
DETAILED PROOF OF THEOREM 4.1 IN
SENSE AND DENOTATION AS ALGORITHM AND VALUE

YIANNIS N. MOSCHOVAKIS

§4. Sense identity and indirect reference. Van Heijenoort [30] quotes an extensive pas-
sage from a 1906 letter from Frege to Husserl which begins with the following sentence:

“It seems to me that we must have an objective criterion for recognizing a thought as
the same thought, since without such a criterion a logical analysis is not possible.”

This could be read as asserting the existence of a decision procedure for sense identity, but
unfortunately, the letter goes on to suggest that logically equivalent sentences have the same
sense, a position which is contrary to the whole spirit of [12]. It is apparently not clear what
Frege thought of this question or if he seriously considered it at all. Kreisel and Takeuti [17] raise
explicitly the question of synonymity of sentences which may be the same as that of identity of
sense. If we identify sense with referential intension, the matter is happily settled by a theorem.

Theorem 4.1. For each recursor structure A = (U1, . . . , Uk, f1, . . . , fn) of finite signature,
the relation ∼A of intensional identity on the terms of FLR interpreted on A is decidable.

For each structure A and arbitrary integers n, m, let

SA(n,m) ⇐⇒ n, m are Gödel numbers of sentences or terms θn, θm of FLR (58)
and θn ∼A θm.

The rigorous meaning of 4.1 is that this relation SA is decidable, i.e., computable by a Turing
machine. By the usual coding methods then, we get immediately:

Corollary 4.2. The relation SA of intensional identity on Gödel numbers of expressions of
FLR is elementary (definable in LPC), over each acceptable structure A.

The Corollary is useful because it makes it possible to talk indirectly about FLR intensions
within FLR. In general, we cannot do this directly because the intensions of a structure A are
higher type objects over A which are not ordinarily15 members of any basic set of the universe
of A. One reason we might want to discuss FLR intensions within FLR is to express indirect
reference, where Frege’s treatment deviates from his general doctrine of separate compositionality

This manuscript is posted on http://www.math.ucla.edu/∼ynm.

It is a revised version of Section §4 of [22], which fills a gap in the proof of the main Theorem 4.1, the decidability
of the synonymy relation. It also provides many more details and some examples which (I hope) make the argument
easier to follow. I have preserved the numbering of displayed formulas of [22], assigning new, interpolated numbers

to new displays.
15If the universe of A contains the powerset of every basic set in it and the Cartesian product of every two

basic sets, then of course it contains all recursors over basic sets and with suitably rich primitives we can develop
the theory of intensions of A within LPCR. These are typed structures, however, of infinite signature, which lack
a natural universe, a largest basic set. More interesting would be the structure of the universe of sets, whose only
basic “set” is the class of all sets. The intensions of this structure are certainly not sets.
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principles for sense and denotation. Frege argued that “the indirect denotation of a word is . . .
its customary sense,” so that in

Othello believed that Cassio and Desdemona were lovers, (59)

the object of Othello’s belief would be the sense of the sentence ‘Cassio and Desdemona were
lovers’. Since we cannot refer to sense directly in any fragment of natural language formalizable
within FLR (if we identify it with intension), we might attempt to make belief an attribute of
sentences, or (equivalently) their Gödel numbers. This means that (59) is expressed by

Othello believed ‘Cassio and Desdemona were lovers’, (60)

where ’Cassio and Desdemona were lovers’ is the Gödel number of the sentence within the quotes.
But then we would certainly expect (60) to imply

Othello believed ‘Desdemona and Cassio were lovers’, (61)

and we would like to express in the language the general assertion that belief depends only on
the sense, not the syntactic form of a sentence, i.e.,

[Othello believes m & SA(m,n)]=⇒ Othello believes n. (62)

The Corollary says precisely that (62) is expressible already in LPC. The method is evidently
quite general: if we view propositional attitudes as attributes of Gödel codes, we can express in
the language that they respect sense identity, those indeed which should respect it.

Proof of the Main Theorem 4.1. The intension of a term in a recursor structure is
computed in the associated functional expansion by Def. 3.6 of [25], so we may assume that the
interpretations f1, . . . , fn of the function symbols of the language in A are functionals. We fix
such a functional structure A then and we assume (for the time being) that all basic sets in A
are infinite. We will discuss the interesting case of finite basic sets at the end.

Since intensions are preserved by passing to the normal form, the problem of intensional identity
on A comes down to this: given two irreducible, recursive terms

φ ≡ φ0 where {p1(u1) ' φ1, . . . , pn(un) ' φn},
ψ ≡ ψ0 where {q1(v1) ' ψ1, . . . , qm(vm) ' ψm},

is n = m and can we match the terms so that they define the same functionals? By trying all
possible ways to match the parts16 and using the form of irreducible, explicit terms (2B.4 of [24]),
we can further reduce the problem to that of deciding whether an arbitrary identity in one of the
following three forms holds in A:

f(z1, . . . , zm) ' g(zm+1, . . . , zl), (63)
f(z1, . . . , zm) ' p(w1, . . . , wk). (64)
q(w1, . . . , wm) ' p(wm+1, . . . , wl). (65)

Here the following conditions hold:
1. The functionals f and g are among the finitely many givens of A, or the constants t, f or

the conditional.
2. Each zi is an immediate expression (in the full set of variables) by 2B.2 of [24], i.e., either

a basic variable, or p(~x) where the xi’s are basic variables, or λ(~s)p(~x) with p(~x) as above.

16This trivial part of the algorithm is (on the face of it) in NP (non-deterministic, polynomial time) in the

length of the given terms and the rest will be seen to be no worse. I do not know a better upper bound for the
complexity of intensional identity on a fixed structure and the best lower bound I know is that of Theorem 3.6.
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236 YIANNIS N. MOSCHOVAKIS

3. Each wj is either a basic variable or r(~x), where the xi’s are basic variables and where r ≡ p
and r ≡ q are allowed.

The decision question is trivial for identities in form (65) because of the following elementary
result from logic:!

4.3. Lemma. An identity (65) is valid in any fixed structure with infinite basic sets only if its
two sides are identical.

We can view (64) as a special case of (63), with the following evaluation functional substituted
for g on the right:

evk(p, x1, . . . , xk) ' p(x1, . . . , xk). (66)

Notice, however, that there are infinitely many such evaluation functionals. There are also
infinitely many possible identities in form (63), because although f and g are chosen from a finite
set, there is an infinite number of immediate expressions from which to choose the zi’s. The proof
splits into two parts. First we will show that if we expand the structure by a fixed, finite number
of evaluation functionals, then every identity in form (64) is effectively equivalent to one in form
(63). In the second part we will show how to decide the validity of equations in form (63).

4.4. A basic variable v is placed in an identity (63) or (64) if v ≡ zi for some i. For example,
the placed variables of f(v, p(x, y), u) = p(s, r(x, y)) are v and u.

4.5. Lemma.17 Suppose the identity

f(z1, . . . , zm) ' p(w1, . . . , wk). (67)

is valid in the structure A with infinite basic sets and wi ≡ r(~x) is one of the terms on the right.
Then there exists some zj on the left such that either wi ≡ zj , or zj ≡ λ(s1, . . . , sk)r(~y ) and
r(~x) can be obtained from r(~y ) by the replacement of each si which actually occurs in r(~y ) by
a placed variable.

