
ON PRIMITIVE RECURSIVE ALGORITHMS

AND THE GREATEST COMMON DIVISOR FUNCTION

YIANNIS N. MOSCHOVAKIS

Abstract. We establish linear lower bounds for the complexity of non-trivial,
primitive recursive algorithms from piecewise linear given functions. The main
corollary is that logtime algorithms for the greatest common divisor from such
givens (such as Stein’s) cannot be matched in efficiency by primitive recursive
algorithms from the same given functions. The question is left open for the
Euclidean algorithm, which assumes the remainder function.

In 1991, Colson [3]1 proved a remarkable theorem about the limitations of prim-

itive recursive algorithms, which has the following consequence:

Colson’s Corollary. If a primitive recursive derivation of min(x, y) is expressed

faithfully in a programming language, then one of the two computations min(1, 1000)
and min(1000, 1) will take at least 1000 steps.

The point is that the natural algorithm which computes min(x, y) inO(min(x, y))
steps cannot be matched in efficiency by a primitive recursive program, even though
min(x, y) is a primitive recursive function; and so, as a practical and (especially)
a foundational matter, we need to consider “recursive schemes” more general than
primitive recursion, even if, ultimately, we are only interested in primitive recursive
functions.

In this paper we consider extensions of Colson’s Theorem which allow conditional
definitions and especially calls to a rich variety of “given” functions, whose values
are produced on demand in constant time. Sample, easy to state, result:

Corollary 20. Consider primitive-recursive-like derivations, which in addition to

composition and primitive recursion allow definition by cases and calls to the fol-

lowing functions and (characteristic functions of) relations:

x+ y, x−· y, x÷ 2, Parity(x), x = y, x < y

For each such derivation of the greatest common divisor function gcd(x, y), there

is a sequence of pairs {(xt, yt)} and a rational constant r > 0, such that

limt(xt + yt) = ∞, and for all t, c∗(xt, yt) ≥ r(xt + yt),

The research reported here was partially supported by Grant #70/4/5633 from the Research
Committee of the University of Athens. I am also grateful to the Graduate Program in Logic,

Algorithms and Computation (MΠΛA), for some additional financial and much moral support.
I thank Elias Koutsoupias who was (really) a collaborator in the early stages of this work (see

Footnote 5); René David, for his useful comments on early versions of the paper; and Lou van den
Dries for his comments which influenced substantially the final, revised version of the paper, and
(more significantly) for his subsequent contributions to the topic, see 8.1.

1Colson proved a general result about (absolute) call-by-name primitive recursion, which im-
plies this Corollary, and David [4] extended Colson’s result using a new method; the call-by-value
version of the theorem was established by Fredholm [6, 7].

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science 1

2 YIANNIS N. MOSCHOVAKIS

where the essential complexity measure c∗(x, y) is lower than both the strict and
non-strict (parallel) complexity measures for primitive recursive algorithms from
arbitrary given functions.2

It follows that Stein’s algorithm which computes gcd(x, y) with strict complexity
O(log2(x) + log2(y)), using the givens listed in the theorem and a very simple
(but not primitive) recursion scheme, cannot be matched in efficiency using only
“primitive-recursive-like” recursive definitions.

We will start in Section 1 with some precise definitions of (mostly) familiar no-
tions, and then give in Section 2 a detailed proof of the strict (call-by-value) version
of Colson’s Theorem, which sets the pattern for the later results. Section 3 develops
some simple ideas from linear programming, which are then used in Section 4 to
effect the main construction of the paper for the call-by-value case; this is strength-
ened by the introduction of conditionals and the essential complexity measure in
Section 5, and again in Section 6, where it is shown that the essential complexity
is no larger than the non-strict complexity measure. The main result of the paper
is established in Section 7. Finally, in Section 8, we discuss briefly the connection
of this work with the work of Colson, Fredholm and David which inspired it, and
we formulate two relevant open problems.

1. Preliminaries

1.1. Primitive recursive derivations. We consider primitive recursive deriva-

tions or prd’s for short, from a given set of functions Φ, i.e., sequences

Γ = f0, . . . , fk,

of functions on N = {0, 1, . . .} such that each fi satisfies one of the following con-
ditions:

D1. fi is a given (function), either one of the basic functions S(x) = x + 1,
Pn

j (~x) = xj , C
n
q (~x) = q, or an external given, fi ∈ Φ.

D2. fi is defined by composition

(1) f(~x) = h(g1(~x), . . . , gm(~x))

from functions h, g1, . . . , gm which are listed earlier in the derivation.
D3. fi is defined by primitive recursion

(2)

{
f(0, ~x) = g(~x)

f(y + 1, ~x) = h(f(y, ~x), y, ~x)

from functions g, h which are listed earlier in the derivation. (We allow here the
empty tuple ~x, in which case g() = C0

q = q is a number.)

We will systematically confuse “functions” fi and “symbols” naming them in
such programs, and we will assume that Γ associates with each i ≤ k some fixed
justification by D1, D2 or D3 for the inclusion of fi in the sequence.

2The essential complexity of a primitive recursive algorithm is an “optimized” call-by-value
time complexity, in which the given functions are assumed computed in constant time (one time
unit), and arguments of functions are computed first, but “only if needed”. The strict and non-

strict complexities count the steps of the iterations determined by the algorithm on the complete
posets Nn → N ∪ {⊥} and Mon((N ∪ {⊥})n → N ∪ ⊥})

of strict and non-strict partial functions respectively, with the given funtions available from the
first stage. Precise definitions are given in Subsection 1.2 and Sections 5 and 6.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 3

1.2. The strict (parallel, call-by-value) complexity. A (strict) partial func-
tion f : Nn ⇀ N is a function f : Nn → N ∪ {⊥}, and we write

f(~x)↓ ⇐⇒ f(~x) 6= ⊥;

the “strict” means that these objects compose strictly, i.e., for ~x,w ∈ N,

f(g1(~x), . . . , gm(~x)) = w

⇐⇒ (∃u1, . . . , um ∈ N)[g1(~x) = u1, . . . , gm(~x) = um, f(~u) = w].

Each prd determines a system of recursive equations on partial functions, which
can be iterated to “compute” the functions defined by the program in the usual
way:

R1. If f is a given function φ(~x), then, for every k,

fk(~x) = φ(~x),

so that these functions are available immediately from stage 0.
R2. If f is defined by composition as in (1), then

f0(~x) = ⊥, fk+1(~x) = gk(hk
1(~x), . . . , hk

m(~x)).

R3. If f is defined by primitive recursion as in (2), then

f0(y, ~x) = ⊥,

fk+1(0, ~x) = gk(~x),

fk+1(y + 1, ~x) = hk(fk(y, ~x), y, ~x).

We then set, for each function in Γ,

(3) csf (~x) = the least k such that fk(~x)↓ ,

so that the (strict, parallel) complexity measure csf (~x) gives the (minimum) number

of steps required for a call-by-value computation of f(~x) by the program Γ.

1.3. Φ-terms and VΓ-terms. A Φ-term is an (explicit) term in the vocabulary

(4) VΦ = {0, S} ∪ Φ

with symbols for 0, the successor and the “external givens” in Φ (if any). We also
associate with Γ the richer vocabulary

(5) VΓ = {0, S, fk1
, . . . , fkm

} ∪ Φ

which includes a symbol fki
for each function defined in Γ by a primitive recursion—

these are the recursive symbols of VΓ. If E is a VΓ-term—a term explicit in this
vocabulary—and π : N → N, we set

dΓ(E, π) = d(E, π) = the value of E for vi := π(i),

where v0, v1, . . . are the formal variables. Updates of assignments are defined as
usual,

π{vk := y}(j)

{
y if j = k,

π(j) otherwise.

