ(~x, p).
There are cases, however, when we need to compute Φ(~x, p) without access

to a code of p, only to its values. In programming terms again, this comes up
when p is computed by some other program which is not known, but which
can be asked to produce any values p(~y) that are required during the (otherwise
effective) computation of Φ(~x, p). We can make this precise using a (deterministic
or non-deterministic) Turing machine M with an oracle which can request values
of the function argument p on a special function input tape: when M needs p(y),
it prints y on the function input tape and waits until it is replaced by p(y) before
it can go on—which, in fact, may cause the computation to stall if p(y) ↑. In
these circumstances we say that M computes Φ by value.

Notice that the recursive associate f of an effective operation Φ as in (5)
satisfies the following invariance condition:

ϕe1 = ϕe2 =⇒ f(~x, e1) = f(~x, e2). (6)

This is used crucially in the proof of the next theorem, which involves two clever
applications of SRT:

Theorem 4 (Myhill and Shepherdson (1955)). A partial operation Φ as in (4) is
effective if and only if it is computable by a non-deterministic Turing machine.3

3 The use of non-deterministic machines here is essential, because the operation

Φ(p) =

(
1, if p(0)↓ or p(1)↓ ,

⊥, otherwise

is effective but not computable by a deterministic Turing machine.
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D. The Kreisel-Lacombe-Shoenfield-Ceitin Theorem. Let F1
r be the set

of all unary total recursive functions. By analogy with operations on P1
r , a partial

operation
Φ : Nn ×F1

r ⇀ N

is effective if there is a recursive partial function f : Nn+1 ⇀ N such that

ϕe ∈ F1
r =⇒ Φ(~x, ϕe) = f(~x, e). (7)

Notice that such a recursive associate f of Φ satisfies the invariance condition

ϕe = ϕm ∈ F1
r =⇒ f(~x, e) = f(~x,m), (8)

but is not uniquely determined.

The next theorem is a version of the Myhill-Shepherdson Theorem appropri-
ate for these operations. Its proof is not quite so easy, and it involves applying
SRT in the middle of a relatively complex construction:

Theorem 5 (Kreisel, Lacombe, and Shoenfield (1957), Ceitin (1962)). Suppose
Φ : Nn ×F1

r → N is a total effective operation.

(1) Φ is effectively continuous: i.e., there is a recursive partial function g(e, ~x),
such that when ϕe is total, then g(e, ~x)↓ for all ~x, and for all p ∈ F1

r ,

(∀t < g(e, ~x))[p(t) = ϕe(t)] =⇒ Φ(~x, p) = Φ(~x, ϕe).

(2) Φ is computed by a deterministic Turing machine.

The restriction in the theorem to total operations on F1
r is necessary, because

of a lovely counterexample in Friedberg (1958).

Ceitin (1962) proved independently a general version of (1) in this theorem:
every recursive operator on one constructive metric space to another is effectively
continuous. His result is the central fact in the school of constructive analysis
which was flowering in Russia at that time, and it has played an important role
in the development of constructive mathematics ever since.

E. Incompleteness and undecidability using SRT. We formulate in this
section two basic theorems which relate SRT to incompleteness and undecidabil-
ity results: a version of the so-called Fixed Point Lemma, and a beautiful result
of Myhill’s, which implies most simple incompleteness and undecidability facts
about sufficiently strong theories and insures a very wide applicability for the
Fixed Point Lemma.

Working in the language of Peano Arithmetic (PA) with symbols 0, 1,+, ·,
define first (recursively) for each x ∈ N a closed term ∆x which denotes x, and
for every formula χ, let

#χ = the code (Gödel number) of χ, pχq ≡ ∆#χ = the name of χ.
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We assume that the Gödel numbering of formulas is sufficiently effective so that
(for example) #ϕ(∆x1, . . . ,∆xn) can be computed from #ϕ(v1, . . . , vn) and
x1, . . . , xn. A theory (in the language of PA) is any set of sentences T and

Th(T ) = {#θ | θ is a sentence and T ` θ}

is the set of (Gödel numbers of) the theorems of T . A theory T is sound if every
θ ∈ T is true in the standard model (N, 0, 1,+, ·); it is axiomatizable if its proof
relation

ProofT (e, y) ⇐⇒ e is the code of a sentence σ
and y is the code of a proof of σ in T

is recursive, which implies that Th(T ) is recursively enumerable; and it is suffi-
ciently expressive if every recursive relation R(~x) is numeralwise expressible in
T , i.e., for some formula ϕR(v1, . . . , vn),

R(x1, . . . , xn) =⇒ T ` ϕR(∆x1, . . . ,∆xn),
¬R(x1, . . . , xn) =⇒ T ` ¬ϕR(∆x1, . . . ,∆xn).