Proof. To keep the notation simple we assume that there is only one basic set and we consider
the special case where

w2 ≡ r(x, u, x, y, v), u, v placed, x, y not placed. (68)

Case 1. r 6≡ p. Choose disjoint, non-empty sets Dx, Dy, Du, Dv, W such that Dx, Dy and W
have at least two points, choose some c̄ outside all of them, and first set all variables other than
x, y, u, v to c̄ and all partial function variables other than r, p to constant functions with value
c̄. Next set u and v to constant values ū, v̄ in the corresponding sets Du, Dv. For each arbitrary
partial function

ω : Dx ×Dx ×Dy ⇀W,

set r by the conditions

[s1 /∈ Dx ∨ s2 /∈ Du ∨ s3 /∈ Dx ∨ s4 /∈ Dy ∨ s5 /∈ Dv] =⇒ r(s1, s2, s3, s4, s5) ' c̄,

[s1 ∈ Dx & s2 ∈ Du & s3 ∈ Dx & s4 ∈ Dy & s5 ∈ Dv] =⇒ r(s1, s2, s3, s4, s5) ' ω(s1, s3, s4)

and finally set

σ(t) =
{
t, if t ∈W,
c̄, otherwise, p(s1, s2, . . . , sk) ' σ(s2). (69)

17I am grateful to Joan Moschovakis for a counterexample which killed a plausible simplification of this proof,
before I invested too much time in it.

http://www.math.ucla.edu/∼ynm, posted on February 15, 2007.



DETAILED PROOF OF THEOREM 4.1 237

Consider the result of further substituting in (67) arbitrary values x ∈ Dx, y ∈ Dy. Suppose
wj ≡ q(~t) is one of the terms within p on the right. If q 6≡ r, then with these substitutions wj is
defined, set either to c̄ or to σ(t2), if q ≡ p. If q ≡ r and the sequence of variables ~t is not exactly
x, u, x, y, v, then wj again takes the value c̄. Thus the only term among the wj ’s whose value
may possibly depend on ω, x and y is w2 (which may of course occur more than once) and hence
the right-hand-side of (67) is defined exactly when w2 is defined and we have a valid identity:

f(z1(ω, x, y), . . . , zm(ω, x, y)) ' ω(x, x, y), (x ∈ Dx, y ∈ Dy, ω : Dx ×Dx ×Dy ⇀W ). (70)

The typical expression zi(ω, x, y) on the left evaluates to the constant c̄ or some function with
the constant value c̄ if neither r nor p occurs in zi. If zi ≡ λ(~s)p(~t), then again zi has a value
independent of ω, x, y, because of the definition of p and the fact we we set no variable equal to
a member of W . Finally, if

zi ≡ λ(s̄)r(t1, t2, t3, t4, t5), (71)

but some ti is free or a constant and is not the i’th variable or constant in the pattern x, ū, x, y, v̄,
then again the expression evaluates to c̄, by the definition of r. Thus zi depends on ω, x, y
only when at most t1, t3 or t4 are free, and those among them which are free are set to the
corresponding value x, x or y. If all three are free in some such zi, then the lemma clearly holds.
In the opposite case the partial function ω satisfies an identity of the form

ω(x, x, y) ' h(ω, ω(·, x, y), ω(x, ·, y), ω(x, x, ·), ω(·, ·, y), ω(·, x, ·), ω(x, x, ·)), (72)

where h is a monotone operation on partial functions and · is the algebraic notation for λ-
abstraction, e.g.,

ω(·, x, ·) = λ(s, t)ω(s, x, t).
For example, suppose

zi ≡ λ(st)r(x, ū, s, t, v̄) = β;
then

β(s, t) '
{
ω(x, s, t), if s ∈ Dx, t ∈ Dy,
c̄, otherwise,

so that zi = hi(ω(x, ·, ·)) with a monotone hi. A similar evaluation of zi in terms of some section
of ω is involved in each of the cases and the substitution of all these monotone hi’s into f yields
a monotone operation.

Finally, we obtain a contradiction from the alleged validity of (72). Choose distinct points
x0, x1, y0, y1 in the respective sets Dx, Dy and define two partial functions with only the indicated
values, where 0, 1 are distinct points in W .

α(x0, x0, y0) ' 0, γ(x, x′, y) '
{

0, if x = x0 ∨ x′ = x0 ∨ y = y0,
1, otherwise.

From (72) applied to α,

h(α, α(·, x0, y0), . . . , ) ' α(x0, x0, y0) ' 0. (73)

But obviously α ⊆ γ and an easy computation shows that every section of γ at (x1, x1, y1) extends
the corresponding section of α at (x0, x0, y0), for example

λ(s)α(x0, s, y0) ⊆ λ(s)γ(x1, s, y1),

simply because γ(x1, x0, y1) ' 0. Thus by the monotonicity of h, (73) and (72) applied to γ, we
should have

0 ' h(γ, γ(·, x1, y1), . . . , ) ' γ(x1, x1, y1),
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while by its definition γ(x1, x1, y1) ' 1. This completes the proof of the Lemma in the first case.

Case 2. r ≡ p. We consider again a typical, simple case

f(z1, . . . , zm) ' p(w1, p(x, y, u), w2), u placed, x, y not placed.

As before, we restrict the variables to disjoint sets Dx, Dy, Du, W and a c̄ outside all of them,
such that Dx, Dy and W have at least two points, we let

ω : Dx ×Dy ⇀W

be some arbitrary partial function, and we set:

p(s1, s2, s3) '

 ω(s1, s2), if s1 ∈ Dx, s2 ∈ Dy, s3 ∈ Du,
s2, otherwise, if s2 ∈W,
c̄, otherwise.

From this it follows that we get a valid identity of the form (72) for an arbitrary ω : Dx×Dy ⇀W ,
the main points being that all the terms on the right which are not identical with w2 are defined
and only the sections show up on the left, and then the proof is finished as before. a

4.6. Lemma. An identity of the form

f(z1, . . . , zm) ' p(w1, . . . , wk) (74)

cannot be valid in a structure A with infinite basic sets if the number n of distinct terms (not
variables) on the right is greater than a fixed number d, which depends only on the type of f ; if
n ≤ d, then we can compute from (74) an equivalent identity of the form

f(z1, . . . , zm) ' evn(W0,W1, . . . ,Wn). (75)

Proof. If (74) is valid, then by the preceding Lemma 4.5, each wi which is a term either is
identical with some zj or can be obtained by the substitution of placed variables in some zj . If
there are q ≤ m placed variables, and if zj is a λ-term, it is of the form λ(s1, . . . , sl(j))z∗j , where
the number l(j) can be computed from the type of f , so it can generate by substitution of placed
variables into its bound variables at most ql(j) distinct terms; hence the total number of distinct
terms on the right cannot exceed

d =
m∑

j=1

ql(j). (76)

Suppose the right-hand-side of (74) is p(x,A, u,B,A, z), where distinct caps indicate distinct
terms and the lower case letters are variables. We then have

p(x,A, u,B,A, x) ' (λ(a, b)p(x, a, u, b, a, x))(A,B)
' ev2(λ(a, b)p(x, a, u, b, a, x), A,B).

