
MATHEMATICAL LOGIC

YIANNIS N. MOSCHOVAKIS

I. Propositional Logic, PL .
II. First Order Logic, FO L .

III. Gödel’s Incompleteness Theorem.
IV. Computability.
V. Recursion and Programming.

VI. Alternative Logics.
VII. Set Theory.

Glossary

Church-Turing Thesis: Claim that ev-
ery computable function can be computed
by a Turing machine.

Computability theory: Study of com-
putable functions on the natural numbers.

Continuum hypothesis: Conjecture
that there are only two sizes of infinite sets
of real numbers.

Database: Finite, typically relational
structure.

First order logic: Mathematical model
of the part of language built up from the pro-
positional connectives and the quantifiers.

Incompleteness phenomenon: Gödel’s
discovery, that sufficiently strong axiomatic
theories cannot decide all propositions which
they can express.

Model theory: Study of formal defin-
ability in first order structures.

Paradox: Counterintuitive truth.
Peano arithmetic: Axiomatic theory of

natural numbers.
Proof theory: Study of inference in for-

mal systems independently of their interpre-
tation.

Propositional connectives: The lin-
guistic constructs “and”, “not”, “or” and
“implies”.

Quantifiers: The linguistic constructs
“there exists” and “for all”.

Turing machine: Mathematical model
of computing device with unbounded mem-
ory.

Unsolvable problem: A problem whose
solution requires a non-existent algorithm.

Narrowly construed, mathematical logic
is the study of definition and inference in
mathematical models of fragments of lan-
guage, especially the first order logic frag-
ment. Logic has made critical contributions
to the foundations of science, especially
through the work of Kurt Gödel, and it
also has numerous applications. For set the-

ory and theoretical computer science, these
applications are so important, that parts
of these fields are normally included in the
modern, broad conception of the discipline.

I. Propositional Logic, PL

Each logic L has a syntax which delin-
eates the grammatically correct linguistic
expressions of L, a semantics which assigns
meaning to the correct expressions, and a
structured system of proofs which specifies
the rules by which some L-expressions can
be inferred from others.

There are other words to describe these
things: formal language is sometimes used
to describe a plain syntax, formal system

often identifies a syntax together with an
inference system (but without an interpre-
tation), and abstract logic has been used to
refer to a syntax together with an interpreta-
tion, leaving inference aside. It is, however,
a fundamental feature of logic that it draws
clean distinctions and studies the connec-
tions among these three aspects of language.
We explain them first in the simplest exam-
ple of the “logic of propositions”, which is
part of many important logics.

A. Propositional Syntax

The symbols of PL are the connectives

¬ (not) & (and) ∨ (or)

→ (implies, if-then)

the two parentheses ‘(’, ‘)’, and an infi-
nite list of (formal) propositional variables
P0, P1, P2, . . . which intuitively stand for
declarative propositions, things like ‘John
loves Mary’ or ‘3 is a prime number’. It has
only one category of grammatically correct
expressions, the formulas, which are strings

1

2 YIANNIS N. MOSCHOVAKIS

(finite sequences) of symbols defined induc-
tively by the following conditions:

F1. Each Pi is a formula.
F2. If A and B are formulas, then so are

the expressions

¬A (A & B) (A ∨ B) (A → B)

For example, if P and Q are propositional
variables, then (P → Q) and (P ∨ ¬P) are
formulas, which we read as “if P then Q”
and “either P or not P”.

The inductive definition gives a precise
specification of exactly which strings of sym-
bols are formulas, and also insures that each
formula is either prime, i.e., just a variable
Pi, or it can be constructed in exactly one
way from its simpler immediate parts, by one
of the connectives. This makes it possible to
prove properties of formulas and to define
operations on them by structural induction

on their definition.
More propositional connectives can be in-

troduced as “abbreviations” of formula com-
binations, e.g.,

A ↔ B ≡ ((A → B) & (B → A))

A ∨ B ∨ C ≡ (A ∨ (B ∨ C)).

B. Propositional Semantics

If B stands for some true proposition,
then ¬B is false, independently of the
“meaning” or internal structure of B. This
is an instance of a general Compositional-

ity Principle for PL: The truth value of a

formula depends only on the truth values

of its immediate parts. The semantics of
PL comprise the rules for computing truth
values, and they can be summarized in Ta-
ble 1, where 1 stands for ‘truth’ and 0 for
‘falsity’. By the first line of this table, for

A B ¬A (A & B) (A ∨ B) (A → B)

1 1 0 1 1 1

1 0 0 0 1 0

0 1 1 0 1 1

0 0 1 0 0 1

Table 1. Truth value semantics.

example, if A and B are both true, then ¬A
is false while (A&B), (A∨B) and (A → B)
are all true. Notice that if A is false, then
(A → B) is reckoned to be true no matter

what the truth value of B, so that ‘if the
moon is made of cheese, then 1 + 1 = 5’ is
true (on the plausible assumption that the
moon is not made of cheese). This material

implication assumed by Propositional Logic
has been attacked as counterintuitive, but it
agrees with mathematical practice and it is
the only useful interpretation of implication
which accords with the Compositionality
Principle.

Using these rules, we can construct for
each formula A a truth table which tabulates
its truth value under all assignments of truth
values to the variables. For example, the
truth table for (Q → P) consists of the first
three columns of Table 2 while the first two

P Q (Q → P) (P → (Q → P))
1 1 1 1
1 0 1 1
0 0 1 1
0 1 0 1

Table 2.

and the last column give the truth table for
(P → (Q → P)) .

If n variables occur in a formula A, then
the truth table for A has 2n rows and de-
termines an n-ary bit function vA, with ar-
guments and values in the two-element set
{1, 0}. By the Definitional Completeness

Theorem, every n-ary bit function is vA for

some A, so that the formulas of PL provide
definitions (or “symbolic representations”)
for all bit functions.

A formula A is a semantic consequence

of a set of formulas T (or T -valid) if every
assignment to the variables which satisfies

(makes true) all the formulas in T also sat-
isfies A,. We write

T |= A ⇔ A is T -valid,

and |= A, in the important special case when
T is empty, in which case A is called a tau-

tology. A formula A is satisfiable if some
assignment satisfies it, i.e., if ¬A is not a
tautology. Let

A ∼ B ⇔{A} |= B and {B} |= A

⇔ |= A ↔ B,

and call A and B equivalent if A ∼ B.

MATHEMATICAL LOGIC 3

Equivalent formulas define the same bit
function, and they can be substituted for
each other without changing truth values.
Clearly

(A → B) ∼ (¬A ∨ B),

so that the implication connective is super-
fluous. In fact, every formula is equivalent
to one in disjunctive normal form, i.e., a dis-
junction A1 ∨ · · · ∨ Ak where each Ai is a
conjunction of variables or negations of vari-
ables (literals).

C. Applications to Circuits

Each formula A with n variables can be
realized by a switching circuit C(A) with n
inputs and one output, so that C(Pi) con-
sists of just one input-output edge, C(A&B)
is constructed by joining C(A) and C(B)
with an and-gate, etc. Figure 1 exhibits the

s

P3

>
¬

s
>

∨ -
& -

P1

P2

Fig. 1. The circuit for (¬((P1 & P2) ∨ P3).

circuit for ((P1 &P2) → P3) using the equiv-
alent formula without implications, so that
only ¬-, &- and ∨-gates are required. These
are restricted circuits, of fan-in (maximum
number of edges into a node) 2 and fan-out

1, but the Definitional Completeness The-
orem implies that every n-ary bit function
can be computed by some formula circuit

C(A).
There are basically two useful measures

of circuit complexity, and both of them are
faithfully mirrored in formulas. The num-

ber of gates of C(A) is exactly the number
of connectives in A and measures size com-

plexity (construction cost), while the depth

of C(A), which measures the time complex-

ity of computation, is exactly the rank of
A, defined inductively so that rk(Pi) = 1,
rk(A&B) = max(rk(A), rk(B))+1 and sim-
ilarly for the other connectives. One can
now use natural manipulations of formulas
to construct circuits which compute a given
bit function with minimum size or time com-
plexity, or to establish optimality results for

the computation of bit functions by appeal-
ing to the formula representations of the cir-
cuits which realize them. For example, using
disjunctive normal forms, one sees immedi-
ately that (if we do not care about cost),
every n-ary bit function can be computed by

an unbounded fan-in circuit in no more than

3 time units. There is, in general, a sub-
stantial trade-off between the size and time
complexity of the circuits which compute a
given bit function.

D. The Satisfiability Problem

The assertion that “C(A) and C(B)
never give the same output on the same
inputs” means precisely that “(A ↔ ¬B) is
a tautology”, so that to detect that A and B
do not have this safety property we need to
determine whether the formula ¬(A ↔ ¬B)
is satisfiable.

Because of such natural formulations
of “error detection” for circuits relative
to given specifications, it is very impor-
tant to find efficient algorithms for deter-
mining whether a given formula is satisfi-
able. The problem is of non-deterministi-

cally polynomial time complexity (NP), be-
cause it can be resolved by guessing (“non-
deterministically”) some assignment and
then verifying that it satisfies A in a number
of steps which is bounded by a polynomial
in the length of A; and it is NP -complete,
i.e., every NP -problem can be “reduced” to
it by a polynomial reduction. This is a ba-
sic result of S. Cook, who introduced the
complexity class NP, showed that it con-
tains a large number of important problems,
and asked if it coincides with the (seem-
ingly) smaller class P of “feasible”, deter-

ministically polynomial time problems. The
question whether P = NP is the fundamen-
tal open problem of complexity theory; it
amounts simply to the question whether the
satisfiability problem can be solved by a de-
terministic, polynomial algorithm.

E. Propositional Inference

A proof of a formula A from a set of hy-
potheses T is any finite sequence

A0, A1, . . . , An−1, A

4 YIANNIS N. MOSCHOVAKIS

which ends with A, and such that each Ai is
either in T , or a PL-axiom, or follows from
previously listed formulas by a rule of infer-

ence. To make this notion precise we need
to specify a set of PL-axioms and rules of in-
ference; and for these to be useful, it should
be that they are few and easy to understand,
and that the formulas provable from T are
exactly the T -tautologies.

We need just one, binary inference rule:

A (A → B)
(Modus Ponens)

B

This is sound, i.e., {A, (A → B)} |= B,
so that if A and (A → B) are both T -
tautologies, then so is B.

An axiom is any instance of the following
axiom schemes, where A, B and C are arbi-
trary formulas and we have omitted several
parentheses which pedantry would require:

(1) A → (B → A)
(2) (A → B)

→
(

(A → (B → C)) → (A → C)
)

(3) A → (B → (A & B))
(4) (A & B) → A (4′) (A & B) → B
(5) A → (A ∨ B) (5′) B → (A ∨ B)
(6) (A → C)

→
(

(B → C) → ((A ∨ B) → C)
)

(7) (A → B) →
(

(A → ¬B) → ¬A
)

(8) ¬¬A → A

These are all tautologies, and so every for-
mula provable from T is T -valid. We write

T ⊢ A ⇔ there is a proof of A from T,

and it is not hard now to establish the basic

Soundness and Completeness Theorem

for PL. For all sets T and any A,

T |= A ⇔ T ⊢ A.

