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By the early 1940s, ten years after Gödel’s monumental [1931], the foundations
of a mathematical theory of computability had been well established, primarily by
the work of Alonzo Church, Alan Turing, Emil Post and Stephen Kleene. Most
significant was the formulation of the Church-Turing Thesis, which identifies the
intuitive notion of computable function (on the natural numbers) with the precisely
defined concept of (general) recursive function; this was well understood and ac-
cepted (as a law in Emil Post’s view) by all the researchers in the area, even if not
yet by all logicians.1 The Church-Turing Thesis makes it possible to give rigorous
proofs of (absolute) unsolvability of mathematical problems whose solution asks

1cf. Moschovakis [1968].
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2 YIANNIS N. MOSCHOVAKIS

for an “algorithm” or a “decision procedure”. Several fundamental metamathe-
matical relations had been shown to be undecidable, chief among them the relation
of first-order provability (Hilbert’s Entscheidungsproblem, Church [1936] and Tur-
ing [1936]). Moreover, a general theory of computability had also started to develop,
especially with Kleene [1936].

The most obvious next steps were to

• look for unsolvability results in “ordinary mathematics”, and
• study (in general) the unsolvable.

The first of these was (apparently) first emphasized by Post, who said in his
[1944] that “[Hilbert’s 10th Problem] begs for an unsolvability proof”. Post [1947]
and Markov [1947] proved (independently) the unsolvability of the word problem for
(finitely generated and presented) semigroups, the first substantial result of this type.
Martin Davis’ work is an important part of this line of research which is covered
extensively in other parts of this volume.

My topic is the theory of hyperarithmetical sets, one of the most significant
developments to come out of the general theory of unsolvability in which Davis also
played a very important role. I will give a survey of the development of the subject
in its formative period from 1950 to 1960, starting with a discussion of its origins
and with a couple of brief pointers to later developments at the end. There are few
proofs, chosen partly because of the importance of the results but mostly because
they illustrate simple, classical methods specific to this area which are not easy to
find in the literature, especially in the treatment of uniformity; and I have tried to
give these proofs in the spirit (if not the letter) of the methods which were available
at the time—with just one, notable exception, cf. Remark 3B.3.

The Appendix collects the few basic facts from recursion and set theory that we
need and fixes notation. We refer to them by App 1, App 2, etc.

1. Preamble: Kleene [1943], Post [1944] and Mostowski [1947]. The two seminal
articles of Kleene and Post were published within a year of each other2 and have
had a deciding influence on the development of the theory of unsolvability up until
today. Mostowski wrote his [1947] in ignorance of Kleene [1943], he discovered in-
dependently many of Kleene’s results and he asked some questions which influenced
profoundly the development of the subject. We will discuss it in Section 1D.

Kleene and Post approached “the undecidable” in markedly different ways: they
chose different ways to measure the complexity of undecidable sets, they introduced
different methods of proof and they employed distinct “styles of exposition”. The
results in them and in the research they inspired are closely related, of course, as
they are ultimately about the same objects—the undecidable relations on the natural
numbers; but there is no doubting the fact that they led to two different traditions
in the theory of unsolvability with many of the best researchers in one of them
(sometimes) knowing very little of what has happened in the other.

The first, key question was how to measure the unsolvability of a set of natural
numbers.

2Kleene had presented much of his [1943] in a meeting of the American Mathematical Society in
September 1940. I do not know when Post obtained the results in his [1944].
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HYPERARITHMETICAL SETS 3

1A. Post’s degrees of unsolvability. Post [1944] does it by comparing the complex-
ity of two sets A,B ⊆ N using several methods of reducing effectively the relation
of membership in A to that of membership in B . The strongest of these is one-one
reducibility,

A ≤1
e B ⇐⇒ ϕe : N ½ N is a total injection and [x ∈ A ⇐⇒ ϕe(x) ∈ B],

A ≤1 B ⇐⇒ (∃e)[A ≤1
e B],

close to the mildly weaker many-one reducibility A ≤m B where it is not required
that ϕe be an injection. The weakest and most important is Turing reducibility,

A ≤T
e B ⇐⇒ ÷A = {e}B , A ≤T B ⇐⇒ (∃e)[A ≤T

e B].

We will also use the strict and symmetric versions of these reducibilities,

A <1 B ⇐⇒ A ≤1 B & B 6≤1 A, A ≡1 B ⇐⇒ A ≤1 B & B ≤1 A,

and similarly for <m,≡m, <T ,≡T .
The symmetric relations induce natural notions of degrees, e.g.,

the 1-1 degree of A = d1(A) = {B : B ≡1 A},
the Turing degree of A = d(A) = {B : B ≡T A};

and the central objects of study are these sets of degrees with their natural partial
orders, most significantly the poset of Turing degrees (D,≤T ) where

a ≤T b ⇐⇒ (∃A,B ⊆ N)[a = d(A) & b = d(B) & A ≤T B].

Post focusses on the study of the degrees of recursively enumerable sets (App 7).
He introduces the “self-referential” version of Turing’s Halting Problem

K = {e : {e}(e)↓} = {e : (∃t)T1(e, e, t)}(1)

and proves that it is r.e. complete, i.e., it is r.e. and every r.e. set is 1-1 reducible to it.
In particular K is not recursive, and then the natural question is whether there are
r.e. sets intermediate in complexity between the recursive sets and K . Post proves
this for all of his reducibilities except for Turing’s and asks what became known
as Post’s Problem: is there an r.e. set A such that ∅ <T A <T K? Friedberg and
Muchnik proved that there is, some ten years later, and this initiated a research
program in the theory of degrees and r.e. degrees which is still vibrant today.

1B. Kleene’s arithmetical hierarchy. Kleene [1943] focusses on the arithmetical
sets, those which are first-order definable in the standard model of arithmetic

N = (N, 0, 1,+, ·)(2)

and measures the complexity of a set by its simplest definition in N. His crucial
contribution is the choice of a useful measure of complexity of first-order definitions
in N: a relation P ⊆ Nn is Σ0

k (or in Σ0
k) if it satisfies an equivalence of the form

P(~x) ⇐⇒ (∃t1)(∀t2)(∃t3) · · · (Qktk)R(~x, t1, . . . , tk) (k ≥ 1)(3)

where R(~x,~t) is recursive and Qk is ∃ or ∀ accordingly as k is odd or even. A
relation P(~x) is in Π0

k = ¬Σ0
k if its negation is in Σ0

k , so that

P(~x) ⇐⇒ (∀t1)(∃t2)(∀t3) · · · (Qktk)R(~x, t1, . . . , tk) (k ≥ 1)(4)

November 9, 2016, 20:27



4 YIANNIS N. MOSCHOVAKIS

Σi1 Σi2 Σi3
( ( ( ( ( (

∆i
1 ∆i

2 ∆i
3 · · ·

( ( ( ( ( (
Πi

1 Πi
2 Πi

3

Figure 1. The arithmetical (i = 0) and analytical (i = 1) hierarchies.

with a recursive R(~x,~t), and ∆0
k = Σ0

k ∩Π0
k . The relations which belong to one of

these classes are exactly the arithmetical ones, and that was well known after Kleene
[1936]. The novelty here is that by allowing a recursive matrix in (3) and (4) rather
than, say, a quantifier free one, Kleene can prove robust closure properties and to
construct N-parametrizations for these classes of relations:

Lemma 1B.1. (1) Closure properties: Σ0
k and Π0

k are closed under recursive substi-
tutions, &,∨ and bounded number quantification of both kinds; Σ0

k is also closed under
number quantification ∃s ; Π0

k is closed under ∀s ; and ∆0
k is closed under negation.

(2) The N-Parametrization Property: there are relations Gn
k ⊆ N1+n in Σ0

k and
recursive injections S ln : N1+l → N such that for every n-ary P(~x) in Σ0

k ,

P(~x) ⇐⇒ Gn
k (e, ~x) for some e ∈ N,(5)

and for all ~y = (y1, . . . , yl )

G l+n
k (e, ~y, ~x) ⇐⇒ Gn

k (S ln(e, ~y), ~x).(6)

These facts are very easy by induction, starting with k = 1 where they are
immediate by the Normal Form and Enumeration Theorem for recursive partial
functions App 5. They imply the Hierarchy Theorem for the arithmetical sets
pictured in Figure 1 (with i = 0), and they can be used very effectively to measure
the complexity of a set by placing it in the arithmetical hierarchy, sometimes exactly.
Such were, in fact, their first applications.3 Its main significance, however, was
that it set the stage for its non-trivial extensions into the analytical hierarchy, also
pictured in Figure 1 with i = 1, as well as the hyperarithmetical hierarchy which lies
between them and is our main concern.

The closure of the arithmetical classes under recursive substitutions imply that
for every n-ary relation P(~x),

P ∈ Σ0
k ⇐⇒ {〈~x〉 : P(~x)} ∈ Σ0

k ,

i.e., these classes are determined by the sets in them; so we will sometimes abuse
notation and use Σ0

k to denote the class of Σ0
k sets—and similarly for Π0

k ,∆
0
k .

3For example, Davis [1950a] proves that the set {e : (∀x)[{e}(x) ↓ ]} of codes of total recursive
functions is in Π0

2 \ Σ0
2. The Hierarchy Theorem also yields a trivial proof of Tarski’s Theorem for N,

that arithmetical truth is not arithmetical.
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1C. Kleene [1943] vs. Post [1944]. There is little overlap between these two papers,
except that they both characterize the recursive sets as exactly those which are r.e.
and have r.e. complements (Post’s Theorem). Beyond that, Post limits himself to
the complexity structure of r.e. sets which comprise precisely Kleene’s Σ0

1—about
which Kleene says nothing non-trivial.

Both papers are brilliant examples of concept formation, the identification of
fundamental notions which is characteristic of some of the best work in logic. Post
also proves several non-trivial technical results, some by very clever constructions;
there is little of this in the Kleene paper, whose technical results are proved mostly
by seemingly routine computations.

Then there is the style of exposition: Post is eloquent, even colorful. He intro-
duces suggestive, descriptive terms (complete, creative, simple) which give life to
the formulation of his results and right in his first paragraph, he declares that his
purpose is

“to demonstrate by example that this concept [of recursive function]
admits . . . of an intuitive development which can be followed, if not
indeed pursued, by a mathematician, layman though he be in this formal
field”.4

His exhortation to explain rather than detail proofs resonated strongly in the work of
those who followed him, sometimes with beautiful results, e.g., in the classic Rogers
[1967]. At the other end, Kleene is dry, formal, and more worried about whether he
has a constructive (intuitionistic) proof than if his proof is easily comprehensible—
and to some extent, these traits persisted in the writings of those who followed
him.

1D. Mostowski [1947] and the analogies. Mostowski’s starts with the classical
notions of Descriptive Set Theory. Briefly, in modern notation and (for simplicity)
only for N :
(1) A ó-algebra is any collection F ⊆ P(N ) which is closed under complements

and countable unions;
(2) the class B of Borel sets is the smallest ó-algebra which contains all the open

sets;
(3) a relation P ⊆ Nm is Σ

˜
1
1 if P = {~α : (∃â)F (~α, â)} with F closed;

(4) P is Σ
˜

1
k+1 if P = {~α : (∃â)¬Q(~α, â)} with Q in Σ

˜
1
k ;

(5) Π
˜

1
k = {Nm \ P : P ∈ Σ

˜
1
k} and ∆

˜
1
k = Σ

˜
1
k ∩Π

˜
1
k .