The general case is similar. a
This last lemma reduces the decision problem of intensional identity to equations in form (63),

where there is a finite choice of f ’s, the functionals in the signature, and a finite choice of g’s,
those in the structure and the evk’s, for k no more than d computed by (76) for every functional
in the structure.

4.7. Extended sets and assignments. Before describing the procedure which determines
the validity of identities in form (63), we consider a simple example which illustrates one of the
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annoying subtleties we will need to deal with. Suppose g is a total, unary function on some set
A and we define the total, binary function f by

f(x, y) ' g(x). (77)

Clearly (77) is a valid identity involving the old g and the new f we just defined. Suppose we
substitute a term in this to get

f(x, p(x)) ' g(x); (78)

now this is not valid, because for some values of the partial function p, p(x) will not be defined,
so neither will f(x, p(x)), while the right-hand-side is defined. In dealing with partial functions
and functionals as we have, validity of identities is not preserved by substitution of terms. One
way to deal with this problem is to add an element ⊥ to each basic set and view partial functions
as total functions, which take the value ⊥ when they should be undefined. For each set A, we set

A⊥ = A ∪ {⊥} = the extension of A. (79)

We can now try to interpret identities by allowing the basic variables to range over the extended
sets, so that the validity of (77) implies the validity of (78); this is fine, except that now (77)
fails for the f we originally defined, because we still have f(x,⊥) = ⊥ 6= g(x), when x ∈ A. Of
course, some might say we defined the wrong f , but in fact it is these “strict” identities we need
to decide to settle the question of intensional identity. In practice we will need to work both with
strict and with extended identities and we must keep the context clear.

We will use “=” to denote equality in the extended basic sets and set

x↓ ⇐⇒ x ∈ A ⇐⇒ x 6= ⊥, (x ∈ A⊥). (80)

A strict assignment π in a structure A assigns partial functions to pf variables and members of
the basic sets to basic variables, as usual. An extended assignment behaves exactly like a strict
assignment on pf variables, but assigns members of the extended basic sets to the basic variables,
i.e., it can set v := ⊥. An identity is strictly valid when it holds for all strict assignments, and
extendedly valid if it holds for all extended assignments.

4.8. Dictionary lines. Choose once and for all fixed, special variables x1, . . . , xl of types such
that

f(x1, . . . , xm) ' g(xm+1, . . . , xl) (81)

is well formed. A dictionary line for f and g is an implication of the form

φ1, φ2, . . . , φn =⇒ f(x1, . . . , xm) ' g(xm+1, . . . , xl) (82)

where each formula φk in the antecedent of the line may involve additional extra, variables other
than the x1, . . . , xl and satisfies one of the following conditions.

1. φk ≡ xi = u, where xi is one of the special, basic variables and u is an extra basic variable.
At most one formula of this type in the antecedent involves each xi.

2. φk is λ(u1, . . . , ut)xi(u1, . . . , ut) = λ(u1, . . . , ut)y(us1 , . . . , usn
), where t = arity(xi), y is

an extra pf variable of arity n, and us1 , . . . , usn
is a subsequence of the sequence of variables

u1, . . . , ut. We allow n = 0, in which case y is an extra, nullary pf variable. At most one
formula of this type in the antecedent involves the variable xi.

3. φk is λ(~s)xi(~u) = λ(~s)xj(~v ) or xi(~u) = xj(~v ), where the length of the sequence of distinct
variables ~s is no larger than max(arity(xi), arity(xj)) and ~u,~v are sequences of extra, basic
variables. At most one formula of this type in the antecedent involves each pair xi and xj .
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4. φk is u↓ or u 6= v, where u and v are basic, extra variables which occur free in the line in
formulas of type 1 or 3.

4.9. Dictionaries. A line is valid (in the given structure) if every extended assignment which
satisfies its hypothesis also satisfies its conclusion. This means that the choice of specific extra
variables is irrelevant to the validity of a line, and then a simple counting argument shows that
the types of f and g determine an upper bound on the number of distinct (up to alphabetic
change and reordering of hypotheses) lines. We fix a sufficiently large set of extra variables and
list once and for all, all the lines in these variables which are valid for f and g in the given
structure; this is the dictionary for f and g.

The dictionary of the structure A is the union of the dictionaries for all the pairs of functionals
in A. It is a finite list of lines, perhaps not easy to construct for specific structures with non-
constructive givens, but in principle it can be written down.

We will associate (effectively) with each identity (63) a specific set of lines L such that the strict
validity of (63) is equivalent to the extended validity of all the lines in L. It will be convenient to
express these lines using the variables which occur in (63). To decide a specific (63), we translate
the lines of L into equivalent lines in the fixed, chosen variables by an alphabetic change, and
then (63) will be equivalent to the presence of these lines in the dictionary.

For example, (77) will be expressed by the two lines

x1 = u, x2 = v, x3 = u, u↓ , v↓ , u 6= v=⇒ f(x1, x2) = g(x3)

x1 = u, x2 = u, x3 = u, u↓ =⇒ f(x1, x2) = g(x3)

which are valid, while for (78) we will get the single line

x1 = u, x2 = v, x3 = u, u↓ =⇒ f(x1, x2) = g(x3),

which is not—because it fails when we set x2 := v := ⊥.

4.10. Bound variable unifiers. A (bounded variable) unifier is a triple

u = (τ, σ, (s1, . . . , sl)),

where τ, σ : {variables} → {variables} are variable transformations which respect types and
(s1, . . . , sl) is a (possible empty) sequence of variables, the bound variables of u. We set

S = S(u) = {s1, . . . , sl},
and sometimes we write S(u) for (s1, . . . , sl). Two unifiers (τ, σ, (s1, . . . , sl)) and (τ ′, σ, (s′1, . . . , s

′
l))

are isomorphic if they have the same number of bound variables and there is a bijection

π : Su �→ Su′

such that τ ′x ≡ π(τx), σ′x ≡ π(σx), where it is assumed that πx ≡ x if x /∈ S(u).

A unifier u unifies a pair (E,F ) of immediate λ-expressions

E ≡ λ(u1, . . . , um)A, F ≡ λ(v1, . . . , vn)B, (83)

if the following conditions hold:
(1) If τx 6≡ x, then x ≡ ui for some i such that ui occurs in A; and if σy 6≡ y, then y ≡ vj for

some j such that vj occurs in B.
(2) s1, . . . , sl are variables which do not occur in A or B but do occur in both τ [A] and σ[B].
(3) The substitutions unify the terms, i.e.,

λ(s1, . . . , sl)τ [A] ≡ λ(s1, . . . , sl)σ[B]. (84)
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A pair of immediate λ-terms (E,F ) is unifiable there is a bounded variable unifier for it.

For example, we can unify

λ(u, u′)r(u, u′, a), λ(v)r(v, b, a)

by setting
τu ≡ τu′ ≡ b, σv ≡ b, ~s = ∅,

which identifies both expressions with λ( )r(b, b, a). It is obvious that this is not the best we can
do, though, since we can also set

τ ′u ≡ s, τ ′u′ ≡ b, σ′v ≡ s, ~s = (s),

which unifies the terms “further” to λ(s)r(s, b, a). The next definition and lemma capture this
simple idea of the existence of a unique such “maximal” unifier, when one exists at all.