F. Boolean Algebras

A Boolean algebra is a set B with at least
two, distinct elements 0 and 1, a unary com-

plementation operation ′, and binary infi-

mum ∩ and supremum ∪ operations such
that certain properties hold. The standard
example is the set P(M) of all subsets of
some non-empty set M , with 0 = ∅, 1 = M
and the usual complementation, intersection
and union operations, which for a singleton

M gives the two-element set {1, 0} of truth
values; but there are others, e.g., the set of
all finite and co-finite subsets of some in-
finite set, the set of all “closed and open”
subsets of a topological space, etc.

Each formula A with n variables defines
an n-ary function on every Boolean algebra
B, simply by letting the propositional vari-
ables range over B and replacing ¬, & and ∨
and → by ′, ∩, ∪ and ⇒ respectively, where

x ⇒ y = x′ ∪ y

on B. Now the axioms for a Boolean al-
gebra insure that every propositional axiom

defines a function with constant value 1—in
fact the particular choice of axiomatization
for Boolean algebras (and there are many) is
quite irrelevant as long as this fact obtains;
and then the Completeness Theorem implies
that two formulas A and B define the same

n-ary operation on all Boolean algebras ex-

actly when A ∼ B, i.e., when A and B define
the same bit function.

Boolean algebras have many important
applications in mathematics (to measure
theory, among other things), and they are
the subject of the classical Stone Represen-

tation Theorem which identifies them all
(up to isomorphism) with subalgebras of
powerset algebras. In logic they are mostly
used through the “non-standard” Boolean

semantics of this subsection, which extend
to richer logics and provide a powerful tool
for independence (unprovability) results.

II. First Order Logic, FOL

Consider the claim:

If everybody has a mother, and
every mother loves her children,
then everybody is loved by
somebody.

It is certainly true, it has the “linguistic
form” of many similar (more substantial)
claims in mathematics, and it appears to
be true by virtue of its form and not be-
cause of any special properties of the words
“mother”, “love”, etc. First Order Logic
makes it possible to express complex asser-
tions of this type and to show that they are
true by logic alone. The symbolic expression

MATHEMATICAL LOGIC 5

of this one will be
[

(∀x)(∃y)M(x, y)

& (∀x)(∀y)[M(x, y) → L(y, x)]
]

→ (∀x)(∃y)L(y, x),

give-or-take a few parentheses and brackets
which will be required to make the syntax
completely precise.

A. First Order Syntax

The symbols of FOL are the propositional
connectives, the parentheses, the quantifiers

∀ (for all) ∃ (there exists)

the comma ‘,’, the identity symbol ‘=’, an
infinite list v0, v1, . . . of individual variables

which will denote arbitrary objects in some
domain, and for each n = 0, 1, . . ., two infi-
nite lists of function and relational symbols

fn
0 , fn

1 , . . . , Pn
0 , Pn

1 , . . . ,

which will stand for n-ary functions and re-
lations on the objects.

There are two categories of grammati-
cally correct expressions in FOL, terms and
formulas, defined recursively by the follow-
ing conditions.

T1. Each variable vi is a term.
T2. If t1, . . . tn are terms, then (the

string) fn
i (t1, . . . , tn) is also a term. When

n = 0, we write simply f0i .
F1. If t1, . . . , tn are terms, then the ex-

pressions

t1 = t2 Pn
i (t1, . . . , tn)

are formulas, the latter written simply Pi

when n = 0.
F2. If A and B are formulas, then so are

the expressions

¬A (A & B) (A ∨ B) (A → B)

F3. If A is a formula, then so are the
expressions

(∀vi)A (∃vi)A

Notice that by the notational convention in
F1, all PL-formulas are also FOL-formulas.

This logic is called first order because

quantification is only allowed over individ-
uals; if we add formula formation rules

(∀Pn
i)A (∃Pn

i)A

we obtain the formulas of second order logic,
SOL.

Consider the simple formula

(1) (∃v2)(¬v2 = v1 & P1
1(v2)).

Its “translation” into English by the reading
of the symbols we have introduced is

some object other than v1

has the property P1
1

which is exactly how we would translate the
result of substituting v3 for v2 in it,

(∃v3)(¬v3 = v1 & P1
1(v3)).

This is because both occurrences of v2 in (1)
are bound by the quantifier ∃v2, just as the
occurrences of x are bound by the dx in
∫ 1

0
x2dx and can be replaced by y without

changing the meaning of the definite inte-
gral. On the other hand, the occurrence of
v1 in (1) is free, because it is not within the
scope of any quantifier, and so the inter-
pretation of v1 clearly affects the meaning
of (1).

Using the same simple example, consider
the results of substituting f10 (v3) and f10(v2)
for v1 in (1),

(∃v2)(¬v2 = f10 (v3) & P1
1(v2)),

(∃v2)(¬v2 = f10 (v2) & P1
1(v2)).

The first of these says of f10 (v3) what (1) says
of v2, but the second says that “something is
not a fixed point of f10 and has property P1

1”,
which is quite different—evidently because
the variable v2 in f10 (v2) is “caught” by the
quantifier ∃v2. The first is a free substitution

(causing no confusion) while the second is
not. We will denote the result of substitut-
ing the term t for the free occurrences of the
variable x in some formula A by

A{x :≡ t}

and we will tacitly assume that all substitu-
tions are free.

Formulas of FOL are too messy to write
down, and so we often resort to “informal
descriptions” of them like the example about
mothers loving their children above, recipes,

6 YIANNIS N. MOSCHOVAKIS

ı |= t1 = t2 ⇔ ı(t1) = ı(t2)

ı |= P
n

i (t1, . . . , tn) ⇔ (ı(Pn

i))(ı(t1), . . . , ı(tn))

ı |= ¬A ⇔ ı 6|= A

ı |= (A & B) ⇔ ı |= A and ı |= B

ı |= (A ∨ B) ⇔ ı |= A or ı |= B

ı |= (A → B) ⇔ ı 6|= A or ı |= B

ı |= (∀vi)A ⇔ for all d in D,

ı{vi := d} |= A

ı |= (∃vi)A ⇔ for some d in D,

ı{vi := d} |= A

Table 3. The Tarski truth conditions.

really, from which the full, grammatically
correct formula could (in principle) be con-
structed.

B. First Order Semantics

Whether (1) is true or false depends on
the object v1, on the function f10 , on the
property P1

1, and (most significantly) on the
range of objects over which we interpret the
existential quantifier—where do we search
for things which may or may not satisfy P1

1?
To interpret the formulas of FOL we must

be given a domain D and an interpretation

ı, a function which assigns an object ı(vi)
in D to each individual variable, an n-ary
function ı(fn

i) on D to each n-ary function
symbol fn

i , and an n-ary relation ı(Pn
i) on

D to each Pn
i . Using these, first we extend

inductively ı to all terms by

ı(fn
i (t1, . . . , tn)) = (ı(fn

i))(ı(t1), . . . , ı(tn)),

so that ı(t) is some object in D. To as-
sign truth values to formulas, define first,
for each variable x and d in D, the update

 = ı{x := d},

which agrees with ı on all function and rela-
tion symbols, and also on all individual vari-
ables, except that (x) = d. With the help of
this basic operation, we can state in Table 3
the classical Tarski truth conditions which
determine the truth of formulas relative to
a fixed domain D and an interpretation ı.
The truth value of a formula A relative to
an interpretation ı is 1 if ı |= A and 0 oth-
erwise, and the Compositionality Principle

extends to FOL in a straightforward man-
ner and implies the following basic fact: the

truth value of A relative to ı depends only on

the values of ı on the function and relation

symbols which occur in A, and on the values

ı(x) for the individual variables which occur
free in A.

The Tarski conditions do nothing more
than translate formulas into English, in ef-
fect identifying FOL with a precisely formu-
lated, small but very expressive fragment of
natural language.

C. Structures

A vocabulary (or signature) is any finite
sequence σ = {f1, . . . , fk, P1, . . . , Pl} of func-
tion and relation symbols, and FOL(σ) is
the part of FOL whose formulas involve only
the function and relation symbols of σ. The
idea is to think of f1, . . . , fk and P1, . . . , Pl as
constants, denoting fixed functions and rela-
tions on some set D, and to use the formulas
of FOL(σ) to study definability in structures

M = (DM , f1, . . . , fk, P1, . . . , Pl)

of vocabulary σ, where the universe DM

of M is any non-empty set, and f1, . . . , fk,
P1, . . . , Pl are functions and relations which
can be assigned to the vocabulary symbols,
e.g., such that fi is n-ary if fi is n-ary.

An M -assignment is any function α from
the variables to DM , and it extends natu-
rally to an interpretation αM by the associ-
ation of fi with fi and Pi with Pi; the stan-
dard notation for structure satisfaction is

M, α |= A ⇔ αM |= A.

Formulas of FOL(σ) with no free variables
are called sentences and (by the Composi-
tionality Principle) they are simply true or
false in every σ-structure, without reference
to any assignment. They define properties
of structures. We write

M |= A ⇔ for any (and hence all) α,

M, α |= A (A a sentence),

and if M |= A, we say that M satisfies A or
is a model of A.

While sentences define properties of struc-
tures, formulas with free variables can be
used to define relations on structures. If, for

MATHEMATICAL LOGIC 7

example, A has at most one free variable x,
we set

RA(d) ⇔ M, α{x := d} |= A,

where α is any assignment, since its only
relevant value is updated in this definition.
In the same way, formulas with n free vari-
ables define n-ary relations on σ-structures,
the first order definable relations of M . A
function f : Dn

M → DM is first order defin-
able if its graph

Gf (x1, . . . , xn, w) ⇔ w = f(x1, . . . , xn)

is first order definable. Some examples:

A directed graph is a structure G =
(D, E), where E is a binary “edge” relation
on the set of “nodes” G, and it is a graph

(undirected) if it satisfies the sentence

(∀x)(∀y)[E(x, y) → E(y, x)].

Complete graphs (cliques) are characterized
by the sentence

(∀x)(∀y)E(x, y),

while “diameter ≤ 2” is defined by

(∀x)(∀y)[x = y ∨ E(x, y)

∨ (∃z)[E(x, z) & E(z, y)]].

Finite directed and undirected graphs are
used to model many notions in computer sci-
ence, e.g., circuits.

A semigroup (monoid) with identity is
a structure (S, e, ·) where the identity e is
some specified member of S, · is a binary
“multiplication” on S, and the following sen-
tences are true:

(∀x)(∀y)[x · (y · z) = (x · y) · z],

(∀x)(x · e = x & e · x = x).

Here and in the sequel we write t1 · t2 rather
than the pedantically correct ·(t1, t2).

In addition to semigroups, there are
groups, rings, fields and ordered fields, vector

spaces, and any number of other structures
which are the stuff of “abstract” algebra.
These classes of structures are all charac-
terized by first order axioms, and the use of
methods from logic is becoming increasingly

important in their study.
Two structures M1 and M2 are isomor-

phic if some one-to-one correspondence be-
tween their universes carries the functions
and relations of M1 to those of M2. Isomor-

phic structures satisfy the same first order

sentences, but the converse is not true, as
we will see in II-F.

