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This talk was about some joint work with Lou van den Dries, in which we try to
derive lower bounds for the worst-case, time complexity of functions and decision
problems in arithmetic which apply to all—or, in any case, to as many as possible—
algorithms. The relevant papers are listed in the bibliography and [3] gives a brief
account of how we came to these questions, as well as a fairly complete exposition
of what we have proved. Here I will confine myself to very few precise statements
of specific results, since my main aim is to describe the methods that we use.1

1. One conjecture and two results

The ancient Euclidean algorithm computes the greatest common divisor of two
natural numbers using iterated division. It can be expressed succinctly by the
recursive equation

(1) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b)) (a ≥ b ≥ 1),

and its natural complexity measure is

cε(a, b) = the number of divisions required to compute gcd(m,n) using (1).

It is easy to check that

cε(a, b) ≤ 2 log2(a) (a ≥ b > 1),

which is not the best known upper bound for the Euclidean, but is good enough
for our purposes. It leads to the following, natural formulation of the Euclidean’s
optimality:

Main Conjecture. For every algorithm α which computes the gcd from the re-

mainder operation rem, there is a real constant r > 0 such that for infinitely many

pairs (a, b) with a > b > 1,

cα(a, b) ≥ r log2(a),

where cα(a, b) counts the number of calls to the remainder function required to
compute gcd(a, b) using the algorithm α.

Extended abstract of a lecture given on October 25, 2005.
1I use standard notation and terminology, with N = {0, 1, . . .} the set of natural numbers,Z = {. . . ,−1, 0, 1, . . .}, gcd(m, n) = the largest k such that k | m and k | n, and the following

perhaps less common notations:

if m ≥ n, m = nq + r and 0 ≤ r < n, then iq(m, n) = q, rem(m, n) = r,

m ⊥ n ⇐⇒ m, n ≥ 1 and gcd(m, n) = 1 (m and n are coprime),

m−· n = if (m ≤ n) then 0 else m − n, log
2

m = x ⇐⇒ 2x = m (m ≥ 1).

1



2 YIANNIS N. MOSCHOVAKIS

The conjecture is vague, of course, absent a precise definition of “algorithm”, but
it is a useful template for the formulation of precise conjectures based on specific,
precise assumptions about the behavior of algorithms. It makes clear, right at the
start, that we are concerned with (relative) algorithms from specified primitives

(the “givens”). With this understanding, we can formulate now, vaguely, the two
basic results that I wish to discuss, and which I will make precise in the sequel:

Theorem A (van den Dries, [3]). For every algorithm α which computes the great-

est common divisor from the functions and relations

+, −· , <, =, iq, rem, ·,
there are infinitely many pairs (a, b) such that a > b > 1 and

cα(a+ 1, b) ≥ 1

4

√

log2 log2 b;

in fact the inequality holds whenever a, b are positive solutions of Pell’s equation

a2 = 1 + 2b2.

I will argue that this result requires only a minimal, natural assumption about
how algorithms operate, and so it truly holds for all algorithms (from the specified
givens). The second result, however, depends on somewhat stronger assumptions
about algorithms which cannot be considered obvious, and so I will label it “vague”
in this first formulation:

Theorem B1 (vague). For every algorithm α which decides the coprimeness re-

lation ⊥ from the functions and relations

+, −· , <, =, iq, rem,

there are infinitely many pairs (a, b) such that a > b > 1 and

cα(a, b) >
1

10
log2 log2 a;

in fact the inequality holds for all a > b > 1 such that

a ⊥ b and

∣

∣

∣

a

b
−

√
2
∣

∣

∣
<

1

b2

(including all solutions (a, b) of Pell’s equation).

Both of these results assume many more primitives than the bare integer remain-
der function assumed by the Euclidean—including the very powerful multiplication
function in the case of Theorem A—and in that sense they are stronger than they
need to be to establish the Main Conjecture; on the other hand, the claimed lower
bounds are one log below what we would like them to be, and in this subject one
log is infinitely far away.

2. The complexity of values

A signature is a finite set Φ = {φ1, . . . ,φk} of function symbols, each of a
specified arity ni, and a (partial) Φ-algebra is a structure

A = (A, 0, 1, φ1, . . . , φk),
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where 0, 1 ∈ A, 0 6= 1, and each φi : Ani ⇀ A is a partial function on A.2

Classical examples include the familiar structure of arithmetic (N, 0, 1,+, ·), but
also the algebra of the Euclidean (N, 0, 1, rem), whose only given is the remainder
operation. These, of course, are total. Algebras with genuinely partial givens arise
most naturally as restrictions,

A ↾B = (B, 0, 1, φ1 ↾B, . . . , φk ↾B) ({0, 1, } ⊆ B ⊆ A),

where, for any φ : An ⇀ A and any B ⊆ A,

(φ ↾B)(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn, w ∈ B & φ(x1, . . . , xn) = w.