The projective classes Σ
˜

1
k ,Π˜

1
k ,∆˜

1
k were introduced by Luzin and Sierpinski in

1925 and they fall into a hierarchy that looks exactly like the arithmetical hierarchy
in Figure 1 with boldface letters and superscript 1. But the most fundamental result
about them is older and concerns only the first level of this hierarchy:

Theorem 1D.1 (Suslin [1917]). A set A ⊆ N is ∆
˜

1
1 if and only if it is Borel.

This was rightfully viewed as a “construction principle” which reduces a comple-
mentary pair of quantifications over the complex set N to a countable iteration of

4He also said that “ . . . with a few exceptions explicitly so noted, we have obtained formal proofs of
all the consequently mathematical theorems here developed informally”, and it is clear that the purely
intuitive approach can only go so far: we cannot hope to prove that (say) the word problem for semigroups
is unsolvable on the basis of our intuitions about computability, without a rigorous definition of recursive
functions and an appeal to the Church-Turing Thesis.
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6 YIANNIS N. MOSCHOVAKIS

taking countable unions and complements, starting with the simple neighborhoods
of N . Mostowski had not read Kleene [1943] but he knew Post [1944] and saw a
similarity between Suslin’s Theorem and Post’s in the form

∆0
1 = recursive,

which similarly reduces ∆0
1 definitions to “computations”. He postulated the natural

“analogies”

recursive function on N ∼ continuous function on N ,
recursive subsets of N ∼ B,

Σ0
1 subsets of N ∼ Σ

˜
1
1 subsets of N ,

(7)

and using these as motivation he defined the arithmetical hierarchy and established
for it basically all the results in Kleene [1943], so that the analogies extend to all the
levels of the two hierarchies. He knew that these are not perfect: not every injective,
recursive image of N is recursive, while by a basic, classical result, every injective,
continuous image ofN is Borel. This, however, might be just a technical wrinkle, as
every increasing, recursive image of N is recursive. Later, after writing this paper, he
thought of another fundamental property of Σ

˜
1
1 sets which could test the analogy,

the following generalization of Suslin’s Theorem due to Lusin:

Theorem 1D.2 (Σ
˜

1
1 Separation). For any two disjoint Σ

˜
1
1 sets A,B ⊆ N , there is a

Borel set C which separates them, i.e.,

A ⊆ C, C ∩ B = ∅.(8)

So is it true that any two disjoint r.e. sets can be separated by a recursive set?
At some time between 1947 and 1950 he mentioned the problem to Kleene who (it
turned out) had already answered it but not published his result:

Theorem 1D.3 (Kleene [1950]). There exist two disjoint, r.e. sets A,B ⊆ N such
that no recursive set C satisfies (8).

So the simple minded analogies (7) fail, but they did not go away: they motivated
a great deal of research in the twenty years that followed and ultimately, as we will
see, a corrected version of them turned out to be an important part of the story of
HYP.

2. On into the transfinite!5 For any A ⊆ N, let

A′ = {e : {e}A(e)↓} = the jump of A.(9)

It follows that for every B ,

B is r.e. in A ⇐⇒ B ≤1 A
′,(10)

so that in particularA <T A′, and we can get a sequence of sets of increasing Turing
complexity by setting recursively

K0 = ∅, K1 = K ′
0, K2 = K ′

1, . . . .(11)

5For completeness, we will repeat in this section some parts of §7 – §9 of Moschovakis [2010b], which
goes over some of the same ground in more detail and includes several proofs.
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HYPERARITHMETICAL SETS 7

Now K1 is (recursively isomorphic with) Post’s complete r.e. set K and for every
k ≥ 1, easily, Kk is Σ0

k-complete, i.e., a set is Σ0
k exactly when it is 1-1 reducible to

Kk . It is also easy to check that the diagonal set

Kù = {〈m, n〉 : m ∈ Kn}(12)

is recursively isomorphic with the truth set for arithmetic

Truth = {pèq : N |= è},
where pèq is the Gödel number of the sentence è in the language of arithmetic,
relative to some standard coding. This is not arithmetical; and then one can
continue and define ever more complex non-arithmetical sets,

Kù+1 = K ′
ù , Kù+2 = K ′

ù+1, . . . , Kù·2 = {〈m, n〉 : m ∈ Kù+n} . . .(13)

indexed by the ordinals î < ù2. The sequence {Kî : î < ù2} was defined by Davis
[1950a] who also showed that

ç ≤ î < ù2 =⇒Kç ≤m Kî and î < ç=⇒Kî <T Kç.(14)

These facts are all fairly simple to verify today. They were not so easy6 before
1955, when the theory of relative recursion had not been worked out in detail:
Kleene [1943], [1953], [1955a], Davis [1950a], [1950b] and Mostowski [1947], [1951]
all prove various versions of them, not always the cleanest or strongest, sometimes
awkwardly and (in the case of Davis and Mostowski) mostly without knowing all
of each other’s or Kleene’s work. Nevertheless, the later papers Davis [1950a],
Mostowski [1951] and Kleene [1955a] all take the crucial step of defining natural
extensions of the arithmetical hierarchy beyond its first ù classes Σ0

1,Σ
0
2, . . . , “on

into the transfinite” in Davis’ exhortation with which we headed this section.
The definitions (11) – (13) of {Kî : î < ù2} depend on choosing for each limit

ordinal î = ù · s < ù2 the specific, increasing sequence n 7→ ù · (s −· 1) + n
converging to î. This is natural enough, but not the only choice, and it is not
obvious how to make a “natural” or “best” choice7 for ordinals above ù2. This
leads us to the next, crucial bit:

2A. Notations for ordinals, S1 and O. Following Kleene [1938], let first

0O = 1, (t + 1)O = 2tO , et = {e}(tO),

6 For example, to prove that Kk is Σ0
k

-complete, you need the first of the following strengthenings
of (10): there are recursive injections u(e, t), v(e) such that for all A,B and all e, t,

(1) {e}A(t)↓ ⇐⇒ u(e, t) ∈ A′ and (2) A ≤T
e B =⇒A′ ≤1

v(e) B
′.(15)

Proof: For (1), choose m so that for any A, {m}A(e, t, y) = {e}A(t) and set u(e, t) = S2
1 (m, e, t). For

(2) you start with a recursive v1(e) such that A ≤T
e B =⇒{e}A(t) = {v1(e)}B (t) and do a similar

construction. That u(e, t) and v(e) are (absolutely) recursive injections—which has applications—
depends on the fact that the functions S l,mn in App 5 are independent of any function parameters and
injective, which I cannot find in any of the early texts (including Kleene [1952]) even for m = 0.

7Spector [1956] eliminates dramatically the most obvious approach at limit ordinals: No increasing
sequence d0 < d1 < · · · of Turing degrees has a least upper bound. Of course, this was not known to
Davis, Kleene and Mostowski when they wrote these early papers.

November 9, 2016, 20:27



8 YIANNIS N. MOSCHOVAKIS

and (by App 10), let | | : N⇀ Ordinals be the least partial function onN to ordinals
which satisfies the following:8

(1) |1| = 0.
(2) For every t, |2t | = |t|+ 1.
(3) For every e, if for every t, |et |↓ and |et | < |et+1|, then |3 · 5e | = limt→∞ |et |.

With S1 = {z : |z| ↓}, the pair S1 = (S1, | |) is the first Church-Kleene notation
system for ordinals and the only one we will use. Kleene [1938] also introduced a
smaller notation system S3 = (O, | |3) and a partial ordering ≤O of O such that

O ( S1, a ∈ O=⇒|a|3 = |a|, and so a <O b=⇒|a| < |b|,(16)

and then used that in all his work on the topic—as did Spector and most researchers
in the field. We will occasionally refer to O and ≤O when we want to quote early
results exactly as they were stated, but we will not use them in any essential way and
so we skip their precise definition.9

A countable ordinal î is constructive if î = |z| for some z ∈ S1. Note that
directly from the definition, the constructive ordinals form an initial segment of the
set of countable ordinals. Their supremum

ù1 = sup{|a| : a ∈ S1} (the Church-Kleene omega-1)(17)

is a “constructive analog” of the first uncountable ordinal Ω1; it is a fundamental
constant of definability theory and it can be characterized in many natural ways,
including the following early result:

Theorem 2A.1 (Markwald [1954], Spector [1955]). An ordinal î is constructive if
and only if it is finite or the order type of a recursive wellordering of N.10

2B. The Ha-sets. By recursion on the ordinal |a|, we associate with each a ∈ S1

a set Ha ⊆ N so that:

(H1) H1 = N,
(H2) H2b = H ′

b , and
(H3) if a = 3 · 5e , then x ∈ Ha ⇐⇒ (x)0 ∈ He(x)1

.

This is exactly the definition in Kleene [1955a], except that he gave it for a ∈ O (
S1. The earlier Davis [1950a] gave an almost identical definition (for a ∈ S1) which
differs only in the details of the coding, and Mostowski [1951] gave a somewhat
different and abbreviated version which seems to avoid ordinal codes, cf. Section 3C.

Davis [1950a] proves that for a, b ∈ S1, |a|, |b| < ù2,

|a| ≤ |b|=⇒Ha ≤m Hb and |b| < |a|=⇒Hb <T Ha ,(18)

8Kleene’s obtuse coding (the 3 and 5 in the definition) is motivated by the plans he and Church had
to develop a general “constructive theory of ordinals” beyond Cantor’s first and second number classes.
They never got into this, but some (non-trivial and highly technical) results were proved by others,
cf. Kreider and Rogers [1961], Putnam [1961], Enderton and Putnam [1970]. We will not cover this topic
here.

9O and≤O are defined by a (simultaneous) inductive definition as in App 10 which (in Kleene’s words)
“is regarded from the finitary point of view as a correction, in that it eliminates the presupposition of the
classical (non-constructive) second number class”. There are problems with this view, partly because
many results about constructive ordinals cannot be proved (or even stated) without referring to ordinals.
In any case, we will use S1 here.

10A proof of this basic fact is included in Moschovakis [2010b, §8].
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HYPERARITHMETICAL SETS 9

so that, in particular,

|a| = |b| < ù2 =⇒Ha ≡T Hb (a, b ∈ S1)

and asks if every constructive ordinal has this uniqueness property. This turned out
to be a difficult problem and led some five years later to one of the first spectacular
results in the area:11

Theorem 2B.1 (Spector [1955]). For all a, b ∈ S1,

|a| ≤ |b|=⇒Ha ≤T Hb and |b| < |a|=⇒Hb <T Ha .

In particular, |a| = |b|=⇒ d(Ha) = d(Hb) and if we set d|a| = d(Ha), then
{dî : î < ù1} is an increasing sequence of Turing degrees of length ù1.

Much more was done with constructive ordinals and the Ha-sets in the fifties
and sixties, especially by Kleene who used them as his main tool for studying the
hyperarithmetical sets. We will not go much into this here, for good reasons that we
will explain in due course; but before we dig into our main topic, we need to discuss
briefly some important, early work that we will not cover in detail.

2C. Myhill [1955]. Two setsA,B are recursively isomorphic if one is carried onto
the other by a recursive permutation of N,

A ≡ B ⇐⇒ A ≤e B where ϕe : N½→N is a bijection.

Myhill [1955] introduces this notion and shows (among other things) that

for all A,B ⊆ N, if A ≡1 B , then A ≡ B,(19)

and so any two r.e. complete sets are recursively isomorphic. His methods also
combine easily and to significant advantage with some of the results above: for
example, Davis’ proof of (18) naturally gives the much neater12

|a| = |b| < ù2 =⇒Ha ≡ Hb .(20)

However, none of Davis, Kleene or Mostowski knew of this article of Myhill when
they wrote the papers we have been discussing.