It is clear that each fi with arity ni can be defined by a VΓ-term Efi
whose free

variables are among the first n formal variables v0, . . . , vni−1. The precise definition
is by induction on i:

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

4 YIANNIS N. MOSCHOVAKIS

T1. If fi(~x) = φ(~x) for some φ ∈ Φ, then Eφ ≡ φ(~v). For the standard givens,
we set (with the obvious notation)

ES ≡ S(v0), ECn
q
≡ ∆q, EP n

j
≡ vj−1,

where the numeral ∆q ≡ Sq(0) is the canonical term denoting the number q.
T2. If f is defined by composition (1), then

Ef ≡ Eh{v0 :≡ Eg1
, . . . , vm−1 :≡ Egm

},

where :≡ indicates the (simultaneous) formal replacement of variables by terms.
T3. If f is defined by primitive recursion (2), we then have the recursive symbol

(for) f in the vocabulary VΓ, and we simply set

Ef ≡ f(v0, v1, . . . , vn).

To simplify notation when we deal with these terms, we also set

(6) d(E, x0, . . . , xn−1) = d(E, π)

where π(0) = x0, . . . , π(n− 1) = xn−1, π(n+ j) = 0;

by an easy induction then, with this notation, for each symbol f in Γ,

(7) f(~x) = d(Ef , ~x).

1.4. Ranks. The key notion which we will use in the proofs is that of the rank

of a VΓ-term, which is characteristic of “primitive-recursive-like” algorithms; it
makes sense only when we have a “derivation”, where each function is defined from
functions preceding it.

Let fk1
, . . . , fkm

be the recursive symbols which are defined in a derivation Γ
with k1 < k2 < . . . < km, and for each VΓ-term E, set

(8) rank(E) = 〈lm, lm−1, . . . , l1〉,

where li is the number of occurrences of fki
in E.

Ranks are ordered lexicographically, so that Φ-terms have the least rank 〈0, 0, . . . , 0〉,
and 〈3, 0, . . .〉 > 〈2, 10, . . .〉.

1.5. The strict complexity on terms. With each VΓ-term E, we associate a
number

c(E, π) = cΓ(E, π)

which represents (roughly) the least number of steps required for a “fully paral-
lel, call-by-value” computation of d(E, π). As with denotation functions, we will
occasionally simplify notation by using the convention

(9) c(E, x0, . . . , xn−1) = c(E, π)

where π(0) = x0, . . . , π(n− 1) = xn−1, π(n+ j) = 0,

which is especially useful when E ≡ Ef ≡ f(v0, . . . , vn−1).
The definition of c(E, π) is by induction on the rank of E, and within this by

induction on the length of E.

CT1. c(vi, π) = c(0, π) = 0.
CT2. E ≡ f(E1, . . . , Em), where m = 1 and f is the successor symbol S, or f is

an m-ary symbol in Φ. Now each Ei has rank no greater than rank(E) and smaller
length, and so c(Ei, π) is defined; we set

c(f(E1, . . . , Em), π) = max{c(E1, π), . . . , c(Em, π)}.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 5

By these first two clauses, if E is a Φ-term, then c(E, π) = 0.

CT3. Suppose E ≡ f(E0, E1, . . . , En) and f is defined by primitive recursion as
in (2). Now rank(Ei) < rank(E), because no recursive symbol occurs more times
in Ei than in E, and f occurs at least one more time in E than it does in any Ei.
Let

dj = d(Ej , π), cj = c(Ej , π) (j ≤ n).

We will first define

c(Ef , y, x1, . . . , xn) = c(f(v0, v1, . . . , vn), y, x1, . . . , xn)

by induction on y, and then we will set

(10) c(f(E0, E1, . . . , En), π) = max{c0, . . . , cn, c(Ef , d
0, d1, . . . , dn)}.

CT3.0. Clearly rank(Eg) < rank(Ef) ≤ rank(E), and we can set

c(Ef , 0, ~x) = c(Eg, ~x).

CT3.1. Again rank(Eh) < rank(Ef) ≤ rank(E), and we can set

c(Ef , y + 1, ~x) = max{c(Ef , y, ~x) + 1, c(Eh, f(y, ~x), y, ~x)}.

Lemma 1. For each symbol f in a prd Γ,

csf (~x) ≥ c(Ef , ~x).

Proof. It is enough to show that for every k,

fk(~x)↓ =⇒ c(Ef , ~x) ≤ k,

and this is simple, by induction on k. ⊣

The main feature of this complexity measure is that it assigns no cost to com-
position, but it takes recursion seriously:

Lemma 2. If f is defined by the primitive recursion (2) in Γ, then for every y,
c(Ef , y, ~x) ≥ y.

Proof is by induction on y, with a trivial basis. In the induction step, by CT3.1
and the induction hypothesis,

c(Ef , y + 1, ~x) = max{c(Ef , y, ~x) + 1, c(Eh, f(y, ~x), y, ~x)} ≥ y + 1. ⊣

Theorem 3. For any VΓ-terms E, A1, . . . , Ak, if u1, . . . , uk occur in E and di =
d(Ai, π), ci = c(Ai, π) for i = 1, . . . , k, then

(*) c(E{~u :≡ ~A}, π) = max{c1, . . . , ck, c(E, π{u1 := d1, . . . , uk := dk})}.

Proof is by induction on the length of E.
In the basis, E ≡ vi or E ≡ 0, and the only non-trivial possibility is when

u1 ≡ vi; now E{u1 :≡ A} ≡ A and the result is immediate.
In the induction step we distinguish cases following the definition of complexity

of terms.

Case CT2, E ≡ f(E1, . . . , Em) and f is the successor or in Φ. We set

cj = c(Ej{~u :≡ ~A}, π) (j = 1, . . . ,m)

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

6 YIANNIS N. MOSCHOVAKIS

and we compute, noting that each ui occurs in some Ej :

c(E{~u :≡ ~A}, π) = max{c1, . . . , cm} (by definition)

= max{c(E1, π{~u := ~d}), . . . , c(Em, π{~u := ~d}),

c1, . . . , ck} (by the induction hypothesis)

= max{c(E, π{~u := ~d}), c1, . . . , ck}.

Case CT3, E ≡ f(E0, E1, . . . , En) and f is defined by primitive recursion as
in (2). We set

cj = c(Ej{~u :≡ ~A}, π) (j ≤ n),

dj = d(Ej{~u :≡ ~A}, π), ~u ≡ u1, . . . , uk, ~d = (d1, . . . , dn).

By (10), the induction hypothesis, and (10) again,

c(E{~u :≡ ~A}, π) = max{c0, . . . , cn, c(Ef , d
0, ~d)}

= max{c1, . . . , ck,

c(E0, π{~u := ~d}), . . . , c(En, π{~u := ~d}),

c(Ef , d
0, ~d)}

= max{c1, . . . , ck, c(E, π{~u := ~d})},

which is the required equation. ⊣

Corollary 4. (1) For any three VΓ-terms E, A, B,

c(A, π) = c(B, π) =⇒ c(E{u :≡ A}, π) = c(E{u :≡ B}, π).

(2) If u occurs in E, then c(E{u :≡ A}, π) ≥ c(A, π).

Proof. Both claims follow immediately from the theorem, taking cases in (1)
on whether u occurs in E or not. ⊣

2. Colson’s Theorem (for call-by-value)

We will give in this section a detailed proof of Colson’s Theorem for call-by-
value, not because it is necessarily new or the simplest, but because it will be used
as a pattern for more complex arguments later in the paper. Key to the proof is
the following, trivial observation:

Lemma 5. If Φ = ∅ (no external givens), then the Φ-terms are exactly the terms

of the form Sk(v) for some variable v and the numerals ∆k ≡ Sk(0).

Theorem 6 (Fredholm [6, 7]). For each absolute(Φ = ∅) prd which defines a

function f(~x) of n variables, either f(~x) is one of the trivial functions

f(~x) = q, f(~x) = xi + q,

or there exists some i, 1 ≤ i ≤ n, such that for all ~x,

csf (~x) ≥ c(Ef , ~x) ≥ xi.