D. Databases

In the most general terms, a database is
just a finite structure, typically relational,
i.e., without functions, only relations. “Fi-
nite” does not mean “small” or “simple”,
and in the interesting applications databases
are huge structures of large and complex vo-
cabularies, with basic relations such as “x is
an employee born in year n”, “y is the su-
pervisor of x”, etc. Properties of structures
are usually called queries in database the-
ory, and one of the main tasks in the field
is to develop representations for databases
which support fast algorithms for updating,
entering new information in the base and
data testing, determining the truth or falsity
of queries. As it happens, both updating and

data testing are very efficient for first order

queries, and so database systems, including
the industry standard SQL make heavy use
of methods from first order logic.

Motivated by Database Theory, a good
deal of research has been done since the
1970s in Finite Model Theory, the mathe-
matical and logical study of finite structures.
For a rather surprising, basic result, let

Probσ[M |= A : |DM | = n]

= the proportion of σ-structures

of size n which satisfyA,

where structures are counted “up to isomor-
phism”.

The FOL 0-1 Law. For each sentence A
of FOL(σ) in a relational vocabulary, either

lim
n→∞

Probσ[M |= A : |DM | = n] = 1,

or
lim

n→∞
Probσ[M |= A : |DM | = n] = 0,

i.e., either A or ¬A is asymptotically true.

8 YIANNIS N. MOSCHOVAKIS

More advanced work in this area is con-
cerned primarily with the algorithmic anal-
ysis of queries on finite structures, especially
in logics richer than FOL.

E. Arithmetic

Most basic is the structure of arithmetic

N = (N, 0, 1, +, ·),

where N = {0, 1, . . .} is the set of (non-
negative) natural numbers and + and · are
the operations of addition and multiplica-
tion. The first order definable relations and
functions on N are called arithmetical, and
they obviously include addition, multiplica-
tion and the ordering on N, which is defined
by the formula

x ≤ y ≡ (∃z)[x + z = y].

By a basic Lemma of Gödel, if a function f
is determined from arithmetical functions g
and h by the equations

(2)

{

f(0, ~x) = g(~x)
f(y + 1, ~x) = h(f(y, ~x), y, ~x),

then f is also arithmetical. Thus exponen-

tiation xy is arithmetical, with g(x) = 1,
h(w, y, x) = w · x, and, with some work, so
is the function p(x) which enumerates the
prime numbers,

p(0) = 2, p(1) = 3, p(2) = 5,

In fact, the scheme of Primitive Recur-

sion (2) is the basic method by which func-
tions are introduced in number theory, so
that, with some work, all fundamental num-
ber theoretic relations and functions are
arithmetical, and all celebrated theorems
and open problems of the theory of num-
bers are expressed by first order sentences
of N . These include the Prime Number The-

orem, Fermat’s Last (Wiles’) Theorem, and
the (still open) question whether there exist

infinitely many twin pairs of prime numbers.

F. Model Theory

The mathematical theory of structures
starts with the following basic result:

Compactness and Skolem-Löwenheim The-

orem. If every finite subset of a set of sen-

tences T has a model, then T has a countable

model.

For an impressive application, let (in the
vocabulary of arithmetic)

∆0 ≡ 0, ∆m+1 ≡ (∆m + 1),

so that the numeral ∆m is about the sim-
plest term which denotes the number m, add
a constant c to the language, and let

T = {A : N |= A}

∪ {∆0 ≤ c, ∆1 ≤ c, ∆2 ≤ c, . . .}.

Every finite subset S of T has a model,
namely

NS = (N, 0, 1, +, ·, m),

where the object m which interprets c is
some number bigger than all the numerals
which occur in formulas of S. So T has a
countable model

NT = (N, 0, 1, +, ·, c),

and then N = (N, 0, 1, +, ·) is a structure
for the vocabulary of arithmetic which sat-
isfies all the first order sentences true in the
“standard” structure N but is not isomor-

phic with N—because it has in it some ob-
ject c which is “larger” than all the interpre-
tations of the numerals ∆0.∆1, It fol-
lows that, with all its expressiveness, First
Order Logic does not capture the isomor-
phism type of complex structures such as N .

These non-standard models of arithmetic
were constructed by Skolem in the 30s.
Later, in the 50s, Abraham Robinson con-
structed by the same methods non-standard

models of analysis, and provided firm foun-
dations for the classical Calculus of Leibnitz
with its infinitesimals and “infinitely large”
real numbers.

Model Theory has advanced immensely
since the early work of Tarski, Abraham
Robinson and Malcev. Especially with the
contributions of Shelah in the 70s and, more
recently, Hrushovsky, it has become one
of the most mathematically sophisticated
branches of logic, with substantial applica-
tions to algebra and number theory.

G. First Order Inference

The proof system of First Order Logic is
an extension of that for Propositional Logic,

MATHEMATICAL LOGIC 9

first by identity axioms which insure that =
is an equivalence relation and a congruence

for all function and relation symbols, e.g.,
for unary function symbols,

(∀x)(∀y)[x = y → f(x) = f(y)].

In addition, there are two axioms for the
quantifiers,

A{x :≡ t} → (∃x)A (∀x)A → A{x :≡ t},

assuming that the term substitutions are
free; and there are two new inference rules,

C → A
C → (∀x)A

A → C
(∃x)A → C

which can be used only when the variable
x is not free in C. Proofs from a set T of
FOL(σ) sentences are defined exactly as for
PL, and we set again

T ⊢ A ⇔ there is a proof of A from T.

Notice that without the restriction on the
quantifier rules, the sequence

P (x) → P (x), P (x) → (∀x)P (x),

(∃x)P (x) → (∀x)P (x)

would be a proof of (∃x)P (x) → (∀x)P (x),
which is, obviously, not valid. With the re-
striction, however, for every structure M , if
every M -assignment satisfies the hypothesis
of either new rule, then every M -assignment
satisfies the conclusion, so that the quanti-
fier inference rules are sound.

H. Gödel’s Completeness Theorem

A model of a set of sentences T in FOL(σ)
is any structure M which satisfies every A
in T , in symbols

M |= T ⇔ for all A in T, M |= A.

We also write

T |= A ⇔ for all M,

M |= T =⇒ M |= A,

which extends to FOL(σ) the semantic con-

sequence relation of PL. From the comments
above:

Soundness Theorem for FOL. If T ⊢ A,

then T |= A.

The fundamental fact about First Order

Logic is the converse of this result:

Completeness of FOL. If T |= A, then

T ⊢ A.

It may be argued that the semantic conse-
quence relation T |= A captures the intuitive
notion A follows from the assumptions in T
by logic alone, in the sense that it insures
that A is true whenever all the hypotheses
in T are true, independently of the meaning
of the function and relation symbols. Grant-
ing that and considering the strong express-
ibility of First Order Logic discussed in II-C
above, we may then argue further that the
Completeness Theorem answers definitively
(for science) the ancient question of what fol-

lows from what by logic alone: a proposi-
tion A follows from certain assumptions T
as a matter of logic (and independently of
the facts), if A and T can all be expressed
faithfully as FOL(σ) assertions about some
σ-structure M , and T ⊢ A. On this view, it
is hard to overemphasize the importance of
this result for the foundations of mathemat-
ics and science.

Incidentally, there is an obvious extension
of the Tarski conditions to Second Order
Logic, e.g.,

ı |= (∀Pn
i)A ⇔ for all n-ary P on D,

ı{Pn
i := P} |= A.

However, there is no useful Completeness
Theorem for SOL, as we will see in IV-F.

I. Proof Theory

If Model Theory is the study of seman-
tics independently of inference, then Proof
Theory can be viewed as the mathemati-
cal investigation of formal proofs indepen-
dently of interpretation. This has always
been one of the most active research areas of
logic, and it has been invigorated in recent
years by its substantial applications to com-
puter science, including automated deduc-

tion, an important component of artificial

intelligence. Key to these applications—and
the basic result of Proof Theory—is the Ex-

tended Normal Form Theorem of Gentzen,
whose somewhat weaker (but simpler) Her-
brand version is fairly easy to describe.

There are four Herbrand inference rules,

10 YIANNIS N. MOSCHOVAKIS

and they apply to n-ary disjunctions

A1 ∨ · · · ∨ An.

Two of them are structural, and they clearly
preserve meaning: you can interchange the
order of the disjuncts, or delete one of two
occurrences of the same disjunct. The other
two are quantifier rules,

A1 ∨ · · · ∨ An{x :≡ t}

A1 ∨ · · · ∨ (∃x)An

A1 ∨ · · · ∨ An ∗
A1 ∨ · · · ∨ (∀x)An

where the ∗ indicates that the ∀-rule can
only be used if the variable x is not free
in its conclusion. The result applies only
to sentences without identity and in prenex

normal form, i.e., looking like

(Q1x1) · · · (Qn)B

where each Qi is ∀ or ∃ and B is quantifier-
free.

Herbrand’s Theorem. Every provable =-

free sentence A of FOL(σ) in prenex form

can be derived from a provable quantifier-

free disjunction by the four Herbrand rules.

The restriction to prenex sentences is not
essential, because every formula can be con-
verted to an equivalent prenex one by the
application of simple rules which can be
added to the system.

The theorem asserts (in part) that every
provable sentence A has a “normal” proof,
in which only formulas of “quantifier rank”
no greater than A occur. This is a power-
ful tool for proof-theoretic studies. As for
applications, all automated deduction sys-
tems use Herbrand-like inference systems
(or their Gentzen variants), and the pro-
gramming language PROLOG is based en-
tirely on this idea.

The proof of Herbrand’s Theorem is con-
structive: an algorithm is defined, which
computes for each proof Π of a prenex sen-
tence A a Herbrand proof Π′, and then it is
shown by simple, combinatorial arguments
that Π′, indeed, proves A. The additional,
effective content is significant for the foun-
dational applications of the theorem (for ex-
ample to consistency proofs), and also in the
applications to automated deduction.

It should be emphasized that the simplis-
tic slogans “Model Theory = no inference”

and “Proof Theory = no semantics” are of-
ten honored in the breach: like the Com-
pleteness Theorem, most fundamental re-
sults of logic are about connections between
truth and proof, and some of the deepest re-
sults in one part of the discipline depend on
methods and ideas from the other.

III. Gödel’s Incompleteness Theorem

Having established that FOL proves all
logical truths, it is natural to ask if it can also
prove—from some natural set of axioms—all
mathematical truths. This is not possible,
by Gödel’s fundamental result, whose spe-
cial case for arithmetical truths we discuss
in this section.

