
Sense and denotation as algorithm and value

Yiannis N. Moschovakis∗†

Department of Mathematics

University of California, Los Angeles

ynm@math.ucla.edu

1 Introduction

In his classic 1892 paper On sense and denotation [12], Frege first contends that in addition
to their denotation (reference, Bedeutung), proper names also have a sense (Sinn) “wherein
the mode of presentation [of the denotation] is contained.” Here proper names include common
nouns like “the earth” or “Odysseus” and descriptive phrases like “the point of intersection of
lines L1 and L2” which are expected by their grammatical form to name some object. By the
second fundamental doctrine introduced by Frege in the same paper, they also include declarative
sentences: “[a simple, assertoric sentence is] to be regarded as a proper name, and its denotation,
if it has one, is either the True or the False.” Thus every sentence denotes (or refers to) its truth
value and expresses its sense, which is “a mode of presentation” of its truth value: this is all
there is to the meaning of a sentence as far as logic is concerned. Finally, Frege claims that
although sense and denotation are related (the first determines the second), they obey separate
principles of compositionality, so that the truth value of a complex sentence φ is determined
solely by the denotations of its constituent parts (terms and sentences), whatever the senses
of these constituents parts may be. This is the basic principle which has made possible the
development of sense-independent (two-valued, classical) denotational semantics for predicate
logic, a variety of richer formal languages and (at least) fragments of natural language.

Consider, for example, the arithmetical sentences

θ ≡ 1 + 0 = 1, (1)

η ≡ there exist infinitely many primes, (2)

ρ ≡ there exist infinitely many twin primes. (3)

The first two are true, the third is a famous open problem. Surely we understand all three and
we understand them differently, even as we recognize the first two to be true and concede that

∗During the preparation of this paper the author was partially supported by an NSF grant.
†I am grateful to Pantelis Nicolacopoulos for steering me to the van Heijenoort papers, to Alonzo Church for

a copy of his still unpublished [1], to Tony Martin and the two referees for their useful remarks and especially
to Kit Fine, whose extensive comments on a preliminary draft of the paper were very valuable and influenced
substantially the final exposition.

1

we do not know the truth value of the third. Frege would say that they mean different things
because they express different senses, but he did not define sense: what exactly is the sense of θ
and how does it differ from that of η? Our aim here is to propose a precise (mathematical, set
theoretic) definition of Fregean sense and to begin the development of a rigorous sense semantics
which explains differences in meaning like that between θ and η. The mathematical results of
the paper are about formal languages, but they are meant to apply also to those fragments of
natural language which can be formalized, much as the results of denotational semantics for
formal languages are often applied to fragments of natural language. In addition to the language
of predicate logic whose sense semantics are fairly simple, the theory also covers languages
with description operators, arbitrary connectives and modal operators, generalized quantifiers,
indirect reference and the ability to define their own truth predicate.

To explain the basic idea, consider a typical sentence of predicate logic like the arithmetical
sentences above, but simpler:

χ ≡ (∀x)(∃y)R(x, y) ∨ (∃z)Q(z). (4)

Here R and Q are interpreted by relations R, Q on some domain A and we may suppose at first,
for simplicity that A is finite. If we know nothing about R and Q but their extensions, there is
basically only one way to determine the truth value of χ, by the following procedure.

Step (1). Do steps (2) and (4). If one of them returns the value t, give the value t; if both of
them return the value f, give the value f.

Step (2). For each a ∈ A, do step (3). If for every a ∈ A the value t is returned, return the
value t; if for some a ∈ A the value f is returned, return the value f.

Step (3). Given a ∈ A, examine for each b ∈ A the value R(a, b). If one of these values is t,
return the value t; if all these values are f, return the value f.

Step (4). For each c ∈ A, examine the value Q(c). If one of these values is t, return the value
t; if all these values are f, return the value f.

In contemporary computing terms, we have defined an algorithm which computes the truth
value of χ. What if A is infinite? An attempt to “execute” (implement) these instructions will
lead now to an infinitary computation, but still, the instructions make sense and we can view
them as defining an ideal, infinitary algorithm which will compute (“determine” may be better
now) the truth value of A. This algorithm is the referential intension or just intension of χ,

int(χ) = the algorithm which computes the truth value of χ, (5)

and we propose to model the sense of χ by its referential intension.
Plainly, we mean to reduce the notion of “sense” to that of “algorithm” and we must specify

which precise notion of algorithm we have in mind. We will put this off until Section 3, where we
will also review briefly the definitions and results we need from the theory of recursive algorithms1

1More accurately, we should call it the theory of pure, single-valued, recursive algorithms, since [22, 23, 24] do
not deal with interaction and non-determinacy. It is possible to extend the results of this theory to algorithms
whose implementations start engines, send and receive messages and “choose” in arbitrary ways which actions to
execute, but for our present purpose pure algorithms suffice.

2

developed in [22, 23, 24]. From this simple example, however, we can already see two basic
properties algorithms must have if we are to use them in this way.

1.1. Algorithms are semantic (mathematical, set theoretic) objects. This is almost self evident,
but we list it because there is some general tendency in the literature to confuse algorithms
with programs, like the instructions above. A program is a piece of text, it means nothing
uninterpreted; its interpretation (or one of them) is precisely the algorithm it defines, and that
algorithm is no longer a syntactic object. On the account we are giving, the relation between a
program and the algorithm it defines is exactly that between a sentence and its sense.

1.2. Algorithms are relatively effective, but they need not be effective in an absolute sense.
Consider step (4) above which calls for the examination of the entire extension of the relation Q
and cannot be “implemented” by a real machine if A is infinite. It is a concrete, precise instruc-
tion and it is effective relative to the existential quantifier, which we surely take as “given” when
we seek the sense of sentences of predicate logic. Put another way, the claim that we understand
χ entails that we understand the quantifiers which occur in it and the specific instructions of the
intension simply “codify” this understanding in computational terms. Effective computability
relative to assumed, given, infinitary objects has been studied extensively, especially in the work
of Kleene in higher type recursion.

There is a third, fundamental property of algorithms we need which will be easier to explain
after we discuss the first of three applications we intend to make of the proposed modeling of
sense.

1.3. Self referential sentences. One of the main reasons for introducing sense is so that we
may assign meaning to non-denoting names. Frege makes it clear that sentences may also fail
to denote, but he only gives examples where the lack of a truth value is due to a non-denoting
constituent proper name. There is, however, another stock of such examples in the self-referential
sentences which are usually studied in connection with developing a theory of truth. Consider
the following bare bones version2 of the liar which avoids the use of a truth predicate,

it is not the case that (6), (6)

and the corresponding version of the truthteller,

it is the case that (7). (7)

Here we understand “it is the case” and “it is not the case” as direct affirmation and negation,
i.e. with less regard for readability we could rewrite these definitions simply as

¬(8), (8)

(9). (9)

These sentences have no problematic constituents and appear to be meaningful, we certainly
understand at least the liar well enough to argue that it cannot have a truth value. In a Fregean

2These examples are alluded to in Kripke [19].

3

approach we would expect both of them to have sense, and in fact different senses, since we
understand them differently. A natural way to read this version of the liar (6) as an algorithm
for computing its truth value leads to the single instruction

Step (1). Do step (1); if the value t is returned, give the value f; if the value f is returned,
give the value t.

Similarly understood, the truthteller leads to the instruction

Step (1). Do step (1) and give the value returned.

The circular nature of these instructions corresponds to the self reference of the sentences, but
there is nothing unusual about circular clauses like these in programs. The algorithms defined by
them are recursive algorithms and (in this case, as one might expect), they do not compute any
value at all, they diverge: on this account, neither the liar nor the truthteller have a truth value.
On the other hand they have distinct referential intensions, because the instructions above define
different algorithms.

To define the referential intension of self referential sentences we need recursive algorithms.
We state this condition somewhat cryptically here, it will be explained in Section 3.

1.4. Recursive definitions define algorithms directly.

Kripke [19] has developed a rigorous semantics (with truth gaps) for a formal language which
can define its own truth predicate, so that it can express indirect self reference and the more
familiar versions of the liar and the truthteller. We will introduce in Section 2 the language
LPCR of Lower, Predicate Calculus with Reflection (or self-reference), a richer and easier to use
version of the language of Kripke which we will then adopt as the basic vehicle for explaining
referential intensions. The denotational semantics of LPCR are Kripke’s grounded semantics,
by which all reasonable expressions of the liar and the truthteller fail to denote and cannot be
distinguished. On the other hand, every sentence of LPCR (and a fortiori the less expressive
language of Kripke) will be assigned a recursive algorithm for its referential intension, a Fregean
sense which distinguishes these sentences from one another.3 Part of the interest in this applica-
tion is that it “explains” truth gaps in languages with self reference in terms of non-convergence
of computations, a phenomenon which is quite common and well understood in the theory of
algorithms.

1.5. Faithful translations. There is a special word in Greek, \£§�«��¤á¡���ª", for the
important relationship between two men whose wives are sisters. Most speakers of both Greek
and English would agree that

“Niarchos and Onassis married sisters” (10)

3Calling this notion of sense for LPCR “Fregean” stretches the point a bit, since Frege counted non-denoting
signs an imperfection of natural language and wished them banished from the language of mathematics. Never-
theless, we will see that its properties match quite closely the basic properties of sense assumed by Frege.

4

is a faithful translation of\� � á¨®¦ª ¡� ¦ �¤á©©�ª ã«�¤ £§�«��¤á¡���ª", (11)

even if they had never heard of Niarchos or Onassis and knew nothing about their wives; and
no reasonable person would claim that

“Niarchos and Onassis were rivals” (12)

is a faithful translation of (11), although (as it happens) it is true, as is (11), and it is much closer
in grammatical structure to (11) than (10)—“were” literally translates \ã«�¤". What makes (10)
a faithful translation of (11) is that they both express the same algorithm for determining their
truth: check to see if at any time Niarchos and Onassis were married to two sisters. On this
account, we can define a faithful translation (at the sentence level) as an arbitrary syntactic
transformation of sentences from one language to another which preserves referential intension,
and that would apply even to languages with radically different syntax and distinct primitives,
provided only that they both have a grammatical category of “assertoric sentence”. The idea is
direct from Frege who says that “the same sense has different expressions in different languages,
or even in the same language” and that “the difference between a translation and the original
should properly [preserve sense]”.

Some claim that faithful translation is impossible, though I have never understood exactly
what this means, perhaps because I was unable to translate it faithfully into Greek. In any
case, the precise definition proposed here provides a technical tool for investigating the question
rigorously. It may be that only fragments of Greek can be translated faithfully into English, or
that we can only find translations which preserve some properties of the referential intension,
and then we could study just what these fragments and these properties are. A typical applica-
tion to formal languages is that Kripke’s language can be translated faithfully into LPCR but
not conversely, essentially because direct self reference is expressible in LPCR while Kripke’s
language allows only indirect self reference. The languages are denotationally equivalent (on
most interesting structures), i.e. the same relations are definable by their formulas.

1.6. Primitives with complex sense. In defining the appropriate structures for sense se-
mantics, we will allow the primitives of a language to express arbitrary senses which may be
complex, as we assumed above to be the case with \£§�«��¤á¡���ª" in Greek. This is techni-
cally convenient, both in developing a practical theory of translation and also for dealing with
definitions: if we get tired of referring to Onassis and Niarchos as “married to sisters”, we may
want to add the word “sisbands” to English with the stipulation that it expresses the same thing
as “married to sisters”, and then it will be a primitive of the new, extended English with a
complex sense. We do this all the time both in natural and in formal languages. On the other
hand, there are accounts of language which deal with this phenomenon in other ways and insist
that the “ultimate” (atomic) primitives of a language cannot mean anything complex. It has also
been argued that there is no coherent way to assign a non-trivial sense to some historical proper
names like “Odysseus”or “Aristotle”, cf. Kripke [18] and Donnellan [7]. If some of the primitives
of the language stand for such atomic relations or directly denoting proper names, then in the
modeling proposed here they will be assigned a trivial sense which is completely determined by

5

their denotation. Our aim in this paper is to propose a logical mechanism which explains how
complex senses can be computed from given (complex or simple) senses and there is nothing in
the arguments and results of this paper which favors or contradicts the direct reference theory
for names, or any theory of logical atomism for language.