4.11. Reducibility among unifiers. Suppose u = (τ, σ,~s) and u′ = (τ ′, σ′, ~s′) both unify
(E,F ) as in (83). A reduction of u to u′ is any variable transformation π such that the following
three conditions hold:

(i) If π(x) 6≡ x, then x ∈ S(u′).
(ii) For every ui which occurs in A,

(iia) τ(ui) ≡ πτ ′(ui).
(iib) If τ(ui) ∈ S(u), then τ ′(ui) ∈ S(u′).

(iii) For every vj which occurs in B,
(iiia) σ(vj) ≡ πσ′(vj).
(iiib) If σ(vj) ∈ S(u), then σ′(vj) ∈ S(u′).

If such a reduction π exists, we say that u reduces to u′ and we write u ≤π u′ or (simpler) u ≤ u′.

Notice that for unifiers of a pair (E,F ):

if u ≤π u′, then S(u) ⊆ π[S(u′)], and hence |S(u)| ≤ |S(u′)|; (84.1)

this is because each s ∈ S(u) does not occur in A but occurs in τ [A], and so s ≡ τ(ui) for some
ui which occurs in A; but then τ ′(ui) ∈ S(u′) by (iib) and s ≡ τ(ui) ≡ π(τ ′(ui)), so s ∈ π[S(u′)].

Notice also that if u ≤π u′, ui occurs in A and τ ′(ui) /∈ S(u′), then τ(ui) ≡ τ ′(ui); this is
because of clauses (iia) and (i), by which τ(ui) ≡ π(τ ′(ui)) ≡ τ ′(ui).

Finally, for any two unifiers u,u′ of (E,F ),

if u ≤ u′ and u′ ≤ u, then u and u′ are isomorphic. (84.2)

This is because if the given reductions are π and π′, then from (84.1) we get that |S1| = |S2|, and
so the restriction π∗ = π′ �S1 is a surjection of S1 onto S2, which has the same size—and hence π∗

a bijection, by the Pigeonhole Theorem; and then the definition of reduction yields immediately
that π′ is an isomorphism of u with u′.

Consider, for example the two unifiers u = (τ, σ, ∅) and u′ = (τ ′, σ′, s) for λ(u, u′)r(u, u′, a)
and λ(v)r(v, b, a) defined above; we can check easily that u ≤π u′, with

π(s) ≡ b, x 6≡ s=⇒π(x) ≡ x.

Or take two alphabetic variants of the same expression

E ≡ λ(u1, u2)r(u1, u2), F ≡ λ(v1, v2)r(v1, v2)
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and the two unifiers

τ1(u1) ≡ σ1(v1) ≡ x1, τ1(u2) ≡ σ1(v2) ≡ x2 (u1)

τ2(u1) ≡ σ2(u1) = τ2(u2) ≡ σ2(u2) ≡ s, (u2)

which unify (E,F ) to λ(x1, x2)r(x1, x2) and λ(s)r(s, s) respectively. It is easy to check that
u2 ≤ u1 but u1 6≤ u2, reflecting the fact that u1 is “more general” (less restrictive) than u2.

A unifier of (E,F ) is maximal, if there is no unifier of (E,F ) with a longer sequence of bound
variables.

4.12. Lemma. If a pair of immediate λ-expressions

E ≡ λ(u1, . . . , um)A, F ≡ λ(v1, . . . , vn)B (84.3)

is unifiable, then it has a unique (up to isomorphism) maximal unifier u∗ = (τ∗, σ∗, S∗), and
every unifier of (E,F ) is reducible to u∗.

Moreover, if ui occurs in A, then either τ∗(ui) also occurs in A or τ∗(ui) ∈ S∗; and if vj occurs
in B, then either σ∗(vj) also occurs in B or σ∗(vj) ∈ S∗.

Proof. Since (E,F ) is unifiable, we know that

A ≡ r(a1, . . . , ak), B ≡ r(b1, . . . , bk), (84.4)

i.e., A and B are immediate terms involving the same pf variable. Let

O = {a1, . . . , ak, b1, . . . , bk},
U = {ui | ui occurs in A}, V = {vj | vj occurs in B}, P = O \ (U ∪ V ), (84.5)

and assume (without loss of generality) that U ∩ V = ∅. Let ∼ be the smallest equivalence
relation on O such that

at ∼ bt (t = 1, . . . , k).
Fact 1. If u = (τ, σ, S) unifies (E,F ), then

x ∼ y=⇒ τ(x) ≡ τ(y) and σ(x) ≡ σ(y) (x, y ∈ O).

This is true because the relation

{(x, y) ∈ O ×O | τ(x) ≡ τ(y) and σ(x) ≡ σ(y)}
is an equivalence relation which includes all the pairs (at, bt).

By applying Fact 1 to the assumed unifier of (E,F ) and using the fact that τ(x) ≡ σ(x) ≡ x
if x /∈ U ∪ V , we get

x, y ∈ P =⇒x ∼ y ⇐⇒ x ≡ y,

so that each equivalence class has at most one “parameter” x ∈ P in it. Call a variable x ∈ U ∪V
forced if x ∼ y for some y ∈ P and set (unambiguously) for forced ui ∈ U, vj ∈ V ,

τ∗(ui) = the unique x ∈ P such that ui ∼ x,

σ∗(vj) = the unique x ∈ P such that vj ∼ x. (84.6)

Let e1, . . . , el be an enumeration of the remaining (not forced) equivalence classes (if there are
any), let s∗1, . . . , s

∗
l be distinct, fresh variables which do not occur in A or B, and set for not

forced ui ∈ O, vj ∈ V ,

ui ∈ et =⇒ τ∗(ui) ≡ s∗t ; vj ∈ et =⇒σ∗(vj) ≡ s∗t . (84.7)
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If x /∈ U ∪ V , we set τ∗(x) ≡ σ∗(x) ≡ x.

Fact 2. The triple u∗ = (τ∗, σ∗, (s∗1, . . . , s
∗
l )) unifies (E,F ).

This is trivial: property (1) of unifiers is true by definition; (2) follows because each s∗m ≡ τ∗(ui)
for some (not forced) ui ∈ em, and then also s∗m ≡ σ(vj) for a (necessarily not forced) vj such that
for some t, at ≡ ui, bt ≡ vj ; and (3) holds because for each t, at ∼ bt and hence τ∗(at) ≡ σ∗(bt)
by the definitions.

Fact 3. If u = (τ, σ, S) unifies (E,F ), then u ≤ u∗, and, in particular, u∗ is a maximal unifier
of (E,F ).

We define the required reduction π by

π(s) ≡ τ(ui) where τ∗(ui) ≡ s (s ∈ S∗),

and setting π(x) ≡ x if x /∈ S∗, as required for reductions. The definition is good: because if
τ∗(uj) ≡ s for some j 6= i, then ui ∼ uj and then τ(ui) ≡ τ(uj) by Fact 1. Now (iia) follows
immediately since π(τ∗(ui)) ≡ τ(ui) by the definition, and also (iib): if τ∗(ui) /∈ S∗, then ui is
forced, and so τ∗(ui) ≡ x for some variable which occurs in A, and so τ(ui) ≡ τ∗(ui) ≡ x also,
while no variable in S occurs in A. The argument is similar for (iiia) and (iiib).