Proof. A subterm M of a VΓ-term E is critical, if

(11) M ≡ f(G, ~N),

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 7

where f is a recursive symbol and G, ~N are Φ-terms, and a VΓ-term E is reducible

if it has a critical subterm of the form

(12) M ≡ f(∆k, ~N),

otherwise it is irreducible.
Consider the following one-step-reduction procedure on reducible terms:

1. Choose a critical subterm M of E of the form (12).
2. If f is defined by the primitive recursion (2) in Γ, let E′ be obtained from
E by replacing M by the term Mk, where Mi is defined by the obvious
recursion:

M0 ≡ Eg{~v :≡ ~N}(13)

Mi+1 ≡ Eh{v0 :≡Mi, v1 :≡ ∆i, v1+1 :≡ N1, . . . , v1+n :≡ Nn}.(14)

Sublemma 6.1. d(E, π) = d(E′, π), c(E, π) ≥ c(E′, π) and rank(E′) < rank(E).

Proof . The first claim is immediate, because

d(f(Si(0), ~N), π) = d(Mi, π),

and the second will follow from

c(f(∆i, ~N), π) = c(Ef , i, ~d) ≥ c(Mi, π) (~d = (d(N1, π), . . . , d(Nn, π))

by Theorem 3. To prove this last equation by induction on i, compute first for the
basis:

c(f(0, ~N), π) = c(Eg, d(N1, π), . . . , d(Nn, π))

(because the ~N are Φ-terms)

= c(Eg{~v :≡ ~N}, π) = c(M0, π).

For the induction step, we compute, using again the fact that the ~N are Φ-terms
with trivial complexities:

c(Ef , i+ 1, ~d) = max{c(Ef , i, ~d) + 1, c(Eh, f(i, ~d), i, ~d)}

≥ max{c(Mi, π) + 1, c(Eh, f(i, ~d), i, ~d)};

on the other hand,

c(Mi+1, π) = c(Eh{v0 :≡Mi, v1 :≡ ∆i, v1+1 :≡ N1, . . . , v1+n :≡ Nn}, π)

≤ max{c(Mi, π), c(Eh, d(Mi, π), i, ~d)}

by Theorem 3 (taking account of the fact that v0 may not occur in Eh), and this
completes the argument.

Finally, the third claim holds because the reduction procedure replaces the crit-

ical subterm f(Sk(0), ~N) by the term Mk, in which every recursive symbol occurs
earlier in Γ than f . ⊣ (6.1)

Sublemma 6.2. For each VΓ-term E, there is another VΓ-term E∗ such that:

(1) d(E, π) = d(E∗, π).
(2) c(E, π) ≥ c(E∗, π).
(3) E∗ has no critical subterm of the form (12).

Proof . Apply the reduction procedure repeatedly, until you reach an irreducible
term E∗—which will occur, since every application lowers the rank. ⊣ (6.2)

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

8 YIANNIS N. MOSCHOVAKIS

To prove the theorem, we apply this Sublemma to a term Ef associated with a
symbol f in Γ. If the resulting term E∗

f has no occurrences of recursive symbols,

then E∗

f (and so f) must be trivial, by Lemma 5. If, on the other hand, some
recursive symbol occurs in E∗

f , then some recursive symbol g must occur in an
innermost subterm, which is then critical; and since this critical subterm cannot

be of the form (12), it must be of the form g(Sk(vi), ~N) for some variable vi, and
hence

c(Ef , ~x) ≥ c(Eg, xi + k, d(N1, ~x), . . . , d(Nn, ~x)) ≥ xi. ⊣

3. Ψ-linear and piecewise Ψ-linear partial functions

We develop here some basic notions from linear programming which we need,
both to state and to prove our results. Throughout this section, Ψ is a fixed set of
(total) functions on N. We are primarily interested in the “absolute” case Ψ = ∅
in this article, but the more general “relative” results are just as easy to establish,
and they have interesting applications.

3.1. Ψ-linear terms and partial functions. A Ψ-linear term is an (explicit)
term in the vocabulary

(15) VℓΨ = {0, 1,+,−,m·,
1

m
·} ∪ Ψ,

where for each m ∈ N, m· and 1
m
· are the unary operations of multiplication and

division by m, respectively,

m · (x) = mx,
1

m
· (x) =

x

m
;

and a partial function f(~x) is Ψ-linear if it is defined by a Ψ-linear term. When
Ψ = ∅, we will just say linear instead of ∅-linear.

The partiality here comes from subtraction and division by m which are only
partially defined on N,

x− y↓ ⇐⇒ x ≥ y,
1

m
· (x)↓ ⇐⇒ m divides x.

It extends to the terms whose denotations are composed strictly, so that

(16) f(x) = 2 · (
1

2
· (x)) =

{
x, if x is even,

undefined, otherwise,

and the restriction of the identity function to the even numbers is a linear partial
function.

Here are some examples of partial functions with the terms establishing their
linearity, where χR is the characteristic function of a relation R:

S(x) x+ 1

Pn
i (~x) xi

Cn
q (x) q · (1)

x+ y x+ y

x−· y for x ≥ y x− y

x−· y for x < y 0 · (y − x− 1)

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 9

x

x

2
y

for even x
1

2
· (x)

x

x

2
y

for odd x
1

2
· (x− 1)

χ<(x, y) for x < y 1 + 0 · (y − x− 1)

χ<(x, y) for x ≥ y 0 · (x− y)

χ=(x, y) for x = y 1 + 0 · (x− y) + 0 · (y − x)

Parity(x) for even x 0 · (
1

2
· (x))

Parity(x) for odd x 1 + 0 · (
1

2
· (x− 1))

Immediately from the definition, we get:

Lemma 7. The composition of Ψ-linear partial functions is Ψ-linear. ⊣

The absolute linear partial functions admit a very simple representation, as fol-
lows.

A rational linear form is an expression

(17) ρ(~x) = a0 + a1x1 + · · · + anxn (a0, . . . , an ∈ Q)

where Q is the set of (positive and negative) rational numbers, e.g., x
2 − 3. These

define partial functions on N, defined when their value is a natural number.

Lemma 8. A partial function f(~x) is linear (∅-linear) if and only if for suitable

rational, linear forms ρ1(~x), . . . , ρk(~x), ρk+1(~x),

(18) f(~x) = w

⇐⇒ (∃u1, . . . , uk ∈ N)[u1 = ρ1(~x) & · · · &uk = ρk(~x) &w = ρk+1(~x)].

In particular, every rational linear form defines a linear partial function, and every

linear partial function agrees with a rational linear form on its domain.

Proof. By adding the fractions, we can re-write a rational linear form as

ρ(~x) =
p0 + p1x1 + · · · + pnxn

q
(q > 0, p1, . . . , pn ∈ Z = {. . . ,−1, 0, 1, . . .}),

so that it is defined by the term

1

q
· (p0 + p1x1 + · · · + pnxn),

and if f(~x) satisfies (18), then it is defined by the term

ρk+1(~x) + 0 · (ρ1(~x)) + · · · + 0 · (ρk(~x)).

The converse is proved by an easy induction on the construction of terms. ⊣

Equation (16) gives an example of a partial function which is linear but not
defined by a rational linear form.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

10 YIANNIS N. MOSCHOVAKIS

3.2. Ψ-semilinear sets. A set X ⊆ Nn is Ψ-semilinear if it is the domain of
convergence of a Ψ-linear partial function,

~x ∈ X ⇐⇒ f(~x)↓ .

Lemma 9. (a) The intersection of two Ψ-semilinear sets is semilinear.

(b) The restriction of a Ψ-linear partial function to a Ψ-semilinear set is Ψ-

linear.

(c) If f is a Ψ-linear partial function and k is any natural number, then the set

{~x | f(~x) = k} is Ψ-semilinear.