2D. Effective grounded recursion. More significantly, neither Davis nor Mostowski
refer or appeal explicitly to the following basic fact:

Theorem 2D.1 (Kleene’s 2nd Recursion Theorem). For every recursive partial func-
tion f(e, x1, . . . , xn, α1, . . . , αm), there is a number e such that

{e}(x1, . . . , xn, α1, . . . , αm) = f(e, x1, . . . , xn, α1, . . . , αm).

For recursion on N, this was stated unbilled and proved13 in the last two lines
of Kleene [1938, §2] and it is the main technical tool that Kleene used for all his
work on constructive ordinals, hyperarithmetical sets—and much more. Myhill
[1955] also used it, crucially, as did Spector [1955] in his proof of the Uniqueness
Theorem 2B.1. Kleene and Spector use the 2nd Recursion Theorem to justify
effective grounded recursion, which we can illustrate here with a relevant example.

Consider Davis’ definition of the sets {La : a ∈ S1} which are his versions of the
Ha-sets:

11For a discussion of the Spector Uniqueness Theorem and an outline of its proof for S1
see Moschovakis [2010b, §9].

12This strong uniqueness property cannot be extended to ù2, cf. Moschovakis [1966], Nelson [1974].
13Choose k such that {k}(t, ~x, ~α) = f(S1,m

n (t, t), ~x, ~α) and take e = S1,m
n (k, k).
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(L1) L1 = ∅,
(L2) L2b = L′b , and
(L3) if a = 3 · 5e , then x ∈ La ⇐⇒ (x)1 ∈ He(x)2

.

Well, L1 is the complement of H1 and in the limit case Davis uses (x)1 and (x)2

rather than Kleene’s (x)0 and (x)1 which, together, don’t amount to much of a
difference. The two definitions should be equivalent up to Turing equivalence, and
they are:14

Lemma 2D.2. For every a ∈ S1, Ha ≡T La . In fact, there are recursive partial
functions u(a), v(a) which converge on S1 and satisfy

Ha ≤T
u(a) La , La ≤T

v(a) Ha (a ∈ S1).(∗)

The partial functions u(a), v(a) are uniformities which witness respectively the
reducibilities Ha ≤T La , La ≤T Ha .

Proof. The Turing equivalence Ha ≡T La should be more-or-less trivial by
induction on the ordinal |a| and it is, when |a| is 0 or a successor ordinal (granting
it for its predecessor). At a limit stage a = 3 · 5e , however, there is no obvious way
to put together the equivalencesHet ≡T Let supplied by the induction hypothesis to
prove thatHa ≡T La , and it is clear that we need to formulate a stronger, “uniform”
proposition which will supply a usable induction hypothesis at limit stages. For the
first reducibility in (∗), one “recursion loading device” that works is the following:

Sublemma. There is a recursive partial function f(i, a, x) which converges for all
i, x when i ≤ 1 and a ∈ S1 and satisfies the following:

x ∈ Ha ⇐⇒ f(0, a, x) = 0 ∨ [f(0, a, x) 6= 0 & f(1, a, x) ∈ La ].(∗∗)

Proof of the Sublemma. We set f(0, 1, x) = 0 and f(1, 1, x) = 1. If a = 2b for
some b, then f(0, a, x) = 1 and it is not hard to define f(1, a, x) from f(i, b, x) so
that (∗∗) holds using (15) in Footnote 6. Suppose now a = 3 · 5e and (∗∗) holds for
all ordinals less than |a|. We compute the conditions that f(i, a, x) must satisfy by
examining the equivalences which hold if it does:

x ∈ Ha ⇐⇒ (x)0 ∈ He(x)1

⇔ f(0, e(x)1
, (x)0) = 0 ∨ [f(0, e(x)1

, (x)0) 6= 0 & f(1, e(x)1
, (x)0) ∈ Le(x)1

]

⇔ f(0, e(x)1
, (x)0) = 0 ∨ [f(0, e(x)1

, (x)0) 6= 0 & 〈0, f(1, e(x)1
, (x)0), (x)1〉 ∈ La ]

⇐⇒ f(0, a, x) = 0 ∨ [f(0, a, x) 6= 0 & f(1, a, x) ∈ La ]

where we have used the induction hypothesis in the second line and the definition
of La in the third (with an irrelevant 0 put into the first position so that f(1, a, b)
codes a triple). So when a = 3 · 5e we need to have

f(0, a, x) = f(0, e(x)1
, (x)0), f(1, a, x) = 〈0, f(1, e(x)1

, (x)0), (x)1〉.(∗ ∗ ∗)

Now, the 2nd Recursion Theorem easily supplies us with a recursive partial function
f(i, a, x) which satisfies the relevant conditions for a = 1, a = 2b and (∗ ∗ ∗), and
then the proof is completed by a routine transfinite induction on |a|.

a (Proof of the Sublemma)

14In the terminology of Post [1944], the proof shows that Ha and La are equivalent by bounded truth
tables. Had Davis chosen to set L1 = N at the basis, then these modified Las are recursively isomorphic
with Kleene’s Ha sets, and by a simpler argument than the proof of this Lemma.
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The corresponding Sublemma for the second reducibility in (∗) is proved by a
similar construction, and then the two Sublemmas together imply (∗). a

Briefly (and vaguely), to “compute” a function f : D → N which is defined on
D ⊆ Nn by the recursion

f(~x) = G(f ¹{~x′ : ~x′ ≺ ~x}, ~x) (~x ∈ D)(21)

along some wellfounded relation≺⊂ (Nn×Nn), we use the 2nd Recursion Theorem
to find a recursive partialfwhich converges onD and satisfies (21) on the assumption
that one such f exists; and then we prove by induction along ≺ that f indeed
satisfies (21). It is very important for the applications that no definability assumptions
are needed for D or ≺, except as they might be used to define f; for the proof of
Lemma 2D.2, for example,

D = {(i, a, x) : a ∈ S1}, (i, a, x) ≺ (j, b, y) ⇐⇒ |a| < |b|,
and we have no estimate of the complexity of this D and this ≺, certainly not now.

The method is very general and we cannot do it justice here, but it has played
a very important role in the study of hyperarithmetical sets and so I thought it
important to give in full at least one proof which uses it. Another, similar but more
difficult example is the uniform version of Spector’s Uniqueness Theorem 2B.1:

|a| ≤ |b|=⇒Ha ≤T Hb uniformly for all a, b ∈ S1.

Its precise meaning is that there is a recursive partial function u(a, b), a uniformity,
such that

a, b ∈ S1 & |a| ≤ |b|=⇒ [u(a, b)↓ & Ha ≤T
u(a,b) Hb].(22)

This formulation not only gives useful, additional information, but is necessary for
the proof of the Uniqueness Theorem (by effective grounded recursion).

In the sequel I will often refer to effective grounded recursion and uniformity, but
with little detail and less explanation.15

3. The basic facts about HYP (1950 – 1960). A set A ⊆ N, relation R ⊆ Nn or
(total) function f : Nn → N is hyperarithmetical if it is recursive in some Ha ; HYP
is the set of all hyperarithmetical sets, and

if A ≤T
e Ha , then 〈a, e〉 is a HYP-code of A.(23)

To express succinctly (and prove) the basic properties of HYP-sets, it is useful to
think of them as “bundled” with their codes by the following general notion:

3A. Codings and uniformities. A (surjective) coding of a set X is a pair (C, ð),
where ð : C →→X is a surjection of the codeset C onto X , and we call any c ∈ C
a code (or name) of the object ð(c) ∈ X . If C ⊆ N, we say that the coding is in N.
These are the only codings we will need for a while.

So (S1, | |) is a coding of the constructive ordinals; (S1, a 7→ Ha) is a coding of
the Ha-sets; (S1, a 7→ La) is a coding of Davis’ La-sets; and for a very elementary

15Cf. Moschovakis [2010b], [2010a] for a discussion (and many examples), and Moschovakis [2009,
7A.4] for a specific result which codifies many of the applications of effective grounded recursion in
Descriptive Set Theory.
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12 YIANNIS N. MOSCHOVAKIS

example, (N, e 7→ ϕe) is a coding of the set of unary recursive partial functions. The
coding of HYP we introduced by (23) is formally the pair

(24) C = {〈a, e〉 : a ∈ S1 & {e}Ha is total},
ð(〈a, e〉) = {x ∈ N : {e}Ha (x) = 1}.

In practice we will never be so formal, in fact we will sometimes use codings which
are “specified by the context” without a formal definition of C and ð.

Codings are useful for expressing succinctly uniform properties of coded sets.
Their general theory is technically messy, not very interesting mathematically and
certainly not worth putting here.16 We will confine ourselves to these remarks and
“detail” sufficiently many claims to make the ideas clear. For example:

Lemma 3A.1. HYP is uniformly closed under complements and relative recursion.
In detail, there are recursive partial functions u(c) and v(c, e) such that:

(1) If A is HYP with code c, then u(c)↓ and is a HYP-code of (N \ A).
(2) If c is a HYP-code of a set B and A ≤T

e B , then v(c, e)↓ and is a HYP-code of
A.

This is a simple lemma, as are the similar claims of uniform closure of the hy-
perarithmetical relations (with their natural coding) under all first-order operations
on N. There is no use of effective effective grounded recursion in these proofs, we
only need appeal to uniform properties of the jump operation like (15). The next
result is also quite easy, but its proof requires effective grounded recursion and some
auxiliary definitions on the constructive ordinals:

Lemma 3A.2. HYP is uniformly closed under recursive unions.
In detail, there is a recursive partial function u(e) such that if ϕe is total and for

each t, ϕe(t) is a HYP-code of a set At ⊆ N, then u(e)↓ and is a HYP-code of
⋃
t At .

Coding invariance. Two codings (C1, ð1), (C2, ð2) in N of the same set X =
ð1[C1] = ð2[C2] are equivalent if there are recursive partial functions u1(a), u2(b)
such that

a ∈ C1 =⇒ [u1(a)↓ & u1(a) ∈ C2 & ð2(u1(a)) = ð1(a)]

and similarly with 1 and 2 interchanged. It is clear that propositions like Lem-
mas 3A.1 and 3A.2 which hold uniformly for a certain coding also hold uniformly
for every equivalent coding—and for some of them the proof might be easier.17 We
exploit this idea by establishing an elegant characterization of HYP which produces
a coding for it equivalent to the classical one in (23) but much simpler.

16The interested reader may want to look at Moschovakis [2010a] where it was necessary to develop
this generalized abstract nonsense in some detail.

17For a classical example, consider the coding of recursive partial functions specified by the Normal
Form Theorem in App 5. Its precise definition depends on the choice of computation model that we use,
Turing machines, systems of recursive equations or whatever, but all these codings are equivalent and so
uniform propositions about them are coding invariant. Rogers [1967, §4.3–§4.5] considers this situation
in some detail and formulates stronger notions of equivalence than the one we use.
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3B. HYP as effective Borel. An effective ó-algebra on N is any collection X ⊂
P(N) of sets of natural numbers which admits a coding (C, ð) in N so that the
following hold:
(1) Every singleton {{t}} belongs to X uniformly, i.e., for some total, recursive

u1(t) and every t, u1(t) is a code of {{t}} in X .
(2) X is uniformly closed under complements, i.e., there is a recursive partial

function u2(c) such that

c ∈ C =⇒ [u2(c)↓ & ð(u2(c)) = N \ ð(c)].