The reduction u ≤ u∗ implies |S(u)| ≤ |S∗| by (84.1), and since u was arbitrary, there is
no unifier of (E,F ) with more bound variables than those of u∗, i.e., u∗ is maximal. And the
uniqueness (up to isomorphism) of u∗ follows from (84.2).

Finally, the last claim in the Lemma is immediate, since by the construction, if ui occurs in A,
then τ∗(ui) ∈ P ∪ S∗. a

The dictionary of an equation. Suppose now we are given an identity

f(z1, . . . , zm) ' g(zm+1, . . . , zl). (63)

We first show how to construct a single dictionary line from it, which will determine the strict
truth of (63) when all the free, basic variables in it are interpreted by distinct values in the
domain. The complete set of lines for (63) will contain the lines we get in this way from all the
identities which result from (63) by the identification of some of its free, basic variables.

We assume that the special variables x1, . . . , xm we will use for the lines do not occur in the
given identity.

Step 1. For each zi which is a basic variable, we put in the antecedent of the line the equality
xi = zi and the condition zi↓ ; and for any two, distinct zi, zj which are introduced in the line by
this process, we add the inequality zi 6= zj .

Step 2. Suppose zi ≡ λ(u1, . . . , uα)r(a1, . . . , ak) is a genuine λ-term (i.e., α > 0) and
us1 , . . . , usn

is the subsequence of u1, . . . , uα comprising all the variables of this sequence which
occur in r(a1, . . . , ak); we add to the antecedent of the line the equation

λ(u1, . . . , uα)xi(u1, . . . , uα) = λ(u1, . . . , uα)yi(us1 , . . . , usn
),

where yi is a fresh, extra variable of arity n. (If n = 0, then yi is an extra nullary pf variable.)

Step 3. Consider any pair zi, zj (i 6= j) of expressions which are not basic variables; we will
view these as λ-expressions by identifying temporarily a term r(~x) with the λ-expression λ( )r(~x).
If zi, zj cannot be unified, we add nothing to the line. In the opposite case, suppose

zi ≡ λ(u1, . . . , uα)r(a1, . . . , ak), zj ≡ λ(v1, . . . , vβ)r(b1, . . . , bk),
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and (τ, σ, (s1, . . . , sl)) is a maximal unifier for these expressions. We add to the antecedent of
the line the equation

λ(s1, . . . , sl)xi(τ(u1), . . . , τ(uα)) ' λ(s1, . . . , sl)xj(σ(v1), . . . , σ(vβ)). (85)

To recapitulate what we said above, the complete set of lines associated with an identity is
obtained by applying this procedure to every identity obtained by identifying some or all of the
free basic variables of the identity.

To illustrate the procedure, consider again (77),

f(x, y) ' g(x). (77)

There are no λ-terms, so only Step 1 comes into play and we get the following two lines:

x1 = x, x2 = y, x3 = x, x↓ , y↓ , x 6= y =⇒ f(x1, x2) = g(x3),
x1 = x, x2 = x, x3 = x, x↓ =⇒ f(x1, x2) = g(x3).

The procedure generates only one line for (78):

x1 = x, x3 = x, x↓ =⇒ f(x1, x2) = g(x3).

Consider also the example

f(λ(t, s)p(x, y, t, y), q(x), x) ' g(p(x, y, x, y), q(y), x). (86)

There are two free, basic variables, so we will get two lines. First from the identity as it is, the
following formulas are introduced in each step:

Step 1. x3 = x, x6 = x, x↓ .

Step 2. λ(t, s)x1(t, s) = λ(t, s)y1(t).

Step 3. The most general unifier for z1 and z3 is given by τ(t) ≡ x, τ(s) = s with no bound
variables left, which unifies the terms to p(x, y, x, y), and so the equation added to the line is
x1(x, s) = x4.

So the line produced is

x3 = x, x6 = x, x↓ , λ(t, s)x1(t, s) = λ(t, s)y1(t), x1(x, s) = x4

=⇒ f(x1, x2, x3) = g(x4, x5, x6).

If we identify x ≡ y, we get the identity

f(λ(ts)p(x, x, t, t), q(x), x) ' g(p(x, x, x, x), q(x), x)

which has an additional (trivial) unification and generates the line

x3 = x, x6 = x, x↓ , λ(t, s)x1(t, s) = λ(t, s)y1(t), x1(x, s) = x4, x2 = x5

=⇒ f(x1, x2, x3) = g(x4, x5, x6).

It is not hard easy to verify directly that the extended validity of these two lines is equivalent to
the strict validity of the identity.

4.13. Lemma. The conjunction of all the lines constructed for (63) implies (63).

Proof. We will verify that if the line produced by an identity holds, then every strict assign-
ment which assigns distinct values to distinct basic variables satisfies the identity, from which
the Lemma follows by applying it to all the substitution instances of the identity obtained by
identifying basic variables.
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Suppose we are given a strict assignment π to the variables of the identity. We first extend π
to the special variables xi which occur on the line by setting

π(xi) = π(zi) = den(zi, π); (87)

it will be enough to show that there is a further extension of π to the special variables yi (if any)
which satisfies the antecedent of the line.

Consider how the clauses were introduced to the line by the three steps of the construction.

Step 1. We put in xi = zi and zi↓ if zi is basic, and zi 6= zj for any two distinct basic variables
which occur in the equation; and π satisfies all these clauses, because it is strict and one-to-one
on basic variables.

Step 2. If clause

λ(u1, . . . , uα)xi(u1, . . . , uα) = λ(u1, . . . , uα)yi(us1 , . . . , usn
),

is added to the antecedent of the line at this step, this is because only us1 , . . . , usn actually occur
in r(a1, . . . , ak) from the variables u1, . . . , uα. This means that the partial function

h(u′1 . . . , u
′
α) = den(r(a1, . . . , ak), π{u1 := u′1, . . . , uα := u′α})

depends only on u′s1
, . . . , u′sn

, and so we can extend π to yi by setting

π(yi)(u′s1
, . . . , u′sn

) = den(r(a1, . . . , ak), π{u1 := u′1, . . . , uα := u′α});
now this extension of π satisfies the equations

λ(u1 . . . , uα)yi(us1 , . . . , usn) = λ(u1 . . . , uα)r(a1, . . . , ak) = λ(u1 . . . , uα)xi(λ(u1 . . . , uα),

and so it satisfies the new clause.

Step 3. If the clause (85) is added to the antecedent of the line in this step, we must show
that it is validated by π, and it is instructive to consider first an example. Suppose

zi ≡ λ(u1, u2)r(u1, a, b, u2, u1)
zj ≡ λ(v1, v2, v3)r(v1, a, v2, c, v3).