Theorem 6 (Fixed Point Lemma). If T is axiomatizable in the language of
PA and Th(T ) is r.e.-complete, then for every formula θ(v) with at most v free,
there is a sentence σ such that

T ` σ ⇐⇒ T ` θ(pσq). (9)

Proof. Let ψ0, ψ1, . . . be recursive partial functions satisfying the standard as-
sumptions, let4

u ∈ A ⇐⇒ (∃n)[Seq(u) & lh(u) = n+ 1 & ψn((u)0, (u)1, . . . , (u)n)↓ ],

so that A is r.e., and so there is a total recursive function r such that

u ∈ A ⇐⇒ r(u) ∈ Th(T ).

It follows that for every n-ary semirecursive relation R(~x), there is a number e
such that

R(~x) ⇐⇒ ψn(e, ~x)↓ ⇐⇒ 〈e, ~x〉 ∈ A ⇐⇒ r(〈e, ~x〉) ∈ Th(T ). (10)

We will use SRT with V = {{0}} and

ϕn(e, ~x) = 0 ⇐⇒ r(〈e, ~x〉) ∈ Th(T ),
4 For any tuple ~x = (x0, . . . , xn−1) ∈ N

n, 〈~x〉 codes ~x so that for suitable recursive
relations and functions,

〈~x〉 = fn(x0, . . . , xn−1), Seq(w)⇐⇒ w is a sequence code, lh(〈~x〉) = n, (〈~x〉)i = xi,

and the code 〈 〉 of the empty sequence is 1.
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which (because of (10), easily) satisfy the standard assumptions.

Given θ(v), SRT (with m = n = 0) gives us a number z̃ such that

{z̃}( ) = 0 ⇐⇒ r(〈z̃〉) is not the code of a sentence or T ` θ(∆r(〈z̃〉)). (11)

Now r(〈z̃〉) is the code of a sentence, because if it were not, then the right-hand-
side of (11) would be true, which makes the left-hand-side true and insures that
r(〈z̃〉) codes a sentence, in fact a theorem of T ; and if r(〈z̃〉) = #σ, then

T ` σ ⇐⇒ r(〈z̃〉) ∈ Th(T ) ⇐⇒ {z̃}( ) = 0
⇐⇒ T ` θ(∆r(〈z̃)〉) ⇐⇒ T ` θ(pσq). aa

The conclusion of the Fixed Point Lemma is usually stated in the stronger
form

T ` σ ↔ θ(pσq),

but (9) is sufficient to yield the applications. For the First Incompleteness The-
orem, for example, we assume in addition that T is sufficiently expressive, we
choose σ such that

T ` σ ⇐⇒ T ` ¬(∃u)ProofT (pσq, u) (12)

where ProofT (v, u) numeralwise expresses in T its proof relation, and we check
that if T is consistent, then T 6` σ, and if T is also sound, then T 6` ¬σ. The
only difference from the usual argument is that (12) does not quite say that σ
“expresses its own unprovability”—only that it is is provable exactly when its
unprovability is also provable. For the Rosser form of Gödel’s Theorem, we need
to assume that T is a bit stronger (as we will explain below) and consistent,
though not necessarily sound, and the classical argument again works with the
more complex Rosser sentence and this same, small different understanding of
what the Rosser sentence says.

There is a problem, however, with the key hypothesis in Theorem 6 that
Th(T ) is r.e.-complete. This is trivial for sufficiently expressive and sound the-
ories, including, of course, PA, but not so simple to verify for theories which are
consistent but not sound. In fact it holds for every axiomatizable theory T which
extends the system Q from Robinson (1950)—which is the standard hypothesis
for incompleteness and undecidability results about consistent theories which
need not be sound.5

Theorem 7 (Myhill (1955)). If T is any consistent, axiomatizable extension of
Q, then Th(T ) is creative, and hence r.e.-complete.