(3) X is uniformly closed under recursive unions, i.e., for some recursive partial
function u3(e),

(∀t)[ϕe(t)↓ & ϕe(t) ∈ C ] =⇒ [u3(e)↓ & u3(e) ∈ C & ð(u3(e)) =
⋃
t ð(Φe(t))].

As in the definition of (S1, | |), let b : N ⇀ P(N) be the least partial function on
N to P(N), such that
(1) b(〈1, t〉) = {{t}},
(2) b(〈2, y〉) = N \ b(y), and
(3) if ϕe is total and for every i , b(ϕe(i))↓ , then b(〈3, e〉) =

⋃
i b(ϕe(i))

and set

B = {i : b(i)↓}, Bi = b(i) (if i ∈ B), B = {Bi : i ∈ B},(25)

the collection of effective Borel subsets of N.
Lemma 3B.1. B is the least effective ó-algebra on N, uniformly.
Proof. The coding (B, i 7→ Bi) witnesses that B is an effective ó-algebra on N.

To see that it is uniformly the least one, suppose (C, ð) is a coding witnessing that
some X is an effective ó-algebra on N and define by a natural effective grounded
recursion a recursive partial function u such that

i ∈ B =⇒ [u(i)↓ & u(i) ∈ C & Bi = ð(u(i))]. a
Theorem 3B.2. HYP = B uniformly, i.e., (C, ð) in (24) and (B, i 7→ Bi) in (25) are

equivalent codings of HYP.
Proof. HYP is an effective ó-algebra on N by Lemmas 3A.1, 3A.2 and a simple

construction which puts into it every singleton, uniformly. By Lemma 3B.1 then,
B ⊆ HYP, uniformly. To prove HYP ⊆ B, we need to verify that every effective
ó-algebra onN is uniformly closed under the jump operation, relative recursion and di-
agonalization, which is not difficult as these operations can be effectively reduced to
complementation and the taking of recursive unions; we then use effective grounded
recursion to define a uniform embedding of HYP into B. a

Remark 3B.3. The theorem gives us a different view of hyperarithmetical sets and
a simpler way to prove important properties of them which do not explicitly refer
to the Ha-sets, and these include most of the important properties of HYP. I am
not certain who should be credited for it: it was “in the air” in the mid-sixties and
I think that it was probably first formulated by Shoenfield, but I cannot find now a
specific citation. In any case, it was certainly not known in the 50s, and our use of
it here is the most substantial anachronism in this exposition of what was proved
then.
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3C. Lebesgue [1905] and Mostowski [1951]. The situation is actually quite similar
to one that came up in classical analysis at the turn of the last century. Recall the
definition of Borel subsets ofN in (2) of Section 1D. In modern notation, the Borel
hierarchy {Σ

˜
0
î : î < Ω1} (on N ) is defined by setting

Σ
˜

0
1 = the collection of all open subsets of N(26)

and then by recursion on the countable ordinals,

A ∈ Σ
˜

0
î ⇐⇒ A =

⋃
i(N \ Ai) with each Ai ∈

⋃
ç<î Σ

˜
0
ç (î > 1).(27)

These definitions were first given (for the reals) by Lebesgue [1905] who proved
(among many other fascinating and much deeper things) that

B =
⋃
î<Ω1

Σ
˜

0
î .(28)

As it happens, most of the important applications of the Borel sets to analysis
(including measure theory and integration) use only the definitions and (28), which
is easy and handy for proving properties of Borel sets by ordinal induction. The
fine structure of the Borel hierarchy is a very interesting and much-studied topic but
not as fundamental as B.

The definition of hyperarithmetical sets in Mostowski [1951] is inspired by the
classical theory of Borel sets, although he does not cite Lebesgue [1905] or any other
“classical” work. It is a difficult paper to read, basically an outline: he appears to
define his hierarchy directly on ordinals rather than notations (which is not possible
with the tools he uses) and he refers cryptically to (what must be) effective grounded
recursion as “a rather developed technique which we do not wish to presuppose here”.
Kleene [1955a, Section 9] supplies the details which are needed to make Mostowski’s
construction rigorous and comes up with a precise characterization of the intended
hierarchy: in modern notation

Σa = {A ⊆ N : A is r.e. in Ha} = {A ⊆ N : A ≤1 H2a} (a ∈ S1).(29)

It is immediate from the definition that

if 1 ≤ |a| = k < ù, then Σa = Σ0
k .

Moreover, Σa depends only on the ordinal |a| by the Spector Uniqueness Theo-
rem 2B.1 and

HYP =
⋃
a∈S1

Σa .(30)

The hierarchy {Σa : a ∈ S1} has been studied even less that the Borel hierarchy
{Σ
˜ î : î < Ω1}, partly because the topic is not easy. It is obvious that it is a hierarchy,

since every Σa has a complete set (H2a ); but to prove (for example) that every Σa
is closed under conjunction you must use effective grounded recursion, and for more
difficult questions these proofs become very complex. In any case, we will not work
with it here: for what we will do, the identification HYP = B suffices and yields
simpler proofs.
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HYPERARITHMETICAL SETS 15

3D. The analytical hierarchy; HYP ⊆ ∆1
1. Useful and natural as the characteri-

zation HYP = B may be, it does not provide explicit definitions for the hyperarith-
metical sets and relations. These require quantification over sets of natural numbers
or, equivalently, the Baire space N = NN.

A relation P(~x, ~â) with arguments in N and (possibly) N is analytical if it is
first-order definable in the two-sorted structure of analysis

N2 = (N,N , 0, 1,+, ·, ap)(31)

where ap(α, t) = α(t) is the application operation. Kleene [1955a] classifies the
arithmetical and analytical relations with arguments in N and N in hierarchies
which look so much like the arithmetical hierarchy over N that we pictured them
together in Figure 1. We are mostly interested here in the “first level” of the
analytical hierarchy, the pointclasses18 Π1

1,Σ
1
1,∆

1
1, but it is almost as easy to define

them all. Briefly, and using the notions and notation in the Appendix:

(1) P(~x, ~â) with ~x = (x1, . . . , xn) ∈ Nn and ~â = (â1, . . . , âm) ∈ Nm is Σ0
1 if it is

the domain of convergence of a recursive partial function,

P(~x, ~â) ⇐⇒ f(~x, ~â)↓ ;

P is Π0
k if it is the negation of a Σ0

k relation; P is Σ0
k+1 if

P(~x, ~â) ⇐⇒ (∃t)Q(~x, t, ~â) with Q in Π0
k ;

and ∆0
k = Σ0

k ∩Π0
k .

These are the arithmetical relations with arguments in N andN , those which can
be defined in N2 without using quantification over N .

(2) P(~x, ~â) is Π1
1 if

P(~x, ~â) ⇐⇒ (∀α)Q(~x, ~â, α),(32)

with arithmetical Q(~x, ~â, α); it is Π1
k if it is the negation of a Σ1

k relation; and it is
Σ1
k+1 if

P(~x, ~â) ⇐⇒ (∃α)Q(~x, ~â, α) with Q in Π1
k ;

and ∆1
k = Σ1

k ∩Π1
k .

The analytical pointclasses Π1
k ,Σ

1
k ,∆

1
k have all the closure properties of their

analogs Π0
k ,Σ

0
k ,∆

0
k in the arithmetical hierarchy over N, and they are also closed

under number quantification of both kinds and under substitution of total recursive
functions into N or N , App 8. In addition, Π1

k is closed under ∀α and Σ1
k is

closed under ∃α. These closure properties are very easy to prove, but not without
consequence:19

Lemma 3D.1. The codeset B of B = HYP defined in (25) is Π1
1.

18A pointclass in this paper is any collection Γ of relations P(~x, ~α) with arguments in N and N . It is
an awkward term but useful, and is has been well established since the 70s for collections of relations in
various spaces typically specified by the context.

19They also suffice to prove that the notation system S1 is Π1
1, cf. Lemma 1 in the proof of Theorem

9.2 in Moschovakis [2010b].
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16 YIANNIS N. MOSCHOVAKIS

Proof. By its definition, B is the least fixed point Φ of the monotone operator
Φ : P(N) → P(N) defined by

(33) x ∈ Φ(A) ⇐⇒ (∃t)[x = 〈1, t〉] ∨ (∃y)[x = 〈2, y〉 & y ∈ A]

∨ (∃e)[x = 〈3, e〉 & (∀i)(∃w)[ϕe(i) = w & w ∈ A]]

so that by (59),

i ∈ B ⇐⇒ (∀A)[[(∀x)[x ∈ Φ(A) =⇒x ∈ A]] =⇒ i ∈ A].

If we code each set A by the 0-set Zα = {x : α(x) = 0} of some α ∈ N and set

Φ(x, α) ⇐⇒ x ∈ Φ(Zα),(34)

then Φ(x, α) is arithmetical (just replace u ∈ A by α(u) = 0 in (33)); and

i ∈ B ⇐⇒ (∀α)[[(∀x)[Φ(x, α) =⇒α(x) = 0]] =⇒α(i) = 0],

so that B is Π1
1. a

This is a very general method of proof: it can be used to show that if Φ is
monotone on P(N) and the relation Φ(x, α) associated with Φ by (34) is Π1

1, then Φ
is Π1

1 and, of course, it can be generalized in many ways.

Much of the theory of Π1
1 depends on the following refinement of its defini-

tion (32):

Theorem 3D.2 (Normal Form for Π1
1). Every Π1

1 relationP(~x, ~â) satisfies an equiv-
alence

P(~x, ~â) ⇐⇒ (∀α)(∃t)R(~x, ~â, α(t))(35)

where R(~x, ~â, u) is recursive and monotone upward on its last (sequence code) argu-
ment, i.e.,

[R(~x, ~â, u) & u v v] =⇒R(~x, ~â, v).(36)

It is easy to prove, using the closure properties of Π1
1, the somewhat unusual “dual”

of the Axiom of Choice, that for every relation R(t, s),

(∃t)(∀s)R(t, s) ⇐⇒ (∀α)(∃t)R(t, α(t))

and the Normal Form Theorem for recursive partial functions, App 5. By App 5
again, it implies the analog of (2) in Lemma 1B.1:

Lemma 3D.3 (N-Parametrization for Π1
1). For all n,m ≥ 0, there is a Π1

1 relation

G(e, ~x, ~â) ⇐⇒ Gn,m(e, x1, . . . , xn, â1, . . . , âm)

such that for every Π1
1 relation P(~x, ~â),

P(~x, ~â) ⇐⇒ G(e, ~x, ~â) for some e ∈ N;(37)

moreover, there are recursive injections S ln : N1+l → N such that for all tuples ~y =
y1, . . . , yl ∈ N,

G l+n,m(e, ~y, ~x, ~â) ⇐⇒ Gn,m(S ln(e, ~y), ~x, ~â).(38)
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When (37) holds, we call e a Π1
1-code of P(~x, ~â) and a Σ1

1-code of its negation
¬P(~x, ~â); and if e is a Π1

1-code andm a Σ1
1-code of P(~x, ~â), then 〈e,m〉 is a ∆1

1-code
of it.

To see how the Parametrization Property is used, supposeR(~x, t) is a Π1
1 relation

on N (for simplicity) with code e and

P(~x) ⇐⇒ (∃t)R(~x, t).