A. The Incompleteness of Peano Ari-
thmetic

The classical Peano axioms for arithmetic
comprise the properties of the successor

(3) x + 1 6= 0 x + 1 = y + 1 → x = y,

the recursive definitions of addition and
multiplication,

{

x + 0 = x
x + (y + 1) = (x + y) + 1,

(4)

{

x · 0 = 0
x · (y + 1) = x · y + x,

(5)

and the Induction Axiom which cannot be
expressed fully in First Order Logic. Its Sec-
ond Order Logic version is

(∀P)
[(

P (0) & (∀x)(P (x) → P (x + 1))
)

→ (∀x)P (x)
]

,

and the best we can do in FOL is to adopt
the Axiom Scheme

(6)
(

A{y :≡ 0}

& (∀x)(A{y :≡ x} → A{y :≡ x + 1})
)

→ (∀x)A{y :≡ x}.

The set PA of (first order) Peano axioms
is obtained by taking the correctly spelled
versions of all the formulas in (3)–(6) and
adding enough universal quantifiers in front
of them so that they become sentences. This
is a very strong set of axioms, it can prove

MATHEMATICAL LOGIC 11

all simple properties of numbers and most of
their deep properties too—although proving
a theorem from PA is harder than proving it
using, say, methods from analysis, and num-
ber theorists distinguish and value “elemen-
tary proofs” in PA.

Gödel’s First Incompleteness Theorem.
There is a sentence g in FOL(0, 1, +, ·),
such that N |= g but PA 6⊢ g.

One’s first thought is that we can over-
come this “incompleteness phenomenon” by
strengthening PA, perhaps add Gödel’s own
g to it, or use the Second Order Logic
version of the Induction Axiom along with
a suitable axiomatization of Second Order
Logic. None of this helps: Gödel’s funda-
mental discovery is that first order truth in
N (and every other sufficiently rich struc-
ture) simply cannot be presented usefully as
an “axiomatic theory”. We will make this
precise in a more general version of the In-
completeness Theorem in the next section.

B. Coding (Gödel numbering)

The basic ingredients of the proof of the
Incompleteness Theorem are coding and
self-reference.

In analytic geometry we “code” (repre-
sent) points in the plane by pairs of real
numbers, their coordinates, so we can trans-
late geometrical questions into algebraic
problems and solve them by calculation.
Gödel’s basic idea is to code the syntactic
objects of FOL(0, 1, +, ·)—terms, formulas,
proofs—by natural numbers, so that their
properties are translated into properties of
numbers, which can then be expressed in
FOL(0, 1, +, ·) and (perhaps) proved in PA.

Since all syntactic objects are strings of
symbols, if we view a proof A1, . . . , An−1 as
a sequence of formulas separated by com-
mas, it is enough to code strings, and we
can do this in (at least) one simple minded
way: we enumerate the symbols of the lan-
guage

¬ & ∨ → () ∀ ∃ , = 0 1 + · v0 v1 ··
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ··

and we set

[a0a1a2 · · · am] = 2n03n15n2 · · · p(m)nm ,

where ni is the code of the symbol ai and

p(i) is the i’th prime number. For example,
the (correctly spelled) prime formula

+(v1, 0) = v0

has the horrendously large code

2133551679111113617101915.

The size of codes is irrelevant: what mat-
ters is that every string of symbols (and
hence every term, formula and proof) has
a code from which it can be reconstructed,
by the Unique Factorization Theorem for
numbers; and (more significantly) that PA is
powerful enough to express and prove sim-
ple properties of formulas and proofs, thus
translated into properties of numbers. For
example, if ∆n is the numeral denoting n,
as above, then PA can prove all true, basic
relations among numerals, e.g.,

m + n = k =⇒ PA ⊢ ∆m + ∆n = ∆k.

Less trivially, the basic (coded) proof re-

lation

ProofPA(a, p) ⇔

a is the code of some sentence
A and p is the code of a proof
of A from PA

is defined by some formula ProofPA with v1

and v2 free, and PA can prove its basic prop-
erties, e.g.,

ProofPA(a, p)
=⇒ PA ⊢ ProofPA{v1 :≡ ∆a, v2 :≡ ∆p}.

Similarly, the relation

D(a, p) ⇔

a is the code of some formula A
with only v1 free, and p is the
code of a PA-proof of
A{v1 :≡ ∆a}

is defined by some formula D with just v1, v2

free. Set

A ≡ (∀v2)¬D

so that only v1 is free in A, and if a is the
code of A, set

g ≡ A{v1 :≡ ∆a}.

Unscrambling the definitions, g asserts that
there is no PA-proof of A{v1 :≡ ∆a}; but g
is A{v1 :≡ ∆a}, so that g claims its own
unprovability; and a careful analysis of the
situation shows that, indeed, g cannot be

12 YIANNIS N. MOSCHOVAKIS

provable in PA, else PA would prove a con-
tradiction. This also shows, that g is true.

It is not that simple, of course, and much
delicate analysis and computation must be
done to establish that D(a, p) is arithmeti-
cal and to derive a formal contradiction from
the assumption that g is PA-provable. Key
to the proof is the “self-reference” in the
definition of D(a, p), which uses the coding,
and the argument depends on the strength
(not the weakness) of the axiomatic system
PA. Coding and self-reference have become
standard tools of logic since Gödel’s work,
and they have found substantial applica-
tions in many areas, including computer sci-
ence and set theory.

IV. Computability

It is easy to determine whether an arbi-
trary equation a0+a1x+· · ·+anxn = 0 with
integer coefficients a0, . . . , an has integer so-
lutions, since every integer root must divide
a0, and so all we have to do is to test the
finitely many divisors of a0. The problem is
not so easy for equations in k unknowns

(7)
∑

r1+···+rk≤n

ar1,...,rn
xr1

1 xr2

2 · · ·xrk

k = 0,

and it is much more interesting, in fact

to find an algorithm which deter-

mines whether (7) has a solution

is No. 10 in David Hilbert’s famous 1900 list
of 23 open problems in mathematics. Dio-
phantine equations are notoriously difficult
to solve, and one might suspect that no al-
gorithm would do the job, but how can you
prove such an assertion? Using ideas and
techniques from Gödel’s work and motivated
by questions arising from it, logicians devel-
oped in the 30s a tool for establishing abso-

lute unsolvability results of this kind which
led to some spectacular applications, includ-
ing a rigorous proof of the unsolvability of
Hilbert’s 10th.

The most direct approach was by Turing,
who reasoned that algorithms should be im-
plemented by “mechanical devices” and in-
troduced “abstract machines” that can per-
form symbolic computations some ten years
before digital computers were invented.

A. Turing machines

A Turing machine M is determined by a
finite alphabet SM = {s0, . . . , sk}, a finite
set QM = {q0, . . . , qm} of (internal) states,
and a finite table of transitions of the form

q, s 7→ q′, s′, m

where q, q′ are states, s, s′ are in SM or the
special “blank” symbol , and the move m
is −1, 0 or +1. No two transitions are acti-

vated by the same pair q, s on the left. We
imagine that, at any moment, M is in some
internal state q and sits in front of an infinite
“tape” with symbols in some of its cells. The
machine can only “see” the symbol s just in
front of it, and does nothing (halts) unless
one of its transitions is activated by the pair
q, s; in which case it switches to state q′, it
replaces s by s′ on the tape, and it moves

q

6

b a b

=⇒

b b

q′
6

Fig. 2. q, a 7→ q′, ,−1.

left (if it can), right or none-at-all, depend-
ing on whether m is −1, +1 or 0.

A machine M starts computing facing the
leftmost cell, with an arbitrary string input

u0u1 · · · um−1

q0

6

v0v1 · · · vn−1

qt

6

u = u0 · · ·um−1 on the tape, and it may
diverge (never halt), for example if u = 11
and M has the two transitions

q0, 1 7→ q0, 1, +1 q0, 7→ q0, 1, +1

If it halts, then its output on u is the string
M [u] = v0 · · · vn−1 at the left end of the
tape, until the first blank (and it is possi-
ble that M [u] is empty.)

Finally, M computes a string function
f : S∗

1 → S∗
2 if S1 ∪ S2 ⊆ SM and for every

string u ∈ S∗
1 , M [u] = f(u). By identifying

each natural number n with the string || · · · |
of n + 1 tallies from the one-member alpha-
bet {|} (unary notation), the notion covers

MATHEMATICAL LOGIC 13

functions whose arguments or values are ei-
ther strings or numbers. Moreover, if we
code strings by numbers as above, then the
transformation u 7→ [u] and its inverse can
be computed by a Turing machine, so that a
string function is Turing computable exactly
when its “coded version” is computable, and
we can safely confuse the two notions.

B. The Church-Turing Thesis

Turing argued persuasively that the sym-
bolic computations of any “finite mechanical
device” with access to unbounded memory
can be simulated by one of his machines, and
he has been fully justified by the subsequent
developments in computers. Church had al-
ready made an equivalent (though less well
justified) claim, and so the new fundamental
principle carries both famous names:

The Church-Turing Thesis: A string

function f : S∗
1 → S∗

2 is computable if and

only if it can be computed by a Turing ma-

chine M on some alphabet SM ⊇ S1 ∪ S2.

The Church-Turing Thesis cannot be rig-
orously proved, as it identifies the intuitive,
informal notion of “computability” with the
precise, mathematical property of Turing

computability. Within mathematics, it is
officially a definition, much like the defini-
tions of arclength or area in terms of in-
tegrals. But mathematical definitions are
not entirely arbitrary: when we “define” the
length of the circumference of a circle of ra-
dius r by an integral which computes out to
2πr, we fully expect that if we draw such a
circle and measure its circumference, it will
turn out to be 2πr, within the margin of er-
ror of our measurements. Similarly, when we
prove that a certain string function f is not
Turing computable, we fully expect that no-
body will ever discover an algorithm which
computes f , because no such algorithm ex-
ists. This is the standard method of appli-
cation of the Thesis.

Evidence for the Church-Turing The-
sis comes from Turing’s analysis, from the
sixty-odd years of failed attempts to contra-
dict it, and from the robustness of the no-
tion of Turing computability. Many classes
of functions were defined in the thirties

claiming to capture the notion of “com-
putable” from different perspectives, includ-
ing Church’s λ-definable functions, Post’s
canonical systems, the general recursive

functions of Gödel, Herbrand and Kleene,
Kleene’s µ-recursive functions and, in the
forties, Markov’s (formal) algorithms ; each
of these was proved equivalent to Turing
computability, and the “simulation tech-
niques” developed for these proofs make it
seem very unlikely that some algorithm will
ever be discovered which cannot be simu-
lated by a Turing machine.

It should be emphasized, however, that
the Church-Turing Thesis does not provide
a rigorous definition for the notion of algo-

rithm, which remains informal. Complex-
ity results about algorithms are rigorously
grounded on various so-called computation

models which embody diverse features of ac-
tual computers. When we simulate these
models by Turing machines, the time and
space complexity of computations increase
substantially, and so we cannot claim that
the informal algorithm has been faithfully
modeled. On the other hand, the time com-
plexity increase is bound by a polynomial
factor for all the known simulations, so that
the class P of polynomial problems can be
defined in terms of Turing machines without
ambiguity.

Turing-computable functions are also
called recursive, because of the basic Gö-
del-Herbrand-Kleene characterization men-
tioned above.