The most general unifier for these terms is (τ, σ, (s)) where

τ(u1) :≡ s, τ(u2) :≡ c, σ(v1) :≡ s, σ(v2) :≡ b, σ(v3) :≡ s,

and it unifies them to
λ(s)r(s, a, b, c, s);

so according to the recipe, the equation added to the line is

λ(s)xi(s, c) = λ(s)xj(s, b, s). (88)

If π(a) = ā, π(b) = b̄ and π(c) = c̄, then to prove that (88) is satisfied by π we must show that
for all s,

π(xi)(s, c̄) = π(xj)(s, b̄, s).
What we know is that if π(r) = r̄, then for all u1, u2, v1, v2, v3,

π(zi)(u1, u2) = r̄(u1, ā, b̄, u2, u1),
π(zj)(v1, v2, v3) = r̄(v1, ā, v2, c̄, v3);

and with the definitions π(xi) = π(zi), π(xj) = π(zj), we get from these the desired

π(xi)(s, c̄) = r̄(s, ā, b̄, c̄, s) = π(xj)(s, b̄, s).
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The general case is proved in exactly the same way, but the notation is messy. We assume that
(τ, σ,~s) is a maximal unifier of

zi ≡ λ(u1, . . . , uα)r(a1, . . . , ak) and zj ≡ λ(v1, . . . , vβ)r(b1, . . . , bk),

so that

r(τa1, . . . , τak) ≡ r(σb1, . . . , σbk), (88.1)

where τ(x) ≡ x if x is not some ut which occurs in r(a1, . . . , ak) (and similarly with σ); and we
must show that the assignment π defined above so that

π(xi) = den(λ(u1, . . . , uα)r(a1, . . . , ak), π), π(xj) = den(λ(v1, . . . , vβ)r(b1, . . . , bk), π)

validates the identity

λ(~s)xi(τ(u1), . . . , τ(uα) = λ(~s)xj(σ(v1), . . . , σ(vβ),

or, equivalently that every assignment π∗ which agrees with π on all variables except (perhaps)
on s1, . . . , sl validates the term identity

xi(τ(u1), . . . , τ(uα)) ' xj(σ(v1), . . . , σ(vβ)). (89)

The key to this is the so-called rule of β-conversion: for any λ-term

C ≡ λ(u1, . . . , uα)A,

any variables w1, . . . , wα other than u1, . . . , uα, and every strict assignment π,

den(C, π)(π(w1), . . . , π(wα)) ' den(A{u1 :≡ w1, . . . , uα :≡ wα}, π),

where A{u1 :≡ w1, . . . , uα :≡ wα} is constructed by (simultaneously) replacing each free occur-
rence of each ui in A by wi. Using this, we can compute, for any strict assignment π∗ which
agrees with π on all variables except (perhaps) s1, . . . , sl:

den(xi(τ(u1), . . . , τ(uα)), π∗)

= den(λ(u1, . . . , uα)r(a1, . . . , ak), π)(π∗(τ(u1), . . . , π∗(τ(uα))

= den(λ(u1, . . . , uα)r(a1, . . . , ak), π∗)(π∗(τ(u1), . . . , π∗(τ(uα))

den(r(a1, . . . , ak){u1 :≡ τ(u1), . . . , uα :≡ τ(uα)}, π∗)
= den(r(τ(a1), . . . , τ(ak)), π∗),

where the replacement of π by π∗ is justified because no st occurs in λ(u1, . . . , uα)r(a1, . . . , ak).
The same computation for zj gives

den(xj(σ(v1), . . . , σ(vβ)), π∗) = den(r(σ(b1), . . . , σ(bk), π∗)

which then with (88.1) yields the required (89). a

4.14. Lemma. An identity implies the validity of every line it generates.

Proof. We now assume that the identity is valid and we are given an extended assignment π
to the variables of the line which satisfies the antecedent: we must show that it also satisfies the
consequent.

Notice that the only basic variables which occur free in the line also occur free in the identity,
and π assigns distinct values other than ⊥ to them because of the clauses we introduced in Step
1. First we extend π to the remaining free basic variables in the equation by giving a distinct,
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new value other than ⊥ to each of them. We want to extend π to all the pf variables also, so that
we get

π(zi) = den(zi, π) = π(xi), (90)

for every i = 1, . . . ,m. This is already true when zi is a basic variable, because of the equations
put in the line in Step 1, and so we need worry only for the cases when zi is a λ-term.

To explain the construction, we consider first the example in the proof of Lemma 4.13, where
the following two λ-terms occur in the given equation:

zi ≡ λ(u1, u2)r(u1, a, b, u2, u1)
zj ≡ λ(v1, v2, v3)r(v1, a, v2, c, v3).

If we set again ā = π(a), b̄ = π(b), c̄ = π(c), then we can insure (90) for i by setting π(r) = r̄i for
any partial function r̄i such that for all u1, u2,

r̄i(u1, ā, b̄, u2, u1) = π(xi)(u1, u2). (91)

Notice that there is such a partial function—in fact this equation can be considered as a definition
of r̄i on the set18

Di = {(t1, . . . , t5) | t2 = ā, t3 = b̄, t5 = t1}.
Moreover, if r̄i is any partial function which satisfies (91) for all u1, u2 and we set π(r) = r̄i, then

den(zi, π) = λ(u1, u2)r̄i(u1, ā, b̄, u2, u1) = π(xi).

Similarly, for j, there is some r̄j defined on

Dj = {(t1, . . . , t5) | t2 = ā, t4 = c̄}
so that for all v1, v2, v3,

r̄j(v1, ā, v2, c̄, v3) = π(xj)(v1, v2, v3); (92)

and if r̄j is any partial function which satisfies (92) for all v1, v2, v3 and we set π(r) = r̄j , then

den(zj , π) = λ(v1, v2, v3)r̄j(v1, ā, v2, c̄, v3) = π(xj).

Thus, it is enough to prove that the partial functions r̄i and r̄j determined by (91) and (92) are
compatible, i.e.,

~t ∈ Di ∩Dj =⇒ r̄(~t) = r̄j(~t),
since we can then set

π(r) = r̄i ∪ r̄j ,
so that r̄i = π(r) �Di, r̄j = π(r) �Dj , and the required den(zi, π) = π(xi),den(zj , π) = π(xj)
follow immediately.

Suppose, towards a contradiction, that r̄i and r̄j are not compatible, so that there is a tuple ~t
such that

(t1, t2, t3, t4, t5) ∈ Di ∩Dj

for which r̄i(~t) 6= r̄j(~t). By the definition of the sets Di, Dj , we must have

t2 = ā, t3 = b̄, t5 = t1, t2 = ā, t4 = c̄,

so that, in fact,
~t = (s̄, ā, b̄, c̄, s̄)

18Notice that this is not the domain of convergence of r̄i, which may diverge on some of the tuples in it.
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for some s̄, and

π(xi)(s̄, ā) 6= π(xj)(s̄, b̄, s̄). (93)

Let s be a fresh variable and set

τ(u1) ≡ s, τ(u2) ≡ c, σ(v1) ≡ s, σ(v2) ≡ b, σ(v3) ≡ s

with τ(x) ≡ x if x is not u1 or u2 (and similarly for σ), and compute:

r(τ(u1), τ(a), τ(b), τ(u2), τ(u1)) ≡ r(s, a, b, c, s) ≡ r(σ(v1), σ(a), σ(v2), σ(c), σ(v3)).