Let Q(m, ~x) ⇐⇒ (∃t)G(m, ~x, t) (with the appropriate superscripts) and let s be a
Π1

1-code of Q; then

P(~x) ⇐⇒ (∃t)R(~x, t) ⇐⇒ (∃t)G(e, ~x, t)

⇐⇒ Q(e, ~x) ⇐⇒ G(s, e, ~x) ⇐⇒ G(S1
1 (s, e), ~x),

so S1
1 (s, e) is a code of P(~x). The upshot is that Π1

1 is uniformly closed under ∃s ,
and by similar, trivial computations, Π1

1,Σ
1
1 and ∆1

1 are uniformly closed under all
(reasonable) operations under which they are closed, including those listed above.
This implies that the collection of ∆1

1 subsets of N is an effective ó-algebra on N,
which with Lemma 3B.1 then yields

Theorem 3D.4 (Kleene [1955a]). HYP ⊆ ∆1
1, uniformly. In detail, there are rela-

tions HΣ(i, x) and HΠ(i, x) in Σ1
1 and Π1

1 respectively, such that

i ∈ B =⇒
(
x ∈ Bi ⇐⇒ HΣ(i, x) ⇐⇒ HΠ(i, x)

)
.

Davis [1950a] and Mostowski [1951] had already shown that every HYP-relation
is analytical, but Kleene’s result is a considerable improvement and begs for the
converse.

3E. Kleene’s Theorem, HYP = ∆1
1. This was the most important, early result

about HYP and it is still the most fundamental.

Theorem 3E.1 (Kleene [1955c]). ∆1
1 ⊆ HYP, uniformly, so HYP = ∆1

1.

The foundational import of Kleene’s Theorem is that it reduces existential quan-
tification (∃α) over the continuumN to regimented iteration of first-order quantifi-
cation over N—in the very special circumstances where a set A and its complement
can both be defined by just one such quantification on arithmetical relations.

There are many proofs of Kleene’s Theorem, all of them ultimately based on the
Normal Form Theorem 3D.2 for Π1

1 and using effective grounded recursion. The
proof in Kleene [1955c] is quite complex and depends on several technical results
about constructive ordinals and the Ha-sets. To outline briefly the much simpler
argument in Spector [1955], put first

x ≤f y ⇐⇒ ϕf(x, y) = 0, L = {f : ϕf is total and ≤f is a linear order},
W = {f ∈ L : ≤f is a wellordering},
||f|| = the order type of ≤f (f ∈W ).

By Markwald’s Theorem 2A.1, {||f|| : f ∈ W } is exactly the set constructive
ordinals, and we set

Wî = {f ∈W : ||f|| ≤ î} (î < ù1).
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The first move is to check that the initial segments {f : ||f|| ≤ ||s ||} of W are
uniformly ∆1

1 for s ∈W :

Lemma 3E.2. There are binary relations≤Σ and≤Π in Σ1
1 and Π1

1 respectively, such
that

s ∈W =⇒
(

[f ∈W & ||f|| ≤ ||s ||] ⇐⇒ f ≤Σ s ⇐⇒ f ≤Π s
))
.

Proof. Set

f ≤Σ s ⇐⇒ f, s ∈ L & there is an order-preserving embedding of ≤f into ≤s ,

f ≤Π s ⇐⇒ f, s ∈ L & there is no order preserving embedding of ≤s

into a proper initial segment of ≤f .

To verify that these relations do it, we code embeddings using elements of Baire
space and use the closure properties of Σ1

1 and Π1
1. a

The second move introduces what is now called the Kleene-Brouwer or Luzin-
Sierpinski ordering on finite sequences. It is used in Kleene [1955c] and in many
proofs of Kleene’s Theorem:

Lemma 3E.3 (Spector [1955]). W is Π1
1-complete, uniformly.

In detail: W is Π1
1 and there is a recursive function u1(a) such that if a is a Π1

1-code
of a set A ⊆ N, then ϕu1(a) is injective and

x ∈ A ⇐⇒ {u1(a)}(x) ∈W.
Proof. W is Π1

1 directly from its definition. To show that it is Π1
1-complete,

suppose that A is Π1
1 with code a, so that by Theorem 3D.2 and Lemma 3D.3,

x ∈ A ⇐⇒ G(a, x) ⇐⇒ (∀α)(∃t)R(a, x, α(t))

with a fixed recursive R(a, x, v) (not depending on A) which is monotone upward
in its last argument. Define the transitive relation

u ¹a,x v ⇐⇒ v v u & ¬R(a, x, u)

and prove that

x ∈ A ⇐⇒ (∀α)(∃t)R(a, x, α(t)) ⇐⇒ ¹a,x is wellfounded,(39)

most easily by checking its contrapositive

x /∈ A ⇐⇒ (∃α)(∀t)¬R(a, x, α(t)) ⇐⇒ ¹a,x is not wellfounded.

We then linearize ¹a,x by setting

u ≤a,x v ⇐⇒ ¬R(a, x, u) & ¬R(a, x, v)

&
(
v v u ∨ [u | v & min{(u)i : i < lh(u)} < min{(v)i : i < lh(v)}]

)
;

verify that this is a linear ordering such that

x ∈ A ⇐⇒ ≤a,x is a wellordering,

in fact≤a,x=≤g(a,x) with a recursive g such that for any a, x, g(a, x) ∈ L; and infer
that

x ∈ A ⇐⇒ ≤a,x is a wellordering ⇐⇒ g(a, x) ∈W.(40)
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To finish the proof we need to define a recursive u1(a) such that {g(a, x)}(s) =
{{u1(a)}(x)}(s) and {u1(a)} is injective for every a, and this is done by manipu-
lating the S ln- functions as usual. a

The third move is Spector’s. It is what makes his proof simpler than Kleene’s who
worked with O rather than W .

Lemma 3E.4 (Boundedness, Spector [1955]). Every Σ1
1 subset of W is a subset of

Wî for some î < ù1, uniformly.
In detail: there is a recursive partial function u2(b) such that if b is a Σ1

1-code of a
set A ⊆ N, then

A ⊆W =⇒ [u2(b)↓ , u2(b) ∈W, and A ⊆W||u2(b)||].

Proof. Let G(b, x) be a parametrization of the unary Π1
1 relations by Lemma

3D.3, so that a set A ⊆ N is Σ1
1 with code b if

A = Gc
b = {s : ¬G(b, s)}.

Fix also by the Π1
1-completeness of W a recursive injection g : N→ N such that

G(x, x) ⇐⇒ g(x) ∈W.(∗)

The relation

P(b, f) ⇐⇒ (∃s)[¬G(b, s) & g(f) ≤Σ s]

is Σ1
1, and so by Lemma 3D.3 again, there is a recursive injection v(b) = S2

1 (k, b)
(with some k) such that

(∃s)[¬G(b, s) & g(f) ≤Σ s] ⇐⇒ ¬G(v(b), f).(∗∗)

The key observation is that

if A = Gc
b ⊆W , then G(v(b), v(b)) :

because if A ⊆ W and ¬G(v(b), v(b)), then there is some s ∈ W such that
g(v(b)) ≤Σ s ; which gives g(v(b)) ∈ W by Lemma 3E.2; which in turn gives
G(v(b), v(b)) by (∗), contradicting the hypothesis. From G(v(b), v(b)) we get
g(v(b)) ∈W , by (∗) again, and so by taking negations in (∗∗),

A = Gc
b ⊆W =⇒ (∀s)[s ∈ A=⇒||s || < ||g(v(b))||],

which is what we needed to show with u2(b) = g(v(b.b)). a
Outline of proof of Theorem 3E.1. By the two lemmas, if A is ∆1

1 with code
〈a, b〉, then

x ∈ A ⇐⇒ {u1(a)}(x) ∈Wî with î = ||u2(b)||.(41)

To complete the proof we need to show that W||f|| is in B uniformly for f ∈ W ,
and this is done by a fairly straightforward effective grounded recursion along
{(f, g) : f, g ∈W & ||f|| ≤ ||g||}. a

Spector’s write-up of his proof is not quite this simple because he works with
the Ha-codes rather than the B-codes of HYP and (in effect) proves the uniform
inclusion B ⊆ HYP on the fly.

Moreover, neither Kleene nor Spector claimed explicitly the full, uniform version
of Kleene’s Theorem 3E.1, although all the “mathematical facts” needed for it are
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in their papers.20 Most likely they did not even think of it: in the spirit of the time, a
result was formulated uniformly only when this was necessary, typically in order to
prove it by effective grounded recursion. Uniform claims did not become important
in themselves until the 70s, when the applications of these ideas to Descriptive Set
Theory made them necessary. We will discuss this briefly in Section 4B.

Spector’s Lemmas 3E.2 – 3E.4 are important results with many applications
besides their use in proving Kleene’s Theorem. We state one of them here and then
one more, not quite so simple in the next section.21

Theorem 3E.5 (Spector [1955]). If ¹ is a ∆1
1 wellordering with field F ⊆ N, then

rank(¹) < ù1, uniformly.
This is usually abbreviated by the equation

ä1
1 = ù1,

ä1
1 being the least ordinal which is not the order type of a HYP wellordering.

Proof. Suppose, towards a contradiction that¹ is a ∆1
1 wellordering with rank(¹

) ≥ ù1 and set

f ∈ A ⇐⇒ f ∈ L & there is an order preserving map of ≤f into ¹.
This is a Σ1

1 set and the hypotheses imply thatA = W , which contradicts Lemma 3E.4.
The uniform version is proved similarly, using the uniform version of the same
Lemma. a

3F. Addison [1959] and the revised analogies. Kleene’s Theorem 3E.1 is an imme-
diate consequence of the following more general

Theorem 3F.1 (Strong Separation for Σ1
1, Addison [1959]). For any two disjoint,

Σ1
1 subsets of N, there is a HYP set C which separates them, i.e.,

A ⊆ C, C ∩ B = ∅.
In fact, Addison [1959] claims more and less than this result: he states it for subsets

A,B of any product space Nn ×Nm rather than just N and his (abbreviated) proof
is formulated quite abstractly and also gives the classical Separation Theorem 1D.2
for Σ

˜
1
1; but he does not note that the result holds uniformly (in given Σ1

1-codes of
A and B), which it does, and he only says of the separating set C that “it is ∆1

1”
skipping the punchline “and hence HYP” which he certainly knows for subsets of
N. This may be partly because there was no generally accepted definition of HYP
subset of Nn ×Nm at the time, or because Addison’s paper is about separation and
not construction principles. He also does not discuss the obvious revision of the
analogies (7)

recursive function on N ∼ continuous function on N ,
HYP ∼ B,

Π1
1 sets of integers ∼ Π

˜
1
1 subsets of N ,

(42)

20What’s missing in their papers is the second part in the proof of the Boundedness Lemma 3E.4
which looks tricky at first sight but is a standard, elementary tool in this area. It computes “witnesses to
counterexamples” using diagonalization in very general circumstances, and we have already used it to
establish the uniform properties of the jump in Footnote 6.

21Cf. App 9 for the notation we use about wellorderings and ranks.
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which are the working hypotheses of Mostowski [1951]. They are bolstered by the
following result which is not hard to prove using Spector-type ordinal assignments
and the method of proof of Kleene’s Theorem 1D.3:

Theorem 3F.2. There exists disjoint Π1
1-sets A,B which are not HYP-separable,

i.e., no HYP set C satisfies

A ⊆ C, C ∩ B = ∅.

On the other hand, to my knowledge, Addison [1959] was first to refer to Effective
Descriptive Set Theory, which suggests that more than “analogies” are in play; and
he introduced the modern lightface Σ1

k , . . . and boldface Σ
˜

1
k . . . notation which has

been universally accepted.
3G. Relativization and the Kreisel Uniformization Theorem. We mention in App 6

the method of proof by relativization, which works because (roughly) recursion in
some fixed parameters ~â has all the properties of “absolute” recursion. It is not
simple to formulate a general metatheorem which captures all its applications—
especially when uniformities are involved which should be “absolutely” recursive.
It is, however, a very powerful method, heavily used by the early researchers in
hyp theory, especially Kleene and Spector. We illustrate it here by proving two
important and useful results.