Especially interesting is the subalgebra generated by a sequence ~a = (a1, . . . , an) of
points in A, which is naturally ramified by depth: we set recursively,

G0(~a) = {0, 1, a1, . . . , an},
Gm+1(~a) = Gm(~a) ∪ {φi(x1, . . . , xl) | x1, . . . , xl ∈ Gm(~a), i = 1, . . . , k},

Gm(~a) = A ↾Gm(~a),

and then G∞(~a) = ∪mGm(~a), G∞(~a) = A ↾G∞(~a). If we define the closed (alge-
braic) terms with parameters in ~a in the obvious way,

E :≡ ai | 0 | 1 | φi(E1, . . . , Eni
),

then, easily,

Gm(~a) = {den(E) | depth(E) ≤ m}.
When we need to note the algebra in which these sets are computed, we write

GA
m(~a),GA

m(~a).
Now, it is natural to assume that if a function f : An → A is computed by some

algorithm from the givens φ1, . . . , φk of A, then for every ~a, f(~a) ∈ G∞(~a); and so
we can associate with f its value complexity,

(2) vA

f (~a) = the least m such that f(~a) ∈ GA

m(~a).

Moreover, since it evidently takesm steps to construct an object in Gm(~a)\Gm−1(~a)
using the givens; and since the time complexity of an algorithm must be at least as
large as the number of steps it takes to construct its value; I would claim that the
following principle is more-or-less obvious:

Basic Principle. If an algorithm α computes f : An → A in the algebra A with

time complexity cα(~x), then

f(~a) ∈ G∞(~a) and cα(~a) ≥ vA

f (~a).

2 A partial function f : An ⇀ A is an ordinary function f : S → A, with domain of convergence

some subset S ⊆ An. We write f(~x) ↓ ⇐⇒ ~x ∈ S and f(~x) ↑ ⇐⇒ ~x /∈ S. Partial functions
compose strictly:

f(g1(~x), . . . , gm(~x)) = w

⇐⇒ (∃u1, . . . , um)[g1(~x) = u1 & · · · & gm(~x) = um & f(u1, . . . , um) = w].

We assume the existence of codes of falsity and truth (0 6= 1) in A for simplicity only, so that we
can restrict the givens to be partial functions: each relation R ⊆ An on A is identified with its
(total) characteristic function, χR(~x) = if R(~x) then 1 else 0.



4 YIANNIS N. MOSCHOVAKIS

Van den Dries’ proof of Theorem A proceeds by showing that if (a, b) satisfy
Pell’s equation, then

vA

gcd(a+ 1, b) ≥ 1

4

√

log2 log2 b

and then applying the Basic Principle.

3. Lower bounds for recursive (McCarthy) programs

The value complexity vA

R (~a) = 0 for every relation R ⊆ An, since χR(~a) ∈ G0(~a),
and so the method of proof of Theorem A is useless for coprimeness. For this we
need to make some more substantial assumptions about algorithms and it is not
immediately obvious what these assumptions might be. So we follow a less direct
route: first we will establish a lower bound for coprimeness for algorithms which
are expressed by recursive programs, and then (perhaps using the insights gained
by the proof) we will see how generally applicable this lower bound may be.

The programming language L(Φ) = L(φ1, . . . ,φk) has

• individual variables v0, v1, . . .;
• individual constants 0, 1;
• (partial) function variables pn

0 , p
n
1 . . . of arity n, for every n; and

• (partial) function constants φ1, . . . ,φk.

The terms of L(Φ) are defined as usual, except that we allow conditionals:

(Φ-terms) E :≡ 0 | 1 | vi | φi(E1, . . . , Eni
) | pn

i (E1, . . . , En)

| if (E0 = 0) then E1 else E2

These are interpreted in a Φ-algebra A with respect to an assignment σ which as-
sociates with each individual variable vi some σ(vi) ∈ A and each function variable
pn

i a partial function σ(pn
i ) : An ⇀ A, as usual, but we must be careful in defining

the denotation of the conditional:

den( if (E0 = 0) then E1 else E2, σ)

=

{

den(E1, σ), if den(E0, σ) = 0,

den(E2, σ), if den(E0, σ) ↓ & den(E0, σ) 6= 0;

so if den(E0, σ) = 0 and den(E1, σ) ↓, then den( if (E0 = 0) then E1 else E2, σ) ↓,
even if den(E2, σ) ↑.3

A recursive (or McCarthy) Φ-program is a system of recursive equations4

(3) α :



















p0(~x) = E0(~x, p1, . . . , pK)
p1(~x1) = E1(~x1, p1, . . . , pK)

...
pK(~xK) = EK(~xn, p1, . . . , pK)

where only the indicated individual and function variables may occur in the Φ-
terms on the right; the first equation is the head of α (with head symbol p0), while
the remaining K equations comprise the body of α. The arity of α is the number of

3Which is why the conditional construct cannot be defined as composition with some partial
function c(x, y, z), see Footnote 2.