1.7. Sense identity and intensional logic. Granting any precise, semantic definition of the
sense of sentences of some language on some structure A, put

φ ∼A ψ ⇐⇒ senseA(φ) = senseA(ψ). (13)

Do we always have
(φ & ψ) ∼A (ψ & φ) or ¬¬φ ∼A φ?

Is the relation ∼A of sense identity on a fixed structure decidable? Can we give a useful axioma-
tization for the class of sense identities valid in all structures and is this class decidable? Once we
identify sense with referential intension, these questions become precise mathematical problems
and they can be solved. The answers (even for a restricted language) will help us sharpen our
intuition about sense, particularly as Frege is apparently quite obscure on the question of sense
identity, cf. [29]. Incidentally, as one might expect, (φ & ψ) and (ψ & φ) are intensionally
equivalent with the standard interpretation of & but ¬¬φ has a more complex intension than φ.

Previous Work

Where sense is defined in the literature, it is often identified with some version of proposition
in the sense of Carnap, i.e. the sense of φ is the function which assigns to each possible world
W the truth value of φ in W . For example, Montague [20] adopts this definition. This does
not explain the difference in meaning between arithmetic sentences like θ and η above which
presumably have the same truth value in all possible worlds.

Church [2, 3, 4, 5] makes (essentially) two proposals for axiomatizing the relation of sense
identity without giving a direct, semantic definition of sense. It is hard to compare such ap-
proaches with the present one, because they do not allow for specific, semantic import into the
notion of sense, sense by them depends only on syntactic form. For example, according to Frege
“John loves Mary” and “Mary is loved by John” should have the same sense. In a technical
formulation, this should mean that if two basic relation symbols R and Q are interpreted by
(senseless) converse relations R and Q in a structure so that

R(x, y) ⇐⇒ Q(y, x),

then for any two terms a, b, the sentences R(a,b) and Q(b,a) have the same sense, and they
certainly have the same referential intension by our definition. This, however cannot be deduced
from their syntactic form.

Although they work in different contexts and they have different aims, Church in the more
recent [1], Cresswell [6] and van Heijenoort [30] use variants of the same idea for getting the sense
of a sentence, by replacing in it all the primitive syntactic constructs by their denotations. For
example, the Cresswell sense and the Church propositional surrogate of R(a, b) are (essentially)
the triple < R, a, b >. Both Church and Cresswell worry about introducing semantic import

6

into meanings, but (if I understand them correctly), both would assign to R(a,b) and Q(b,a) the
distinct triples < R, a, b > and < Q, b, a >. I cannot find in such mechanisms a general device
which can catch accidental, complex semantic relationships like that between a relation and its
converse.

On the other hand, the idea that the sense of a sentence determines its denotation is at
the heart of the Frege doctrine and practically everyone who has written on the matter uses
some form of computational analogy to describe it. Perhaps closest to the present approach is
Dummett’s interpretation of Frege, most clearly quoted by Evans in a footnote of [9]:

“This leads [Dummett] to think generally that the sense of an expression is (not a
way of thinking about its [denotation], but) a method or procedure for determining
its denotation. So someone who grasps the sense of a sentence will be possessed
of some method for determining the sentence’s truth value. ... The procedures in
question cannot necessarily be effective procedures, or procedures we ourselves are
capable of following.”

Evans goes on to call this view “ideal verificationism” and says that “there is scant evidence for
attributing it to Frege”. Dummett himself says in [8] that

“[Frege’s basic argument about identity statements] would be met by supposing the
sense of a singular term to be related to its reference as a programme to its execution,
that is, if the sense provided an effective procedure of physical and mental operations
whereby the reference would be determined.”

If we replace “programme” and “execution” by “algorithm” and “value”, then this comes very
close to identifying sense with referential intension. What we add here, of course is a specific,
mathematical notion of recursive algorithm which makes it possible to develop a rigorous theory
of sense.

Outline of what follows

We will state the basic definitions in the body of the paper for the simple to describe language
LPCR and we will include enough expository material about the theory developed in [22, 23, 24]
so that the gist of what we are saying can be understood without knowledge of these papers.
On the other hand, the natural domain for this theory is the Formal Language of Recursion
FLR defined in [23] and in Section 4 we will prove the main result of the paper for this general
case. This is the decidability of intensional identity for terms of FLR, on any fixed structure,
provided only that the signature (the number of primitives) is finite. Intensional identity is
relatively trivial on sentences of predicate logic, but we will establish a non-trivial lower bound
for its (decidable) degree of complexity for sentences of LPCR: as one might expect, once you are
allowed self reference you can say the same thing in so many different ways, that it is not always
obvious that it is still the same thing. Finally, the proof of decidability for intensional identity
has independent interest and it gives some insight into the concept of a faithful translation. It
also suggests an axiomatization for the logic of intensions, but we will not consider this here.

7

2 Languages with direct self reference

A relational (first order) signature or similarity type τ is any set of formal relation (or predicate)
symbols, each equipped with a fixed, integer (≥ 0) arity. We assume the usual inductive definition
of formulas for the language LPC = LPC(τ) of Lower Predicate Calculus (with identity) on the
signature τ , with formal individual variables v1, v2, . . . and (for definiteness) logical symbols
=, ¬, &, ∨, ⊃, ∃, ∀. To obtain the language LPCR = LPCR(τ) of Lower Predicate Calculus
with Reflection (or self-reference) on the same signature, we first add to the basic vocabulary
an infinite sequence Pk

1, Pk
2, . . . of formal k-ary partial relation variables, for each k ≥ 0.

The number k is the arity of Pk
i . We call these “partial” relation variables because we will

interpret them by partially defined relations in the intended semantics, but syntactically they
are treated like ordinary relation variables, so we add to the formation rules for formulas in LPC
the following:

2.1. If P is a partial relation variable of arity k and x1, . . . , xk are variables, then the string
P (x1, . . . , xk) is a formula with free variables x1, . . . , xk and P . In particular, for every partial,
propositional variable P with arity 0, P () is a formula.

Self reference is introduced in LPCR by the following key, last rule of formula formation.

2.2. If φ0, . . . , φn are formulas, P1, . . . , Pn are partial relation variables and for each i, ~ui

is a sequence of individual variables of length the arity of Pi, then the string

φ ≡ φ0 where {P1(~u
1) ' φ1, . . . , Pn(~un) ' φn} (14)

is a formula. The bound occurrences of variables in φ are the bound occurrences in the head φ0

and the parts φ1, . . . , φn of φ, all the occurrences of P1, . . . , Pn and the occurences of the
individual variables of each ~ui in Pi(~u

i) ' φi.

Notice that the sequence ~ui must be empty here when Pi is a partial, propositional variable.
The simplest examples of self referential sentences involve such “propositional reflection”, e.g.
the formal LPCR versions of the direct liar and truthteller intended by (6) and (7) are:

liar ≡ P () where {P () ' ¬P ()}, truthteller ≡ P () where {P () ' P ()}. (15)

The more complex
liar ′ ≡ (∃x)P (x) where {P (x) ' ¬P (x)} (16)

asserts that “the relation which is always equivalent to its own negation holds of some argument”,
and it too will have no truth value.

In the definition of (denotational) semantics for LPCR which follows, we will adopt a gen-
eral, somewhat abstract view of formal language semantics which is unnecessarily complex for
predicate logic and just barely useful for LPCR. The extra effort is worth it though, because this
formulation of semantics generalizes immediately to a large class of languages (including rich
fragments of natural language) and is indispensable for the description of referential intensions
in the next section, even for the case of LPC.

8

2.3. Partial functions. Let us first agree to view an m-ary relation on a set X as a function

R : Xm → TV , (TV = {t, f}) (17)

which assigns a truth value to each m-tuple in X . A partial m-ary relation is then a partial
function

P : Xm ⇀ TV , (18)

i.e. a function defined on some of the m-tuples in X with range TV—notice the symbol “⇀”
which suggests that for some ~x, P (~x) may be undefined. In dealing with partial functions, we
will use the standard notations

f(~x)↓ ⇐⇒ ~x is in the domain of f,

f(~x) ' w ⇐⇒ f(~x)↓ and f(~x) = w,

f ⊆ g ⇐⇒ (∀~x,w)[f(~x) ' w =⇒ g(~x) ' w],

and we assume the usual (strict) composition rule so that (for example)

f(g(~x), h(~x))↓=⇒ g(~x)↓ and h(~x)↓ . (19)

We let
∅ = the totally undefined partial function. (20)

In set theoretic terms this is the empty set of ordered pairs and it is the least partial function
in the partial ordering ⊆.

2.4. Structures for LPCR. We interpret LPCR in the usual structures of predicate logic, i.e.
tuples of the form A = (A,R1, . . . , Rl), where A is some non-empty set and each relation Rj

interprets the corresponding formal relation symbol Rj of the signature. With the convention
just described, A is simply a sequence of functions on its universe A, with values in TV . Of
course we need more than these functions to understand the meaning of formulas in A, we also
need the meaning of =, ¬, ∀, etc. These are taken for granted, but if we include them and the
set of truth values TV for completeness, we get the tuple

A = (TV , A,R1, . . . , Rl, eqA,¬,&,∨,⊃, ∃A, ∀A). (21)

Now

eqA(x, y) =

{

t, if x = y,
f , if x 6= y,

¬(a) =

{

f , if a = t,
t, if a = f

(22)

are clearly (total) functions on A and the set of truth values TV . The objects ∃A, ∀A are
functionals, partial functions which take unary, partial relations as arguments:

∃A(P) '

{

t, if for some x ∈ A, P (x) ' t,
f , if for all x ∈ A, P (x) ' f ,

(23)

∀A(P) '

{

t, if for all x ∈ A, P (x) ' t,
f , if for some x ∈ A, P (x) ' f .

(24)

9

These functionals represent the quantifiers because for every unary partial relation P ,

(∃x ∈ A)[P (x) ' w] ⇐⇒ ∃A(P) ' w,

and more generally, on partial relations of any arity,

(∃x ∈ A)[P (x, ~y) ' w] ⇐⇒ ∃A(λ(x)P (x, ~y)) ' w,

with the obvious meaning for the λ-operator on partial functions: the term ∃A(λ(x)P (x, ~y)) is
equivalent to (takes exactly the same values as) the formula (∃x)P (x, ~y) on the set A.

Notice that ∀A(P) is not defined if P is a partial relation which never takes the value f .
However—and this is a basic property of these objects—both ∃A and ∀A are monotone, i.e.

[∃A(P) ' w & P ⊆ P ′] =⇒ ∃A(P ′) ' w,

[∀A(P) ' w & P ⊆ P ′] =⇒ ∀A(P ′) ' w.

This is obvious from their definition.
One is tempted to interpret &, ∨ and ⊃ by the usual, total functions on TV , but this will

not work if we want to apply them to partial relations; because if ∨ were a binary function, then
by the rules of strict composition we would have (P ∨Q) ↓=⇒ [P ↓ & Q ↓], while we certainly
want P ' t =⇒ (P ∨Q) ' t, even when Q is undefined. We set instead:

P ∨Q '

{

t, if P () ' t or Q() ' t,
f , if P () ' Q() ' f ,

P & Q '

{

t, if P () ' Q() ' t,
f , if P () ' f or Q() ' f ,

(25)

and similarly for ⊃. Here P and Q are partial, propositional variables and clearly

[P ⊆ P ′, Q ⊆ Q′, P & Q ' w] =⇒ P ′ & Q′ ' w

and similarly with ∨, i.e. the propositional connectives are also monotone.

We now define precisely (partial, monotone) functionals and functional structures. The
complication is due to the unavoidable fact that these are typed objects, never too simple to deal
with.