(d) A set X ⊆ Nn is semilinear (Ψ = ∅) if an only if for suitable rational, linear

forms,

~x ∈ X ⇐⇒ (∃u1, . . . , uk ∈ N)[u1 = ρ1(~x) & · · · &uk = ρk(~x)].

Proof. (a) If ~x ∈ X ⇐⇒ f(~x)↓ and ~x ∈ Y ⇐⇒ g(~x)↓ , then

~x ∈ X ∩ Y ⇐⇒
(
f(~x) + g(~x)

)
↓ .

(b) If ~x ∈ X ⇐⇒ f(~x) ↓ , then the restriction of g(~x) to X is defined by the
term g(~x) + 0 · f(~x).

(c) f(~x) = k ⇐⇒
(
(k − f(~x)) + (f(~x) − k)

)
↓ .

(d) follows immediately from Lemma 8. ⊣

3.3. Piecewise Ψ-linear partial functions. A partial function is piecewise Ψ-

linear if it is the “union” of a finite number of Ψ-linear partial functions with
pairwise disjoint domains. We indicate this by writing

f(~x) = f1(~x) ⊎ · · · ⊎ fℓ(~x)

where each fi(~x) is a Ψ-linear, somewhere defined function, and conventionally
including the nowhere defined partial function in the case ℓ = 0; thus f(~x) is Ψ-
linear if it has exactly one linear part in some decomposition. The list above shows
that the total functions χ<(x, y), x−· y, x/2 and Parity(x) are piecewise linear (in
the empty Ψ). The characteristic function of equality χ=(x, y) is also piecewise
linear, by combining the three (linear) cases of x = y, x < y and x > y, and (by
Lemma 8) it is not linear.

Lemma 10. The composition of piecewise Ψ-linear partial functions is piecewise

Ψ-linear, and hence, if Ψ is a set of (total) piecewise Ψ-linear functions, then every
function defined by an Ψ-linear term is piecewise Ψ-linear.

Proof. If, for example, f(~x) = f1(~x) ⊎ f2(~x) and g(~x) = g1(~x) ⊎ g2(~x), then

f(g(~x)) = f1(g1(~x)) ⊎ f1(g2(~x)) ⊎ f2(g1(~x)) ⊎ f2(g2(~x)).

We get a proper representation of the composition f(g(~x)) by deleting from this
disjoint union the “empty” (nowhere defined) linear parts. ⊣

Lemma 11. A piecewise piecewise Ψ-linear partial function is piecewise Ψ-linear.

Proof. The assertion is that if f is the disjoint finite union of piecewise Ψ-linear
partial functions on disjoint domains, then it is piecewise Ψ-linear; and the proof
is obvious. ⊣

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 11

4. The basic construction

With these definitions, we can use the construction in the proof of Theorem 6
in Section 2 to establish a similar result for prd’s from piecewise Ψ-linear (total)
functions.

Proposition 12. For each prd from a set Φ of piecewise Ψ-linear functions which

defines a function f(~x) of n variables, there is a sequence

φ1, . . . , φk, ψ1, . . . , ψl

of Ψ-linear partial functions with the following properties:

(1) The domains of the φi’s and the ψj’s form a partition of Nn, i.e., they are

pairwise disjoint and their union is Nn.

(2) If φi(~x)↓ , then f(~x) = φi(~x).
(3) Each ψj is unbounded, i.e., sup{ψj(~x) | ψj(~x)↓} = ∞.

(4) If ψj(~x)↓ , then c(Ef , ~x) ≥ ψj(~x).

It follows that if f(~x) is not piecewise Ψ-linear, then there exists an unbounded

Ψ-linear partial function ψ(~x) such that

ψ(~x)↓ =⇒ c(Ef , ~x) ≥ ψ(~x).

Proof. Here we need to deal with the fact that the piecewise Ψ-linear functions
defined by Φ-terms may be bounded without being constant, e.g., 5−· x. This
complicates the definition of the crucial one-step-reduction procedure, which now
splits into cases and, when iterated, yields a “decision tree” of sorts.

We fix a prd Γ, as before, which defines f . If E is a VΓ-term and X is a
Ψ-semilinear set, we say that E is X-reducible, if E has a critical subterm

(19) M ≡ f(G, ~N)

such that either the restriction of d(G,~x) to X is not Ψ-linear, or it is Ψ-linear and
bounded. Since the restriction of d(G,~x) to X is always piecewise Ψ-linear, this
means that either every decomposition of it has at least two linear parts, or there

is a Ψ-linear function G̃(~x) with domain X and a number k, such that

~x ∈ X =⇒ d(G,~x) = G̃(~x) ≤ k.

If E is not X-reducible, then it is X-irreducible.
A term tree is a structure of the form

(T, {Xu}u∈T , {Eu}u∈T),

with the following properties:

1. T is a finite (rooted) tree.
2. For each node u ∈ T , Xu is a Ψ-semilinear set and Eu is a VΓ-term.
3. If v is a child of u in T , then

~x ∈ Xv =⇒ d(Eu, ~x) = d(Ev, ~x) and c(Eu, ~x) ≥ c(Ev, ~x).

4. For each node u ∈ T , the family {Xv | v is a child of u} is a partition of
Xu, i.e.,

v, v′ distinct children of u=⇒Xv ∩Xv′ = ∅,

Xu =
⋃

{Xv | v is a child of u}.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

12 YIANNIS N. MOSCHOVAKIS

A term tree is reducible if there is some leaf u such that the term Eu is Xu-reducible.
Consider the following one-step reduction procedure which assigns to each re-

ducible term tree T another term tree T ′, an extension of T by the addition of new
nodes below some leaf of T :

1. Choose a leaf u such that Eu is Xu-reducible, so that it has a critical

subterm of the form f(G, ~N); choose a critical subterm of Eu of this kind;
and let

(20) G̃(~x) = G̃1(~x) ⊎ · · · ⊎ G̃ℓ(~x)

be the restriction of d(G,~x) to Xu decomposed into (non-empty) Ψ-linear
partial functions with the least, possible ℓ.

2. If ℓ > 1 in (20), introduce new nodes u(1), . . . , u(ℓ) below u tagged with

Xu(i) = Xu ∩ {~x | G̃i(~x)↓}, Eu(i) ≡ Eu.

3. Otherwise, G̃(~x) is Ψ-linear and

sup{G̃(~x) | ~x ∈ Xu} = k

for some k ∈ N. Suppose f is defined from g and h by (2); define the terms
Mi for i ≤ k by (13) and (14); and for each i ≤ k, let

Xu,i = Xu ∩ {~x | G̃(~x) = i}.

These sets are Ψ-semilinear by Lemma 9, they are pairwise disjoint, and
their union is Xu. We introduce new nodes u(0), . . . , u(k) tagged with Xu,i

and the term Eu,i obtained by replacing f(G, ~N) in Eu by Mi.

Proof that T ′ is a term tree is exactly as in the proof of Theorem 6.
Now, given a term E, start with the one-node tree T with Nn and E assigned

to the root, and apply repeatedly this one-step reduction procedure, as long as it
is possible.

Lemma. The iteration cannot go on indefinitely.

Proof. If it did, then it would produce a finitely splitting, infinite tree, which
would then have an infinite branch, by König’s Lemma. Suppose this branch is

(X1, E1) > (X2, E2) > · · ·

If all the reductions after some stage n along this branch were by Case 2, then

En+m ≡ En for all m, and so the reductions are all triggered by subterms f(G, ~N)
of the same En; but this is not possible, since there are only finitely many subterms
of En, and each of them can justify at most one reduction by Case 2. Thus there
must be infinitely many reductions by Case 3 of the procedure along the branch,
and each of them lowers the rank of the term, as in the proof of Theorem 6, yielding
an absurd infinite, decreasing sequence of ranks. ⊣ (Lemma)

So eventually we stop at a term tree T ∗ such that (as in the proof of Theorem 6):
For each leaf u, Eu is Xu-irreducible and

~x ∈ Xu =⇒ d(E,~x) = d(Eu, ~x) and c(E,~x) ≥ c(Eu, ~x).