5 For a description of Q and its properties, see (for example) Boolos, Burgess, and
Jeffrey (1974) or even Kleene (1952), §41. Notice also that Theorem 7 does not lose
much of its foundational interest or its important applications if we replace Q by
PA in its statement—and the properties of Q that are used in the proof are quite
obvious for PA.
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The proof uses SRT with V = {{0, 1}}, and (like all arguments of Myhill), it is
very clever.

So consistent, axiomatizable extensions of Q are undecidable and hence in-
complete; moreover, the Fixed Point Lemma Theorem 6 applies to them, and
so we can construct specific, interesting sentences that they cannot decide, a la
Rosser.

A minor (notational) adjustment of the proofs establishes Theorems 6 and
7 for any consistent, axiomatizable theory T , in any language, provided only
that Q can be interpreted in T ,6 including, for example, ZFC; and then a third
fundamental result of Myhill (1955) implies that the sets of theorems of any two
such theories are recursively isomorphic.7

F. Solovay’s theorem in provability logic. The (propositional) modal for-
mulas are built up as usual using variables p0, p1, . . .; a constant ⊥ denoting
falsity; the binary implication operator → (which we use with ⊥ to define all the
classical propositional connectives); and a unary operator �, which is usually
interpreted by “it is necessary that”. Solovay (1976) studies interpretations of
modal formulas by sentences of PA in which � is interpreted by “it is provable
in PA that” and establishes some of the basic results of the logic of provability.
His central argument appeals to SRT at a crucial point.

An interpretation of modal formulas is any assignment π of sentences of PA
to the propositional variables, which is then extended to all formulas by the
structural recursion

π(⊥) ≡ 0 = 1, π(ϕ→ ψ) ≡ (π(ϕ) → π(ψ)), π(�ϕ) ≡ (∃u)ProofPA(pπ(ϕ)q, u).

A modal formula ϕ is PA-valid if PA ` π(ϕ) for every interpretation π.

The axiom schemes of the system GL are:

(A0) All tautologies;
(A1) �(ϕ→ ψ) → (�ϕ→ �ψ) (transitivity of provability);
(A2) �ϕ→ ��ϕ (provable sentences are provably provable); and

(A3)
(
�(�ϕ→ ϕ)

)
→ �ϕ (Löb’s Theorem).

The inference rules of GL are:

(R1) ϕ→ ψ,ϕ =⇒ ψ (Modus Ponens); and
(R2) ϕ =⇒ �ϕ (Necessitation).

Theorem 8 (Solovay (1976)). A modal formula ϕ is PA-valid if and only if it
is a theorem of GL.

6 A (weak) interpretation of T1 in T2 is any recursive map χ 7→ χ∗ of the sentences of
T1 to those of T2 such that T1 ` χ =⇒ T2 ` χ∗ and T2 ` (¬χ)∗ ↔ ¬(χ∗).

7 Pour-El and Kripke (1967) have interesting, stronger results of this type, whose
proofs also use the Second Recursion Theorem.

30



Solovay shows also that the class of PA-valid modal formulas is decidable, and he
obtains a similar decidable characterization of the modal formulas ϕ such that
every interpretation π(ϕ) is true (in the standard model), in terms of a related
axiom system GL′.

The proof of Theorem 8 is long, complex, ingenious and depends essentially
(and subtly) on the full strength of PA. It is nothing like the one-line derivations
of Theorems 2 and 6 from standard facts about the relevant objects by a natural
application of SRT or even the longer, clever proofs of Theorems 3, 4, 5 and 7 in
which SRT still yields the punch lines. Still, I cannot see how one could possibly
construct (or even think up) the key, “self-referential” closed term l of Solovay’s
Lemma 4.1 directly, without appealing to the Second Recursion Theorem,8 and
so, in that sense, SRT is an essential ingredient of his argument.

Next we turn to effective, grounded recursion, and perhaps the best way to
explain it it to describe how it was introduced in Kleene (1938).

G. Constructive and recursive ordinals. Ordinal numbers can be viewed as
the order types of well ordered sets, but also as extended number systems, which
go beyond N and can be used to count (and regulate) transfinite iteration. Church
and Kleene developed in the 1930s an extensive theory of such systems, aiming
primarily at a constructive theory of ordinals—which, however, was only partly
realized since many of their basic results could only be proved using classical
logic. Kleene (1938) formulated the Second Recursion Theorem to solve one of
the basic problems in this area.