2.5. Partial, monotone functionals. A (many sorted) universe is any collection of sets

U = {U(ū) | ū ∈ B}

indexed by some (non-empty) set B of basic types. Members of U(ū) are of (basic) type ū in U .
For each Cartesian product

U = U(ū1) × · · · × U(ūn), (ū1, . . . , ūn ∈ B)

and each W = U(w̄), w̄ ∈ B, we let

P (U,W) = {p | p : U ⇀ W}

10

be the set of all partial functions on U to W ; the objects in P (U,W) are of partial function or pf
type ((ū1, . . . , ūn) ⇀ w̄) in U . We allow U to be the Cartesian product of no factors I, in which
case the objects of pf type (() ⇀ w̄) are the partial constants of type w̄. A point type in B is
any tuple x̄ = (x̄1, . . . , x̄n), where each x̄i is either a basic or a pf type in B and a point of type
x̄ is any tuple x = (x1, . . . , xn) where each object xi has type x̄i in U . The (product) space of
all points of type x̄ is naturally partially ordered by

(x1, . . . , xn) ≤ (y1, . . . , yn) ⇐⇒ x1 ≤1 y1 & . . . & xn ≤n yn,

where ≤i is just the identity = when x̄i is a basic type and for a pf type x̄i, ≤i is the standard
partial ordering on partial functions. Finally, a (partial, monotone) functional of type (x̄ ⇀ w̄)
is any partial function f : X ⇀W which is monotone in this partial ordering, i.e.

[f(x) ' w & x ≤ x′] =⇒ f(x′) ' w.

Notice that pf types are also functional types and every partial function in U is a (degenerate)
functional.

2.6. Functional structures. A finite (functional) signature is a triple τ = (B, {f1, . . . , fn}, d),
where B = {b1, . . . , bk} is a finite set of basic types, f1, . . . , fn are arbitrary function symbols and
d is a mapping which assigns a functional type to each fi; a functional structure of signature τ
is a tuple

A = (U , f1, . . . , fn) = (U1, . . . , Uk, f1, . . . , fn) (26)

where U is a universe over B with the basic sets Ui = U(bi), i = 1, . . . , k, and each fj is a
functional on U of type d(fj).

For example, this representation of a standard first-order structure A in (21) above has just
two basic sets TV and A of respective basic types (say) bool and a. An n-ary partial relation P on
A is a functional of type ((an) ⇀ bool) and similarly, an n-ary partial function p : An ⇀ A is of pf
and functional type ((an) ⇀ a). The functional & if of type (((() ⇀ bool), (() ⇀ bool)) ⇀ bool)
and ∃A is of type (((a) ⇀ bool) ⇀ bool), as is ∀A. Not much is gained by computing these
complex types, but it is important to notice that we are dealing with typed objects.4 We will
concentrate on this concrete example for the rest of this section, but everything we say generalizes
directly to arbitrary functional structures which can be used to model languages with additional
propositional connectives, generalized quantifiers, modal operators and the like.

2.7. The denotational semantics of LPCR. Fix a structure A as in (21). With each formula
φ and each sequence of (individual and partial relation) variables ~x = x1, . . . , xn which includes
all the free variables of φ, we associate a (partial, monotone) functional

f~x,φ = denA(~x, φ) : X ⇀ TV ,

4If both A and P (A, A) are among the basic sets in a universe with respective basic types a and paa, then
a partial function f : P (A, A) ⇀ A may be viewed as either of pf type (paa ⇀ a) or (if it is monotone), as a
functional, of type ((a ⇀ a) ⇀ a),

11

where X is the space of all n-tuples (x1, . . . , xn) such that the type of xi matches that of the
formal variable xi. The definition is by induction on the length of φ and it is quite trivial, except
for the case of the new primitive where of LPCR. For example, skipping the subscripts,

den(~x, xi = xj)(~x) = eqA(xi, xj),
den(~x,Rm(xi, xj , xk))(~x) = Rm(xi, xj , xk),

den(~x, φ ∨ ψ)(~x) ' λ()den(~x, φ)(~x) ∨ λ()den(~x, ψ)(~x),
den(~x, (∃y)φ(~x, y))(~x) ' ∃A(λ(y)den(~x, y, φ(~x, y))(y, ~x)).















(27)

Notice the use of the dummy λ operation in the case of ∨, which is needed to turn an element in
TV (or “the undefined”) into a partial, propositional constant. Proof that the operation defined
in each of these cases is a (monotone) functional is routine, depending only on the trivial fact
that the composition of monotone, partial functions is also monotone.

For the less trivial case of the where construct, suppose

φ ≡ φ0 where {P1(~u
1) ' φ1, . . . , Pn(~un) ' φn}

and for each ~x, use the induction hypothesis to define

f~x,i(~u
i, P1, . . . , Pn) ' den(~ui,P1, . . . ,Pn, φi)(~u

i, P1, . . . , Pn), (i = 0, . . . , n).

Now the functionals f~x,i are all monotone and it follows from basic results in the theory of
least-fixed-point recursion that the system of equations

Pi(~u
i) ' f~x,i(~u

i, P1, . . . , Pn), (i = 1, . . . , n) (28)

has a (unique) sequence of simultaneous least (as partial functions) solutions P ~x,i, i = 1, . . . , n.
We set

den(~x, φ)(~x) ' f~x,0(P ~x,1, . . . , P ~x,n). (29)

We need to verify that this is a functional again, i.e. monotone, but the proof is quite direct.
The denotation of a sentence (with no free variables) is independent of its arguments and we

set
value(φ) ' den(φ)(). (30)

There is a lot of notation here and an appeal to results which are not as widely known as
they might be, but the underlying idea is very simple. Consider the liar defined by (6). The
definition gives

value(liar) ' P (),

where P is the least solution of the equation

P () ' ¬(P ());

since the totally undefined P = ∅ satisfies this equation, the liar has no truth value and neither
does the truthteller. For liar ′ we need the least solution of the equation

P (x) ' ¬P (x)

12

which is again ∅, so that it too receives no truth value.
Consider also the following two versions of the ancestral, in which we will use the notation

x ≺ y ⇐⇒ x is a child of y

and we take I and Euclid to be individual constants with fixed references:

φ ≡ P (I) where {P (x) ' x ≺ Euclid ∨ (∃y)[x ≺ y & P (y)]}, (31)

ψ ≡ Q(Euclid) where {Q(z) ' I ≺ z ∨ (∃y)[y ≺ z & P (y)]}. (32)

Both φ and ψ express the intended assertion

I am a descendant of Euclid,

but in different ways, intuitively

φ : I am a child of Euclid or the child of a descendant of Euclid,

ψ : Euclid is my father or the father of an ancestor of mine.

It is easy to verify that both φ and ψ take the value t if, indeed, I am a descendant of Euclid.
In the more likely, opposite case, it can be verified that φ will take the value f only if there is
an upper bound to the length of ascending ancestral chains of the form

I ≺ y1 ≺ y2 ≺ · · · ≺ yn,

while ψ will be defined and false only when there is an upper bound to the length of descending
chains of parenthood of the form

Euclid � z1 � z2 � · · · � zn.

Both of these conditions are evidently true, but the first one undoubtedly claims a bit more
about our world (and the meaning of the relationship “child”) than the relatively innocuous
second one.

2.8. Definability in LPCR. A (possibly partial) relation R ⊆ An is weakly representable in
LPCR if there is a formula φ with free variables x1, . . . , xn such that

R(~x) ⇐⇒ den(~x, φ)(~x) ' t,

and strongly representable or just definable in LPCR if we have

R(~x) ' den(~x, φ)(~x).

Notice that strongly representable total relations are defined by total formulas, with no truth
gaps. Those familiar with the theory of inductive definability [22] can verify without much
difficulty that a total relation on A is LPCR-weakly representable just in case it is absolutely
inductive in A and it is LPCR-strongly representable just in case it is absolutely hyperelementary
in A. We will not pursue here this connection or the relation of LPCR with the several languages
with fixed-point operators studied in logic and theoretical computer science.

13

Suppose now that the structure A is infinite and acceptable in the sense of [21], so that we
can code tuples from A by single elements of A and we can manipulate these tuples in LPCR.5

We can then define a copy of the integers in A and we can assign Gödel numbers to formulas of
LPCR and Gödel codes to sentences in the expanded language, where we add a formal name for
each element of A. Finally, we can define the partial truth predicate of the structure,

TA(s) '

{

value(θs), if s is the Gödel code of a sentence θs,
f , otherwise.

(33)

2.9. Theorem. If A is acceptable, then its partial truth predicate TA for LPCR is definable
in LPCR.

The proof of this is neither difficult nor surprising : we simply express the inductive definition
of TA(s) directly by a where formula of LPCR.

2.10. Kripke’s language. Kripke [19] considers the formal extension of the language LPC
of predicate logic by a single unary relation symbol T which is meant to denote (on acceptable
structures) the truth predicate of the extended language containing it. To define the interpreta-
tion T of T (on Gödel codes of sentences), he considers the natural inductive conditions that T
must satisfy and then takes the least6 partial relation which satisfies these conditions; the truth
value of a sentence θ then (when it has one) is the value T (s) of T on the Gödel code s of θ. It
is quite routine to define a recursive mapping

φ 7→ τρ(φ) (34)

which assigns to each formula φ of the language of Kripke a formula τρ(φ) of LPCR which “means
the same thing”, and in particular has the same denotation: basically, we replace each occurrence
of T by the LPCR formula which defines TA on the appropriate argument. In particular, the
usual versions of the liar and other “paradoxical” sentences which employ indirect self reference
are expressible in LPCR and are assigned denotations in accordance with the grounded semantics
of Kripke.

2.11. Descriptions. Suppose we now expand LPCR by a construct of the form

φ 7→ (the x)φ(x) (35)

which assigns a term to every formula φ(x), where the variable x may or may not occur free in
φ(x). We understand (35) as a new clause in the recursive definition of terms and formulas, by
which terms can occur wherever free variables can occur.

Notice first that the where construct gives an easy mechanism to control the scoping of
descriptions. For example, Russell’s “bald King of France” example in [26] is best formalized by

BKF ≡ The King of France is bald ≡ P ((the x)KF (x)) where {P (x) ' B(x)}, (36)

5The precise definition of acceptability is not important. Kripke [19] points out that much weaker hypotheses
will do, actually all we need is the existence of a first-order-definable, one-to-one function π : A × A → A.

6These are Kripke’s grounded semantics, which are most relevant to what we are doing here. We will discuss
briefly alternative fixed-point semantics in the next section.

14

whose reformulation according to the theory of descriptions

BKF ⇐⇒ (∃!x)KF (x) & (∃x)[KF (x) & B(x)] (37)

is false, as Russell would wish it. If B(x) is a complex expression, as it most likely is, Russell’s
analysis of the simpler B((the x)KF (x)) might turn out to be true or false depending on the
particular form of the formula B(x).

We naturally wish to set

den(~y, (the x)φ(x))(~y) ' theA(λ(x)den(~y, x, φ(x))(~y, x) (38)

with a suitable functional
theA : P (A,TV) ⇀ A, (39)

and it is clear that theA should satisfy

[(∀x)P (x)↓ & (∃!x)P (x) = t] =⇒ theA(P) ' the unique x such that P (x) = t. (40)

It is also clear that (to insure monotonicity) theA(P) cannot be always defined, e.g. theA(∅) will
take no value. The question is how to set theA(P) when we know from the values of P that no
P ′ ⊇ P defines a single object, i.e. when the following holds:

Error(P) ⇐⇒ (∀x)[P (x) ' f] ∨ (∃x)(∃y)[x 6= y & P (x) ' P (y) ' t]. (41)

There are three plausible ways to proceed and we can label them by the denotational semantics
for descriptive phrases which they generate.

2.12. Frege’s solution. If Error(P), we let theA(P) stay undefined. Russell argues eloquently
against this solution which would also leave BKF without a truth value. Now Russell’s—and
everybody else’s theory—would certainly leave undefined the term

(the x)[[x = 1 & liar] ∨ [x = 0 & ¬liar]], (42)

which we do not know how to handle, but it does not seem right to have theA(P) undefined
when Error(P) holds and we know exactly what is wrong.