Thus the triple (τ, σ, (s)) is a unifier for zi and zj ; in fact (easily, in this example) it is a maximal
unifier, and so in Step 3 of constructing the line for this equation we added the condition

λ(s)xi(τ(u1), τ(u2)) = λ(s)xj(σ(v1), σ(v2), σ(v3)),

which after the substitutions becomes

λ(s)xi(s, c) = λ(s)xj(s, b, s);

so π satisfies this equation, and in particular

π(xi)(s̄, c̄) = π(xj)(s̄, b̄, s̄),

which contradicts (93).

Here too, the proof for the general case is based on the same idea but is substantially more
complex.

To effect (90) for zi ≡ λ(u1, . . . , uα)r(a1, . . . , ak), set for any sequence ~u′ = (u′1, . . . , u
′
α),

āt(~u′) =

{
π(at), if at /∈ {u1, . . . , uα},
u′m, if at ≡ um,

(93.1)

Di = {(w1, . . . , wk) | (for t = 1, . . . , k)[at ∈ P =⇒wt = π(at)]

& (for all t, s)[at ≡ as =⇒wt = ws]}, (93.2)

We want to define r̄i on Di so that for all ~u′,

r̄i(ā1(~u′), . . . , āk(~u′)) = π(xi)(u′1, . . . , u
′
α). (93.3)

This is not obviously possible:19 for example, if zi ≡ λ(u1, u2)r(u1), then (93.3) becomes

r̄i(u′1) = π(xi)(u′1, u
′
2) (all u′1, u

′
2)

which evidently cannot be satisfied by any r̄i if π(xi) depends on both of its arguments. However,
it does not: because u2 does not occur in r(u1), and so in Step 2 of the construction of the line
we introduced the clause

λ(u1, u2)xi(u1, u2) = λ(u1, u2)yi(u1)
which must be satisfied by π, and insures that π(xi) does not depend on its second argument.
This is the key to showing that, in general, we can define r̄i so that (93.3) holds, as follows.

r̄i(w1, . . . , wk) ' w ⇐⇒ (w1, . . . , wk) ∈ Di

& ∃(~u′ = (u′1, . . . , u
′
α))[ā1(~u′) = w1, . . . , āk(~u′) = wk) & π(xi)(~u′) ' w]. (93.4)

This is a good definition of a partial function: because if

āt(~u′) = āt(~u′′) (t = 1, . . . , k) and um occurs in r(a1, . . . , ak),

19This is the gap in the proof of Theorem 4.1 in the paper, where this possibility was overlooked.
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then for some t, um ≡ at and u′m = āt(~u′) = āt(~u′′) = u′′m; thus u′m = u′′m for all m such that um

occurs in r(a1, . . . , rk), and so π(xi)(~u′) ' π(xi)(~u′′) because of the clause inserted in the line at
Step 2 of its construction.

Fact 1. If we set π(r) so that for all ~w ∈ Di, π(r)(~w) = r̄i(~w), then π(zi) = π(xi).

Proof. We need to show that for every assignment π∗ which agrees with π except (perhaps)
on u1, . . . , uα,

π(r)(π∗(a1), . . . , π∗(ak)) = π(xi)(π∗(u1), . . . , π∗(uα)).

Let u′m = π∗(um) (for m = 1, . . . , α) for such a π∗, and notice first that

āt(~u′) = π∗(at) (t = 1, . . . , k);

this is because if at ∈ P , then āt(~u′) = π(at) = π∗(at), and if at ≡ um, then āt(~u′) = u′m =
π∗(um) = π∗(at). As a consequence, easily, (ā1(~u′), . . . , āk(~u′)) ∈ Di, and so it is enough to show
that for all ~u′, r̄i(ā1(~u′), . . . , āk(~u′)) = π(xi)(~u′)—which, however, is now immediate from the
definition of r̄i. a (Fact 1)

Thus we can extend the given π to all the pf variables which occur in the equation so that
π(zi) = π(xi) for all i, provided that r̄i and r̄j are not incompatible whenever zi and zj have the
same head pf variable, which we proceed to check next.

For the next two Facts, we assume that

zi ≡ (λ~u)r(a1, . . . , ak), zj ≡ λ(~v)r(b1, . . . , bk)

are among the immediate λ-expressions in the identity with the same head pf variable r.

Fact 2. If there are tuples ~u′ = (u′1, . . . , u
′
α), ~v′1 = (v′1, . . . , v

′
β) such that

ā1(~u′) = b̄1(~v′), . . . , āk(~u′) = b̄k(~v′), (93.5)

then zi and zj are unifiable.
Proof. Let S = {w̄1, . . . , w̄l} be an enumeration of the set

{u′1, . . . , u′α, v1, . . . , v′β} \ {π(x) | x ∈ P},

where P = {a1, . . . , ak, b1, . . . , bk} \ {u1, . . . , uα, v1, . . . , vβ} as in (84.5). It may be, of course,
that S = ∅. Choose distinct variables s1, . . . , sl which do no occur in zi or zj and define the
following two variable transformations:

τ(um) =


u′m, if um does not occur in r(a1, . . . , ak),
x, if u′m = π(x) for some x ∈ P,
st, otherwise, if u′m = w̄t.

σ(vm) =


v′m, if vm does not occur in r(b1, . . . , bk),
x, if v′m = π(x) for some x ∈ P,
st, otherwise, if v′m = w̄t.

The definition is good because π assigns distinct values to distinct variables: so if, for ex-
ample, u′m = π(x) = π(y) with x, y ∈ P , then x ≡ y. We also set τ(x) ≡ σ(x) ≡ x if
x /∈ {u1, . . . , uα, v1, . . . , vβ}, as usual, and we claim that u = (τ, σ, (s1, . . . , sl)) unifies (E,F ).
The only not obvious condition we need to verify is that

τ(aγ) ≡ σ(bγ) (γ = 1, . . . , k).
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We consider cases.

Case 1, aγ , bγ ∈ P , so τ(aγ) ≡ aγ , σ(bγ) ≡ bγ . In this case

āγ(~u′) = π(aγ), b̄γ(~v′) = π(bγ),

and so the hypothesis gives us π(aγ) = π(bγ), which implies that aγ ≡ bγ since π assigns distinct
values o distinct variables.

Case 2, aγ ∈ P, bγ ≡ vm for some m, so that τ(aγ) ≡ aγ and

āγ(~u′) = π(aγ), b̄γ(~v′) = v′m;

now the hypothesis gives us that π(aγ) = v′m, and so σ(vm) ≡ aγ ≡ τ(aγ).