A notation system for ordinals or r-system (in Kleene (1938)) is a set S ⊆ N,
together with a function x 7→ |x|S which assigns to each x in S a countable
ordinal so that the following conditions hold:

(ON1) There is a recursive partial function K(x) whose domain of conver-
gence includes S and such that, for x ∈ S,

|x|S = 0 ⇐⇒ K(x) = 0,
|x|S is a successor ordinal ⇐⇒ K(x) = 1,

|x|S is a limit ordinal ⇐⇒ K(x) = 2.

(ON2) There is a recursive partial function P (x), such that if x ∈ S and |x|S
is a successor ordinal, then P (x)↓ , P (x) ∈ S and |x|S = |P (x)|S + 1.

(ON3) There is a recursive partial function Q(x, t), such that if x ∈ S and
|x|S is a limit ordinal, then for all t, Q(x, t) ↓ , |Q(x, t)|S < |Q(x, t + 1)|S and
|x|S = limt |Q(x, t)|S .

In short, an r-system assigns S-names (number codes) to some ordinals,
so that we can effectively recognize whether a code x names 0, a successor
ordinal or a limit ordinal, and we can compute an S-name for the predecessor of

8 Which Solovay invokes to define a function h : N→ {0, . . . , n} by the magical words
“Our definition of h will be in terms of a Gödel number e for h. The apparent
circularity is handled, using the recursion theorem, in the usual way.”
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each S-named successor ordinal and (S-names for) a strictly increasing sequence
converging to each S-named limit ordinal.

A countable ordinal is constructive if it gets a name in some r-system.
The empty set is an r-system, as is N, which names the finite ordinals, and

every r-system (obviously) assigns names to a countable, initial segment of the
ordinal numbers. It is not immediately clear, however, whether the set of con-
structive ordinals is countable or what properties it may have: the main result
in Kleene (1938) clarifies the picture considerably by constructing a single r-
system which names all of them.

This “maximal” r-system is defined by a straightforward transfinite recursion
which yields the following

Lemma. There is an r-system (S1, | |1) such that:
(i) 1 ∈ S1 and |1|1 = 0.
(ii) If x ∈ S1, then 2x ∈ S1 and |2x|1 = |x|1 + 1.
(iii) If ϕ1

e is total and for all t, ϕe(t) ∈ S1 and |ϕe(t)|1 < |ϕe(t + 1)|1, then
3 · 5e ∈ S1 and |3 · 5e|1 = limt |ϕe(t)|.

Theorem 9 (Kleene (1938)). For every r-system (S, | |S), there is a unary re-
cursive function ψ such that

x ∈ S =⇒
(
ψ(x) ∈ S1 & |x|S = |x|1

)
.

In particular, the system (S1, | |1) names all constructive ordinals.

Proof. Let K,P,Q be the recursive partial functions that come with (S, | |S),
choose a number e0 such that

{S(e0, z, x)}(t) = {e0}(z, x, t) = {z}(Q(x, t)),

fix by SRT (with V = N,m = 0, n = 1) a number z̃ such that

ϕ
ez(x) =


1, if K(x) = 0,
2ϕ

ez(P (x)), if K(x) = 1,
3 · 5S(e0,ez,x), otherwise,

and set ψ(x) = ϕ
ez(x). The required properties of ψ(x) are proved by a simple

(possibly transfinite) induction on |x|S . aa

In effect, the map from S to S1 is defined by the obvious transfinite recursion
on |x|S , which is made effective by appealing to SRT—hence the name for the
method.

The choice of numbers of the form 3 · 5e to name limit ordinals was made
for reasons that do not concern us here, but it poses an interesting question:
which ordinals get names in (S′

1, | |′1), defined by replacing 3 · 5e by (say) 7e in
the definition of S1? They are the same constructive ordinals, of course, and the
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proof is by defining by effective grounded recursion (exactly as in the proof of
Theorem 9) a pair of recursive functions ψ,ψ′ such that

x ∈ S1 =⇒
(
ψ′(x) ∈ S′

1 & |x|1 = |ψ′(x)|′1
)
,

x ∈ S′
1 =⇒

(
ψ(x) ∈ S1 & |x|′1 = |ψ(x)|1

)
.

(And I do not know how else one could prove this “obvious” fact.)