2.13. Russell’s solution. We add to the basic set A a new element eA, we decree that

Error (P) =⇒ theA(P) ' eA, (43)

and we extend all partial relations so that

xi = eA =⇒ P (x1, . . . , xn) ' f , (i = 1, . . . , n). (44)

Notice that this makes theA(P) always defined on total functions P , and (easily) it assigns the
same truth values to sentences as Russell’s theory of descriptions.

15

2.14. The programmer’s solution. In an effort to test Russell’s solution by the experimental
method, I posed directly to four friends the hot question: do you think that the King of France
is bald? The one who knew too much responded “Russell thought not”, but the other three gave
me exactly the same, predictable answer: “there is no King of France”. To make sense out of
this thinking, we add a new element e (for “error”) to the set of truth values TV , we decree
(43) as above and we extend all partial relations so that

xi = eA =⇒ P (x1, . . . , xn) ' e. (i = 1, . . . , n). (45)

We must also extend the connectives and quantifiers in the obvious way, to take account of the
new truth value, e.g.

t & e = e, t ∨ e = t, ¬e = e,

∃A(P) '







t, if for some x ∈ A, P (x) ' t,
f , if for all x ∈ A, P (x) ' f ,
e, if P is total , (∀x ∈ A)[P (x) 6= t], (∃x ∈ A)[P (x) = e].

This is a refinement of the Russell solution: when we know that there is no good way to interpret
a descriptive phrase, we record an “error” and we let the Boolean operations propagate the error
when they receive it from an argument they need. We might in fact enrich the set TV with a
whole lot of distinct “error messages” which explain just what went wrong with the descriptions
we attempted to compute, one of these error messages presumably being “there is no King of
France”.

These functional interpretations of the yield denotational semantics for descriptive phrases
which make it possible to view (the x)φ(x) as a constituent of every sentence θ in which it occurs
while assigning to θ the correct (expected) denotation. Of course, denotations alone cannot
account for the difference in meaning between “Scott is the author of Waverly” and “Scott is
Scott”, both of them being true by any of the proposed solutions. These sentences mean different
things because they have distinct referential intensions, the first calling for us to check whether
Scott indeed was Scott (a trivial algorithm) while the second requires that we verify whether
Scott wrote the Waverly novels. We will define the referential intensions of descriptive phrases
in the next section.

2.15. The Formal Language of Recursion FLR. In [23] we associated with each functional
signature τ the Formal Language of Recursion FLR = FLR(τ), a language of terms which in
addition to the function symbols f1, . . . , fn of τ has basic and partial function variables over
the types of τ and the additional type bool (standardly interpreted), constants t and f naming
themselves, a conditional construct and a general where construct which allows recursive defi-
nitions in all basic types. Quite obviously, we can view LPC, LPCR and its natural extensions
as fragments of FLR, with special signatures and some “sugaring” of the notation; and the de-
notational semantics we defined are special cases of the denotational semantics for FLR, which
are treated in [23]. The mathematical theory of self-referential semantics, referential intension
and sense is best developed for FLR and then applied to the specific cases of interest, but its
usefulness and justification rest on these applications.

16

3 Recursive algorithms and referential intensions

The distinction between an algorithm f and the object f computed by that algorithm—typically
a function—is well understood. Consider, for example the need to alphabetize (sort) a list of
words in some alphabet which comes up in a myriad of computing applications, from compilers
of programming languages to sophisticated word processing programs. There are hundreds of
known sorting algorithms and the study of their properties is a sizable cottage industry straddling
theoretical and applied computer science: they all compute the same sorting function which
assigns to every list of words its ordered version.

Equally clear is the difference between an algorithm and its various implementations in
specific machines or the programs which express it in specific programming languages. It is
true that this distinction is sometimes denied by computer scientists who take a formalist or
nominalist position towards the foundations of computing and recognize nothing but programs,
their syntactic properties and the “symbolic computations” they define. Yet I have never known
a programmer who did not know the difference between “programming the mergesort algorithm
in LISP” (a relatively trivial task) and programming the mergesort in some assembly language,
a notoriously difficult exercise in introductory programming courses. What can the last quoted
sentence possibly mean if there is no such thing as “the mergesort algorithm?” The question is
surely more serious than this flippant remark would suggest, as serious as the general question
of the formalist and nominalist approaches to mathematics, but this is not the place to address
it seriously. Suffice it to say that I am adopting a classical, realist view which takes it for
granted that algorithms “exist” independently of the programs which express them, much as
real numbers “exist” independently of the definitions which can be given for some of them in
specific formal languages.7

Although the concept of algorithm is universally recognized as fundamental for computer
science, it is traditional to treat it as a “premathematical” notion and avoid defining it rigorously.
Where there is need for a precise definition, for example in complexity theory, it is generally
assumed that algorithms are faithfully represented by models of computation, automata, Turing
machines, random access machines and the like. We record here the most general definition of
this type.

3.1. An iterator (or abstract sequential machine) on the set X to W is a tuple

f = (S, T, π, in, out), (46)

where the following conditions hold.

1. S is a non-empty set, the states of f , and T ⊆ S is a designated subset of terminal states.

2. π : S → S is a total function, the transition function of f .

7A sequence of recent court decisions in patent law may possibly lead to a legal distinction between a program
and the algorithm it expresses! Euclid could get a copyright on the Elements, which includes a definition of his
famous algorithm for finding the greatest common divisor of two integers, but could he also patent the algorithm
itself so that no one could use it without paying him a fee? Amazingly, the question came up in the courts in
connection with the fast multiplication algorithm, which solves in a novel way a problem even more elementary
than Euclid’s.

17

3. in : X → S and out : T →W are the input and output functions of f .

To compute with f on a given x ∈ X , we first find the initial state in(x) associated with x and
then we iterate the transition function beginning with this,

π0(x) = in(x), π1(x) = π(π0(x)), . . . , πn+1(x) = π(πn(x)), . . . (47)

until (and if) we find some n such that πn(x) is a terminal state; if such an integer exists, we set

N(x) ' (the least n)[πn(x) ∈ T] (48)

and we give as output the value of out on the terminal state N(x),

f(x) ' out(πN(x)(x)). (49)

Equations (47), (48), (49) taken together define the partial function f : X ⇀ W computed by
the iterator f .

In the most familiar example of a Turing machine with a one-way tape set up to compute
a unary, partial function on the integers, states are triples (s, τ, i) where s is an internal state
of the machine, τ is a description of the tape with finitely many (non-blank) symbols on it
and i is the scanned square; the transition function π is determined by the finite table of the
machine; (s, τ, i) is terminal if the machine halts in the situation described by it; for each integer
n, in(n) = (s0, τn, 0), where s0 is the initial, internal state and τn is the tape with a string of
n+ 1 consecutive 1’s on it; and out counts the consecutive 1’s on the tape and subtracts 1 from
them.

Turing’s compelling analysis of mechanical computation in [28] establishes beyond doubt that
every partial function on the integers which can be computed by a finitary, mechanical (deter-
ministic) device can also be computed by a Turing machine, what we now call the Church-Turing
Thesis. His arguments also make it quite obvious that the more general iterators can represent
faithfully all the intensional aspects of mechanical computation, and I take “the orthodox view”
to be that algorithms can be faithfully represented by these mechanical procedures.8 The the-
ory developed in [22, 23, 24] starts from a radically different perspective which takes recursion
rather than step-by-step computation as the essence of an algorithm. We will review it briefly
and discuss just two arguments in its favor, those most relevant to the purpose at hand.

3.2. The meaning of a recursive definition. A typical mutual or simultaneous recursive
definition has the form

p1(u1) ' f1(u1, p1, . . . , pn, x),
· · ·

pn(un) ' fn(un, p1, . . . , pn, x),







(50)

where f1, . . . , fn are (monotone) functionals on the individual arguments u1, . . . , un, x and the
partial function arguments p1, . . . , pn and we understand the definition to determine for each

8For example, the computational methods of Knuth [16] are essentially the same as “finitary” iterators. Knuth
reserves the term “algorithm” for computational methods which produce a value on each input, so that most
programs do not express algorithms until we have proved that they, in fact converge. It would seem that whatever
name we choose for it, the basic notion is that of an effective procedure which might or might not converge.

18

value x of the parameter the simultaneous least fixed points px
1 , . . . , p

x
n, the least partial func-

tions which satisfy its n equations in (50) with the fixed x. We may choose to call the first
equation principal and say that the recursion defines the partial function λ(u1, x)p

x
1(u1), or

(more conveniently, following the syntax of LPCR) say that the recursion defines the partial
function

f(x) ' f0(p
x
1 , . . . , p

x
n, x), (51)

where f0 is one more functional associated with the recursion, its head.

It follows from early results of Kleene in the theory of recursion, that if we have for each
i = 0, . . . , n a Turing machine Ti which computes fi(ui, p1, . . . , pn) (with a suitable coding of the
argument ui and access to “oracles” that yield on demand requested values for each of the pj ’s),
then we can construct a new Turing machine T which computes f . The argument generalizes
easily to arbitrary iterators. Thus, it is argued, since recursion can be reduced to iteration, the
notion of iterator is rich enough to represent algorithms expressed by recursive definitions.

A serious problem with this analysis is that the claimed reduction of recursion to iteration
is by no means unique or natural. If we apply any of the popular known reductions to the
specific, recursive definition of the mergesort mentioned above, we get a Turing machine which
spends most of its time building “stacks”, implementing “calls” and copying parts of its tape,
i.e. implementing recursion rather than sorting; and if we use another notion of computational
model like the assembly language of some actual computing machine (especially one capable of
substantial parallel computation), then we would likely use a different reduction procedure and
execution of the resulting program will bear little discernible resemblance to the computation
of the Turing machine allegedly expressing the same algorithm. At the same time, the most
important properties of recursive algorithms are typically proved directly from the recursive
equations which define them, without any reference to details of the specific method by which
we aim to reduce the recursion to iteration in order to implement it on a mechanical device.9

On this account, it seems natural to look for a more abstract notion of recursive algorithm
which can be read directly from the equations (50), (51), just as its fundamental, implementation-
free properties can be proved directly from (50), (51).

3.3. A recursor on a set X to W is any tuple of (partial, monotone) functionals [f0, f1, . . . , fn]
whose types are such that the equations (50), (51) make sense when x ∈ X , and where the image
of f0 is W . We write

f = [f0, f1, . . . , fn] : X ↪→W, (52)

we call f0, . . . , fn the parts of f and we say that f computes the functional f : X ⇀ W defined
by (51), its denotation. A functional f may be identified with the trivial recursor [f] which
computes it. Two recursors f and g are equal if they have the same number of parts n and for
some permutation σ of {0, . . . , n} with σ(0) = 0 and inverse ρ,

fi(ui, p1, . . . , pn, x) ' gρ(i)(ui, pσ(1), . . . , pσ(n), x), (i = 0, . . . , n). (53)

9This is discussed in some detail in [22] for the mergesort, whose basic property is that it will alphabetize a
list of n words “using” no more than n · log(n) comparisons. The result follows almost trivially from the recursive
definition of the algorithm and has nothing to do with its many and diverse implementations.

19

The definition of recursor identity seems complex, but it simply identifies recursors which
determine the same recursive definitions, except for the order in which the equations are listed.
For example, if f = [f0, f1, f2] has three parts and we set

g0(p2, p1, x) ' f0(p1, p2, x),

g1(u1, p2, p1, x) ' f1(u1, p1, p2, x),

g2(u2, p2, p1, x) ' f2(u2, p1, p2, x),

then g = [g0, g2, g1] = [f0, f1, f2] = f , because g determines the recursion

p2(u2) ' g2(u2, p2, p1, x) ' f2(u2, p1, p2, x),
p1(u1) ' g1(u1, p2, p1, x) ' f1(u1, p1, p2, x),
g(x) ' g0(p

x
2 , p

x
1 , x) ' f0(p

x
1 , p

x
2 , x),

which is exactly that determined by f , with the first two equations interchanged.
The basic presupposition of the theory of recursive algorithms is that the fundamental math-

ematical and implementation-free properties of an algorithm can be coded by a recursor: put
another way, to define an algorithm which computes a functional f , it is enough to specify a
recursive definition whose head least fixed point is f . Notice that recursors, like iterators, need
not be effective in any way. To separate the iterative algorithms from the iterators we need to
add a restriction of effectivity, e.g. by insisting that all the objects of the iterator are finitely
described, as in the case of Turing machines. In the theory of recursive algorithms we can only
talk about relatively effective algorithms, as follows.

