
The fixed point theory of complexity

Yiannis N. Moschovakis

Department of Mathematics University of California, Los Angeles, CA, USA
and Department of Mathematics, University of Athens, Greece

ynm@math.ucla.edu

Starting with [2], Scott and his students and followers developed a general method which
assigns to every program E its denotation den(E), the object computed by E, typically a
function of some sort. The method uses least-fixed-point theorems in various complete posets
and has evolved into a rich mathematical theory.

Denotational semantics are useful because they provide a precise criterion of correctness
for a program E, which should compute what we wanted it to compute; but den(E) tells us
nothing about the complexity of E, which is what we want to know next.

As it turns out, Scott’s fixed-point-methods can be easily extended to extract from a pro-
gram E many of its intensional properties, including some natural, implementation-independent
measures of complexity of E. We will focus on programs which compute functions (or decide
relations) on a set A, for which complexity theory is most developed; and for these, the two,
key moves that are needed are to identify the primitives (functions and relations on A) that E
uses as oracles and to translate E into a recursive (McCarthy) program from these primitives,
which can be done using routine, well-understood methods.

1 Partial functions and partial structures

A partial function f : X ⇀ W is a (total) function f : Df → W on some Df ⊆ X = {x : f(x)↓},
its domain of convergence, and f v g ⇐⇒ (∀x ∈ X)[f(x)↓ =⇒ f(x) = g(x)].

A vocabulary is a finite set Φ of function symbols, each with a specified arity nφ = 0, 1, . . .,
and sort sφ ∈ {ind, boole}; and a (partial) Φ-structure is a pair

A = (A, ΦA) = (A, {φA}φ∈Φ),

where φA : Anφ ⇀ Asφ
with Aind = A and Aboole = B = {tt,ff}. For example,

N = (N, 0, 1, +, ·,=) and Nu = (N, 0, 1, S, Pd, eq0)

are the standard and the unary structures on N = {0, 1, . . .}.

2 Explicit Φ-terms, A-terms and functionals

The explicit A-terms (with pf variables) are defined and assigned sorts by structural recursion,

E :≡ tt | ff | x (x ∈ A) | vi | qs,n
i (E1, . . . , En) | φ(E1, . . . , Enφ

) | if E0 then E1 else E2,

where v0, v1, . . . is a fixed sequence of formal individual variables (of sort ind); for each sort
s ∈ {ind, boole} and each n, qs,n

0 , qs,n
1 , . . . is a fixed sequence of formal partial function (pf)

The results in this paper are from Part I of [1].

The fixed point theory of complexity Moschovakis, Y. N.

variables of sort s and arity n; and we assume the natural restrictions on arities and sorts so
that the clauses of the definition make sense. E is a Φ-term if no constants from A occur in it.

Explicit A-terms are interpreted in expansions (A, p1, . . . , pK) of A by partial functions
p1, . . . , pK whose sorts and arities match those of the pf variables p1, . . . , pK which occur in
them; and if all the individual variables which occur in E are in the list ~x = (x1, . . . , xn) and
~x = (x1, . . . , xn) ∈ An, we set1

den((A, ~p), E(~x)) := the value of E(~x) with ~p = (p1, . . . , pK)

by the usual recursion on the definition of terms, so den((A, ~p), E(~x)) ∈ Asort(E).
A functional f(~x, ~p) on A is explicit in A if for some A-explicit term E,

f(~x, ~p) = den((A, ~p), E(~x)) (~x ∈ An).

3 Recursive (McCarthy) programs

A recursive Φ-program is a syntactic expression

E ≡ E0 where
{

p1(~x1) = E1 . . . , pK(~xK) = EK

}
(Φ-programs)

where each Ei is an explicit Φ-term whose pf variables are in the list p1, . . . , pK (the recursive
variables of E), and for i = 1, . . . , K, sort(pi) = sort(Ei) and the individual variables which
occur in Ei are in the list ~xi, so that the system of equations within the braces is well-formed.