In addition, by the construction,

Nn =
⋃

{Xu | u is a leaf of T ∗}.

The leaves of T ∗ are divided into two groups:

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 13

(1) Eu is Xu-irreducible because it has no critical subterm, and so it defines a
Ψ-linear partial function function on Xu. We let

φ1, . . . , φk

be an enumeration of these partial functions.
(2) Eu contains a critical subterm f(G,~n) such that the restriction of d(G,~x) to

Xu is Ψ-linear and

sup{d(G,~x) | ~x ∈ Xu} = ∞;

now c(E,~x) ≥ c(Eu, ~x) ≥ d(G,~x) as in the proof of Theorem 6, and we can complete
the proof of the Proposition by letting

ψ1, . . . , ψl

be an enumeration of these Ψ-linear partial functions. ⊣

5. Conditionals and the essential complexity measure

An oft-cited problem with call-by-value recursion is that it is very inefficient for
“dummy” recursive definitions like that of the predecessor function

Pd(0) = 0, Pd(x+ 1) = x;

this is formally expressed in a prd as

Pd(0) = 0, Pd(x+ 1) = h(Pd(x), x), with h(w, x) = P 2
2 (w, x) = x,

and, clearly, c(EPd, x) = x, which is wasteful. We introduce in this section extended
derivations which allow definitions by cases, and then we use these to define a
very robust notion of “essential” complexity for primitive recursive programs from
suitably “rich” Φ’s.

5.1. Adding conditionals. A primitive recursive derivation with conditionals or
prdc is a sequence of functions

Γ = f0, . . . , fk

satisfying one of the conditions D1–D3 in Section 1 or the following

D4. fi is defined by cases

(21) f(t, ~x) = if (t = 0) then g(~x) else h(t, ~x)

from functions g, h which are listed earlier in the derivation. The corresponding
clause in the iteration of Γ is

R4. fk+1(t, ~x) =

{
gk(~x) if t = 0,

hk(t, ~x) otherwise.

We treat symbols that are introduced by conditionals as “recursive symbols” and
they are put in the vocabulary VΓ, so that the VΓ-term associated with f is simply

T4. Ef ≡ f(v0, v1, v2, . . . , v1+n).

We also extend the complexity measure:

CT4. Suppose f is defined by (21) and E ≡ f(E0, E1, . . . , En). Set first

dj = d(Ej , π), cj = c(Ej , π) (j ≤ n),

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

14 YIANNIS N. MOSCHOVAKIS

and put

c(E, π) =

{
max{c0, c1, . . . , cn, c(Eg, d

1, . . . , dn)}, if d0 = 0,

max{c0, c1, . . . , cn, c(Eh, d
0, d1, . . . , dn)}, otherwise.

Lemma 1 and Theorem 3 extend easily to prdc’s:

Theorem 13. For each prdc Γ:

(1) For each symbol f , csf (~x) ≥ c(Ef , ~x).

(2) For any VΓ-terms E, A1, . . . , Ak, if u1, . . . , uk occur in E and for i = 1, . . . , k,

di = d(Ai, π), ci = c(Ai, π),

then

c(E{~u :≡ ~A}, π) = max{c1, . . . , ck, c(E, π{u1 := d1, . . . , uk := dk})}.

Proof. (1) is immediate from the definition, and the proof of (2) is by induction
on E, with just one more case than the narrower Theorem 3.

Case CT4, E ≡ f(E0, E1, . . . , En) and f is defined by cases as in (21). We set

cj = c(Ej{~u :≡ ~A}, π) (j ≤ n),

dj = d(Ej{~u :≡ ~A}, π), ~u ≡ u1, . . . , uk, ~d = (d1, . . . , dn),

and we consider two possibilities.
If d0 = 0, then, by the definition, the induction hypothesis, and the fact that

d0 = d(E0, π{~u := ~d}),

c(E{~u :≡ ~A}, π) = max{c0, c1, . . . , cn, c(Eg, ~d)}

= max{c1, . . . , ck,

c(E0, π{~u := ~d}), . . . , c(En, π{~u := ~d}),

c(Eg, ~d)}

= max{c1, . . . , ck, c(E, π{~u := ~d})}.

The computation for the case d0 > 0 is almost identical. ⊣

Lemma 14. For each prdc Γ from a set Φ which contains the function 1−· y,
there is a prd rΓ whose recursive symbols include all the recursive symbols of Γ,

and such that for every VΓ-term E,

drΓ(E, π) = dΓ(E, π), crΓ(E, π) ≤ cΓ(E, π).

Proof.3 We will eliminate the definitions by cases in Γ one-at-a-time, by iter-
ating the following reduction procedure on prdc’s:

Sublemma 14.1. Suppose Φ contains arithmetic subtraction 1−· y and

∆ = f0, . . . , fk, f

is a prdc from Φ, in which the last function is the only one defined by cases,

f(t, ~x) = if (t = 0) then g(~x) else h(t, ~x);

then there is a prd
∆′ = f0, . . . , fk, φ, φg, φh, f

3This clever trick is most often used to show that the class of partial functions primitive

recursive in given partial functions is closed under definition by cases, and it is due to Bird [2]; I
learned it from Ivan Soskov.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 15

with complexity measure c′, such that for all V∆-terms E,

(22) d′(E, π) = d(E, π), c′(E, π) ≤ c(E, π).

Proof. We set

φ(0, u, v) = v, φ(t+ 1, u, v) = u,
φg(0, ~x) = 0, φg(t+ 1, ~x) = g(~x),

φh(0, s, ~x) = 0, φh(t+ 1, s, ~x) = h(s, ~x),

f(t, ~x) = φ(1−· t, φg(1−
· t, ~x), φh((1−· (1−· t)), t, ~x)),

where, of course, the primitive recursive definitions for the new three functions and
the composition defining f must be “spelled out” correctly. To check first that the
new definition for f gives the same function as that in ∆, compute with the ∆′

definition of f :

f(0, ~x, ~y) = φ(1, φg(1, ~x), φh(0, 0, ~x))

= φ(1, g(~x), 0) = g(~x),

f(t+ 1, ~x, ~y) = φ(0, φg(0, ~x), φh(1, t+ 1, ~x))

= φ(0, 0, h(t+ 1, ~x)) = h(t+ 1, ~x).

For the corresponding complexity values, we compute:

c′(Eφg
, 0, ~x) = 0,

c′(Eφg
, 1, ~x) = max{c′(Eφg

, 0, ~x) + 1, c(Eg, ~x)}

≤ c(Eg, ~x) + 1

c′(Eφh
, 0, s, ~x) = 0,

c′(Eφh
, 1, s, ~x) = max{c′(Eφh

, 0, s, ~x) + 1, c(Eh, s, ~x)}

≤ c(Eh, s, ~x) + 1

c′(Eφ, 0, u, v) = 0

c′(Eφ, 1, u, v) = 1,

c′(Ef , 0, ~x) = max{c′(Eφg
, 1, ~x), c′(Eφh

, 0, 0, ~x),

c′(Eφ, φg(1, ~x), φh(0, 0, ~x)}

≤ c(Eg, ~x) + 1

c′(Ef , t+ 1, ~x) = max{c′(Eφg
, 0, ~x), c′(Eφh

, t+ 1, ~x),

c′(Eφ, φg(0, ~x), φh(t+ 1, ~x)}

≤ c(Eh, t+ 1, ~x) + 1.