C. Unsolvable Problems

A set of strings (or problem) Q ⊆ S∗ from
a finite “alphabet” S is computable (recur-

sive, solvable, decidable) if some Turing ma-
chine M computes its characteristic func-

tion

cQ(u) =

{

1 if u ∈ Q,

0 otherwise,

otherwise it is unsolvable or undecidable.
The definitions apply to problems about
natural numbers, coded in unary; to prob-
lems about FOL-formulas, by identifying
(for example) each variable vi by a similar

14 YIANNIS N. MOSCHOVAKIS

sequence vv · · · v of i+1 v’s, so that the syn-
tax of FOL is based on a finite vocabulary;
and to relations (sets of n-tuples) on strings
or numbers, by thinking of u1, . . . , un as a
single string.

Each Turing machine can be represented
by a string of 0’s and 1’s which codes its al-
phabet, internal states and transitions, and
this leads to the first and most basic unsolv-
ability result, due to Turing:

The Halting problem: It is undecidable

whether an arbitrary Turing machine M
halts on an arbitrary binary string u.

For the proof, Turing constructed a uni-

versal machine U which can simulate every
other, i.e.,

U [M, u] = M [u], if M is the code ofM.

This treatment of programs as data is, of
course, routine today.

All unsolvability results are (ultimately)
established by reducing the Halting Problem
to them, i.e., showing that if such-and-such
a function were computable, then the Halt-
ing Problem would be solvable. The proofs
are often difficult and generally depend on
results specific to the field in which the prob-
lem arises.

In mathematics, the problems which have
been proved unsolvable include:

Hilbert’s 10th: Whether a given Diophan-

tine equation has integer solutions (Matija-
sevich, following work of Martin Davis, Hi-
lary Putnam and Julia Robinson).

The Word Problem for Groups: Whether

two words denote the same element in a

finitely generated, finitely presented group

(P. Novikov, W. Boone).

The Homeomorphism Problem for 4-
manifolds : Whether the orientable n-ma-

nifolds represented by two triangulations are

homeomorphic, for n ≥ 4 (A. Markov). This
problem is solvable for 2-manifolds, by their
classical representation as spheres with han-
dles, and it is still open for 3-manifolds,
pending (among other things) the resolu-
tion of the Poincaré Conjecture.

There is also a large number of unsolvable
problems in Computer Science.

D. Undecidable Theories

A theory T in FOL(σ) is any set of sen-
tences closed under consequence,

T ⊢ A =⇒ A ∈ T.

The two basic examples are theories of σ-
structures

Th(M) = {A | M |= A},

and axiomatic theories of the form

T = Th(T0) = {A : T0 ⊢ A},

where T0 is a decidable set of axioms T0.
The terminology is natural, because we
would certainly demand of any “axioma-
tization” that it can be decided effectively
whether an arbitrary sentence is an axiom.

Every decidable theory T is axiomatiz-
able since Th(T) = T when T is a theory,
but the converse fails, in general, and in par-
ticular for T0 = ∅ when the vocabulary is not
trivial:

Church’s Theorem: If the vocabulary σ
includes at least one binary function or re-

lation symbol, then it is undecidable for a

sentence A of FOL(σ) whether ⊢ A.

A FOL(σ)-theory T is consistent if it does
not contain a contradiction A & ¬A, and it
is complete if for every sentence A, either A
or ¬A is in T . It is easy to verify that every

consistent, axiomatizable, complete theory is

decidable, and we can use this to formulate
and prove a very general version of the Gödel
Incompleteness Theorem. The key tool is
the notion of translation.

Suppose T1 and T2 are theories, perhaps
in different vocabularies σ1 and σ2—e.g., T1

might by Th(PA), and T2 might be some ax-
iomatic set theory. A translation of T1 into
T2 is a computable string function ρ which
assigns a sentence ρ(A) of FOL(σ2) to every
sentence A of FOL(σ1) and preserves propo-
sitional logic and T1-inference, i.e.,

T2 ⊢ ρ(¬A) ↔ ¬ρ(A)

T2 ⊢ ρ(A & B) ↔ ρ(A) & ρ(B)

T1 ⊢ A =⇒ T2 ⊢ ρ(A).

Notice that the identity function ρ(A) = A

MATHEMATICAL LOGIC 15

translates every theory into itself.
The Gödel Incompleteness Theorem (Ros-

ser’s form). If T is a consistent, axiomati-

zable theory and Peano arithmetic Th(PA)
is translatable into T , then T is undecidable

and hence incomplete.

In short, every consistent axiomatic sys-
tem in which a reasonable amount of mathe-
matics can be developed is undecidable and
incomplete.

To state the strongest corresponding re-
sult about theories of structures, we need
the simple fact that every computable set is

arithmetical, essentially due to Gödel.

Tarski’s Theorem. If Th(N) is translat-

able into Th(M), then Th(M) is not arith-

metical, a fortiori it is not decidable.

To apply Tarski’s Theorem, you need (in
effect) to give a first order definition of the
natural numbers within the given structure.
One of the first results of this type was the

undecidabilty of the theory of rational num-

bers Th(Q, 0, 1, +, ·) (Julia Robinson), but
there are many others, and there are also
many difficult open problems in this area.

On the other hand, many interesting the-
ories are decidable, including the following:

• The theory Th(N, 0, 1, +) of arithmetic
without multiplication (Presburger).

• The theory Th(Q,≤). This coincides
with the theory of every dense, linear or-

dering without endpoints.
• The theory Th(C, 0, 1, +, ·) of the com-

plex number field, which coincides with the
theory of every algebraically closed field of
characteristic 0 (Tarski, Abraham Robin-
son).

• The theory Th(R, 0, 1, +, ·,≤) of the or-
dered field of real numbers, which coincides
with the theory of every real closed field
(Tarski).

The classical result here is Tarski’s decid-
ability of the ordered field of real numbers,
which (using coordinates) implies that Eu-

clidean geometry is decidable, in a sense triv-
ializing much of ancient Greek mathematics!
It is still open whether the extended the-
ory Th(R, 0, 1, +, ·,≤, ↑) (with x ↑ y = xy

for x > 0) is decidable, but there has been
substantial progress in this problem with

Wilkie’s Theorem, that every set in R which

is first order definable using exponentials is

a finite union of intervals.

E. The Second Incompleteness Theo-
rem

What sorts of true sentences are not prov-
able in sufficiently strong axiomatizable the-
ories? If T = Th(T0) is axiomatizable in
FOL(σ), then the (coded) proof relation

ProofT (a, p) ⇔

a is the code of some sentence
A in FOL(σ) and p is the code
of a proof of A from T

is Turing computable, and hence arithmeti-
cal. Using this, we can construct a sentence
ConcisT in the vocabulary of PA which ex-
presses naturally the consistency of T and
establish the following:

Gödel’s Second Incompleteness Theorem

(Rosser’s form). If T is consistent, axiom-

atizable and ρ translates Th(PA) in T , then

T cannot prove the translation ρ(ConsisT) of

its consistency sentence.

The theorem makes it clear that we can-
not axiomatize a substantial part of math-
ematics in any way whatsoever so that the
consistency of the system can be established
“constructively”: because the (presumably
simple) “constructive methods” we would be
willing to use in a consistency proof should
be part of the “substantial part of mathe-
matics” we want to axiomatize. Beyond its
obvious foundational significance, the Sec-
ond Incompleteness Theorem has numer-
ous applications, especially in comparing the
strength of various hypotheses in Axiomatic
Set Theory.

F. Hierarchies

A set Q of strings or numbers is Σ0
2 if

u ∈ Q ⇔ (∃x1)(∀x2)R(u, x1, x2),

where the quantified variables range over
natural numbers and the matrix R is com-
putable, and it is Π0

3 if, for all u

u ∈ Q ⇔ (∀x1)(∃x2)(∀x3)R(u, x1, x2, x3)

16 YIANNIS N. MOSCHOVAKIS

with the same restrictions. The definitions
extend naturally to all k, and we also set

∆0
k = Σ0

k ∩ Π0
k.

Kleene, who introduced these classes, showed
that

∆0
1 = the class of recursive sets,

Σ0

1 Σ0

2((((
∆0

1 ∆0

2 · · ·((((
Π0

1 Π0

2

and that a non-empty set Q is Σ0
1 exactly

when it is recursively (or computably) enu-

merable, i.e., if

Q = {f(0), f(1), . . .}

with some recursive f : N → S∗. Moreover,
these classes increase properly and exhaust
the arithmetical sets. A similar hierarchy

Σ1
k, Π1

k, ∆1
k

for the analytical (second-order definable)
sets is constructed by allowing the quantified
variables to range over the unary functions
α : N → N and the matrix to be arithmeti-
cal, so that all arithmetical sets are in ∆1

1.
These hierarchies classify the analytical

sets of natural numbers and strings by the
logical complexity of their (simplest) defi-
nitions, and they are powerful tools in the
theory of definability. For example,

every axiomatizable theory is Σ0
1.

This rules out an axiomatization of Second
Order Logic SOL, whose set of valid sen-
tences (on the empty vocabulary) is not an-
alytical. Somewhat surprisingly, it also rules
out an axiomatization of the theory

Tf = {A | for all finite (D, E), (D, E) |= A}

of finite graphs, which is Π0
1 but not Σ0

1 (Tra-
chtenbrot).

G. Turing reducibility

Imagine a Turing machine with a second
query tape which it handles exactly like its
primary tape, implementing somewhat more
complex transitions of the form

q, s1, s2 7→ q′, s′1, s
′
2, m1, m2

?
0 1 1

q

6

b a b

1 1 0

=⇒

?
1 1 10

b b

q′
6

1 1

Fig. 3. q, a, 0 7→ q′, , 1,−1, +1

It also has a special query state q?, and when
it goes into q?, the computation stops and
does not resume until some external agent
(the oracle) replaces the contents on the
query tape by some string.

A string function f is computable relative

to some given g if it can be computed by
such an oracle machine, provided each time
q? is reached, the string u on the query tape
is replaced by the value g(u). We let

f ≤T g ⇔ f is computable in g,

and we extend this notion of Turing re-

ducibility to sets of natural numbers via
their characteristic functions.

It is not hard to show that there ex-

ist Turing-incomparable sets of numbers

(Kleene-Post). In fact, there exist Turing-

incomparable recursively enumerable sets,
but this was quite hard to prove and it was
a celebrated open question for some twelve
years, known as Post’s Problem. The si-
multaneous, independent discovery in 1956
by Friedberg and Muchnik of the priority

method which proved it, initiated an intense
study of Turing reducibility which is still,
today, one of the most active research areas
of logic, the largest (and technically most
sophisticated) part of computability or re-

cursion theory.

V. Recursion and Programming

In its most general form, a recursive def-
inition of a function x is expressed by a re-

cursive (or fixed point) equation

(8) x(t) = f(t, x),

where the functional f(t, x) provides a
method for computing each value x(t), per-
haps using (“calling”) other values of x in
the process. It is possible to characterize the

MATHEMATICAL LOGIC 17

computable functions on the natural num-
bers using simple recursive equations of this
form, generalizations of the primitive recur-
sive definition (2) in III-E. Though con-
ceptually less direct than Turing’s approach
through idealized machines, this modeling of
computability by “recursiveness” provides a
powerful tool for establishing properties of
computable functions, and it is especially
useful in the theory of programming lan-
guages.