To interpret recursive programs, we use the following, simplest, classical

Fixed Point Theorem 1. Every well-formed system of A-explicit equations
{

p1(~x1) = f1(~x1, p1, . . . , pK), . . . , pK(~xK) = fK(~xK , p1, . . . , pK)
}

has a v-least (canonical) solution tuple p1, . . . , pK characterized by

pi(~xi) = fi(~xi, p1, . . . pK) (all ~xi, i = 1, . . . ,K), (FP)

(for all i, ~xi)
(
fi(xi, q1, . . . , qK)↓ =⇒ fi(xi, q1, . . . , qK) = qi(xi)

)

=⇒ p1 v q1, . . . , pK v qK . (MIN)

If all the individual variables which occur in the head E0 of E are in the list~x and (p1, . . . , pK)
is the canonical solution tuple of the system

{
p1(~x1) = den((A, ~p), E1(~x1)), . . . , pK(~xK) = den((A, ~p), E1(~xK))

}

in its body, we set

fE(~x) = den(A, E)(~x) =df den((A, p1, . . . , pK), E0(~x)). (∗)

Consider the following two, classical examples:

1Here E(~x) ≡ E{~xi :≡ ~xi}, the result of replacing in E each variable xi by xi.

2

The fixed point theory of complexity Moschovakis, Y. N.

Lemma 2 (The Euclidean algorithm ε for ⊥⊥). The recursive program

eq1(p(x, y)) where
{

p(x, y) = if eq0(y) then x else p(y, rem(x, y))
}

of the structure2 Nε = (N, rem, eq0, eq1) decides coprimeness for x, y ≥ 1,

Lemma 3 (The merge-sort algorithm ms). If ≤ orders L, then the recursive program

p(u) where
{

p(u) = if (tail(u) = nil) then u else q(p(half1(u)), p(half2(u))),

q(w, v) = if (w = nil) then v else if (v = nil) then w

else if (head(w) ≤ head(v)) then cons(head(w), q(tail(w), v))

else cons(head(v), q(w, tail(v)))
}

of the structure L∗ms = (L∗, half1, half2,≤) computes for each sequence u ∈ L∗ its ordered
rearrangement sort(u) relative to ≤.

4 Complexity theory for recursive programs

Fix a Φ-structure A and a recursive Φ-program E, let p1, . . . , pK be as in Section 3 and set

Conv(A, E) = {M : M ≡ N{y1 :≡ y1, . . . , ym :≡ ym} where
N(y1, . . . , ym) is a subterm of some Ei,

~y ∈ Am and M = den((A, p1, . . . , pK), M)↓};
for example, if fE(~x) is the partial function computed by E as in (∗), then

fE(~x)↓ =⇒
(
E0(~x) ∈ Conv(A, E) & fE(~x) = E0(~x)

)
.

We will use these convergent (A, E)-terms to define several natural complexity measures of
recursive programs, starting with the following most-basic one:

Lemma 4 (Tree-depth complexity). For fixed A and E, there is exactly one function
D = DA

E : Conv(A, E) → N such that:

(D1) D(tt) = D(ff) = D(x) = D(φ) = 0 (if arity(φ) = 0 and φA↓).

(D2) D(φ(M1, . . . , Mm)) = max{D(M1), . . . , D(Mm)}+ 1.

(D3) If M ≡ if M0 then M1 else M2, then

D(M) =

{
max{D(M0), D(M1)}+ 1, if M0 = tt,
max{D(M0), D(M2)}+ 1, if M0 = ff.

2 Some notation: S(x) = x + 1, x−· y = max(x− y, 0); Pd(x) = x−· 1, eqx(y) ⇐⇒ y = x

for y > 0, rem(x, y) and iq(x, y) are the unique r, q ∈ N s.t. x = yq + r & r < y,

gcd(x, y) = the greatest common divisor of x and y, x⊥⊥ y ⇐⇒ gcd(x, y) = 1 (x, y ≥ 1),

L∗ = (L∗, nil, eqnil, head, tail, cons) is the LISP structure over a set L, |u| = the length of u ∈ L∗,
for u ∈ L∗, half1(u) = the first half and half2(u) = the second half of u.