From this we get immediately the required inequality (22). ⊣ (14.1)

To prove the lemma from this, set

Γ0 = Γ,Γ1 = Γ′, . . . ,Γt+1 = Γ′

t,

where Γ′

i is constructed by 14.1 with respect to the first definition by cases in
Γi, if one such exists. In the end we obtain a prd rΓ = Γt with the required
properties. ⊣

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

16 YIANNIS N. MOSCHOVAKIS

5.2. The essential complexity. A primitive recursive definition

(23)

{
f(0, ~x) = g(~x)

f(y + 1, ~x) = h(f(y, ~x), y, ~x)

in a prdc ∆ = f0, . . . , fk is fake if the variable v0 does not occur in the term Eh, so
that (by the definitions n Subsection 1.3) the function h(u, y, ~x) does not depend on
u. A genuine primitive recursive definition is one which is not fake, and a genuine
prdc is one with no fake primitive recursive definitions.

Suppose fi is the first function in ∆ defined by a fake primitive recursion, and
let ∆′ be constructed by replacing this fake recursion by the definition by cases

(24) f(t, ~x) = if (t = 0) then g(~x) else h(t, t−· 1, ~x);

formally this requires the introduction of two new symbols which are defined from
h(w, t, ~x) by composition (with projections), but this does not introduce recursive
symbols, and so V∆ = V∆′ .

For any prdc Γ, set

Γ0 = Γ,Γ1 = Γ′, . . . ,Γi+1 = Γ′

i . . .

and let

Γ∗ = Γt, for the least t such that Γt is genuine,(25)

c∗(E, π) = c∗Γ(E, π) = cΓ∗(E, π)(26)

= the complexity of E computed in Γ∗.

Lemma 15. If Γ is a prdc from a set of functions Φ which includes the predecessor

x−· 1 and the function 1−· y, then Γ∗ has the following properties.

(a) VΓ = VΓ∗ , i.e., Γ and Γ∗ have the same recursive symbols.

(b) For each VΓ-term E, dΓ(E, π) = dΓ∗(E, π).
(c) For each VΓ-term E, c(E, π) ≥ c∗(E, π).
(d) Every primitive recursion in Γ∗ is genuine.

Proof. (a) and (d) are immediate from the definition. To verify (b) and (c), it
is enough to show that the transformation ∆ 7→ ∆′ preserves denotations and does
not increase complexities.

For (b), notice that if the variable v0 does not occur in the term Eh, then the
value h(w, t, ~x) is independent of w, because for any w,w′,

h(w, t, ~x) = d(Eh, w, t, ~x) = d(Eh, w
′, t, ~x) = h(w′, t, ~x).

It follows that if f is defined by a fake recursion (23) in ∆, then

f(0, ~x) = g(~x),

f(t+ 1, ~x) = h(f(t, ~x), t, ~x)

= h(t+ 1, t, ~x),

and so f(t, ~x) satisfies its new definition (24) in ∆′.
For (c), we check directly from the definitions that

c∆(Ef , t, ~x) ≥ c∆′(Ef , t, ~x),

and then we apply (2) of Theorem 13. ⊣

The next result improves Proposition 12 in two ways, by allowing cases in the
derivations, and by replacing the complexity c(Ef , ~x) by the generally smaller
c∗(Ef , ~x). It is the main combinatorial result of this article.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 17

The Basic Lemma 16. For each prdc from a set Φ of piecewise Ψ-linear func-

tions which defines a function f(~x) of n variables, there is a sequence

φ1, . . . , φk, ψ1, . . . , ψl

of Ψ-linear partial functions with the following properties:

(1) The domains of the φi’s and the ψj’s form a partition of Nn, i.e., they are

pairwise disjoint and their union is Nn.

(2) If φi(~x)↓ , then f(~x) = φi(~x).
(3) Each ψj is unbounded, i.e., sup{ψj(~x) | ψj(~x)↓} = ∞.

(4) If ψj(~x)↓ , then c∗(Ef , ~x) ≥ ψj(~x).

It follows that if f(~x) is not piecewise Ψ-linear, then there exists an unbounded

Ψ-linear partial function ψ(~x) such that

ψ(~x)↓ =⇒ c∗(Ef , ~x) ≥ ψ(~x).

Proof. By its definition, for any VΓ-term E,

c∗(Ef , ~x) = cΓ∗(Ef , ~x),

where Γ∗ is some prdc; and then by Lemma 14, there is a prd rΓ∗ such that

cΓ∗(Ef , ~x) ≥ crΓ∗(E,~x).

Moreover, these transformations preserve denotations, i.e.,

f(~x) = dΓ(Ef , ~x) = dΓ∗(Ef , ~x) = drΓ∗(Ef , ~x).

The result follows by applying the Proposition 12 to rΓ∗ and using the inequalities
above. ⊣

6. The non-strict complexity

The non-strict4 iterates f̃k of a derivation Γ are defined by the same clauses
R1–R4 that are used for the call-by-value iteration, except—and this is a big
difference—that they are monotone (not necessarily strict) functions on (N∪{⊥})n

to N∪ {⊥}. We repeat the clauses here for easy reference, using variables ζ, ξ over
N ∪ {⊥}:

RN1. If f is a given function φ(~ζ), then, for every k,

f̃k(~ζ) = φ(~ζ).

If, for example, f(ζ1, ζ2) = P 2
2 (ζ1, ζ2), then f̃k(⊥, 3) = 3.

RN2. If f is defined by composition as in (1), then

f̃0(~ζ) = ⊥, f̃k+1(~ζ) = g̃k(h̃k
1(~ζ), . . . , h̃k

m(~ζ)).

4In the study of recursive definitions relative to arbitrary given functions, this is sometimes
referred-to as “call-by-name” iteration. I have avoided this terminology here, since the related
papers by Colson, David etc., use the term “call-by-name” to refer to iteration of (absolute)
primitive recursive algorithms on the complete poset of lazy integers rather than the flat posetN ∪{⊥} of partial integers. Notice that there is no natural interpretation of iteration on the poset
of lazy integers in the presence of arbitrary given functions.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

18 YIANNIS N. MOSCHOVAKIS

RN3. If f is defined by primitive recursion as in (2), then

f̃0(ξ, ~ζ) = ⊥,

f̃k(⊥, ~ζ) = ⊥,

f̃k+1(0, ~ζ) = g̃k(~ζ),

f̃k+1(y + 1, ~ζ) = h̃k(f̃k(y, ~ζ), y, ~ζ).

RN4. If f is defined by cases as in (21), then

f̃k(⊥, ~ζ, ~ξ) = ⊥,

f̃k+1(t, ~ζ, ~ξ) =

{
g̃k(~ζ) if t = 0,

h̃k(~ξ) otherwise.

The non-strict complexity measure is defined on natural number arguments only,
by

(27) cnf (~x) = the least k such that f̃k(~x)↓ .

Theorem 17. For each prdc Γ, and each function symbol f ,

csf (~x) ≥ cnf (~x) ≥ c∗(Ef , ~x).

Proof. For the (well-known) first inequality, we need to show that for every k,

fk(~x)↓ =⇒ f̃k(~x)↓ (~x ∈ N),

and this is almost immediate, by induction on k.
For the second inequality, it is enough to prove that for every k,

(28) f̃k(~ζ)↓ =⇒ d(Ef , ~ζ) = f̃k(~ζ) & c∗(Ef , ~ζ) = cΓ∗(Ef , ~ζ) ≤ k.

We show this by induction on k, following the definition of Γ∗ and noting that

[d(Ef , ~ζ)↓ & ζi = ⊥] =⇒ the variable vi−1 does not occur in Ef ,

simply because terms are evaluated strictly.
In the basis k = 0, (28) is easy to verify, taking cases on whether f is the successor

S or in Φ—and then it is evaluated strictly—or a projection Pn
i or a constant Cn

q ,
when only the relevant variable occurs in Ef .

In the induction step, we consider three cases.
Case T2. f is defined by composition, so

f̃k+1(~ζ) = g̃k(u1, . . . , um),

where ui = h̃k
i (~ζ) for i = 1, . . . ,m. By the induction hypothesis,

d(Eg, u1, . . . , um) = g̃k(u1, . . . , um),

and so if ui = ⊥, then the variable vi−1 does not occur in Eg; for each i then such
that vi−1 occurs in Ef , it must be that

ui = h̃k
i (~ζ) 6= ⊥,

and so the induction hypothesis gives again that d(Ehi
, ~ζ)↓ . This implies that

d(Ef , ~ζ) = d(Eg{u1 :≡ Eh1
, . . . , um :≡ Ehm

}, ~ζ)

= d(Eg, ~u)↓ .