The constructive ordinals are “constructive analogs” of the classical countable
ordinals, and so the constructive analog of the first uncountable ordinal Ω1 is

ωCK
1 = sup{|x|1 | x ∈ S1} = the least non-constructive ordinal,

the superscript standing for Church-Kleene. This is one of the most basic “uni-
versal constants” which shows up in logic—in many parts of it and under many
guises. We list here one of its earliest characterizations.

A countable ordinal ξ is recursive if it is the order type of a recursive well
ordering on some subset of N.

Theorem 10 (Markwald (1954), Spector (1955)). A countable ordinal ξ is con-
structive if and only if it is recursive.

Both directions of the theorem are proved by (fairly routine) effective, grounded
recursions.

H. The hyperarithmetical hierarchy. Kleene (1955c) associates with each
a ∈ S1 a set Ha ⊆ N so that:9

(H1) H1 = N.
(H2) H2b = H ′

b.
(H3) If a = 3 · 5e, then t ∈ Ha ⇐⇒ (t)1 ∈ Hϕe((t)0).

A relation P ⊆ Nn is hyperarithmetical if it is recursive in some Ha.10

This natural extension of the arithmetical hierarchy was also defined indepen-
dently (and in different ways) by Davis (1950) and Mostowski (1951) who knew
most of its basic properties, but not the central Theorem 11 below. To formulate
it, we need to refer to the arithmetical and analytical relations on N which were
introduced in Kleene (1943, 1955a); without repeating the definitions, we just
record here the fact that they fall into two hierarchies

∆0
1 ( · · · ( Σ0

` ∪Π0
` ( ∆0

`+1 ( · · · ( ∆1
1 ( · · · ( Σ1

k ∪Π1
k ( ∆1

k+1 ( · · ·

9 For each A ⊆ N, A′ is the jump of A.
10 Actually, Kleene defines Ha only when a ∈ O, a subsystem of S1 which has more

structure and is “more constructive”. I will disregard this fine point here, as many
basic facts about O can only be proved classically and the attempt to use intuition-
istic logic whenever it is possible clouds and complicates the arguments.
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where ∆0
1 comprises the recursive relations. Above all the arithmetical relations

and at the bottom of the analytical hierarchy lie the ∆1
1 relations which satisfy

a double equivalence

P (~x) ⇐⇒ (∃β)Q(~x, β) ⇐⇒ (∀β)R(~x, β)

where β ranges over the Baire space N = (N → N) and Q,R are arithmetical
(or just ∆0

2) relations on Nn ×N , suitably defined.

Theorem 11 (Kleene (1955c)). A relation P ⊆ Nn is ∆1
1 if and only if it is

hyperarithmetical.

Notice that the theorem characterizes only the ∆1
1 relations on N, so we will

revisit the question later.
This is the most significant, foundational result in the sequence of articles

Kleene (1935, 1943, 1944, 1955a,b,c, 1959) in which Kleene developed the theory
of arithmetical, hyperarithmetical and analytical relations on N, surely one of
the most impressive bodies of work in the theory of definability.11 Starting with
the 1944 article, Kleene uses effective, grounded recursion in practically every
argument: it is the key, indispensable technical tool for this theory.

From the extensive work of others in this area, we cite only one, early but
spectacular result:

Theorem 12 (The Uniqueness Theorem, Spector (1955)). There is a recursive
function u(a, b), such that if |a|1 ≤o |b|1, then u(a, b) is the code of a Turing
machine M which decides Ha using Hb as oracle.

In particular, if |a|1 = |b|1, then Ha and Hb have the same degree of unsolv-
ability.

The definition of u(a, b) is naturally given by effective grounded recursion.
Classical and effective descriptive set theory. Kleene was primarily in-
terested in relations on N, and he was more-or-less dragged into introducing
quantification over N and the analytical hierarchy in order to find explicit forms
for the hyperarithmetical relations. Once they were introduced, however, the
analytical relations on Baire space naturally posed new problems: is there, for
example, a construction principle for the ∆1

1 relations which satisfy

P (x) ⇐⇒ (∃β)Q(x, β) ⇐⇒ (∀β)R(x, β) (13)

where x = ~x, ~α varies over Nn × Nm and Q,R are arithmetical—a useful and
interesting analog of Theorem 11?