The relative forms Σi,
~â

k ,Π
i,~â
k ,Σ

i,~â
k ,∆

i,~â
k of the arithmetical and analytical hierarchies

are defined simply by replacing “recursive” by “recursive in ~â” in their definitions,
and they have all the properties of their absolute forms, including Lemma 1B.1
(with absolutely recursive S l,mn functions).

The same is true for the relativized system S
~â
1 of ordinal notations: we simply

replace et in Section 2A by e
~â
t = {e}~â(tO) and write |a|~â for the ordinal with code

a ∈ S ~â
1 . Markwald’s Theorem 2A.1 remains true: an ordinal î is less than

ù
~â
1 = sup{|a|~â : a ∈ S ~â

1 }

exactly when it is the order type of a wellordering (of part of N) which is recursive

in ~â . We use these ordinals to define the relativized H
~â
a sets by replacing (H2) in

Section 2B by

(H2~â) H
~â

2b = jump(H
~â
b ; ~â) = {e : {e}(e,H

~â
b ,
~â)↓}

and we set

A ∈ HYP
~â ⇐⇒ (∃a ∈ S ~â

1 )[A ≤T H
~â
a ].

With these definitions, all the basic facts about HYP relativize, including Spector’s
Uniqueness Theorem 2B.1, the characterization of HYP

~â as the least ó-algebra on

N which is effective in ~â , Theorem 3B.2 and the uniform inclusion HYP
~â ⊆ ∆1,~â

1 ,
Theorem 3D.4. For the converse inclusion (Kleene’s Theorem), we need to relativize
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the basic notions of Spector [1955]: we set

x ≤~â
f y ⇐⇒ ϕf(x, y, ~â) = 0,

L
~â = {f : (∀x, y)[ϕf(x, y, ~â)↓ ] and ≤~â

f is a linear order},
W

~â = {f ∈ L~â : ≤~â
f is a wellordering},

||f||~â = the order type of ≤~â
f (f ∈W ~â).

Using these we get immediately the relativized versions of Lemma 3E.2 and (what
we need of) the relativized version of Lemma 3E.3, basically (40):

(1) There are relations ≤~â
Σ and ≤~â

Π in Σ1
1 and Π1

1 respectively, such that for all ~â ,

s ∈W ~â =⇒
(

[f ∈W ~â & ||f||~â ≤ ||s ||~â ] ⇐⇒ f ≤~â
Σ s ⇐⇒ f ≤~â

Π s
))
.

(2) If P(~x, ~â) is Π1
1, then there is a total recursive function f(~x) such that

P(~x, ~â) ⇐⇒ f(~x) ∈W ~â .

These suffice to relativize Spector’s proof of the non-uniform version of Kleene’s
Theorem 3E.1

for every ~â, HYP
~â = ∆1,~â

1 ,

and a little more detailed version of (2) gives also the uniform version.

With single sets rather than tuples of functions ~â , for simplicity, we set

A ≤h B ⇐⇒ A ∈ HYPB ⇐⇒ A is hyperarithmetical in B.

The hyperdegrees that are induced by this reducibility have been studied extensively,
cf. Sacks [1990]. We will not go into this topic here, except for the following,
early and important result. To appreciate what it says, notice that because W is
Π1

1-complete,

W ≤h A ⇐⇒ every Π1
1 set is hyperarithmetical in A.

Theorem 3G.1 (Spector [1955]). For every set A ⊆ N,

W ≤h A ⇐⇒ ù1 < ùA
1 ,

and in relativized form, for all A,B ⊆ N,

W A ≤h B ⇐⇒ ùA
1 < ùB

1 .

Proof. Suppose first that W ≤h A and set

x ∈ D ⇐⇒
(
x ∈W & (∀y)[(y ∈W & ||y|| = ||x||) =⇒x ≤ y

)
,

x ¹ y ⇐⇒ x, y ∈ D & ||x|| ≤ ||y||;
now ¹ is a wellordering of rank ù1 and it is ∆1,A

1 , so its rank is below ä1,A
1 = ùA

1 by
the relativized version of Spector’s Theorem 3E.5.

The converse is a bit easier. a
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Our second example illustrates a somewhat more subtle application of the rela-
tivization technique: roughly, it proves a universal property (∀~â)Q(~â) by treating
an arbitrary tuple ~â as a parameter, relativizing to it the proof of a simple (absolute)
proposition, and then exploiting the uniform nature of the proof to inferQ(~â) with
variable ~â .

Theorem 3G.2 (Π1
1-Uniformization on N, Kreisel [1962]). For every Π1

1 relation
P(~x, y, ~â), there is a Π1

1 relation P∗(~x, y, ~â) such that

P∗(~x, y, ~â) =⇒P(~x, y, ~â) and (∃y)P(~x, y, ~â) =⇒ (∃ !y)P∗(x, y, ~â).(43)

It follows that if P(~x, y) is Π1
1, then

(∀~x)(∃y)P(~x, y) =⇒ (∃f : Nn → N)[f is HYP & (∀~x)P(~x,f(~x))].

Proof. In the simple case where the list ~â of variables overN is empty, we choose
a recursive g : Nn → N such that P(~x, y) ⇐⇒ g(~x, y) ∈W and set

P∗(~x, y) ⇐⇒ P(~x, y) & (∀u)[g(~x, y) ≤Π g(~x, u)]

& (∀u)[g(~x, u) ≤Σ g(~x, y) =⇒ y ≤ u].

This also gives the second claim: check that if (∀~x)(∃y)P(~x, y), then P∗(~x, y) is
the graph of a function f and it is ∆1

1, since

¬P∗(~x, y) ⇐⇒ (∃z)[P∗(~x, z) & z 6= y)].

To get the more useful claim with parameters, we relativize this argument using
(1) and (2) above. Given a Π1

1 relation P(~x, y, ~â), choose a recursive g(~x, y) such
that

P(~x, y, ~â) ⇐⇒ g(~x, y) ∈W ~â

and set

P∗(~x, y, ~â) ⇐⇒ P(~x, y, ~â) & (∀u)[g(~x, y) ≤~â
Π g(~x, u)]

& (∀u)[g(~x, u) ≤~â
Σ g(~x, y) =⇒ y ≤ u].

The check that this works is exactly as before. a
The Kondo-Addison Uniformization Theorem for Π1

1 relations P(~x, α, ~â) (Kondo
[1938], Addison) is much deeper, but this simple result is also interesting and very
useful.

3H. HYP-quantification and the Spector-Gandy Theorem. The (coded) graph of
a function α : N→ N is the set

Graph(α) = {〈s, t〉 : α(s) = t} ⊂ N,
and we often write “α ∈ HYP” when we really mean “Graph(α) ∈ HYP”, i.e., that
α is hyperarithmetical. We collect here some interesting, easy (now) facts about
the quantifier (∃α ∈ HYP) and we also formulate the basic Spector-Gandy Theorem
about it—which has never been easy.
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It is natural to code the HYP-functions using a subset of the coding of HYP-sets
as effectively Borel in (25):

(44) B1 = {i ∈ B : Bi = Graph(α) for some α},
and if i ∈ B1, then âi(s) = t ⇐⇒ 〈s, t〉 ∈ Bi .

The key (easy) facts about this coding is that B1 is Π1
1 by Lemma 3D.1 and Theo-

rem 3D.4, and that for each i ∈ B1, the relation

α = âi ⇐⇒ (∀s, t)[α(s) = t ⇐⇒ 〈s, t〉 ∈ Bi ](45)

is ∆1
1 uniformly, by Theorem 3D.4 again.

Theorem 3H.1. (1) HYP-Quantification Theorem, Kleene [1955c], [1959a]. If

P(~x) ⇐⇒ (∃α ∈ HYP)Q(~x, α)(46)

and Q(~x, α) is Π1
1, then P(~x) is also Π1

1.

(2) HYP is not a basis for Π0
1, Kleene [1955c]. There is a non-empty, Π0

1 set
A ⊆ N which has no HYP members.

(3) Upper classification of HYP. As a subset of N , HYP is Π1
1.

(4) Lower classification of HYP. As a subset of N , HYP is not Σ1
1.

Proof. (1) Compute:

(∃α ∈ HYP)Q(~x, α) ⇐⇒ (∃i)[i ∈ B1 & (∀α)[α = âi =⇒Q(~x, α)]].

(2) Towards a contradiction, assume that every non-empty, Π0
1 set A ⊆ N has a

HYP member and let P ⊆ N be an arbitrary Σ1
1 set. By the Normal Form for Π1

1
Theorem 3D.2 (applied to ¬P),

P(x) ⇐⇒ (∃α)(∀t)R(x, t, α) ⇐⇒ Ax = {α : (∀t)R(x, t, α)} 6= ∅
with a recursive R. Since every Ax is Π0

1, our assumption implies that

P(x) ⇐⇒ (∃α ∈ HYP)(∀t)R(x, t, α);

which by (1) means that every Σ1
1 subset of N is Π1

1, which it is not.

(3) α ∈ HYP ⇐⇒ (∃i)[i ∈ B1 & α = âi ].

(4) The relation P(i, α) ⇐⇒ i ∈ B1 & α = âi is Π1
1, so by the Kreisel

Uniformization Theorem 3G.2, there is a Π1
1 relation P∗(i, α) such that

P∗(i, α) =⇒ i ∈ B1 & α = âi , α ∈ HYP =⇒ (∃!i)P∗(i, α).

Let D(i) ⇐⇒ (∃α ∈ HYP)P∗(i, α). This is Π1
1 by (1), but if HYP is Σ1

1, then it is
also Σ1

1, since

D(i) ⇐⇒ (∃α)[α ∈ HYP & (∀j)[P∗(j, α) =⇒ i = j]].

It follows that the function

â(i) =

{
1−· âi(i) if D(i),
0 otherwise

is ∆1
1 and has no code in B1, which is absurd. a
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Kleene [1959b] proved Part (1) of this theorem with a Π0
1 relation Q(~x, α) and

asked whether this version of (46) gives a normal form for Π1
1. Spector [1960]

proved that it does, and Gandy [1960] gave an independent proof of this basic fact
after hearing of Spector’s result.

Theorem 3H.2 (Spector [1960], Gandy [1960]). Every Π1
1 relationP onN satisfies

an equivalence

P(~x) ⇐⇒ (∃α ∈ HYP)(∀t)R(~x, α(t))(47)

with a recursive R(~x, u). In fact, R(~x, u) can be chosen so that

P(~x) ⇐⇒ (∃α ∈ HYP)(∀t)R(~x, α(t)) ⇐⇒ (∃!α ∈ HYP)(∀t)R(~x, α(t)).

Spector’s proof is difficult, as is Gandy’s, both of them depending on a detailed,
combinatorial analysis of Π1

1 definitions and properties of the constructive ordinals
coded by O. Easier proofs and generalizations of the first claim (without the
uniqueness) were found later, cf. Moschovakis [1969], [1974], [2009].

Taken together, Kleene’s HYP-Quantification and the Spector-Gandy Theorem
have important foundational import, perhaps best expressed by the following

Corollary 3H.3 (Kleene, Spector). A relation P(~x) on N satisfies

P(~x) ⇐⇒ (∀α)Q1(~x, α)

with an arithmetical Q1(~x, α) if and only if it satisfies

P(~x) ⇐⇒ (∃α ∈ HYP)Q2(~x, α)

with an arithmetical Q2(~x, α).