3

The fixed point theory of complexity Moschovakis, Y. N.

if M0 then M1 else M2

Mn

¼

^

M2

M0

=
M1

if M0 then M1 else M2

M0

ª
M2

R

M1

φ(M1, . . . , Mn)

À ^
. . .

M2

q

)
. . .

=
Mn Ei(M1, . . . , Mn)M1

?

pi(M1, . . . , Mn)

zs

(M0 = ff)(M0 = tt)

tt ff x φ

Figure 1: The computation tree.

(D4) If pi is a recursive variable of E of arity m, then

D(pi(M1, . . . , Mm)) = max{D(M1), . . . , D(Mm), D(Ei(M1, . . . , Mm))}+ 1.

The tree-depth complexity of E is that of its head,

dE(~x) = d(A, E(~x)) =df d(E0(~x)) (denA
E (~x)↓).

This is proved by analysing the proof of Theorem 1.

5 The computation tree T (M)

Using recursion on D(M), we can associate with each M ∈ Conv(A, E) a grounded tree T (M)
whose depth is exactly D(M) and which can be viewed as an “ideal (parallel) computation” of
M . We can also define in this way several natural complexity measures on recursive programs:

5.1 The sequential logical complexity Ls(M) (time)

Define
Ls(M) = Ls(A, E,M) (M ∈ Conv(A, E))

for a Φ-structure A and a Φ-program E by the following recursion on D(M):

(Ls1) Ls(tt) = Ls(ff) = Ls(x) = 0, and Ls(φ) = 1 if arity(φ) = 0 and φA↓ .

(Ls2) Ls(φ(M1, . . . , Mn)) = Ls(M1) + Ls(M2) + · · ·+ Ls(Mn) + 1.

4

The fixed point theory of complexity Moschovakis, Y. N.

(Ls3) If M ≡ if M0 then M1 else M2, then

Ls(M) =

{
Ls(M0) + Ls(M1) + 1 if M0 = tt,
Ls(M0) + Ls(M2) + 1 if M0 = ff.

(Ls4) Ls(pi(M1, . . . ,Mn)) = Ls(M1) + · · ·+ Ls(Mn) + Ls(Ei(M1, . . . , Mn)) + 1,

and set timeE(~x) = ls(A, E(~x)) =df Ls(E0(~x)) (denA
E (~x)↓).

Intuitively, timeE(~x) counts the number of steps required for the computation of fE(~x) using
“the algorithm expressed by” E.

5.2 The number-of-calls complexity Cs(Φ0)(M) (calls)

Define
Cs(Φ0)(M) = Cs(Φ0)(A, E(~x),M) (Φ0 ⊆ Φ,M ∈ Conv(A, E))

for a Φ-structure A, a Φ-program E and Φ0 ⊆ Φ, by the following recursion on D(M):

(Cs1) Cs(Φ0)(tt) = Cs(Φ0)(ff) = Cs(Φ0)(x) = 0 (x ∈ A); and if arity(φ) = 0 and φ↓ ,
Cs(Φ0)(φ) = 0 if φ /∈ Φ0, and Cs(Φ0)(φ) = 1 if φ ∈ Φ0.

(Cs2) If M ≡ φ(M1, . . . , Mn), then

Cs(Φ0)(M) =

{
Cs(Φ0)(M1) + · · ·+ Cs(Φ0)(Mn) + 1, if φ ∈ Φ0,

Cs(Φ0)(M1) + · · ·+ Cs(Φ0)(Mn), otherwise.

(Cs3) If M ≡ if M0 then M1 else M2, then

Cs(Φ0)(M) =

{
Cs(Φ0)(M0) + Cs(Φ0)(M1), if M0 = tt,
Cs(Φ0)(M0) + Cs(Φ0)(M2), if M0 = ff.

(Cs4) If M ≡ pi(M1, . . . , Mn) with pi a recursive variable of E, then

Cs(Φ0)(M) = Cs(Φ0)(M1) + · · ·+ Cs(Φ0)(Mn) + Cs(Φ0)(Ei(M1, . . . , Mn)).

The number of Φ0-calls complexity in A of E(~x) is that of its head term,

calls(Φ0)E(~x) = calls(Φ0)(A, E(~x)) =df Cs(Φ0)(A, E(~x), E0(~x)),

and it is defined exactly when denA
E (~x)↓ .