In fact, these were very old problems, initially posed (and sometimes an-
swered, in different form, to be sure) by Borel, Lebesgue, Lusin, Suslin and

11 Kleene was the first logician to receive in 1983 the Steele Prize for a seminal con-
tribution to research of the American Mathematical Society, specifically for the ar-
ticles Kleene (1955a,b,c).
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many others, primarily analysts and topologists who were working in Descrip-
tive Set Theory in the first half of the 20th century. The similarity between what
they had been doing and Kleene’s work was first noticed by Mostowski (1946)
and (especially) Addison (1954, 1959), and later work by many people created
a common generalization of the classical and the new results now known as Ef-
fective Descriptive Set Theory ; Moschovakis (2009) is the standard text on the
subject and it gives a more careful history and a detailed introduction to this
field.

The main inheritance of effective descriptive set theory from recursion theory
is the propensity to code—assign to objects names that determine their relevant
properties and then compute, decide or define functions and relations on these
objects by operating on the codes rather than the objects coded—except that
now we use points in N rather than numbers for codes. We operate on N -codes
using recursion on N , by which a partial function f : Nn ⇀ N is recursive if
f(~α) = (λs)f∗(~α, s) where f∗ : Nn×N ⇀ N is recursive, i.e., there is a recursive
relation R ⊆ Nn+2 such that

f∗(~α, s) = w ⇐⇒ (∃t)R(α1(t), . . . , αn(t), s, w)

where α(t) = 〈α(0), α(1), . . . , α(t− 1)〉. It is easy to show (and important) that
for these partial functions,

f(~α) = β =⇒ β is recursive in α1, . . . , αn.

A partial function g : Nn ⇀ N is continuous if

g(~α) = f(δ0, ~α)

with some recursive f : Nn+1 ⇀ N and some δ0 ∈ N .12

And here is the relevant version of SRT:

Theorem 13. There is a recursive partial functions ϕn : Nn+1 ⇀ N for each
n ∈ N, so that (1) and (2) hold with

{ε}(~α) = ϕn
ε (~α) = ϕn(ε, ~α) (~α = (α1, . . . , αn) ∈ N n).

(1) Every continuous g : Nn ⇀ N is ϕn
ε for some ε, and every recursive

f : Nn ⇀ N is ϕn
ε for some recursive ε.

(2) For all m,n, there is a recursive (total) function S = Sm
n : Nm+1 → N

such that

{S(ε, ~β)}(~α) = {ε}(~β, ~α) (ε ∈ N , ~β ∈ Nm, ~α ∈ Nn).
12 Notice that the domain of convergence of a recursive, partial f : Nn ⇀ N is not (in

general) Σ0
1 but Π0

2 ,

f(~α)↓ ⇐⇒ (∀s)(∃w)(∃t)R(α1(t), . . . , αn(t), s, w).

It is not difficult to check that a partial g : Nn ⇀ N is continuous if its domain of
convergence Dg is a Gδ (�

e

0
2) set and g is topologically continuous on Dg.
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It follows that for every recursive, partial function f(ε, ~β, ~α) of (1 +m + n)
arguments, there is a total recursive function γ̃(~β) of m arguments such that

{γ̃(~β)}(~α) = f(γ̃(~β), ~β, ~α) (~β ∈ Nm, ~α ∈ N n). (14)

I will confine myself here to formulating just two results from effective de-
scriptive set theory. Both are proved by effective, grounded recursion justified by
this version of SRT, and they suggest the power of the method and the breadth
of its applicability.

I. The Suslin-Kleene Theorem. Classical descriptive set theory is the study
of definable subsets of an arbitrary Polish (metrizable, separable, complete topo-
logical) space X , including the real numbers R and products of the form X =
Nn × Nm. The class B = BX of the Borel subsets of X is the smallest class
which contains all the open balls and is closed under countable unions and com-
plements, and starting with this and iterating projection on N and complemen-
tation we get the projective hierarchy,

B ⊆ ∆
e

1
1 ( Σ

e

1
1 ∪Π

e

1
1 ( ∆

e

1
2 ( Σ

e

1
2 ∪Π

e

1
2 ( · · ·

The class ∆
e

1
1 comprises the sets which satisfy (13) with Q and R Borel (or even

∆
e

0
3) subsets of the product space X ×N , and their identification with the Borel

sets is a cornerstone of the theory:

Theorem 14 (Suslin (1917)). For every Polish space X , ∆
e

1
1 = B.