Moreover, the equivalence holds uniformly, i.e., Q2 can be constructed from Q1

and vice versa.

The Corollary reduces one quantification over the continuum N on arithmetical
relations to one quantification (of the opposite kind) over the countable set HYP (
N whose members are constructed by regimented iteration of quantification over
N.

3I. The Kleene [1959a] HYP hierarchy. This is perhaps the deepest and certainly
the most difficult technical work of Kleene on hyperarithmetical sets.22

Theorem 3I.1 (Kleene [1959a]). If the monotone operator ∆ on P(N ) is defined
by (52) below, then

ç < î < ù1 =⇒∆
ç
( ∆

î
and HYP =

⋃
î<ù1

∆
î
.(48)

Even without the definition of ∆, a hierarchy of the form {∆î : î < ù1} on HYP
is more satisfactory than hierarchies like (29), because it is constructed without
reference to any codings: there is no need for results like Spector’s Uniqueness
Theorem to establish coding invariance. The specific operator ∆ that we define next
also gives a novel understanding of HYP and yields many interesting applications.

22It is also his last paper on the subject.
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Definitions with range and basis F . A relation P(~x) is Σ1
1 with range F ⊆ P(N ) if

P(~x) ⇐⇒ (∃α ∈ F)Q(~x, ~â, α)(49)

with ~â = â1, . . . , âm ∈ F and an arithmetical Q; it is Σ1
1 with basis F if

P(~x) ⇐⇒ (∃α)Q(~x, ~â, α) ⇐⇒ (∃α ∈ F)Q(~x, ~â, α)(50)

with ~â ∈ F and an arithmetical Q; and it is ∆1
1 with range or basis F if both P and

its negation ¬P are Σ1
1 with range or basis F respectively.

If P(~x) is Σ1
1 with basis F , then it is also Σ1

1 with range F , clearly. The converse
is not true: because every Π1

1 relation is Σ1
1 with range HYP by the Spector-Gandy

Theorem 3H.2, while

if P(~x) is Σ1
1 with basis HYP, then P(~x) is HYP(51)

by Kleene’s HYP-Quantification Theorem 3H.1 (1)—and Theorem 3E.1, of course,
the inclusion ∆1

1 ⊆ HYP being basic to all this work. We let23

∆(F) = {A ⊆ N : A is arithmetical or ∆1
1 with basis F}.(52)

It is clear from (51) that ∆(HYP) = HYP, and so the least fixed point ∆ of ∆ is
included in HYP. For the rest of (48), Kleene needs to show that
(1) HYP ⊆ ∆, and

(2) if ç < î < ù1, then ∆
ç
( ∆

î
.

For (1), he proves (in effect) that

a ∈ O=⇒ Ha is ∆1
1 with basis

⋃
|b|<|a| Σb

with Σa defined in (29). The key idea for (2) is to use the ramified analytical hierarchy
comprising the iterates of the monotone operator

An(F) = {A ⊆ N : for some n, A is Σ1
n with range F}

on P(N ). Kleene shows that if î < ù1, then An
î ⊆ HYP; and so if κ(∆) <

ù1, then HYP = ∆ would be a fixed point of An which contradicts the Spector-
Gandy Theorem. Both proofs are by effective grounded recursion and require more
detailed, delicate formulations of (1) and (2) to go through.

To formulate one of the simplest and most elegant characterizations of HYP
that comes out of Theorem 3I.1, recall the two-sorted structure of analysis N2 =
(N,N , 0, 1,+, ·, ap) we used in Section 3D. Its formal language A2 has variables
x, y, . . . , s, t, . . . over N and α, â, · · · over N and symbols 0, 1,+, ·, ap. Its standard
interpretation is N2. We are interested in general, ù-models of A2-theories in which
the number variables range over N and the function variables over some F ⊆ N ,
and for any formula ϕ we will write

F |= ϕ ⇐⇒ (N,F , 0, 1,+, ·, ap) |= ∀∀ϕ
where ∀∀ϕ is the universal closure of ϕ. As usual, we identify sets with their
representing functions in such models,

A ∈ F ⇐⇒ ÷A ∈ F (A ⊆ N).

23We need to include all arithmetical sets in ∆(F), ow. ∆(∅) = ∅ and ∆ would close at 0 and build up
the empty set.
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An A2-formulaϕ is arithmetical if no function quantifiers occur in it. As usual, by
ϕ(x, y, â, ã) we will denote any formula in which the variables x, y, â, ã may occur
free but do not necessarily include all the variables which occur free in ϕ.

We consider three axiom schemes in A2:

Arithmetical comprehension. With arithmetical ϕ(s) (in which α does not occur
free),

(∃α)(∀s)[α(s) = 1 ⇐⇒ ϕ(s)].(∆0
∞-Comp)

∆1
1-comprehension. With arithmetical ϕ(s, ã), ø(s, ã) (in which α does not occur

free),

(∆1
1-Comp) (∀s)[(∃ã)ϕ(s, ã) ⇐⇒ (∀ã)ø(s, ã)]

=⇒ (∃α)(∀s)[α(s) = 1 ⇐⇒ (∃ã)ϕ(s, ã)].

Σ1
1-Choice. With arithmetical ϕ(s, α, ã),24

(∀s)(∃α)(∃ã)ϕ(s, α, ã) =⇒ (∃α)(∀s)(∃ã)ϕ(s, (α)s , ã).(Σ1
1-Choice)

Clearly, (∆1
1-Comp) =⇒ (∆0

∞-Comp), and Kreisel [1961] verified that25

(∆0
∞-Comp) + (Σ1

1-Choice) =⇒ (∆1
1-Comp).(53)

Theorem 3I.2. (1) (Kleene [1959a], Kreisel [1961]) HYP is the least model of
(∆1

1-Comp).

(2) (Kreisel [1961]) HYP satisfies (Σ1
1-Choice).

Proof. (1) If A is Σ1
1 with range HYP, then it is Π1

1 by the HYP-Quantification
Theorem 3H.1 (1); and if A is also Π1

1 with range HYP, then it is ∆1
1 and hence

HYP. This proves that HYP satisfies (∆1
1-Comp), if we apply it to the set A = {s :

(∃ã)ϕ(s, ã)} and then take α = ÷A. To see that it is the least model of (∆1
1-Comp),

assume that F satisfies (∆1
1-Comp) and prove by induction on î that ∆

î ⊆ F using
Theorem 3I.1.

(2) Suppose that (∀s)(∃α ∈ HYP)(∃ã ∈ HYP)ϕ(s, ã, α) with an arithmetical ϕ
and set

P(s, i) ⇐⇒ i ∈ B1 & (∀α)[α = âi =⇒ (∃ã ∈ HYP)ϕ(s, ã, α)].

This is in Π1
1, so by the Kreisel Uniformization Theorem 3G.2, it is uniformized by

a Π1
1 relation P∗(s, i); we check easily that some α ∈ HYP satisfies

(α)s = âi for the unique i which satisfies P∗(s, i),

and then this α also satisfies the right-hand-side of (Σ1
1-Choice). a

Another relevant and important result that we will not discuss here in detail is
the following:

24We assume some formal treatment of recursive substitutions into A2 formulas. In this case, the
relevant recursive function is (α, s) 7→ (α)s , and we use the equivalences

ϕ(s, (α)s , ã) ⇐⇒ (∃ä)[ä = (α)s & ϕ(s, ä, ã)] ⇐⇒ (∀ä)[ä = (α)s → ϕ(s, ä, ã)].

These are satisfied by every model F of (∆0∞-Comp).
25The converse fails, cf. Steel [1978].
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Theorem 3I.3 (Gandy, Kreisel, and Tait [1960]). A set A ⊆ N is HYP if and only
if its characteristic function ÷A belongs to every F ⊆ P(N ) which satisfies the axiom
scheme of full comprehension, i.e., for every formula ϕ(s) in which α does not occur
free,

(∃α)(∀s)[α(s) = 1 ⇐⇒ ϕ(s)].(∆1
∞-Comp)

Beyond these (and many other) applications, however, the importance of Theo-
rem 3I.1 is primarily foundational. To quote Kleene [1959a],

the definition [with basis F ] means the same to persons with various
universes of functions, so long as each person’s universe includes at least
F (of which he may have no exact conception).

One can argue that it presents HYP as a potential totality which can be comprehended
by mathematicians with varying views of “the continuum”, much like N can be
understood as a potential totality within classical and constructive mathematics
alike.

3J. Inductive definability onN. It should be clear by now that inductive definitions
permeate our subject, but is was not until Spector [1961] that a neat, precise result
was formulated expressing the connection.

Suppose Φ : P(Nl ) → P(Nl ) is a monotone operator as in App 10 and (general-
izing mildly (34)), define the representing relation of Φ by

Φ(~y, α) ⇐⇒ ~y ∈ Φ(Zα) where Zα = {~y′ : α(〈~y′〉) = 0}.(54)

The operator Φ is in a pointclass Γ (such as Π0
1 or Π1

1) if Φ(~x, α) is in Γ; and a
relation P(~x) is Γ-inductive on N if it is many-one reducible to the least fixed point
Φ of a monotone operator in Γ.

Lemma 3J.1 (Spector [1955]).26 If Φ(A) is a monotone, Π1
1 operator on P(N) and

P ⊆ N is Π1
1, then

x ∈ Φ(P) =⇒ (∃H ⊆ P)[H ∈ HYP & x ∈ Φ(H )].

This is not really difficult, but its simplest proof requires identifying the monotone
Π1

1 operators with those which are Π1
1-positive, suitably defined, and it is a bit too

lengthy to include here.
Theorem 3J.2. (1) (Kleene [1955b])27. Every Π1

1 relation P(~x) is Π0
1-inductive on

N, in fact there is a Π0
1 monotone operator Φ on N1+n such that28

P(~x) ⇐⇒ (1, ~x) ∈ Φ.(55)

(2) (Spector [1961]) If Φ : P(Nl ) → P(Nl ) is Π1
1, then its least fixed point Φ is

Π1
1 and its closure ordinal κ(Φ) ≤ ù1.

26This is not quite explicit in Spector [1955], but Sacks [1990, 8.5] credits it to Spector and I think he
is right.

27This is seriously implicit in $24 of Kleene [1955b], but the idea of the proof is there and Spector
correctly credits Kleene for it.

28The “1” is necessary here, in fact it is not the case that every Π1
1 set is the least fixed point Φ of

an arithmetical monotone operator Φ on N, cf. Feferman [1965] and Moschovakis [1974, 8.13] (which is
falsely claimed in the 1974 edition for all “countable acceptable structures”). Feferman’s result was the
first applications of Cohen’s forcing to arithmetic.
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Proof. (1) is basically immediate from (39), which expresses Kleene’s key un-
derstanding of Π1

1 definitions: for a given P(~x) in Π1
1 (and adjusting the notation

in (39)), we set

(u, ~x) ∈ Φ(A) ⇐⇒ Seq(u) &
(
R(~x, u) ∨ (∀s)(u ∗ 〈s〉, ~x) ∈ A

)
,(56)

prove first by induction on î that

(u, ~x) ∈ Φ
î
=⇒ Seq(u) & (∀α w u)(∃t)R(~x, α(t))

and then check easily that (with 1 = 〈 〉, the code of the empty sequence),

(1, ~x) /∈ Φ =⇒ (∃α)(∀t)¬R(~x, α(t)) =⇒¬P(~x).