A. Recursive equations

Not every recursive equation (8) has a
solution x, and some have many, e.g., the
trivial x(t) = x(t) which is satisfied by ev-
ery function. The basic result which guar-
antees canonical solutions to a large class of
recursive equations comes from the theory
of partially ordered sets.

A partially ordered set or poset is a struc-
ture (D,≤D), where ≤ is a binary relation
and for all x, y, z in D,

x ≤D x, [x ≤D y & y ≤D z] =⇒ x ≤D z

[x ≤D y & y ≤D x] =⇒ x = y;

a subset C of D is a chain if every two mem-
bers of C are ≤D-comparable, i.e., x ≤D y
or y ≤D x; and a poset D is complete if ev-
ery chain in D has a supremum (least upper
bound).

Every complete poset has a least element
⊥ (the supremum of the empty chain!), and
every set A can be turned into a flat poset

N⊥

⊥

Y O >
1

0 1 2 . . .

Fig. 4. Flat poset.

A⊥ by adding a “bottom” below all its oth-
erwise incomparable elements. Other, basic
examples include the set of all subsets of a
set A (under ⊆) and the set of all (finite
and infinite) sequences from some set, under
“extension”. The Cartesian product of com-
plete posets is complete, and, more impor-
tantly, if W is complete, then the function

spaces of all arbitrary, monotone or Scott-

continuous mappings π : D → W are also

complete, with the pointwise partial order-

ing

π ≤ ρ ⇔ for all x, π(x) ≤ ρ(x).

Here π : D → W is monotone if

x ≤D y =⇒ π(x) ≤W π(y),

and it is Scott-continuous if, in addition, for
every chain C in D,

π(supremum(C)) = supremum(π[C]).

The Least-Fixed-Point Theorem. If (D,≤)
is a complete poset and π : D → D is mono-

tone, then the recursive equation

(9) x = π(x)

has a least solution.

The theorem is proved by setting recur-
sively

(10) x0 = ⊥, xn+1 = π(xn).

In the simplest case, which is sufficient for
the applications to programming languages,
the mapping π is Scott continuous, and then

x = supremum{x0, x1, . . .}

is the least fixed point of π. For the full re-
sult we need to extend the iteration (10) into
the “transfinite”, using recursion on ordinal
numbers.

There is a rich theory of complete posets
and various kinds of mappings on them,
mostly motivated by the applications to pro-
gramming, but also by earlier work in ab-

stract recursion, the generalization of com-
putability to abstract structures.

B. Programming Languages

From the mathematical point of view, a
programming language P is very much like
a logic, with a syntax, a semantics, and an
implementation, which plays the role of an
inference system.

The syntax is generally much more com-
plex than that of logics, with many differ-
ent categories of grammatically correct ex-
pressions. There are variables of various
kinds, some of them for functions of spec-
ified types ; constants which are meant to

18 YIANNIS N. MOSCHOVAKIS

denote acts of interaction with the environ-
ment (input, output, interrupts); and var-
ious ways of combining grammatically cor-
rect expressions to produce new ones, using
programming constructs like composition,
“while loops”, functional abstraction and
recursion. Some closed expressions (with no
free variables) corresponding to the “sen-
tences” of a logic are singled out, typically
called programs. With all this complexity,
the “grammar” is still specified by an in-
duction, as it is for logics, so that it is again
possible to prove properties of correct ex-
pressions and to define operations on them
by structural induction.

In the denotational semantics introduced
by Dana Scott, a programming language P

is interpreted in a structure (D, —) whose
universe D is a complete poset, the do-

main. The points of D may include concrete
data (words from some finite alphabet), but
also functions of various sorts and complex
mathematical structures which model com-
putations, interactions, etc. For each cor-
rect expression A and each assignment α
to the variables, the denotation [[A]](α) is a
point in D, determined by a structural in-
duction of the following general form: first
a (Scott-continuous) recursive equation (9)
is constructed from α and the denotations
of the parts of A, and then we take

[[A]](α) = the least fixed point of [x = π(x)].

The use of recursive equations is absolutely
essential here, to interpret the iteration and
recursive constructs which are at the heart
of programming languages.

The implementation is a function which
assigns to each program A a “machine”
MA—or, more concretely, code in the ma-
chine language of some processor—which
computes the denotation [[A]] of A. In the
simplest case, [[A]] might just be a sequence
of external acts, like “printing” some file or
drawing some picture on a monitor; more
often [[A]] is a function relating input to
output, or a “strategy” in some game, by
which the machine responds to a sequence
of external stimuli. As with inference sys-
tems, implementations come in a great va-
riety of shapes and forms (compilers and

interpreters, to name two), but they must
have the basic soundness property, that MA

“computes” [[A]] in a well understood way
which relates the abstract (mathematical)
denotations of programs to the behavior of
machines.

Even with this grossly oversimplified de-
scription, it should be clear that the basic
methodology of logic—the clean distinction
between syntax, semantics and inference—
has had an immense influence on the devel-
opment of programming languages; and that
the fundamental, related notions of symbolic

computation and recursion introduced by lo-
gicians in the 30s are essential to the under-
standing of programming languages.

In the other direction, the study of pro-
gramming languages—spurred by the need
for applications—has introduced a host of
interesting problems in logic, chief among
them the question of logic of programs: what
are the natural formal languages and in-
ference systems in which the fundamental
properties of programs can be expressed and
rigorously proved? Much work has been
done on this, but it is fair to say that the
question is still open, and a formidable chal-
lenge to logicians and computer scientists.

VI. Alternative Logics

From the many alternative logics which
are obtained by changing the syntax, seman-
tics or inference system of First Order Logic,
we consider, very briefly, just two.

A. Modal and Temporal Logic

Modal Logic goes back to Aristotle, the
traditional founder of logic, who took neces-

sity as one of the basic linguistic constructs
worthy of logical study. The modern syntax
is obtained by adding to FOL the propo-
sitional box operator 2, so that with each
formula A we have the formula 2A (with
the same free variables), read necessarily A.
The possibility operator is defined by the ab-
breviation 3A ≡ ¬2¬A.

Modal formulas are interpreted in Kripke

structures

M = (W, s0, {Ms | s ∈ W}, R),

of a specified vocabulary σ, where W is some

MATHEMATICAL LOGIC 19

set of possible worlds ; s0 is a specified “ac-
tual world”; each Ms is a σ-structure as-
sociated with the world s; and R(s, t) is
an accessibility relation on the worlds, in-
tuitively standing for “t is a possible alter-
native to s”. There are no fixed, general
assumptions about the accessibility relation
or the interpretations of the given relations
on the various worlds; it could be, for exam-
ple, that “Mary is John’s wife” in the actual
world s0, but in alternative possible worlds
John’s wife might be Ellen, John may not
have a wife—or he may not even exist. As-
signments associate objects in the possible
worlds to individual variables, and the basic,
semantic relation Ms, α |= A is defined by
the Tarski conditions (for structures) with
the additional clause

Ms, α |= 2A

⇔ for all t, if R(s, t), then Mt, α |= A.

For example, if R is transitive,

R(s, t) & R(t, t′) =⇒ R(s, t′),

then, the formula

(11) 2A → 22A

is satisfied by all assignments, in all possible
worlds, while it may fail for some A in non-
transitive structures. Finally,

M, α |= A ⇔ Ms0
, α |= A.

Different conceptions of “necessity” can
be modeled by placing appropriate restric-
tions on the accessibility relation, for exam-
ple that it be transitive, linear, etc., and
there is a question of constructing a suitable
inference system and proving the appropri-
ate Completeness Theorem in each case. A
great deal of interesting work has been done
in this area, much of it motivated by puzzles
in the philosophy of language.

If we take W = N for the set of possible
worlds, with s0 = 0 and R(s, t) ⇔ s ≤ t,
and if we read 2A as “from now on A”, we
get one version of Temporal Logic, very use-
ful for applications to computing systems.
The worlds are interpreted by the states of
some finite state machine, the propositional
variables stand for properties of states, and
the propositional formulas (which suffice)

can express interesting properties of the sys-
tem, especially if we augment the language
with some additional, natural primitives like
Next with the truth condition

Ms |= NextA ⇔ Ms+1 |= A.

For example, 2(p → Next q) says that “ev-
ery state which has property p is followed
immediately by one which has property q”,
and 32p says that “p will eventually be-
come and remain true”, both interesting
properties of finite state machines. This
temporal logic is decidable, and so are vari-
ous extensions of it, in which essentially all
interesting liveliness and fairness properties
of finite state machines can be expressed, so
that one can mechanically verify the “cor-
rect behavior” of finite state machines. The
relevant algorithms are practical, if not sim-
ple, they are used commercially, and they
provide a spectacular example of the emerg-
ing field of applied logic.

B. Intuitionistic Logic

First Order Intuitionistic Logic FOLI has
the same syntax as FOL, and almost the
same inference system: we simply replace
the Double Negation Law ¬¬A → A, (8)
in I-E, by the weaker

(8)I ¬A → (A → B).

Kripke has established a Completeness The-
orem for FOLI using a variation of his se-
mantics for Modal Logic, and this is use-
ful for obtaining unprovability results for
FOLI . The language, however, is meant to
be understood constructively, and so it is
not really possible to explain its semantics
fully within classical mathematics. Aside
from philosophical concerns, the real inter-
est of Intuitionistic Logic comes from the
proof theory of FOLI , which, somewhat sur-
prisingly, also has important applications to
Computer Science. Some sample results:

(1) For any two sentences A and B,

⊢I A ∨ B =⇒ ⊢I A or ⊢I B,

and hence 6⊢I p ∨ ¬p.

(2) In Heyting Arithmetic, i.e., the axiom
system PA of III-A with Intuitionistic Logic,

20 YIANNIS N. MOSCHOVAKIS

for any sentence (∃x)A,

PA ⊢I (∃x)A

=⇒ for some n, PA ⊢I A{x :≡ ∆n}.

(3) If PA ⊢I (∀x)(∃y)A and (∀x)(∃y)A is
a sentence (no free variables), then there is
a computable function f , such that for all n,
PA ⊢I A{x :≡ ∆n, y :≡ ∆f(n)}.

This last result is obtained with Kleene’s
Realizability Theory, and it illustrates the
following general principle: from a construc-

tive proof of (∀x)(∃y)R(x, y), we can extract

an algorithm which computes for each x,

some y such that R(x, y). There are obvi-
ous applications of this idea in Computer
Science, and much of the current research in
Intuitionism is motivated by it.

VII. Set Theory

Sets are collections into a whole of defi-

nite and separate objects of our intuition or

thought, according to Georg Cantor, who ini-
tiated their mathematical study in the mid
1870s. Thus the basic relation of the theory
is membership (∈),

x ∈ A ⇔ x is a member of A,

and a set is completely determined by its
members,

A = B ⇔ (for all x)[x ∈ A ⇔ x ∈ B].