This is a very natural complexity measure: Cs(Φ0)(M) counts the number of calls to the
primitives in Φ0 which are needed to compute M using “the algorithm expressed” by the
program E and disregarding the “logical steps” (branching and recursive calls) as well as calls
to primitives not in Φ0. Classical examples:

Lemma 5. With the notation of Lemmas 2 and 3 (and F0, F1, . . . the Fibonacci numbers) :

calls(rem)(Nε,⊥⊥ (x, y)) ≤ 2 log y (1 ≤ x ≤ y, y ≥ 2)
calls(rem)(Nε,⊥⊥ (Fk+1, Fk)) = k − 1 ≥ r log Fk+1 (fixed r, all k ≥ 2)

calls(≤)(L∗ms, ms(u)) ≤ |u| log |u| (all u ∈ L∗, u 6= nil)

We skip the similar definitions of parallel versions of these complexity functions, p-timeE(~x)
(parallel time) and p-calls(Φ0)(A, E(~x)) (depth-of-calls).

5

The fixed point theory of complexity Moschovakis, Y. N.

6 Complexity inequalities

For a fixed Φ-structure A and a recursive Φ-program E, easily

calls(~x) (` + 1)p-calls(~x)

≤ ≤ ≤
p-calls(~x) time(~x)

≤ ≤ ≤
d(~x) ≤ p-time(~x) (` + 1)d(~x)+1.

where ` is the largest arity of any primitive or pf variable which occurs in E.
Much more significant (and substantially more difficult to prove) is

Theorem 6 (Tserunyan’s inequalities, [3]). For every recursive Φ-program E, there are
constants Ks,Kp such that for every Φ-structure A and every ~x ∈ An, if den(A, E(~x))↓ , then

(a) timeE(~x) ≤ Ks + Kscalls(Φ)E(~x), (b) p-timeE(~x) ≤ Kp + Kpp-calls(Φ)E(~x).

(a) says that the large timeE(~x) needed by any recursive Φ-program E to compute f(x) in
A is not caused by the large number of logical operations that E must do—“the high logical
complexity of the algorithm expressed by E”—but by the large number calls(Φ)E(~x) of necessary
calls to the primitives of A, up to a linear factor which is independent of the structure A; ditto
for the parallel complexity p-timeE(~x) and its calls-counting (depth) counterpart p-callsE(~x).
Taken together, the Tserunyan inequalities provide some explanation why lower bound results
(which limit a large variety of algorithms) are most often proved by counting calls to the
primitives, which is well known and little understood.

7 Concluding remark

There is no generally accepted definition of what an algorithm is, and so complexity functions are
defined and studied on models of computations (finite register machines, decision trees, Turing
machines, RAMs, etc.) here viewed as implementations of algorithms; but then we do not have
a generally accepted definition of what an implementation of the merge-sort in Lemma 3 is,
even though the study of these implementations is a rich (and rigorous) area of research.

We have outlined a simple theory of complexity of algorithms for those algorithms which are
expressed by recursive programs. It implies many of the classical complexity results because all
the standard computation models are faithfully represented by recursive programs using routine,
well-understood methods; and it can be argued that every algorithm which computes a function
on a set A from given functions and relations on A is faithfully expressed by a recursive program.

References

[1] Yiannis N. Moschovakis. Abstract recursion and intrinsic complexity, volume 48 of ASL Lecture
Notes in Logic. Cambridge University Press, 2019. posted in ynm’s homepage.

[2] D. S. Scott and C. Strachey. Towards a mathematical semantics for computer languages. In J. Fox,
editor, Proceedings of the Symposium on computers and automata, pages 19–46, New York, 1971.
Polytechnic Institute of Brooklyn Press.

[3] Anush Tserunyan. (1) Finite generators for countable group actions; (2) Finite index pairs of
equivalence relations; (3) Complexity measures for recursive programs. Ph.D. Thesis, University of
California, Los Angeles, 2013. Kechris, A. and Neeman, I., supervisors.

6