This gives (55).

(2) That Φ is Π1
1 if Φ is Π1

1, we have already proved in Lemma 3D.1. For the

more difficult bound on the closure ordinal, we first check that P =
⋃
î<ù1

Φ
î

is Π1
1

by effective grounded recursion and then apply the Lemma. a
Like Kreisel [1961], Spector [1961] was presented at the famed Symposium on

Foundations of Mathematics held in Warsaw in 1959. It has many more (and more
difficult) results, but its main significance lies in this simple characterization of Π1

1
(and hence HYP) in terms of inductive definability.

3K. HYP as recursive in 2E. Starting with his [1959b], Kleene developed a theory
of absolute and relative recursion for functions with arguments in the objects of
finite type over N, i.e., members of the sets Ti where

T0 = N, Ti+1 = (Ti → N) = the set of functions on Ti to N.

This is a technically difficult but fascinating topic, with some important applica-
tions to Descriptive Set Theory but especially to the foundations of the theory of
recursion: it was the first example where there is no natural notion of machine
computable function that can be defined independently of “recursiveness”, and so it
forces an examination of the meaning of recursive definitions in and of themselves.
We cannot go into it here, but it is worth stating one of Kleene’s basic results which
relate it to HYP:29

In Kleene’s words, the following type-2 object “embodies” the operation of quan-
tification over N:

2E(α) =

{
0, if (∃t)[α(t) = 0],
1, otherwise

(α ∈ N ).

Theorem 3K.1 (Kleene [1959b]). A set A ⊆ N is hyperarithmetical if and only if it
is recursive in 2E.

In fact, for A ⊆ N,

A ∈ Π1
1 ⇐⇒ A is recursively enumerable in 2E

⇐⇒ A = {x : f(x)↓} for some f : N⇀ N recursive in 2E,

29Cf. Kechris and Moschovakis [1977] for a relatively simple introduction to recursion in higher types
and Sacks [1990] for a full development.

November 9, 2016, 20:27



30 YIANNIS N. MOSCHOVAKIS

which bolsters the understanding of Π1
1 as an analog of Σ0

1 in recursion in 2E.30

4. Concluding remarks. The main results from the period 1950 – 1960 that we
have surveyed established HYP as a robust class of sets, those subsets of N which
can be defined (and can be guaranteed to exist) if we accept the structure N of
arithmetic, quantification over N and recursion. The main new method introduced
in this work is undoubtedly effective grounded recursion, but there are also many
interesting tricks, especially in computing “witnesses to counterexamples” as in the
proof of Lemma 3E.4.

There were primarily three developments which followed this work and are still
extensively pursued today: recursion in higher types which we have already discussed
and the following two.

4A. IND and HYP on abstract structures. Of the many characterizations of HYP,
the easiest to formulate for an arbitrary structure A = (A,R1, . . . , Rk) is Spector’s
inductive definability in Section 3J, cf. Moschovakis [1974]. Briefly, a relation
P ⊆ An is inductive in A if it is one of the mutual least fixed points of a finite
system of positive, elementary (first-order) relations with arguments in A, and it is
hyperelementary in A if both P and its negation An \ P are inductive.

Part of the theory of HYP and Π1
1 can be developed for HYP(A) and IND(A) for

arbitrary A; some of the results require an assumption that A is (almost) acceptable,
roughly meaning that A admits a hyperelementary coding scheme for tuples; and
suitable formulations of virtually all the results in the body of this paper can be
established for all countable, acceptable structures, including Kleene’s centerpiece
that IND(A) = Π1

1(A) and so HYP(A) = ∆1
1(A).

Kleene’s Theorem 3I.1 holds for all acceptable structures almost exactly in the
form that it is stated in Section 3I, with ù1 replaced by the closure ordinal κ(A) of
A, an important invariant. It is proved, however, by an entirely different argument
which is different from (and perhaps simpler) than Kleene’s even for the classical
structure N of arithmetic.

The proofs, in fact, are the most interesting aspect of this generalization of HYP
theory: there is little coding and no use of effective grounded recursion. These
are replaced by constructs which were first used in higher type recursion (Stage
Comparison Theorems) and ideas from the theory of infinite open games.

The most interesting application of inductive definability is to the structure N2 of
analysis in (31) which is intimately related to our last topic.

4B. Effective descriptive set theory. The term was coined by Addison [1959] who
formulated his results about the spaces Nn ×Nm and might have still be thinking of
“analogies” between the classical and the effective results; but in the 50+ years since
then, effective descriptive set theory has evolved into a unified study of definability
on recursive Polish spaces which include N, N and the real numbers and has deep
applications to parts of topology and analysis in addition to classical descriptive
set theory and logic. A good part of it is covered in Moschovakis [2009], which,
however, is concerned with many other things and is not sufficiently comprehensive
on this topic.

30Kleene [1959b] does not mention this and I recall him saying (much later) that he was not certain
that the notion of a recursive partial function in higher type recursion was natural, but I cannot point to
a reference for this.
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5. Appendix: some basic facts and notation. We list here some elementary defini-
tions and results, primarily to establish notation.

App 1. N = {0, 1, . . . } is the set of natural numbers and N = NN is the Baire
space of all unary functions on N. This carries the natural product topology with N
discrete, generated by the basic neighborhoods

Nk0,... ,kt = {α ∈ N : α(0) = k0, . . . , α(t) = kt}
and the product spaces Nn ×Nm carry the corresponding product topologies.

In general, lower case Latin letters vary over N and Greek letters α, â, . . . vary
over N .

App 2. A partial function f : X ⇀ Y is a function f : Df → Y , where Df ⊆ X
is the domain of convergence of f. We write

f(x)↓ ⇐⇒ x ∈ Df , f(x) ↑ ⇐⇒ x /∈ Df (x ∈ X ),

f(x) = g(x) ⇐⇒ [f(x) ↑ & g(x) ↑] ∨ [f(x)↓ & g(x)↓ & f(x) = g(x)].

Partial functions compose strictly, e.g.,

f(g(x), h(x)) = w ⇐⇒ (∃u, v)[g(x) = u & h(x) = v & f(u, v) = w].

It is sometimes convenient to identify f : X ⇀ Y with its graph

Graph(f) = {(x, y) ∈ X × Y : f(x) = y}.
App 3. ÷A : X → N is the characteristic function of A ⊆ X (= 1 on A and 0 on

Ac = X \ A).

App 4. Sequence coding inN. The following functions and relations are recursive,
with pi the (i + 1)’th prime number:
〈u0, . . . , un−1〉 = pu0+1

0 · · ·pun−1+1
n−1 = the code of (u0, . . . , un−· 1);

Seq(u) ⇔ u is the code of some sequence, and if it is, then lh(u) is its length and
for i < lh(u), (u)i = ui ;
u v v ⇔ u codes an initial segment of the sequence coded by v;
u v/ v ⇔ u v v & u 6= v;
u | v ⇔ u and v are codes of incompatible sequences ⇔ ¬(u v v ∨ v v u);
u ∗ v = the code of the concatenation of the sequences coded by u and v;
α(t) = 〈α(0), . . . , α(t−· 1)〉 (= 1 if t = 0).

App 5. Kleene’s Normal Form and Enumeration Theorem: Every recursive partial
function(al) f : Nn ×Nm ⇀ N is ϕn,me for some e, where

(57) ϕn,me (x1, . . . , xn, α1, . . . , αm) = {e}n,m(x1, . . . , xn, α1, . . . , αm)

= U (ìtTm
n (e, x1, . . . , xn, t, α1(t), . . . , αm(t)))

with (primitive) recursive Tm
n and U , and we will skip some or all of the super-

scripts n,m when they are clear from the context or irrelevant. Moreover, there are
(primitive) recursive injections S l,mn (e, y1, . . . , yl ) such that

{e}(y1, . . . , yl , x1, . . . , xn, ~α) = {S l,mn (e, y1, . . . , yl )}(x1, . . . , xn, ~α).(58)

We call e a code of ϕn,me and we use both ϕe and {e} interchangeably, as the desire
for neat typography dictates.
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To avoid (implausible) confusion, we use {{e}} for the singleton set whose only
member is e.

App 6. Relativization. It is sometimes useful to fix some of the function arguments
in the Normal Form Theorem and treat them as parameters. We write

{e}~â(~x, ~α) = {e}(~x, ~â, ~α)

and we say that the partial function (~x, ~α) 7→ {e}~â(~x, ~α) is recursive in ~â or relative
to ~â . For recursion relative to a set B , we write

{e}B(~x) = {e}(~x, ÷
B
) (B ⊆ N).

It is often—almost always—the case that a result about (absolutely) recursive
partial functions can be easily seen to be true about partial functions recursive in
some ~â , by relativization, i.e., basically adding the superscript ~â to all functions in
the proof; it is a simple but very useful method of proof.

App 7. Recursively enumerable sets. A set A ⊆ N is r.e. in B ⊆ N if

x ∈ A ⇐⇒ {e}B(x)↓ for some e,

and (absolutely) r.e. if it is r.e. in the empty set.

App 8. Total recursive functions into N . A (total) function f : Nn ×Nm → N is
recursive if

f(~x, ~α) = ëtf∗(t, ~x, ~α)

for some recursive partial f∗ : N1+n × Nm ⇀ N. Useful examples include the
tupling and projection functions:

〈α0, . . . , αk−1〉 = ët

{
αi(s), if t = 〈i, s〉 for some i < k and some s,
0, otherwise,

(â)i = ëtâ(〈i, t〉),
so that for i < k, (〈α0, . . . , αk−1〉)i = αi .

The class of total recursive functions into N or N is closed under composition—
which is not true for recursive partial functions with values in N .

App 9. The rank of a strict, well founded relation. A binary relation≺ on a set F is
well founded if there is no infinite descending chain x0 Â x1 Â · · · or, equivalently,
if there is a function ñ : X → Ordinals such that

x ≺ y=⇒ ñ(x) < ñ(y) (x, y ∈ F );

the (pointwise) least such function ñ≺ is the rank function of ≺ and

rank(≺) = sup{ñ≺(x) + 1 : x ∈ F }.
When we apply this to the strict part ≺ of a wellordering ¹, we get a (unique)
similarity

ñ¹ : {x : x ¹ x} = F ½→ rank(¹)

of ¹ with an ordinal.

App 10. Monotone inductive definitions. An operator Φ : P(X ) → P(X ) on the
subsets of a space X is monotone if

A ⊆ B =⇒Φ(A) ⊆ Φ(B) (A,B ⊆ X ).
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The set

Φ =
⋂{A : Φ(A) ⊆ A}(59)

defined inductively (or built up) by Φ is the least fixed point of Φ, and

Φ =
⋃

Φ
î
, where for each ordinal î,Φ

î
= Φ(

⋃
ç<î Φ

ç
)(60)

(with the usual convention that
⋃ ∅ = ∅). Moreover,

ç < î=⇒Φ
ç ⊆ Φ

î ⊆ X,

and since these iterates cannot increase forever, there is a least ordinal κ = κ(Φ),
the closure ordinal of Φ such that

ç < î < κ(Φ) =⇒Φ
ç ( Φ

î
and Φ =

⋃
î<κ(Φ) Φ

î
.(61)

An operator Φ is operative on X to W if its domain is P(X ×W ) and

f : X ⇀W =⇒Φ(Graph(f)) = Graph(g) for some g : X ⇀W.

When this holds, then Φ : X ⇀W is (the graph of) the least partial function fixed by
the operator Φ.
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