3.4. Intensional semantics. Fix a functional structure A of signature τ as in 2.6. The theory
of recursive algorithms associates with each term φ of FLR(τ) and each sequence of variables ~x
which includes all the free variables of φ, a recursor

intA(~x, φ) : X ↪→W,

where X is the space of all n-tuples (x1, . . . , xn) such that the type of xi matches that of the
formal variable xi and W is the basic set with type that of the term φ. This referential intension
intA(~x, φ) of φ in A computes the (functional) denotation denA(~x, φ) : X ⇀W of φ in A. The
recursive algorithms of A are the recursors which occur as intensions of FLR-terms on A, and
the recursive functionals of A are their denotations.

The precise definition of intensions given in [24] is a bit complex,10 it depends on several tech-
nical results of [23] and we will not attempt to reproduce it here. The main task is to explain
how recursive definitions can be combined directly, without the introduction of extraneous, im-
plementation dependent data structures, i.e. to interpret the formulas (50), (51) when f0, . . . , fn

are recursors. The examples of referential intensions below will illustrate how the notions work.

10In fact we have oversimplified a bit, because only the so-called special terms define algorithms of a structure.
The subtleties about special terms are not relevant to the modeling of Frege’s sense by the referential intension
and we will disregard them in this paper.

20

3.5. Ideal, infinitary recursive algorithms. Consider the recursive definition of the partial
truth predicate TA for the language of LPCR on an acceptable structure A as in (21). It can be
written out in the form (50), (51), but two of the clauses will involve the “infinitary” operations
∀A, ∃A. This means that in the associated recursor

TA = [T0, T1, . . . , Tn] : A ↪→ TV (54)

two of the functionals are of the form

Ti(u, P1, . . . , Pn) ' ∀A(λ(y)Pk(u, y)),
Tj(u, P1, . . . , Pn) ' ∃A(λ(y)Pk(u, y)).

(55)

On the account we are giving, TA is a recursive algorithm of A which computes the partial
truth predicate TA. There is little doubt that on its own, TA is an interesting mathematical
object, it is the semantic version of the definition of truth. On the other hand, as an “algorithm”,
it cannot be implemented when A is infinite, however we define “implementations.” So there is a
real question whether it is useful to adopt the terminology of algorithms in connection with such
infinitary objects: do our intuitions about algorithms garnered from constructing and analyzing
finitary, step-by-step mechanical procedures carry over to help us understand and study such
infinitary objects?

One point to consider is the standard and highly developed fixed point theory of programs
which (in effect) interprets ordinary programs by recursive equations. Almost all the concepts
and methods of this theory extend to arbitrary recursive algorithms, sometimes trivially, often
with some extra effort. Recursion in higher types [14, 15], [25], [13], recursion on admissible
ordinals and set recursion [27], positive elementary induction [21] and other generalized recursion
theories [11, 10] have been developed and found fruitful applications in many parts of logic,
set theory and computer science based on this idea. The results in this subject are typically
stated in the form of extensional properties of various collections of “computable” or “recursive”
functions, but the proofs always depend on intensional properties of the recursions by which
these functions are defined. For example, Kripke [19] states at the end of his paper that (on
an acceptable structure) the relations weakly definable in his language are exactly the inductive
relations, and those strongly definable (by formulas with no truth gaps) are the hyperelementary
relations. This is an extensional statement, but its proof depends on the Stage Comparison
Theorem 2A.2 of [21], which is most naturally understood as a statement about the lengths of
the “abstract computations” by the recursor TA.11

The intension of the liar ≡ P () where {P () ' ¬P ()} is the recursor

l = [l0, l1], where l0(P) ' P (), l1(P) ' ¬P (), (56)

and that of the truthteller ≡ P () where {P () ' P ()} is

tt = [l0, l0]. (57)

11Kripke also associates with each sentence φ which has a truth value its level, the least ordinal at which his
truth definition yields that value. In algorithmic terms, this is precisely the length of the computation by the
recursor TA on the Gödel code of φ. A more natural level function assigns to each φ the length of the computation
of the recursor int(φ), with no appeal to Gödel codes.

21

We can read these directly from the sentences involved, because they are so simple. In general
we need to reduce a sentence by the reduction calculus of [23] which preserves intensions, until
we bring it to an irreducible normal form, from which we can read off its intension.

Suppose R, Q are interpreted by converse relations R, Q in a structure and a, b are constants
interpreted by elements a, b. The reduction calculus gives the normal forms

R(a, b) ∼A R(p1(), p2()) where {p1() ' a, p2() ' b},

Q(b, a) ∼A Q(p2(), p1()) where {p2() ' b, p1() ' a},

and the three-part intensions that we can read off these normal forms are equal (via the per-
mutation σ(1) = 2, σ(2) = 1) precisely because R and Q are converse relations. A similar
computation shows that in general,

φ & ψ ∼A ψ & φ, φ ∨ ψ ∼A ψ ∨ φ.

As an additional example from LPC, consider the sentence χ of (4). We exhibit some of the

steps of its reduction to normal form, to illustrate the reduction calculus of [23].

χ ≡ (∀x)(∃y)R(x, y) ∨ (∃z)Q(z)

∼A λ()P1() ∨ λ()P2()

where {P1() ' (∀x)(∃y)R(x, y),

P2() ' (∃z)Q(z)}

∼A λ()P1() ∨ λ()P2()

where {P1() '∀A(P11) where {P11(x) ' (∃y)R(x, y)},

P2() '∃A(P22) where {P22(z) ' Q(z)}

}

∼A λ()P1() ∨ λ()P2()

where {P1() ' ∀A(P11), P11(x) ' (∃y)R(x, y),

P2() ' ∃A(P22), P22(z) ' Q(z)

}

∼A . . .

∼A λ()P1() ∨ λ()P2()

where {P1() ' ∀A(P11), P11(x) ' ∃A(λ(y)P111(x, y)), P111(x, y) ' R(x, y),

P2() ' ∃A(P22), P22(z) ' Q(z)

}.

The six-part intension of χ which can be read off this normal form is the recursor represen-
tation of the algorithm described by Steps (1)–(4) in Section 1.

Finally, the “bald King of France” sentence (36) has the following normal form, assuming
that both KF (x) and B(x) are prime formulas:

BKF ∼A P (q()) where {P (x) ' B(x), q() ' the (R), R(x) ' KF (x)}.

22

Its intension has four parts, the head being

bkf 0(P, q,R) ' P (q()).

This and the preceding two examples illustrate the simple form of the intensions of sentences in
LPC, even when we extend it with description operators or (quite easily) generalized connec-
tives and quantifiers, modal operators and the like. They describe recursions which, however
non-constructive (when the functionals in the structure are non-constructive), they are trivial as
recursions, they “close” in a finite number of steps. Except for the imagery of algorithms, the
theory on this level is really not that much different from Church’s (Alternative 0 version) in
[1] or Cresswell’s, which could cover the same ground with the introduction of a natural equiv-
alence relation on proposition surrogates or structures. It is, of course, the algorithm imagery
which justifies the transformations by which we reduce sentences to normal form, compute their
intensions and then use the natural identity of these recursors to get precisely the equivalence
relation which is needed. When we add self-reference to the language we obtain the less trivial
intensions of formulas such as the truth predicate, which describe more interesting recursions.
We also make considerably more complex the relation of intensional identity.

3.6. Theorem. The problem of graph isomorphism for finite (unordered) graphs is polynomi-
ally reducible to the problem of intensional identity, for sentences of LPCR on any structure.

Proof (Kit Fine).12 Given a graph with n nodes P1, . . . , Pn and k ≤ n2 edges E1, . . . , Ek,
we construct a sentence φ(G) using P1, . . . , Pn, E1, . . . , Ek and an additional Q as partial propo-
sitional variables. The sentence φ(G) is a where sentence with n+ k + 1 parts, the head being
Q() and the other parts of the form

Pi() ' Pi(), (i = 1, . . . , n),

Ej() ' Pb(j)() ∨ Pe(j)(), (j = 1, . . . , k),

where for each j, Pb(j) and Pe(j) are respectively the beginning and the end nodes of the edge
Ej . The construction is obviously polynomial and it is quite trivial to verify that two graphs
are isomorphic exactly when the corresponding sentences have the same intension, directly from
the definition of recursor identity. a

All the sentences constructed in the proof receive no truth value, they are silly and complex
versions of the truthteller. One can build more interesting examples of complex intensions,
but this simple construction exhibits the complexity of deciding intensional identity, the graph
isomorphism problem being notoriously difficult.

3.7. A recursor structure of signature τ = (B, {f1, . . . , fn}, d) is an interpretation of FLR(τ)
where the function symbols are interpreted by recursors, i.e. a tuple A = (U , f1, . . . , fn), where
each fi is a recursor with head fixed point a functional f i of type d(fi). We can think of every
functional structure as a recursor structure, identifying its functionals with the associated trivial

12This argument of Fine’s (included with his permission) is simpler than my original proof and shows that
in fact the problem of intensional identity for the propositional part of LPCR is at least as hard as the graph
isomorphism problem.

23

recursors which compute them, as in 3.3. Recursor structures arise naturally when we enrich a
language by adding a new symbol to express a complex notion, and then we want the new symbol
to be interpreted by the complex meaning of the expression it replaces. Kripke’s language is
naturally interpreted in recursor structures, since (at the least) we want the ordinals attached
to sentences to be part of the interpretation of T. The theory of intensions generalizes directly
to the category of recursor structures, which is the natural context for it.

3.8. Non-minimal fixed points. In [19], Kripke discusses several possibilities of interpreting
self-referential sentences by choosing fixed points other than the least one. He says that “the
smallest fixed point is probably the most natural model for the intuitive concept of truth,” and
the algorithmic analogy supports this. On the other hand, the referential intension of a sentence
determines not only the smallest fixed point but all of them; thus, if we identify sense with
referential intension, we do not lose those aspects of meaning which may be represented by the
non-minimal fixed points. For example, Kripke calls the liar “paradoxical” because it cannot
have a truth value in any fixed point of TA. The paradoxical nature of the liar is coded by
its referential intension, a recursor with the property that none of its simultaneous fixed points
yields a truth value.

4 Sense identity and indirect reference

van Heijenoort [29] quotes an extensive passage from a 1906 letter from Frege to Husserl which
begins with the following sentence:

“It seems to me that we must have an objective criterion for recognizing a thought
as the same thought, since without such a criterion a logical analysis is not possible.”

This could be read as asserting the existence of a decision procedure for sense identity, but
unfortunately, the letter goes on to suggest that logically equivalent sentences have the same
sense, a position which is contrary to the whole spirit of [12]. It is apparently not clear what
Frege thought of this question or if he seriously considered it at all. Kreisel and Takeuti [17] raise
explicitly the question of synonymity of sentences which may be the same as that of identity of
sense. If we identify sense with referential intension, the matter is happily settled by a theorem.

4.1. Theorem. For each recursor structure A = (U1, . . . , Uk, f1, . . . , fn) of finite signature,
the relation ∼A of intensional identity on the terms of FLR interpreted on A is decidable.

For each structure A and arbitrary integers n, m, let

SA(n,m) ⇐⇒ n, m are Gödel numbers of sentences or terms θn, θm of FLR (58)

and θn ∼A θm.

The rigorous meaning of 4.1 is that this relation SA is decidable, i.e. computable by a Turing
machine. By the usual coding methods then, we get immediately:

4.2. Corollary. The relation SA of intensional identity on Gödel numbers of expressions of
FLR is elementary (definable in LPC), over each acceptable structure A.