There is an obvious resemblance in form between this result of Suslin and
Kleene’s Theorem 11, which led Mostowski and Addison to talk first of “analo-
gies” between descriptive set theory and the “hierarchy theory” of Kleene, as
it was then called; but neither of these results implies the other, as Suslin’s
Theorem is trivial on Nn and Kleene’s Theorem says nothing about subsets of
N—not to mention the real numbers or other Polish spaces which are very im-
portant for the classical theory. One of the first, substantial achievements of the
“marriage” of the classical and the new theory was the derivation of a basic fact
which extends (and refines) both Theorems 11 and 14.

We code the Σ
e

1
k and Π

e

1
k subsets of each Polish space in a natural way,

so that the usual operations on them (countable unions and intersections, for
example) are recursive in the codes, also in a natural way. A ∆

e

1
1-code of a set A

is the (suitably defined) pair 〈α, β〉 of a Σ
e

1
1 and a Π

e

1
1 code for A. Finally, we

code the Borel subsets of each X , so that a Borel code of a set A supplies all the
information necessary to construct A from open balls by iterating the operations
of countable union and complementation. And with these definitions at hand:

Theorem 15 (The Suslin-Kleene Theorem, see Moschovakis (2009)). For each
Polish space X which admits a recursive presentation, there are recursive func-
tions u, v : N → N such that if α is a Borel code of a set A ⊆ X , then u(α) is
a ∆

e

1
1-code of A, and if β is a ∆

e

1
1-code of A, then v(β) is a Borel code of A.
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In particular, the ∆1
1 subsets of X are exactly the Borel subsets of X which

have recursive codes.13

The Suslin-Kleene Theorem implies immediately Suslin’s Theorem and (with
just a little extra work) Kleene’s Theorem 11. It is shown by adapting one of
the classical proofs of Suslin’s Theorem rather than Kleene’s much more difficult
argument, and, of course, effective grounded recursion.

J. The Coding Lemma. The last example is from the exotic world of deter-
minacy, about as far from recursion theory as one could go—or so it seems at
first.

Theorem 16 (The Coding Lemma, Moschovakis (1970, 2009)). In ZFDC+AD:
if there exists a surjection f : R→→ κ of the continuum onto a cardinal κ, then
there exists a surjection g : R→→P(κ) of the continuum onto the powerset of κ.

Here ZFDC stands for ZFC with the Axiom of (full) Choice AC replaced by the
weaker Axiom of Dependent Choices DC, and AD is the Axiom of Determinacy,
which is inconsistent with AC. It has been shown by Martin and Steel (1988)
and Woodin (1988) that (granting the appropriate large cardinal axioms), AD
holds in L(R), the smallest model of ZFDC which contains all ordinals and all
real numbers. Long before that great (and reassuring!) result, however, AD was
used systematically to uncover the structure of the analytical and projective
hierarchies—so it has something to do with recursion theory after all!

It is not possible to give here a brief, meaningful explanation of all that goes
into the statement of Theorem 16 which, in any case, is only a corollary of a
substantially stronger and more general result. Notice, however, that in a world
where it holds, R is immense in size, if we measure size by surjections: it can be
mapped onto ℵ1 (classically), and so onto ℵ2, and inductively onto every ℵn and
so onto ℵω, etc., all the way onto every ℵξ for ξ < ℵ1: and it can also be mapped
onto the powerset of each of these cardinals. This surjective size of R is actually
immense in the world of AD, the Coding Lemma is one of the important tools
in proving this—and it does not appear possible to prove the Coding Lemma
without using SRT, which creeps in this way into the study of cardinals, perhaps
the most purely set-theoretic part of set theory.

The hypothesis AD of full determinacy is covered in Section 7D, The com-
pletely playful universe of Moschovakis (2009), part of Chapter 7 whose title is
The Recursion Theorem.

13 The restriction to recursively presented spaces is inessential, because every Polish
space can be presented recursively in some ε0 ∈ N , and then the whole theory “rela-
tivises” to this ε0. Notice also that Moschovakis (2009) develops the effective theory
primarily for countable and perfect Polish spaces, but the definitions makes sense
for arbitrary Polish spaces, and then each such X is isometric with the Π0

1 subset
X × {{λt0}} of the perfect X × N ; because of this representation, the Suslin-Kleene
Theorem holds for all recursively presented Polish spaces—as do many (though not
all) results in Moschovakis (2009).
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