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 19

The complexity inequality follows by a direct application of Theorem 13, keeping
track of the variables which actually occur in Eg.

Case T3. f is defined by primitive recursion. We prove (28) by induction on

y ∈ N, since f̃k+1(⊥, ~ζ) = ⊥, by definition.

Basis, y = 0. Now f̃k(0, ~ζ) = g̃k(~ζ), and the argument is exactly as in CT2.
Induction Step, y = z + 1. The hypothesis is that

f̃k+1(z + 1, ~ζ) = h̃k(f̃k(z, ~ζ), z, ~ζ)↓ ,

and so, by induction hypothesis,

(29) d(Eh, f̃
k(z, ~ζ), z, ~ζ)↓ .

There are two possibilities

Case 1. f̃k(z, ~ζ) = ⊥. Now (29) implies that the variable v0 does not occur in
Eh, and so the primitive recursion defining f is not genuine; this means that in Γ∗

it is replaced by the definition by cases

f(t, ~x) = if (t = 0) then g(~x) else h(t, t−· 1, ~x),

so that

dΓ∗(Ef , z + 1, ~ζ) = d(Eh, z + 1, z, ~ζ)

= d(Eh, f̃
k(z, ~ζ), z, ~ζ)

= f̃k+1(z + 1, ~ζ),

using again the fact that v0 does not occur in Eh. Moreover,

c∗(Eh, z + 1, ~ζ) = cΓ∗(Eh, z + 1, z, ~ζ) ≤ k,

as required.

Case 2. f̃k(z, ~ζ) = w ∈ N. It may still be the case that the primitive recursion
defining f in Γ is not genuine, in which case the argument is exactly like that in
Case 1. If it is genuine, then f is defined in Γ∗ by the same primitive recursion,
and then the induction hypothesis gives the required result.

Definition by cases T4 is handled exactly like composition. ⊣

7. The main theorem

The key to applying the Basic Lemma 16 is the next, simple extension of Dixon’s

Lemma,5 where for ~x = (x1, . . . , xn), ~y = (y1, . . . , yn) ∈ Nn,

~x ≤ ~y ⇐⇒ x1 ≤ y1 & . . . &xn ≤ yn.

Lemma 18. If a set K ⊆ Nn+1 is unbounded on its last coordinate, i.e.,

sup{w | (~x,w) ∈ K} = ∞,

then it contains two points (~x1, w1), (~x2, w2) such that

(30) ~x1 ≤ ~x2 and w1 < w2.

5 Every set S of pairwise undominated points in Nn is finite, see p. 184 of [1]. This was
rediscovered by Koutsoupias for the present application, and then van den Dries pointed me to
its exposition in [1], where it is referred to as “the most frequently rediscovered mathematical
theorem”.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

20 YIANNIS N. MOSCHOVAKIS

Proof is by induction on n, the result being immediate for n = 0. For the
induction step, fix some (a1, . . . , an, z) ∈ K and suppose the lemma fails. This
implies that for every (~x,w) ∈ K,

either w ≤ z or, for some i, xi < ai.

Since the part of K with w ≤ z is certainly not unbounded on the last coordinate
and the second disjunct above splits K into finitely many parts, there must exist
some i and some k < ai such that the set

{(~x,w) ∈ K | xi = k}

is unbounded in the last coordinate; but this is a set in dimension n, and so it
contains two points satisfying (30), by the induction hypothesis, contradicting our
assumption. ⊣

Main Theorem 19. For every prdc from piecewise linear (total) functions Φ
which defines a function f(~x) of n variables, either f is piecewise linear, or there

exist vectors ~x1 and ~d 6= 0 in Nn, such that for all t,

csf (~x1 + t~d) ≥ cnf (~x1 + t~d) ≥ c∗(Ef , ~x1 + t~d) ≥ t.

If the second alternative holds, then there is an s, such that with ~xt = ~x1 +(s+ t)~d,

lim
t→∞

(xt
1 + · · · + xt

n) = ∞,

and for a suitable, positive rational r and all t,

c∗(Ef , ~x
t) ≥ r(xt

1 + · · · + xt
n).

Proof. Suppose f(~x) is not piecewise linear, and let ψ(~x) be the linear partial
function guaranteed by the Basic Lemma 16, which is unbounded and provides a
lower bound for c∗(Ef , ~x). By Lemma 8,

ψ(~x) = w

⇐⇒ (∃u1, . . . , uk ∈ N)[u1 = ρ1(~x) & · · · &uk = ρk(~x) &w = ρk+1(~x)]

for suitable rational linear forms ρi, so that

ρi(~x) = πi(~x) + ci (i = 1, . . . , k + 1)

where each ci is a (possibly 0) rational constant, and each πi(~x) is a homogeneous
linear function, i.e.,

(31) πi(λ~x1 + µ~x2) = λπi(~x1) + µπi(~x2).

The set K of all (~x, ~u, w) in Nn+k+1 which satisfies the system of equations

ui = πi(~x) + ci (i = 1, . . . , k)

w = πk+1(~x) + ck+1

is unbounded in the last coordinate, and so, by Lemma 18, there exist points
(~x1, ~u1, w1) and (~x2, ~u2, w2) in K, such that

(~x1, ~u1) ≤ (~x2, ~u2) and w1 < w2.

Sublemma 19.1. For each natural number t, the vector ~x1 + t(~x2 − ~x1) is in the

domain of ψ, and

(32) ψ(~x1 + t(~x2 − ~x1)) = w1 + t(w2 − w1).

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 21

Proof . Using (31), we first get that for each i ≤ k + 1,

πi(~x2 − ~x1) = πi(~x2) + ci − (πi(~x1) + ci) = u2,i − u1,i ≥ 0

(in the obvious notation) is a natural number, and so

πi(~x1 + t(~x2 − ~x1)) + ci = πi(~x1) + ci + t(πi(~x2) − πi(~x1))

is the sum of two natural numbers and so also a natural number. This means
that the vector ~x1 + t(~x2 − ~x1) is in the domain of ψ(~x), and the case i = k + 1
shows (32). ⊣ (19.1)

If we set
~d = ~x2 − ~x1, c = w2 − w1 > 0,

then

c∗(Ef , ~x1 + t~d) ≥ g(~x1 + t~d) = w1 + ct ≥ t

which completes the proof of the first claim in the theorem.
For the second claim, let first

~yt = ~x1 + t~d,

add the component equations
∑

iy
t
i =

∑
ix1,i + t

∑
idi,

and solve this for t to get (with d =
∑

i di)

t =
1

d
(
∑

iy
t
i −

∑
ix1,i);

now limt

∑
i y

t
i = ∞, and so there is some s such that

t ≥ s=⇒
(
1 −

∑
ix1,i∑
iy

t
i

)∑
iy

t
i >

1
2

∑
iy

t
i ;

the required inequality holds then with this s and r = 1
2d

. ⊣

Corollary 20. The function

gcd(x, y) = the greatest common divisor of x and y

is not piecewise linear and so, for every prdc which computes it from piecewise

linear givens with essential complexity c∗(x, y), there is a sequence (xt, yt) such

that limt(xt, yt) = ∞, and with some rational r > 0,

c∗(xt, yt) ≥ r(xt + yt).

Proof. If gcd(x, y) is piecewise linear, then, in particular, there exists rational
constants ai, bi, ci (i < m), such that for each (x, y), there is an i < m satisfying

gcd(x, y) = aix+ biy + ci.