24

The Corollary is useful because it makes it possible to talk indirectly about FLR intensions
within FLR. In general, we cannot do this directly because the intensions of a structure A are
higher type objects over A which are not ordinarily13 members of any basic set of the universe
of A. One reason we might want to discuss FLR intensions within FLR is to express indirect
reference, where Frege’s treatment deviates from his general doctrine of separate compositionality
principles for sense and denotation. Frege argued that “the indirect denotation of a word is . . . its
customary sense,” so that in

Othello believed that Cassio and Desdemona were lovers, (59)

the object of Othello’s belief would be the sense of the sentence ‘Cassio and Desdemona were
lovers’. Since we cannot refer to sense directly in any fragment of natural language formalizable
within FLR (if we identify it with intension), we might attempt to make belief an attribute of
sentences, or (equivalently) their Gödel numbers. This means that (59) is expressed by

Othello believed ‘Cassio and Desdemona were lovers’, (60)

where ’Cassio and Desdemona were lovers’ is the Gödel number of the sentence within the quotes.
But then we would certainly expect (60) to imply

Othello believed ‘Desdemona and Cassio were lovers’, (61)

and we would like to express in the language the general assertion that belief depends only on
the sense, not the syntactic form of a sentence, i.e.

[Othello believes m & SA(m,n)] =⇒ Othello believes n. (62)

The Corollary says precisely that (62) is expressible already in LPC. The method is evidently
quite general: if we view propositional attitudes as attributes of Gödel codes, we can express in
the language that they respect sense identity, those indeed which should respect it.

Proof of the Main Theorem 4.1. The intension of a term in a recursor structure is
computed in the associated functional expansion by Def. 3.6 of [24], so we may assume that the
interpretations f1, . . . , fn of the function symbols of the language in A are functionals. We fix
such a functional structure A then and we assume (for the time being) that all basic sets in A
are infinite. We will discuss the interesting case of finite basic sets at the end.

Since intensions are preserved by passing to the normal form, the problem of intensional
identity on A comes down to this: given two irreducible, recursive terms

φ ≡ φ0 where {p1(u1) ' φ1, . . . , pn(un) ' φn},

ψ ≡ ψ0 where {q1(v1) ' ψ1, . . . , qm(vm) ' ψm},

13If the universe of A contains the powerset of every basic set in it and the Cartesian product of every two
basic sets, then of course it contains all recursors over basic sets and with suitably rich primitives we can develop
the theory of intensions of A within LPCR. These are typed structures, however, of infinite signature, which lack
a natural universe, a largest basic set. More interesting would be the structure of the universe of sets, whose only
basic “set” is the class of all sets. The intensions of this structure are certainly not sets.

25

is n = m and can we match the terms so that they define the same functionals? By trying all
possible ways to match the parts14 and using the form of irreducible, explicit terms (2B.4 of
[23]), we can further reduce the problem to that of deciding whether an arbitrary identity in one
of the following three forms holds in A:

f(z1, . . . , zm) ' g(zm+1, . . . , zl), (63)

f(z1, . . . , zm) ' p(w1, . . . , wk). (64)

q(w1, . . . , wm) ' p(wm+1, . . . , wl). (65)

Here the following conditions hold:

1. The functionals f and g are among the finitely many givens of A, or the constants t, f or
the conditional.

2. Each zi is an immediate expression (in the full set of variables) by 2B.2 of [23], i.e. either a
basic variable, or p(~x) where the xi’s are basic variables, or λ(~s)p(~x) with p(~x) as above.

3. Each wj is either a basic variable or r(~x), where the xi’s are basic variables and where
r ≡ p and r ≡ q are allowed.

The decision question is trivial for identities in form (65) because of the following elementary
result from equational logic.

4.3. Lemma. An identity (65) is valid on any fixed structure with infinite basic sets only if its
two sides are identical.

We can view (64) as a special case of (63), with the following evaluation functional substituted
for g on the right:

evk(p, x1, . . . , xk) ' p(x1, . . . , xk). (66)

Notice, however, that there are infinitely many such evaluation functionals. There are also
infinitely many possible identities in form (63), because although f and g are chosen from a
finite set, there is an infinite number of immediate expressions from which to choose the zi’s.
The proof splits into two parts. First we will show that if we expand the structure by a fixed,
finite number of evaluation functionals, then every identity in form (64) is effectively equivalent
to one in form (63). In the second part we will show how to decide the validity of equations in
form (63).

4.4. A basic variable v is placed in an identity (63) or (64) if v ≡ zi for some i. For example,
the placed variables of f(v, p(x, y), u) = p(s, r(x, y)) are v and u.

14This trivial part of the algorithm is (on the face of it) in NP (non-deterministic, polynomial time) in the
length of the given terms and the rest will be seen to be no worse. I do not know a better upper bound for the
complexity of intensional identity on a fixed structure and the best lower bound I know is that of Theorem 3.6.

26

4.5. Lemma.15 Suppose the identity

f(z1, . . . , zm) ' p(w1, . . . , wk). (67)

is valid in the structure A with infinite basic sets and wi ≡ r(~x) is one of the terms on the right.
Then there exists some zj on the left such that either wi ≡ zj, or zj ≡ λ(s1, . . . , sk)r(~y) and
r(~x) can be obtained from r(~y) by the substitution of placed variables for s1, . . . , sk.

Proof. To keep the notation simple we assume that there is only one basic set and we
consider the special case where

w2 ≡ r(x, u, x, y, v), u, v placed, x, y not placed. (68)

Case 1. r 6≡ p. Choose disjoint sets Dx, Dy, Du, Dv, W and some c̄ outside all of them and
first set all variables other than x, y, u, v to c̄ and all partial function variables other than r, p
to constant functions with value c̄. Next set u and v to constant values ū, v̄ in the corresponding
sets Du, Dv. For each arbitrary partial function

ω : Dx ×Dx ×Dy ⇀W,

set r by the conditions

[s1 /∈ Dx ∨ s2 /∈ Du ∨ s3 /∈ Dx ∨ s4 /∈ Dy ∨ s5 /∈ Dv] =⇒ r(s1, s2, s3, s4, s5) ' c̄,

[s1 ∈ Dx & s2 ∈ Du & s3 ∈ Dx & s4 ∈ Dy & s5 ∈ Dv] =⇒ r(s1, s2, s3, s4, s5) ' ω(s1, s3, s4)

and finally set

σ(t) =

{

t, if t ∈W,
c̄, otherwise,

p(s1, s2, . . . , sk) ' σ(s2). (69)

Consider the result of further substituting in (67) arbitrary values x ∈ Dx, y ∈ Dy. Suppose
wj ≡ q(~t) is one of the terms within p on the right. If q 6≡ r, then with these substitutions wj

is defined, set either to c̄ or to σ(t2), if q ≡ p. If q ≡ r and the sequence of variables ~t is not
exactly x, u, x, y, v, then wj again takes the value c̄. Thus the only term which may possibly
be undefined among the wj ’s is w2 (which may of course occur more than once) and hence the
right-hand-side of (67) is defined exactly when w2 is defined and we have a valid identity:

f(z1(ω, x, y), . . . , zm(ω, x, y)) ' ω(x, x, y), (x ∈ Dx, y ∈ Dy, ω : Dx ×Dx ×Dy ⇀W). (70)

The typical expression zi(ω, x, y) on the left evaluates to the constant c̄ or some function with
the constant value c̄ if neither r nor p occurs in zi. If zi ≡ λ(~s)p(~t), then again zi has a value
independent of ω, x, y, because of the definition of p and the fact we we set no variable equal to
a member of W . Finally, if

zi ≡ λ(s̄)r(t1, t2, t3, t4, t5), (71)

15I am grateful to Joan Moschovakis for a counterexample which killed a plausible simplification of this proof,
before I invested too much time in it.

27

but some ti is free or a constant and is not the i’th variable or constant in the pattern x, ū, x, y, v̄,
then again the expression evaluates to c̄, by the definition of r. Thus zi depends on ω, x, y
only when at most t1, t3 or t4 are free, and those among them which are free are set to the
corresponding value x, x or y. If all three are free in some such zi, then the lemma clearly holds.
In the opposite case the partial function ω satisfies an identity of the form

ω(x, x, y) ' h(ω, ω(·, x, y), ω(x, ·, y), ω(x, x, ·), ω(·, ·, y), ω(·, x, ·), ω(x, x, ·)), (72)

where h is a monotone operation on partial functions and · is the algebraic notation for λ-
abstraction, e.g.

ω(·, x, ·) = λ(s, t)ω(s, x, t).

For example, suppose
zi ≡ λ(st)r(x, ū, s, t, v̄) = β;

then

β(s, t) '

{

ω(x, s, t), if s ∈ Dx, t ∈ Dy,
c̄, otherwise,

so that zi = hi(ω(x, ·, ·)) with a monotone hi. A similar evaluation of zi in terms of some section
of ω is involved in each of the cases and the substitution of all these monotone hi’s into f yields
a monotone operation.

Finally, we obtain a contradiction from the alleged validity of (72). Choose distinct points
x0, x1, y0, y1 in the respective setsDx, Dy and define two partial functions with only the indicated
values, where 0, 1 are distinct points in W .

α(x0, x0, y0) ' 0, γ(x, x′, y) '

{

0, if x = x0 ∨ x′ = x0 ∨ y = y0,
1, otherwise.

From (72) applied to α,

h(α, α(·, x0, y0), . . . ,) ' α(x0, x0, y0) ' 0. (73)

But obviously α ⊆ γ and an easy computation shows that every section of γ at (x1, x1, y1)
extends the corresponding section of α at (x0, x0, y0), for example

λ(s)α(x0, s, y0) ⊆ λ(s)γ(x1, s, y1),

simply because γ(x1, x0, y1) ' 0. Thus by the monotonicity of h, (73) and (72) applied to γ, we
should have

0 ' g(γ, γ(·, x1, y1), . . . ,) ' γ(x1, x1, y1),

while by its definition γ(x1, x1, y1) ' 1. This completes the proof of the Lemma in the first case.

Case 2. r ≡ p. We consider again a typical, simple case

f(z1, . . . , zm) ' p(w1, p(x, y, u), w2), u placed, x, y not placed.

28

As before, we restrict the variables to disjoint sets Dx, Dy, Du, W and we set:

p(s1, s2, s3) '







ω(s1, s2), if s1 ∈ Dx, s2 ∈ Dy, s3 ∈ Du,
s2, otherwise, if s2 ∈W,
c̄, otherwise.

From this it follows that we get a valid identity of the form (72) for an arbitrary ω : Dx×Dy ⇀W ,
the main points being that all the terms on the right which are not identical with w2 are defined
and only the sections show up on the left, and then the proof is finished as before. a

4.6. Lemma. An identity of the form

f(z1, . . . , zm) ' p(w1, . . . , wk) (74)

cannot be valid in a structure A with infinite basic sets if the number n of distinct terms (not
variables) on the right is greater than a fixed number d, which depends only on the type of f ; if
n ≤ d, then we can compute from (74) an equivalent identity of the form

f(z1, . . . , zm) ' evn(W0,W1, . . . ,Wn). (75)

Proof. If (74) is valid, then by the preceding Lemma 4.5, each wi which is a term either is
identical with some zj or can be obtained by the substitution of placed variables in some zj. If
there are q ≤ m placed variables, and if zj is a λ-term, it is of the form λ(s1, . . . , sl(j))z

∗

j , where
the number l(j) can be computed from the type of f , so it can generate by substitution of placed
variables into its bound variables at most ql(j) distinct terms; hence the total number of distinct
terms on the right cannot exceed

d =

m
∑

j=1

ql(j). (76)

Suppose the right-hand-side of (74) is p(x,A, u,B,A, z), where distinct caps indicate distinct
terms and the lower case letters are variables. We then have

p(x,A, u,B,A, x) ' (λ(a, b)p(x, a, u, b, a, x))(A,B)

' ev2(λ(a, b)p(x, a, u, b, a, x), A,B).