The symmetric Case 3 is handled similarly, and this leaves only

Case 4, aγ ≡ um, bγ ≡ vn, for suitable m,n. Now

āγ(~u′) = u′m, b̄γ(~v′) = v′n,

and so the hypothesis gives us u′m = v′n. If u′m = π(x) for some variable x ∈ P , then τ(um) ≡
σ(vn) ≡ x. The alternative is that u′m = v′n = w̄γ for some w̄γ which is not the value assigned by
π to any parameter x ∈ P , and then τ(um) ≡ σ(vn) ≡ sγ . a (Fact 2)

Fact 3. If u = (τ, σ, (s1, . . . , sl)) is any unifier of (zi, zj), u∗ = (τ∗, σ∗, t1, . . . , tm)) is a
maximal unifier of (zi, zj), and π satisfies the equation

λ(t1, . . . , tm)xi(τ∗(u1), . . . , τ∗(uα)) = λ(t1, . . . ,m )xj(σ∗(v1), . . . , σ∗(vβ)),

then π also satisfies the equation

λ(s1, . . . , sl)xi(τ(u1), . . . , τ(uα)) = λ(s1, . . . , sl)xj(σ(v1), . . . , σ(vβ)).

Proof. Let T ∗ = {t1, . . . , tm}, S = {s1, . . . , sl}, as usual. The hypothesis means that every
assignment πh which differs from π (at most) on T ∗ satisfies the equation

xi(τ∗(u1), . . . , τ∗(uα)) ' xj(σ∗(v1), . . . , σ∗(vβ)); (93.6)

and we must show that every assignment πc which differs from π (at most) on S satisfies the
equation

xi(τ(u1), . . . , τ(uα)) ' xj(σ(v1), . . . , σ(vβ)). (93.7)

So fix such an assignment πc, and (by appealing to Lemma 4.12), fix also a reduction ρ of u to
u∗. Let

πh(x) ≡

{
π(x), if x /∈ T ∗,

πc(ρ(x)), otherwise;

this is an assignment which agrees with π on all x /∈ T ∗, and so it satisfies (93.6). Note that, for
each um and each vn,

τ(um) ≡ ρ(τ∗(um)), σ(vn) ≡ ρ(σ∗(vn))

since ρ reduces u to u∗, and also that for m = 1, . . . , α,

πh(τ∗(um)) = πc(ρ(τ∗(um)));
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this is because if τ∗(um) /∈ T ∗, then ρ(τ∗(um)) ≡ τ∗(um) and πh(τ∗(um)) = π(τ∗(um)) =
πc(τ∗(um)), and if τ∗(um) ∈ T ∗, then this equation holds by the definition of πh. Finally, using
these equations we compute:

den(xi(τ(u1), . . . , τ(uα), πc) ' π(xi)(πc(τ(u1)), . . . , πc(τ(uα))
' π(xi)(πc(ρ(τ∗(u1)), . . . , πc(ρ(τ∗(uα)))
' π(xi)(πh(τ∗(u1)) . . . , πh(τ∗(uα)))
' π(xj)(πh(σ∗(v1)), . . . , πh(σ∗(vβ))) (by (93.6))
... (reverse these steps for xj)
' den(xj(σ(v1), . . . , σ(vβ)), πc). a (Fact 3)

Fact 4. The partial functions r̄i and r̄j are compatible.
Proof. Assume toward a contradiction that they are not. By the definition of these partial

functions, this means that there exist tuples ~u′, ~v′ such that

(1) ā1(~u′) = b̄1(~v′), . . . , āk(~u′) = b̄k(~v′), (2) π(xi)(~u′) 6' π(xj)(~v′). (93.8)

Let u = (τ, σ, (s1, . . . , sl)) be the unifier of (zi, zj) constructed from ~u′, ~v′ in the proof of Fact 2, so
that (directly from its definition), τ(um) ≡ um if um does not occur in r(a1, . . . , ak); σ(vm) ≡ vm

if vm does not occur in r(b1, . . . , bk); and for the significant um, vm,

u′m = w̄t =⇒ τ(um) ≡ st, v′m = w̄t =⇒σ(vm) ≡ st.

This means that

τ(um) ≡ τ(un) ⇐⇒ u′m = u′n, σ(vm) ≡ σ(vn) ⇐⇒ v′m = v′n,

and so we san define an assignment on these variables by

π∗(τ(um)) = u′m, π∗(τ(vm)) = v′m. (93.9)

From Fact 3 and Step 3 in the construction of the line, we know that π satisfies the equation

λ(s1, . . . , sl)xi(τ(u1), . . . , τ(uα)) = λ(s1, . . . , sl)xj(σ(v1, . . . , σ(vβ)),

so that for every π∗ which agrees with π except perhaps on s1, . . . , sl,

π(xi)(π∗(τ(u1)), . . . , π∗(τ(uα))) ' π(xj)(π∗(σ(v1)), . . . , π∗(σ(vβ)));

and when we apply this to the π∗ defined by (93.9) we get

π(xi)(~u′) ' π(xj)(~v′)

which contradicts (93.8) and completes the proof of Fact 4 and the Lemma.a (Fact 4, Lemma 4.14)

4.15. Structures with (some) finite basic sets. There is an obvious, trivial way by which
we can reduce the problem of intensional identity for any structure A of finite signature to that
of another such structure A′ in which all basic sets are infinite. If, for example, U = {u1, . . . , un}
is finite and f : U × V ⇀ W is a partial function among the givens, we replace f in A by n new
partial functions

fi : V ⇀ W, fi(v) ' f(ui, v), i = 1, . . . , n.
The translation is a bit messier for functionals but still trivial in principle. This is, in fact what
we will do if U is a small finite set, e.g., if U = TV = {t, f} is the set of truth values. If, however,
n is immense, then this reduction leads to a structure with impossibly many primitives whose
dictionary is totally unmanageable. Suppose, for example, that the language is a small (in theory
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formalized) fragment of the basic English currently in use as the common language of business
in continental Europe. There are few basic sets in the intended interpretation, the citizens of
France, the German cars, the Greek raisins, etc. but they are all immense. We may also assume
few primitives, we are only interested in making simple assertions like

there are enough Greek raisins to satisfy the needs of all Frenchmen.

The problem of sense identity for sentences of such a language appears to be quite manageable,
and in fact, the actual dictionaries we would use to translate this language into the national
European languages are quite small. In contrast, the formal dictionary of the expanded language
suggested by the trivial procedure of eliminating all the finite basic sets is absurdly large and
involves specific entries detailing separately the relation between every Frenchman with every
Greek raisin. The decision procedure we described allows a better solution.

4.16. Corollary (to the proof). Suppose A = (U1, . . . , Uk, f1, . . . , fn) is a recursor structure
of finite signature, such that every basic set Ui has at least d members. Then the decision
procedure for intensional identity defined in this section will decide correctly every identity on A
with n (free and bound) basic variables, provided that 2n+ 4 ≤ d.

The Corollary suggests a method of constructing a reasonably sized “dictionary of meanings”
for a structure in which some basic sets are very small—and we eliminate these—and the others
are very large. The formal decision procedure for intensional identity on the basis of this dic-
tionary is not that far from the way we would decide such questions in practice: we understand
quantification over small sets by considering individual cases, while for large sets we appeal to
fundamental identities relating the meanings of the primitives, including the quantifiers. The
procedure will fail to resolve questions of identity of meaning which involve more quantifiers over
large sets than (roughly) half the size of the structure. The proof of the Corollary follows from
a careful examination of the arguments of this section, which basically require the existence of
enough possible values for variables to make certain distinctions. For example, it is not hard to
check that Lemma 4.3 holds, provided all the basic sets of the structure have at least 4 elements.
We will omit the details.
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