Finite sets can be simply enumerated, e.g.,
A = {0, 5, 7}. Infinite sets are usually speci-
fied by means of some condition P (x) which
characterizes their members, and we write

A = {x | P (x)}

to indicate that A “is the set of all objects
which satisfy P (x)”.

Cantor was led to the study of arbitrary,
abstract sets in his effort to understand the
structure of some specific sets of real num-
bers or pointsets, and the theory which he
created still exhibits today these two re-
lated but separate concerns. The theory of

pointsets or descriptive set theory is primar-
ily a theory of definability on the real num-
bers, and it is characterized by its applica-
tions to other fields of mathematics, espe-
cially analysis. Abstract set theory is pri-
marily a theory of counting, an extension of

combinatorics to the transfinite. The best
set-theoretic results are about the interac-
tion between these two poles of the subject.

At about the same time as Cantor’s orig-
inal contributions, Gottlob Frege initiated
an effort to create a foundation of mathe-

matics on the basis of set theory. Frege’s
approach was different (he took “function”
rather than “set” as his primitive notion)
and his original program was overly ambi-
tious and failed. He had the right basic idea,
however, that all objects of classical mathe-

matics can be “defined within set theory”, so

that their properties can be (ultimately) de-

rived from properties of sets. It took some
time for this to take hold, but it is fair to
say that since the 1930s, set theory has been
the official language of mathematics, just as
mathematics is the official language of sci-
ence. This richness of the field makes it fer-
tile ground for logical investigations, and it
is not an accident that logicians have been
involved with set theory from the beginning.

A. Cardinal Arithmetic

There are exactly as many left shoes in
a (normal) shoe store as there are right
shoes—and we can be sure of this without
counting, because of the obvious one-to-one
correspondence between left and right shoes.
The principle here is that equivalent sets

have the same number of members,

(12) |A| = |B| ⇔ A ∼c B,

where A ∼c B indicates that some one-to-
one correspondence exists between the mem-
bers of A and the members of B, and

|X| = the number of objects in the set X.

This is a basic tool in mathematics: we
count a set A by establishing a one-to-one
correspondence between its members and
the members of some already-counted set B.
Moreover, if we set

A 4c B ⇔ for some subset C ⊆ B, A ∼c C,

then, obviously,

(13) |A| ≤ |B| ⇔ A 4c B,

and we can often prove indirectly that there

are objects in B which are not in A by show-
ing (using arithmetic) that |A| < |B|, so

MATHEMATICAL LOGIC 21

that B ⊆ A is impossible.
Cantor proposed to associate a cardinal

number |X| with every (finite or infinite) set
X, so that (12) and (13) hold, and then to
use similar counting and (infinite) cardinal

arithmetic techniques in the study of arbi-
trary sets. One might expect problems, be-
cause a finite set cannot be equivalent with
one of its proper subsets (by the so-called
Pigeonhole Principle), while

(14) N = {0, 1, 2, . . .} ∼c {0, 2, 4, . . .}

via the correspondence f(n) = 2n. Can-
tor showed that, despite this “paradox”, his
cardinal arithmetic is a powerful tool with
important applications in almost all areas
of mathematics.

Cantor’s first fundamental discovery was
that there are (at least) two infinite sizes of
sets: if

ℵ0 = |N|, c = |R| = |the real numbers|

are the cardinal numbers of the two most
basic sets in mathematics, then

(15) ℵ0 < c.

A set A is countable if |A| ≤ ℵ0, otherwise
it is, like R, uncountable.

To define the arithmetical operations on
(possibly infinite) cardinal numbers, choose
sets K, L with no members in common so
that κ = |K|, λ = |L|, and set

κ + λ = |K ∪ L|,

κ · λ = K × L,

κλ = |(L → K)|.

Here the union K∪L is the set of all objects
which belong to either K or L; the Carte-

sian product K × L is the set of all ordered
pairs (x, y) with x ∈ K and y ∈ L; and
the function space (L → K) is the set of all
functions f : L → K. If κ and λ are finite,
we get the usual sum, product and exponen-
tial, noting, in particular, that there are κλ

functions from a set of size λ to one of size κ.
Moreover, all the familiar arithmetical iden-
tities hold—e.g., addition and multiplication
are associative and commutative, multipli-
cation distributes over addition, κ0 = 1, and

κλ+µ = κλ · κµ,
(

κλ
)µ

= κλ·µ.

As examples of “proofs by counting”,
Cantor showed first that

(16) ℵ0 + ℵ0 = ℵ0 · ℵ0 = ℵ0

(basically because of (14)), and

c = 2ℵ0 .

Both of these facts are easy, but they sup-
port the computation

c
2 = 2ℵ0 · 2ℵ0 = 2ℵ0+ℵ0 = 2ℵ0 = c,

which means that there is a one-to-one

correspondence between the line and the

plane—and, hence, between the line and
real n-space, for every n! This was new, it
was surprising, and it was proved by “plain
arithmetic”. Eventually it motivated the de-
velopment of dimension theory, whose basic
result is that there is no continuous, one-to-

one correspondence of real n-space with real

m-space unless n = m. Moreover, the set

of rational numbers is countable, and so is
the set of algebraic numbers, the solutions
of polynomial equations

a0 + a1x + a2x
2 + · · · + xn = 0

with integer coefficients. Thus, since R is
uncountable, “by simple counting” there ex-

ist transcendental (not algebraic) real num-

bers, a famous result of Liouville’s whose
original proof had rested on delicate conver-
gence arguments for infinite series. It was a
“killer application” which made set theory
instantly known (and somewhat notorious)
in the mathematical community.

Cardinal addition and multiplication sat-
isfy the following absorption laws which ba-
sically trivializes them in the infinite case:

if 0 < κ ≤ λ and λ is infinite,

then κ + λ = κ · λ = λ.

For exponentiation, however, Cantor ex-
tended (15) to the general inequality

κ < 2κ,

which provides infinitely many distinct “or-
ders of infinity”, perhaps what people meant
when they referred to Cantor’s Paradise.
Exponentiation is the source of the deep-
est questions about infinite sets, chief among

22 YIANNIS N. MOSCHOVAKIS

them Cantor’s Generalized Continuum Hy-

pothesis (GCH), the claim that for all infi-
nite κ,

(GCH) 2κ = κ+

= the least cardinal number > κ.

The “ordinary” case (CH) 2ℵ0 = ℵ+
0 was No.

1 in Hilbert’s list, it dominated set-theoretic
research in the 20th century and, in a sense,
it is still open today.

In addition to the cardinal numbers,
which count the members of a set

one, two, three, . . .

in the finite case, Cantor also introduced in-
finite versions of the ordinal numbers

first, second, third, . . .

which assign position in a sequence. These
are associated with “transfinite sequences”,
i.e., well ordered structures (A,≤), where ≤
is a linear ordering on A (so that x ≤ y or
y ≤ x, for all x, y in A) and every non-

empty subset of A has a least element. Ev-
ery ordinal number α has a successor α + 1
which defines “the next position”, and ev-
ery set of ordinal numbers A has a least up-

per bound sup A. The least infinite ordinal
number ω defines the first position with in-

0, 1, 2, . . . ω, ω + 1, ω + 2, . . .

ω · 2, ω · 2 + 1, . . .

finitely many predecessors, and it is a limit

ordinal, without an immediate predecessor.
Ordinal arithmetic has fewer direct appli-

cations than the arithmetic of cardinal num-
bers, but well ordered structures and ordinal
numbers are the fundamental tools in the
study of transfinite iteration, which is rich
in applications. In a typical case, a function
f : A → B is defined by recursion on some
well ordered structure (A,≤), and then the
crucial properties of f are established by in-

duction along ≤. Moreover, the exact spec-
ification of the relation ≤ is often unimpor-
tant: all that matters is that some relation
well orders A, in other words that A be well

orderable.

(WOP) Is every set well orderable?

Specifically, is the set R of real numbers

(where many of the applications lie) well or-
derable? The natural ordering of R won’t
do, since (for example) R has no least el-
ement, and it is hard to imagine how one
could arrange all the real numbers into a
transfinite sequence, with each point fol-
lowed by its successor and every non-empty
subset having a least element. The Contin-

uum Problem (whether CH is true or not)
and this Well Ordering Problem were the
central open problems in set theory at the
turn of the 20th century.

B. The paradoxes

Cantor developed his theory on the ba-
sis of the following General Comprehension

Principle which flows naturally from his
“definition” of sets quoted in the beginning
of this section: every definite (unambigu-
ous) property P (x) of mathematical objects,

has an extension, the set A = {x | P (x)}
which “collects into a whole” all the objects
which satisfy P (x), so that

(17) x ∈ A ⇔ P (x).

But this is not generally true: because if

R = {x | is a set and x /∈ x},

then, from (17),

R ∈ R ⇔ R is a set and R /∈ R ⇔ R /∈ R

which is absurd. The argument was dis-
covered in 1902 by Bertrand Russell, and it
was not the first contradiction in set theory.
However, earlier “paradoxes” (some of them
known to Cantor) were technical, not un-
like the paradoxes with infinitesimals which
had been commonplace in the Calculus some
years earlier, and it was thought that they
would go away in a careful development of
the subject. The Russell Paradox is not
technical, it goes to the heart of the nature
of sets, and it threw the mathematical com-
munity into a spin.

L. E. J. Brouwer initiated the intuitionis-

tic program which denies that abstract sets
are meaningful objects of study and also re-
jects some of the basic principles of logic.
Mathematical objects cannot be said to “ex-
ist” in any sense independent of (mental)
“mathematical activity”; and to prove that

MATHEMATICAL LOGIC 23

some x has property P , one must construct

some specific object x which has property
P—it is not enough to derive a contradiction
from the assumption that no x has property

P . Intuitionism had a strong influence in
the philosophy of mathematics and remains
a vibrant field of study within logic, but it
never carried much favor with mathemati-
cians: too much of classical mathematics
must be thrown out to satisfy its tenets.

Hilbert proposed to “save” classical math-
ematics from the paradoxes and Brouwer’s
attack by formalizing as large a part of it as
possible in some first order, axiomatic the-
ory T , and then establishing the consistency
of T by absolutely safe, finitistic methods.
Formalism is the reading of Hilbert’s Pro-

gram as a philosophical view: it alleges that
once T is chosen, then T is all there is—
there is nothing more to mathematics but
the study of the inference relation T ⊢ A,
with no reference to meaning. Aside from
the impact of Gödel’s Second Incomplete-
ness Theorem (IV-E) which weakens it, For-
malism also fails to account for the applica-
tions of mathematics: it is hard to see how
the existence or not of certain patterns of
meaningless symbols can have any bearing
on the escape velocity of a rocket.