The general case is similar. a

This last lemma reduces the decision problem of intensional identity to equations in form
(63), where there is a finite choice of f ’s, the functionals in the signature, and a finite choice of
g’s, those in the structure and the evk’s, for k less than d computed by (76) for every functional
in the structure.

4.7. Extended sets and assignments. Before describing the procedure which determines
the validity of identities in form (63), we consider a simple example which illustrates one of the
annoying subtleties we will need to deal with. Suppose g is a total, unary function on some set
A and we define the total, binary function f by

f(x, y) ' g(x). (77)

29

Clearly (77) is a valid identity involving the old g and the new f we just defined. Suppose we
substitute a term in this to get

f(x, p(x)) ' g(x); (78)

now this is not valid, because for some values of the partial function p, p(x) will not be defined,
so neither will f(x, p(x)), while the right-hand-side is defined. In dealing with partial functions
and functionals as we have, validity of identities is not preserved by substitution of terms. One
way to deal with this problem is to add an element ⊥ to each basic set and view partial functions
as total functions, which take the value ⊥ when they should be undefined. For each set A, we
set

A⊥ = A ∪ {⊥} = the extension of A. (79)

We can now try to interpret identities by allowing the basic variables to range over the extended
sets, so that the validity of (77) implies the validity of (78); this is fine, except that now (77)
fails for the f we originally defined, because we still have f(x,⊥) = ⊥ 6= g(x), when x ∈ A. Of
course, some might say we defined the wrong f , but in fact it is these “strict” identities we need
to decide to settle the question of intensional identity. In practice we will need to work both
with strict and with extended identities and we must keep the context clear.

We will use “=” to denote equality in the extended basic sets and set

x↓ ⇐⇒ x ∈ A ⇐⇒ x 6= ⊥, (x ∈ A⊥). (80)

A strict assignment π in a structure A assigns partial functions to pf variables and members of
the basic sets to basic variables, as usual. An extended assignment behaves exactly like a strict
assignment on pf variables, but assigns members of the extended basic sets to the basic variables,
i.e. it can set π(v) = ⊥. An identity is strictly valid when it holds for all strict assignments, and
extendedly valid if it holds for all extended assignments.

4.8. Dictionary lines. Choose once and for all fixed, special variables x1, . . . , xl of types such
that

f(x1, . . . , xm) ' g(xm+1, . . . , xl) (81)

is well formed. A dictionary line for f and g is an implication of the form

φ1, φ2, . . . , φn =⇒ f(x1, . . . , xm) ' g(xm+1, . . . , xl) (82)

where each formula φk in the antecedent of the line may involve additional extra, basic variables
other than the x1, . . . , xl and satisfies one of the following conditions.

1. φk ≡ xi = u, where xi is one of the special, basic variables. At most one formula of this
type in the antecedent involves each xi.

2. φk is λ(~s)xi(~u) = λ(~s)xj(~v) or xi(~u) = xj(~v). At most one formula of this type in the
antecedent involves each pair xi and xj .

3. φk is u↓ or u 6= v, where the basic variables u, v occur free in the line in formulas of type
(1) or (2).

30

4.9. Dictionaries. A line is valid (in the given structure) if every extended assignment which
satisfies its hypothesis also satisfies its conclusion. This means that the choice of specific extra
variables is irrelevant to the validity of a line, and then a simple counting argument shows that
the types of f and g determine an upper bound on the number of distinct (up to alphabetic
change and reordering of hypotheses) lines. We fix a sufficiently large set of extra variables and
list once and for all, all the lines in these variables which are valid for f and g in the given
structure; this is the dictionary for f and g.

The dictionary of the structure A is the union of the dictionaries for all the pairs of functionals
in A. It is a finite list of lines, perhaps not easy to construct for specific structures with non-
constructive givens, but in principle it can be written down.

We will associate (effectively) with each identity (63) a specific set of lines L such that
the strict validity of (63) is equivalent to the extended validity of all the lines in L. It will be
convenient to express these lines using the variables which occur in (63). To decide a specific (63),
we translate the lines of L into equivalent lines in the fixed, chosen variables by an alphabetic
change, and then (63) will be equivalent to the presence of these lines in the dictionary.

For example, (77) will be expressed (essentially) by the single line

x1 = x3, x1 ↓, x2 ↓, x3 ↓=⇒ f(x1, x2) = g(x3),

which is valid, while for (78) we will get

x1 = x3, x1 ↓, x3 ↓=⇒ f(x1, x2) = g(x3),

which is not. (Actually there will be some additional “fringe” on the lines produced by the
formal decision procedure, which will not affect the validity of the lines.)

4.10. Bound variable unifiers. Let

E ≡ λ(u1, . . . , um)A, F ≡ λ(v1, . . . , vn)B, (83)

be two immediate λ-expressions. A bound variable unifier or just bvu for these two expressions
is a triple

(τ, σ, ~s) = (τ, σ, (s1, . . . , sl)),

where
τ : {u1, . . . , um} → variables, σ : {v1, . . . , vn} → variables

are substitution maps on the bound variables, s1, . . . , sl are variables which do not occur in A,
B but do occur in both τ [A] and σ[B], and

λ(s1, . . . , sl)τ [A] ≡ λ(s1, . . . , sl)σ[B]. (84)

The variables s1, . . . , sl are the bound variables of the unifier.

It will be convenient to assume that such variable transformations are defined on all variables,
by setting

τ(w) ≡ w, if w is not in the domain of τ.

31

We have already used this convention in writing τ [A], presumably meaning the term resulting
by replacing every basic variable u in A by τ(u).

For example, we can unify

λ(u, u′)r(u, u′, a), λ(v)r(v, b, a)

by setting
τ(u) ≡ τ(u′) ≡ b, σ(v) ≡ b, ~s = ∅,

which identifies both expressions with λ()r(b, b, a). It is obvious that this is not the best we can
do, though, since we can also set

τ ′(u) ≡ s, τ ′(u′) ≡ b, σ′(v) ≡ s, ~s = (s),

which unifies the terms “further” to λ(s)r(s, b, a). The next definition and lemma capture this
simple idea of the existence of a unique such “maximal” unifier, when one exists at all.

4.11. Suppose (τ, σ, ~s) and (τ ′, σ′, ~s′) are both bvu’s for two λ-terms E and F . We say that
(τ, σ, ~s) is reducible to (τ ′, σ′, ~s′) if it “unifies no more”, i.e. every variable in the sequence ~s is
also in the sequence ~s′, if τ ′(w) is not bound in (τ ′, σ′, ~s′) then τ(w) = τ ′(w), if τ(w) is bound
in (τ, σ, ~s) then τ(w) = τ ′(w), and similarly with σ, σ′.

A bvu for two λ-terms is maximal, if there exists no other bvu for the same λ-terms with a
longer sequence of bound variables.

4.12. Lemma. (1) Every bounded variable unifier for two λ-terms as in (83) can be reduced
to a maximal one.

(2) Two λ-terms have at most one maximal unifier, up to alphabetic change of the bound
variables.

Proof. The critical number for two λ-terms as in (83) is the number of distinct variables
among the u1, . . . , um, v1, . . . , vn which actually occur in A and B. We will show by induction
on the critical number, simultaneously, that if a bvu exists, then a unique maximal one exists
and the given one is reducible to the maximal one. Notice that if there is any unifier at all, we
must have

A ≡ r(a1, . . . , ak), B ≡ r(b1, . . . , bk), (85)

i.e. A and B must be terms involving the same pf variable.
At the basis, none of the variables occur, so there is only one possible unifier, the empty τ ,

σ, which reassigns no variables; it is a unifier exactly when the two expressions are identical and
it is trivially maximal. We take this case of expressions of the form λ()A, λ()B to cover also
(by convention) the case of terms A, B.

For the induction step, suppose ui actually occurs in A. We distinguish cases.

Case 1. For some j, aj ≡ ui but bj is none of the vt’s.
In this case every unifier must set τ(ui) ≡ bj , we make this replacement on the expressions

and we get the result by applying the induction hypothesis to these new expressions which have
smaller critical number since ui does not occur in them.

Case 2. For some j, aj ≡ ui, and for every j, if aj ≡ ui then bj is one of the vt’s, but there
exist distinct j 6= j′ such that aj ≡ aj′ ≡ ui and bj 6≡ bj′ .

32

In this case every unifier must satisfy

τ(ui) ≡ σ(bj) ≡ σ(bj′),

and we can apply the ind. hyp. to the expressions resulting by identifying bj with bj′ on the
right, which have smaller critical number.

Case 3. ui occurs in A, and for all j and some t,

aj ≡ ui =⇒ bj ≡ vt.

In this case we look at the symmetric argument, taking Cases 1, 2 and 3 on vt. In the first
of these two we can use the induction hypothesis and the last leads us to the following:

Case 4. ui occurs in A and there exists some vt which occurs in B at precisely all the same
places where ui occurs in A.

In this case every unifier must set τ(ui) ≡ σ(vt), and this variable may be one of the bound or
the free ones in the final expressions. We choose a variable s not occurring anywhere, we replace
ui in A and vt in B by s throughout and we apply the ind. hyp. to these new expressions with
lower critical number to obtain some maximal bvu (if it exists) (τ, σ, (s1, . . . , sk)); the maximal
bvu for the original expressions is obtained by adding s to the bound variables and extending τ
and σ in the obvious way,

τ(ui) ≡ σ(vt) ≡ s. a

Suppose now we are given an identity (63). We first show how to construct a single dictionary
line from it, which will determine the strict truth of (63) when all the free, basic variables in it
are interpreted by distinct values in the domain. The complete set of lines for (63) will contain
the lines we get in this way from all the identities which result from (63) by the identification of
some of its free, basic variables.

We assume that the special variables x1, . . . , xm we will use for the lines do not occur in the
given identity.

Step 1. For each zi which is a basic variable, we put in the antecedent of the line the equality
xi = zi and the condition xi ↓.

Step 2. Consider any pair zi, zj (i 6= j) of expressions which are not basic variables; we
will view these as λ-expressions by identifying temporarily a term r(~x) with the λ-expression
λ()r(~x). If zi, zj cannot be unified, we add nothing to the line. In the opposite case, suppose

zi ≡ λ(u1, . . . , uarity(i))r(x1, . . . , xk), zj ≡ λ(v1, . . . , varity(j))r(y1, . . . , yk),

and (τ, σ, (s1, . . . , sl)) is a maximal bvu for these expressions. We add to the antecedent of the
line the equation

λ(s1, . . . , sl)xi(τ(u1), . . . , τ(uarity(i))) ' λ(s1, . . . , sl)xj(σ(v1), . . . , σ(varity(j))). (86)

Step 3. After Steps 1 and 2 are completed, we add to the antecedent of the line the inequality
u 6= v and the conditions u↓, v↓, for every two free, basic variables which occur free on the line

33

and are not among the standard x1, . . . , xn. (If only one such u occurs, we simply add u↓.)

To recapitulate what we said above, the complete set of lines associated with an identity is
obtained by applying this procedure to every identity obtained by identifying some or all of the
free basic variables of the identity.

To illustrate the procedure, consider again (77). There are no terms to unify here, only Steps
1 and 3 come up and we get the following two lines:

x1 = x, x2 = y, x3 = x, x1 ↓, x2 ↓, x3 ↓, x 6= y, x↓, y↓ =⇒ f(x1, x2) = g(x3),

x1 = x, x2 = x, x3 = x, x1 ↓, x2 ↓, x3 ↓, x↓ =⇒ f(x1, x2) = g(x3).

The procedure generates only one line for (78):

x1 = x, x3 = x, x1 ↓, x3 ↓=⇒ f(x1, x2) = g(x3).

Consider also the example

f(λ(ts)p(x, y, t, s), q(x), x) ' g(p(x, y, x, y), q(y), x). (87)

There are two free variables, so we will get two lines. First from the identity as it is, Step 2 will
come into play with the most general bvu for z1 and z3 obviously being

τ : t := x, s := y,

with no bound variables left, so the line produced is

x3 = x, x3 ↓, x6 = x, x6 ↓, x1(x, y) = x4, x 6= y, x↓, y↓=⇒ f(x1, x2, x3) = g(x4, x5, x6).