It follows that the same i will be used for infinitely many pairs of the form (x3x, x2x),
i.e., for suitable rationals a, b, c, the equation

x = gcd(x3x, x2x) = ax3x + bx2x + c

has infinitely many solutions, which cannot be true. (In detail, dividing by x3x and
taking the limit as x→ ∞, we get that a = 0, and so the equation

x = bx2x + c

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

22 YIANNIS N. MOSCHOVAKIS

must have infinitely many solutions; and then, dividing by x2x and taking limits
again, we get that b = 0, and so x = c for infinitely many values of x, which is
absurd.) ⊣

This means that fast, logtime algorithms for the computation of gcd(x, y) cannot
be expressed by just composition and primitive recursion using piecewise linear
givens. The classical, Euclidean algorithm can be defined succintly for x ≥ y ≥ 1
by the recursive equation

gcd(x, y) =

{
y, if rm(x, y)) = 0,

gcd(y, rm(x, y)), otherwise,

from the remainder function

(33) rm(x, y) = the unique r < y such that for some q, x = yq + r

which is not piecewise linear; its complexity is O(min(log2(x), log2(y))). Stein’s
algorithm, on the other hand, uses only the piecewise linear functions in the list
in Section 3, and works in (somewhat greater) logarithmic time. We include this
result for easy reference:

Lemma 21 (Stein’s algorithm, [9], Vol. 2, Sect. 4.5.2). The following recursion

computes gcd(x, y) for x, y 6= 0 in O(log2(x) + log2(y)) stages:

gcd(x, y) =





x if x = y (or x = 0 or y = 0)

2 gcd(x/2, y/2) otherwise, if Parity(x) = Parity(y) = 0,

gcd(x/2, y) otherwise, if Parity(x) = 0,Parity(y) = 1,

gcd(x, y/2) otherwise, if Parity(x) = 1,Parity(y) = 0,

gcd(x−· y, y) otherwise, if x > y,

gcd(x, y−· x) otherwise.

Proof. That the gcd satisfies these equations and is determined by them is
trivial. To check the complexity, notice that (at worst) every other application
of one of the clauses involves halving one of the arguments—the worst case being
subtraction, which, however must then be immediately followed by a division, since
the difference of two odd numbers is even. ⊣

8. Comments and open problems

One can view the Main Theorem 19 as a direct generalization of Colson’s Theo-
rem to “piecewise linear primitive recursion with conditionals”, especially since the
Corollary 20 about gcd(x, y) is so much in the spirit of Colson’s Corollary about
min(x, y). From another point of view, these complexity results are only peripher-
ally related to the results of Colson and David, who are primarily concerned with
the analysis of absolute, sequential, call-by-name primitive recursion to which the
present paper is barely relevant.

There is a third point of view however (always!), by which the work of Colson,
Fredholm, David and this paper are really very much about the same thing, and
that is the study of classes of algorithms which are defined by certain forms of
recursion. A good name for the topic might be the structural complexity of algo-

rithms, in analogy with the term structural complexity of queries which has been
used to distinguish the classification of queries (on strings or finite structures) by
the difficulty of their definition rather than by the requirement of resources (time

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

ON PRIMITIVE RECURSION AND THE GCD 23

or space) for the algorithms which decide them. The main questions in structural
complexity are, of course, about its relation with traditional time-and-space com-
plexity, and this is what we do here also—but about classes of algorithms rather
than classes of queries.

If we want to study special classes of algorithms, we should single them out
from “general algorithms” in some form; but what is an algorithm? Colson and
David never adopt some sort of rigorous definition, but they assume that primitive
recursive algorithms can be faithfully modeled by the combinators which are natu-
rally associated with primitive recursive derivations, acting on the domain of lazy
integers. Fredholm assumes an underlying theory of partial inductive definitions

due to Hallnäs [8], which models algorithms (basically) by systems of Herbrand-
Gödel-Kleene equations relating strict partial functions. My own approach is not
too different (in the end) from that of Hallnäs, but it is more general, and it is
based on the deterministic systems of equations with strict conditionals introduced
by McCarthy [10] rather than the HGK systems; for a recent paper on the topic
(with references to earlier work) see [11].

The two most obvious problems left open by this paper are the following.

Open Problem 1. True or false: for every primitive recursive derivation from

piecewise linear functions and the remainder function (33) which defines a function

f(~x) of n variables, either f is piecewise linear from the remainder, or there exists

some rational number r > 0 such that

for infinitely many ~x, c∗(~x) ≥ r(x1 + · · · + xn),

where c∗(~x) is the (essential) complexity function of the derivation.

A positive answer would show that the most ancient Euclidean algorithm cannot
be matched in efficiency by a primitive recursive algorithm from its natural givens,
and the proof would likely be interesting: the obvious attempts to extend the
techniques of this paper to solve the problem lead to apparently difficult algebraic
and number-theoretic questions.

Open Problem 2. Are there examples of recursive algorithms (with piecewise
linear givens) whose time complexity cannot be matched by a µ-recursive algorithm

computing the same function?

By µ-recursion we mean here the extension of primitive recursion by the scheme
for minimalization, defined on partial functions by

f(~x) = µy[g(~x, y) = 0]

= the least y[(∀i < y)(∃z)[g(~x, i) = z + 1 & g(~x, y) = 0]

It would be nice to answer this question positively simply by extending the Main
Theorem 19 to µ-recursion, but this does not hold because of the following, quite
easy result:

Proposition 22. There is a µ-recursive algorithm from piecewise linear givens,

which computes the binary logarithm log2(x) in O(log2(x)) steps.

8.1. Added in proof. Lou van den Dries [5] has now obtained a positive answer to
Open Problem 1 for the most important special case of gcd(x, y), he has answered
the general problem negatively, and he has established a (weaker) optimal positive
proposition , along with many stronger, related results on the complexity of the
greatest common divisor function. He uses non-standard models of arithmetic.

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

24 YIANNIS N. MOSCHOVAKIS

References

[1] T. Becker and V. Weispfenning. Grobner bases: a compuational approach to commutative

algebra. Number 141 in Graduate texts in mathematics. Springer, 1993.
[2] R. Bird. A note on definition by cases. Zeitschrift für Mathematisches Logik und Grundlagen

der Mathematik, 19:207–208, 1973.
[3] L. Colson. About primitive recursive algorithms. Theoretical Computer Science, 83:57–69,

1991.
[4] R. David. On the asymptotic behaviour of primitive recursive algorithms. Theoretical Com-

puter Science. to appear.
[5] Lou van den Dries. Generating the greatest common divisor, and limitations of prim-

itive recursive algorithms. To appear in Foundations of Computational Mathematics,
http://www.math.uiuc.edu/People/vddries.html.

[6] Daniel Fredholm. Intensional aspects of function definitions. PhD thesis, Mathematics Insti-
tute, University of Stockholm, 1994.

[7] Daniel Fredholm. Intensional aspects of function definitions. Theoretical Computer Science,
163:1–66, 1995.

[8] L. Hallnäs. Logical and computational invariants of programs. In L. H. Eriksson et al., editor,
Extensions of logic programming, number 596 in Lecture Notes in Artificial Intelligence,
Berlin, 1991. Springer.

[9] D. E. Knuth. The Art of Computer Programming. Fundamental Algorithms, volume 1.
Addison-Wesley, second edition, 1973.

[10] J. McCarthy. A basis for a mathematical theory of computation. In P. Braffort and D Her-
schberg, editors, Computer programming and formal systems, pages 33–70. North-Holland,
1963.

[11] Yiannis N. Moschovakis. What is an algorithm? In B. Engquist and W. Schmid, editors,
Mathematics Unlimited – 2001 and Beyond. Springer, 2001.

Department of Mathematics, University of California, Los Angeles, CA 90095-1555,
USA

and Department of Mathematics, University of Athens, Athens, Greece
E-mail address: ynm@math.ucla.edu

URL: www.math.ucla.edu/∼ynm

Version sent to the printer, posted March 4, 2003

To appear in Theoretical Computer Science