From those reluctant to abandon the tra-
ditional, realist view that mathematical ob-
jects are, well, real, no matter how abstract
and difficult to pin down, Russell first pro-
posed to replace set theory by his famous
theory of types : it is claimed (roughly, and
in the later simple version due to Ramsey),
that every mathematical object is of a cer-
tain (natural number) type n, and that ev-
ery set A is of some successor type n + 1,
such that the members of A are of the im-
mediately preceding type n. Type theory
is awkward to apply and it yields only a
poor shadow of Cantor’s set theory, albeit
without the paradoxes. It never gained fa-
vor as a true alternative to set theory, al-
though it has been studied extensively as
a logical system, it has found its own ap-
plications (especially recently, to program-
ming languages), and many of its fundamen-
tal ideas were eventually incorporated in the

reformulation of set theory which eventually
prevailed.

What has prevailed is Axiomatic Set The-

ory, first proposed in 1904 by Zermelo as a
pragmatic way to avoid the paradoxes by re-
building Cantor’s set theory on the basis of
a few set-theoretic principles which are ba-
sic, simple and well understood by their uses
in classical mathematics. Formalists can ac-
cept it, as nothing more but the choice of
a specific set of axioms, whose “truth” is
irrelevant—if, at all, meaningful. But it is
the realists who, in the end, have received
the greatest comfort from axiomatic set the-
ory: because the systematic development of
consequences of the axioms eventually led
to a narrower, more concrete concept of set,
which ultimately justified the axioms.

Much of modern logic was created in re-
sponse to the challenge of the set-theoretic
paradoxes, and that is another reason why
the discipline is so intimately tied with set
theory.

C. Zermelo-Fraenkel Set Theory

There are eight axioms in ZFC (Zermelo-

Fraenkel Set Theory with Choice), and it is
assumed that they are interpreted over some
given domain of sets V, which comes en-
dowed with a binary membership condition,
x ∈ y. The formal theory ZFC is obtained
by expressing these axioms by sentences of
FOL(∈), and it requires infinitely many sen-
tences, because the Replacement Axiom 5
requires an axiom scheme. Here we will de-
scribe them briefly and informally, with a
few interspersed comments.

1. Extensionality. Two sets are equal
exactly when the have the same members.

2. Empty set and Pairing. There is a
set ∅ with no members, and for any two sets
a, b, there is a set {a, b} whose members are
exactly a and b.

3. Unionset. For each set A, there is a
set ∪A whose members are the members of
the members of A,

t ∈ ∪A ⇔ (∃x)[x ∈ A & t ∈ x].

4. Powerset. For each set A, there is a
set P(A) whose members are all the subsets
of A.

24 YIANNIS N. MOSCHOVAKIS

An operation F : V → V is definite if it
is first order definable with parameters, i.e.,

F (x) = G(x, a1, . . . , ak)

where G(x, y1, . . . , yk) is first order defin-
able, II-C.

5. Replacement. The image

F [A] = {F (x) | x ∈ A}

of a set A by a definite operation F is a set.
(This was formulated in the 30s, primarily
by Skolem, and it is much stronger than Zer-
melo’s original Separation Axiom.)

For the next two axioms, we need the no-
tion of function f : A → B from one set
to another, which is not among our primi-
tives, and so we need to “reduce” the notion
of function to that of set. The trick is well
known: first we fix some ordered pair oper-

ation (x, y) which satisfies the key property

(18) (x, y) = (x′, y′) ⇔ x = x′ & y = y′,

and then we model a function f by its graph,

Gf = {(x, y) ∈ A × B | y = f(x)},

which is just a set with some special proper-
ties. It is common to use the so-called Ku-

ratowski pair operation

(x, y) = {x, {x, y}},

but there are many others, and all that
is needed is some operation which satis-
fies (18).

6. Infinity. There is a set I and a one-to-
one function f : I → I which is not onto I,
f [I] (I.

Next comes Zermelo’s chief contribution:

B
R

f

...........
x A

7. Axiom of Choice (AC). For each bi-
nary relation R ⊆ A × B,

(∀x ∈ A)(∃y ∈ B)(x, y) ∈ R

=⇒ (∃f : A → B)(∀x ∈ A)(x, f(x)) ∈ R.

In effect, AC postulates a function f
which makes a choice f(x) from the non-
empty set {y | (x, y) ∈ R}, “simultane-
ously”, for each x ∈ A. If B carries a well
ordering ≤, we could take

f(x) = the ≤-least y such that (x, y) ∈ R;

Zermelo showed that, conversely, AC implies

that every set is well orderable, and identi-
fied numerous examples where the seemingly
controversial AC is routinely used in math-
ematics. Somewhat later Hartogs showed
that AC is also equivalent with the cardinal

comparability property

(∀A, B)[A ≤c B ∨ B ≤c A]

without which there is no cardinal arith-
metic, and this limited further opposition
to AC to those who were willing to aban-
don completely Cantor’s Paradise.

The last axiom of ZFC involves the cum-

mulative hierarchy of sets, which is defined
by recursion on the ordinal numbers as fol-
lows:

V0 = ∅,

Vα+1 = P(Vα),

Vλ =
⋃

α<λ Vα (if λ is limit).

8. Foundation. Every set is a member of
some Vα.

This is a limiting axiom, not needed for
the development of Cantor’s set theory or
its applications, but it is important be-
cause it codifies within the axiomatic the-
ory a conception of set which replaced in
the 1930s Cantor’s free-wheeling notion of
a “collection into a whole”: each set is
reached starting with “nothing” (the empty-
set ∅), by “indefinite” (never ending) “itera-
tion” of the powerset operation. Admittedly
more complex than Cantor’s, this notion of
grounded set prohibits the circular construc-
tions which lead to the paradoxes, and it can
be described intuitively in sufficiently clear
terms to justify the axioms.

To see how classical mathematics can be
developed on the basis of these seven ax-
ioms, consider first arithmetic. A number

system is a triple (N, 0, S) such that N is a

MATHEMATICAL LOGIC 25

set, 0 ∈ N, S : N → N is a one-to-one func-
tion which is never 0, and

[X ⊆ N & 0 ∈ X & S[X] ⊆ X] =⇒ X = N;

we prove that there exists a number system

and that every two number systems are iso-

morphic, and then we choose some specific
number system and call its members the nat-

ural numbers. The real numbers are identi-
fied with some complete ordered field, once
we prove that one such exists and any two
are order isomorphic, and so forth for other
structures. This process of “defining” (more
accurately: modeling faithfully) mathemat-
ical structures in set theory has found such
widespread acceptance in mathematics, that
“to make a notion precise” is now viewed as
synonymous with “defining it in set theory”.

D. Independence Results

It is, perhaps, ironic, that the axiomati-
zation of set theory made possible to formu-
late and prove its own limitations. Let ZF
be the theory with axioms 1–6, i.e., without
the Axiom of Choice:

Theorem. If ZF is consistent, then so are
the theories ZFC+GCH (Gödel, 1938) and
ZFC+¬CH (Paul Cohen, 1963).

In effect, ZFC can neither disprove nor
prove the Continuum Hypothesis, unless a
contradiction can be obtained from its “con-
structive” core. In addition, Cohen showed
that ZF cannot prove the Axiom of Choice,
and several additional consistency and inde-
pendence results.

Gödel’s proof uses an inner model, a sub-
collection of our intended universe of sets V:
using only axioms 1–6, he defines a certain
collection L of constructible sets and shows
that if we re-interpret “set” to mean “mem-
ber of L”, then all the axioms of ZFC as well
as GCH are true. Cohen’s forcing method

builds “virtual universes” which are “larger”
than V, and so he must describe them in-
directly. This can be done with Boolean-

valued models : a collection M ⊂ V and a
binary condition E on M are defined, and
then it is shown that, for a certain (com-
plete) Boolean algebra B, the Boolean se-

mantics of the “structure” (M, E) assign 1
to all the theorems of ZFC but something

other than 1 to CH.
In both of these proofs, logic plays an es-

sential role which goes much beyond provid-
ing the context in which their claims can
be made precise. For example, the con-
structible universe L is defined by iterating
the operation of taking all first order defin-

able subsets rather than P(A) in the cum-
mulative hierarchy of sets, and then a strong
version of the Skolem-Löwenheim Theorem
is used at a crucial point to show that GCH
holds in L. Through the work, initially,
of Robert Solovay for forcing and Ronald
Jensen for constructibility, these theories
have been much generalized and continue to
be very active research areas of logic, with
important applications to analysis, algebra
and topology.

E. Current Research in Set Theory

In one direction, set theory is more in-
volved now with applications than ever be-
fore. Especially fruitful has been the devel-
opment in the 1960s of effective descriptive

set theory, which incorporates methods from
recursion theory into the study of definabil-
ity on the continuum to yield very substan-
tial applications to analysis.

Beyond the applications, set theory has
attempted to confront the fundamental
problem posed by the independence results:
what does one do with the Continuum Prob-
lem, now that we know that it cannot be
settled in ZFC? Some have adopted a for-
malist view, that it is meaningless to ask
“whether CH is true or not”, and that “set
theory is the study of all models of ZFC”.
This is a very active area of research.

In another direction, people have looked
for new axioms, extending ZFC, which
might provide the needed answers, and a
great deal of research has been done in this
direction since the 1960s. Generally speak-
ing, two kinds of axioms have been con-
sidered. Large cardinal axioms are plausi-
ble generalizations of the Axiom of Infin-
ity, which, however, have very few direct
consequences for the continuum. Deter-

minacy hypotheses postulate that certain
(fairly simple) infinite games on the nat-
ural numbers are determined ; somewhat

26 YIANNIS N. MOSCHOVAKIS

technical and not especially plausible, these
axioms answer most definability questions
about the real numbers that are indepen-
dent of ZFC, although, unfortunately, they
cannot settle the Continuum Problem. In
a fundamental advance made in the 1980s,
Donald A. Martin, John Steel and Hugh
Woodin showed that the plausible large car-
dinal axioms imply the fruitful determinacy
hypotheses, and so a “unified”, very strong
extension of ZFC has been created which is
the subject of much current research. Un-
fortunately, it does not solve the Continuum
Problem, and so the search goes on.

It may well be that set theory will con-
tinue to be dominated in the 21st century
by the search for an answer to the Contin-
uum Problem, as it certainly was during the
century just ended.

References

Handbook of Logic in Computer
Science, edited by S. Abramsky, T. S. E.
Maibaum and D. M. Gabbay, in five vol-
umes, the first publiahed in 1993, Clarendon
Press, Oxford.

Handbook of Proof Theory, edited by
Samuel R. Buss, Studies in Logic and the
Foundations of Mathematics, vol. 137, Else-
vier, 1998.

Model Theory, by Wilfried Hodges,
Encuclopedia of Mathematics and its Ap-
plications, vol. 42, Cambridge University
Press, 1993.

Theory of Recursive Functions and
Effective Computability, by H. J. Rogers,
Jr., McGraw-Hillm New York, 1967.

Set Theory, by Kenneth Kunen, Studies
in Logic and the Foundations of Mathemat-
ics, vol. 102, Elsevier, 1998.

Descriptive Set Theory, by Yiannis N.
Moschovakis, Studies in Logic and the Foun-
dations of Mathematics, vol. 100, North Hol-
land, 1980.

University of California, Los Angeles, and

University of Athens