If we identify x ≡ y, we get the identity

f(λ(ts)p(x, x, t, s), q(x), x) ' g(p(x, x, x, x), q(x), x)

which has an additional (trivial) unification and generates the line

x3 = x, x3 ↓, x6 = x, x6 ↓, x1(x, x) = x4, x2 = x5, x↓=⇒ f(x1, x2, x3) = g(x4, x5, x6).

It is quite easy to verify directly that the extended validity of these two lines is equivalent to the
strict validity of the identity.

4.13. Lemma. The conjunction of all the lines constructed for (63) implies (63).

Proof. We will verify that if the line produced by an identity holds, then every strict
assignment which assigns distinct values to distinct basic variables satisfies the identity, from
which the Lemma follows by applying it to all the substitution instances of the identity.

Suppose we are given a strict assignment π to the variables of the identity and extend it to
the special variables which occur on the line by setting

π(xi) = π(zi). (88)

34

It will be enough to verify that this assignment satisfies the antecedent of the line, so consider
how the clauses were introduced to it by the three steps of the construction.

Step 1 . We put in xi = zi and xi ↓ if zi is basic, and π clearly makes these conditions true,
by definition and because it is strict on the variables which occur free in the identity.

Step 2. If the clause (86) is added to the antecedent of the line in this step, we must show
that it is validated by π, or equivalently that π validates the term identity

xi(τ(u1), . . . , τ(uarity(i))) ' xj(σ(v1), . . . , σ(varity(j))). (89)

We compute:

π(xi(τ(u1), . . . , τ(uarity(i)))) ' π(zi)(τ(u1), . . . , τ(uarity(i)))

' π((λ(u1, . . . , um)r(a1, . . . , ak))(τ(u1), . . . , τ(uarity(i))))

' π(r(τ(a1), . . . , τ(ak)))

' π(r(σ(b1), . . . , σ(bk))),

where the last line follows from the fact that τ , σ are parts of a unifier. From this point we
proceed with the opposite computation for zj, to complete the proof of (89).

Step 3. The clauses introduced by Step 3 are obviously validated by π, which is assumed to
assign distinct, strict values to distinct basic variables. a

4.14. Lemma. An identity implies the validity of every line it generates.

Proof. We now assume that we are given an extended assignment π to the variables of the
line which satisfies the antecedent, and we must show that it also satisfies the consequent.

Notice that π assigns distinct values other than ⊥ to all the basic variables which occur free
both in the line and in the identity, because of the clauses we introduced in Step 3. We extend
π to the remaining free basic variables in the equation by giving a distinct, new value to each of
them. We want to extend π to all the pf variables also, so that we get

π(zi) ' π(xi), (90)

for every i = 1, . . . ,m. This is already true when zi is a basic variable, because of the equations
put in the line in Step 1.

To effect (90), for
zi ≡ λ(u1, . . . , uarity(i))r(a1, . . . , ak),

we want to define π(r) so that

π(r)(π∗(a1), . . . , π
∗(ak)) ' π(xi)(π

∗(u1), . . . , π
∗(uarity(i))) (91)

for every π∗ which agrees with π on all the variables except (perhaps) u1, . . . , uarity(i). This will
be possible, unless there is another expression

zj ≡ λ(v1, . . . , varity(j))r(b1, . . . , bk)

35

which then demanded

π(r)(π∗(b1), . . . , π
∗(bk)) ' π(xj)(π

∗(v1), . . . , π
∗(varity(j))), (92)

but for some assignment π∗ as above we have the conflict

π∗(a1), . . . , π
∗(ak) ' π∗(b1), . . . , π

∗(bk), (93)

π(xi)(π
∗(u1), . . . , π

∗(uarity(i))) 6= π(xj)(π
∗(v1), . . . , π

∗(varity(j))). (94)

First we argue that if (93) holds, then the terms zi and zj can be unified. Let w(1), . . . , w(l)
be the distinct values that π∗ assigns to the variables u1, . . . , uarity(i), v1, . . . , varity(j) (it maybe
that l = 0), choose distinct, fresh variables s(1), . . . , s(l) and set

τ(uα) ≡

{

aβ, if π∗(uα) = π(aβ),
s(w(π∗(uα))), otherwise,

where aβ is meant to be a variable not among u1, . . . , uarity(i). Notice that if the first case of
the definition applies, then the variable aβ is uniquely determined, because π∗ agrees with π
on these variables and assigns a distinct value to each of them. We give a similar definition
of another variable transformation σ on the vα’s and then observe that because of (93), these
transformations define a unifier of zi with zj with the bound variables s1, . . . , sl.

Using Lemma 4.12, we can find a maximal unifier of zi, zj from which the one just constructed
can be obtained by further specifying or identifying some of the bound variables. It follows that
in Step 2 of the construction of the line we put in a clause which expresses the maximal unification
of zi with zj and this easily contradicts (94). a

4.15. Structures with (some) finite basic sets. There is an obvious, trivial way by which
we can reduce the problem of intensional identity for any structure A of finite signature to that
of another such structure A′ in which all basic sets are infinite. If, for example, U = {u1, . . . , un}
is finite and f : U × V ⇀ W is a partial function among the givens, we replace f in A by n new
partial functions

fi : V ⇀ W, fi(v) ' f(ui, v), i = 1, . . . , n.

The translation is a bit messier for functionals but still trivial in principle. This is, in fact what
we will do if U is a small finite set, e.g. if U = TV = {t, f} is the set of truth values. If,
however, n is immense, then this reduction leads to a structure with impossibly many primitives
whose dictionary is totally unmanageable. Suppose, for example, that the language is a small
(in theory formalized) fragment of the basic English currently in use as the common language
of business in continental Europe. There are few basic sets in the intended interpretation, the
citizens of France, the German cars, the Greek raisins, etc. but they are all immense. We may
also assume few primitives, we are only interested in making simple assertions like

there are enough Greek raisins to satisfy the needs of all Frenchmen.

The problem of sense identity for sentences of such a language appears to be quite manageable,
and in fact, the actual dictionaries we would use to translate this language into the national

36

European languages are quite small. In contrast, the formal dictionary of the expanded language
suggested by the trivial procedure of eliminating all the finite basic sets is absurdly large and
involves specific entries detailing separately the relation between every Frenchman with every
Greek raisin. The decision procedure we described allows a better solution.

4.16. Corollary (to the proof). Suppose A = (U1, . . . , Uk, f1, . . . , fn) is a recursor structure of
finite signature, such that every basic set Ui has at least d members. Then the decision procedure
for intensional identity defined in this section will decide correctly every identity on A with n
(free and bound) basic variables, provided that 2n+ 4 ≤ d.

The Corollary suggests a method of constructing a reasonably sized “dictionary of meanings”
for a structure in which some basic sets are very small—and we eliminate these—and the others
are very large. The formal decision procedure for intensional identity on the basis of this dic-
tionary is not that far from the way we would decide such questions in practice: we understand
quantification over small sets by considering individual cases, while for large sets we appeal to
fundamental identities relating the meanings of the primitives, including the quantifiers. The
procedure will fail to resolve questions of identity of meaning which involve more quantifiers over
large sets than (roughly) half the size of the structure. The proof of the Corollary follows from
a careful examination of the arguments of this section, which basically require the existence of
enough possible values for variables to make certain distinctions. For example, it is not hard to
check that Lemma 4.3 holds, provided all the basic sets of the structure have at least 4 elements.
We will omit the details.

References

[1] A. Church, Intensionality and the paradox of the name relation. To appear in the Pro-
ceedings of the meeting at SUNY, Buffalo.

[2] , A formulation of the logic of sense and denotation, abstract, Journal of Symbolic
Logic, 11 (1946), p. 31.

[3] , A formulation of the logic of sense and denotation, in Structure, Method and
Meaning, P. Henle, H. M. Kallen, and S. K. Langer, eds., Liberal Arts Press, New York,
1951, pp. 3–24.

[4] , Outline of a revised formulation of the logic of sense and denotation, part I, Nous,
7 (1973), pp. 24–33.

[5] , Outline of a revised formulation of the logic of sense and denotation, part II, Nous,
8 (1974), pp. 135–156.

[6] M. J. Cresswell, Structured Meanings: The Semantics of Propositional Atti-
tudes, The MIT Press, Cambridge, Mass, 1985.

[7] K. Donnellan, Reference and definite description, Philosophical Review, 75 (1966),
pp. 281–304.

37

[8] M. A. Dummett, Frege’s distinction between mense and reference, in Truth and Other
Enigmas, Harvard Univ. Press, Cambridge, 1978, pp. 116–144.

[9] G. Evans, The varieties of Reference, Clarendon Press, Oxford, 1982. Edited by J. N.
McDowell.

[10] J. E. Fenstad, R. O. Gandy, and G. E. Sacks, eds., Generalized Recursion Theory,
II, Studies in Logic, No. 94, Amsterdam, 1978, North Holland.

[11] J. E. Fenstad and P. G. Hinman, eds., Generalized Recursion Theory, Studies in
Logic, No. 79, Amsterdam, 1974, North Holland/American Elsevier.

[12] G. Frege, On sense and denotation, in Translations from the Philosophical Writings
of Gottlob Frege, P. Geach and M. Black, eds., Basil Blackwell, Oxford, 1952. Translated
by Max Black under the title Sense and meaning. In quotations from Black’s translation,
I have consistently changed the rendering of Bedeutung as meaning to the more current
denotation or reference.

[13] A. S. Kechris and Y. N. Moschovakis, Recursion in higher types, in Handbook of
Mathematical Logic, J. Barwise, ed., Studies in Logic, No. 90, North Holland, Amster-
dam, 1977, pp. 681–737.

[14] S. C. Kleene, Recursive functionals of finite type, I, Transactions of the American
Mathematical Society, 91 (1959), pp. 1–52.

[15] , Recursive functionals of finite type, II, Transactions of the American Mathe-
matical Society, 108 (1963), pp. 106–142.

[16] D. E. Knuth, Fundemental Algorithms, vol. 1 of The Art of Computer Programming,
Addison-Wesley, 1968.

[17] G. Kreisel and G. Takeuti, Formally self-referential propositions for cut-free classical
analysis and related systems, Dissertationes Mathematicae, 118 (1974), pp. –.

[18] S. A. Kripke, Naming and Necessity, Harvard Univ. Press, Cambridge, 1972.

[19] , Outline of a theory of truth, Journal of Philosophy, 72 (1975), pp. 690–716.

[20] R. Montague, Universal grammar, Theoria, 36 (1970), pp. 373–398.

[21] Y. N. Moschovakis, Elementary Induction on Abstract Structures, Studies in
Logic, No. 77, North Holland, Amsterdam, 1974.

[22] , Abstract recursion as a foundation of the theory of recursive algorithms, in Compu-
tation and Proof theory, M. M. Richter et al., eds., Lecture Notes in Mathematics, No.
1104, Berlin, 1984, Springer-Verlag, pp. 289–364.

[23] , The formal language of recursion, Journal of Symbolic Logic, 54 (1989), pp. 1216–
1252.

38

[24] , A mathematical modeling of pure recursive algorithms, in Logic at Botik ’89, A. R.
Meyer and M. A. Taitslin, eds., Lecture Notes in Computer Science, No. 363, Berlin, 1989,
Springer-Verlag, pp. 208–229.

[25] R. Platek, Foundations of Recursion Theory, PhD thesis, Stanford University, 1966.

[26] B. Russell, On denoting, Mind, 14 (1905), pp. 479–493.

[27] G. E. Sacks, Higher Recursion Theory, Perspectives in Mathematical Logic, Springer-
Verlag, Berlin, 1990.

[28] A. M. Turing, On computable numbers, with an application to the entscheidungsproblem,
Procedings of the London Mathematical Society, Series II, 42 (1936-37), pp. 230–265.

[29] J. van Heijenoort, Frege on sense identity, in Selected Essays, Bibliopolis, Napoli,
1985, pp. 65–70.

[30] , Sense in frege, in Selected Essays [29], pp. 55–64.

39