4These programs were introduced in [8], where it was shown that they yield a very simple and
elegant characterization of the Turing computable functions on N .
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individual variables in the list ~x = (x1, . . . , xn) of the head equation. For example,
the Euclidean algorithm is expressed by the following {<, rem}-program:

ε :

{

p0(x, y) = if (< (x, y) = 0) then p1(x, y) else p1(y, x)
p1(x, y) = if (rem(x, y) = 0) then y else p1(y, rem(x, y))

To interpret α in a Φ-algebra A, we fist check that each term Ei(~xi, p1, . . . , pK)
defines a monotone and continuous functional of its individual and partial function
arguments, and then we invoke a simple, classical Fixed Point Theorem for such
functionals which insures that (as a system of equations) α has a tuple (p0, . . . , pK)
of least solutions and set (in several useful, alternative notations),

denA(α) = αA = p0 : An ⇀ A (n = arity(α)).

For example, in the algebra (N, 0, 1, <, rem), if x, y 6= 0, then ε(x, y) = gcd(x, y).
In the definition of programs we allow K = 0, in which case α is identified with

its head term E0(~x)—and so every Φ-term is also a program. In fact, many of the
standard properties of Φ-terms can be extended to the more general Φ-programs,
and this is the key to the derivation of lower bound results for these representations
of algorithms.

An imbedding π : B → A from one Φ-algebra into another is any one-to-one
mapping π : BA such that π(0) = 1, π(1) = 1, and for every φi ∈ Φ and all
x1, . . . , xni

, w ∈ B:

φ
B

i (x1, . . . , xni
) = w =⇒ φ

A

i (π(x1), . . . , π(xni
)) = π(w).

If B ⊆ A and the identity map is an imbedding, we call B a (partial) subalgebra of
A and write B ⊆p A. Thus, for every m and all ~a, GA

m(~a) ⊆p GA
m+1(~a).

We need these careful formulations of the standard notions because the givens
may be partial, but with them, we can verify (very easily) the expected, standard
results:

Lemma 1 (Imbedding). If π : BA is an imbedding of one Φ-algebra into

another and α is a Φ-program, then

denB(α)(x1, . . . , xn) = w =⇒ denA(α)(π(x1), . . . , π(xn)) = π(w).

In particular, if B ⊆p A, then αB = αA ↾B.

Lemma 2 (Finiteness). Fix a Φ-program α and a Φ-algebra A: if den(α)(~a) = w,

then there is some m such that w ∈ Gm(~a) & denGm(~a)(α)(~a) = w.

This second lemma says (in effect) that the “computation” of den(α)(~a) takes
place in the subalgebra of some finite depth generated by ~a. It leads directly to the
following, natural complexity measure of a Φ-program α on a Φ-algebra A:

(4) If denA(α)(~a) = w, set

CA(α)(~a) = the least m such that denGm(~a)(α)(~a) = w.

This complexity measure is preserved by imbeddings and leads to

Lemma 3 (The Imbedding Test). Suppose A is a Φ-algebra, f : An → A, and

for some ~a ∈ An and some m there is an imbedding π : GA
m(~a) A such that

π(f(~a)) 6= f(π(~a)); then for every Φ-program α which computes f in A,

CA(α)(~a) > m.
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Proof. If denA(α)(~a) = w and CA(α)(~a) ≤ m, then denGm(~a)(α)(~a) = w by the
definition of the complexity and the Imbedding Lemma 1, and then by the same
Lemma, f(π(~a)) = denA(α)(π(~a)) = π(w), which contradicts the hypothesis. �

Theorem B2 ([4]). For every recursive program α which decides the coprimeness

relation ⊥ in the algebra

A = (N, 0, 1, +, −· , <, =, iq, rem),

there are infinitely many pairs (a, b) such that a > b > 1 and

CA(α)(a, b) >
1

10
log2 log2 a;

in fact the inequality holds for all a > b > 1 such that

a ⊥ b and

∣

∣

∣

a

b
−

√
2
∣

∣

∣
<

1

b2

(including all solutions (a, b) of Pell’s equation).

Method of proof. To apply the Imbedding Test, it is enough to show that if (a, b)
satisfy the hypothesis and m ≤ 1

10 log2 log2 a, then there is a λ > 1 and an imbed-
ding π : Gm(a, b) A such that π(a) = λa and π(b) = λb. This is done by showing
first that (under the hypothesis) each x ∈ Gm(a, b) can be expressed uniquely in
the form

x =
x0 + x1a+ x2b

x3

with sufficiently small xi ∈ Z, and then choosing λ so that the map

π(x) =
x0 + x1λa+ x2λb

x3
(x ∈ Gm(a, b))

is an imbedding. �

The detailed proof uses only minimal number theory—basically Liouville’s The-
orem, c.f. [5]—and it is very general. It can be adjusted to derive lower bounds
for recursive programs which decide many interesting relations on N from natural
givens, see [4, 3, 1].

4. Logical extensions and widely applicable lower bounds

Theorem B2 does not yield immediately a lower bound for Random Access Ma-
chines which decide the coprimeness relation from +, −· , <, =, iq, rem, because
the simulation of RAMs by recursive programs has an “overhead”, cf. the article
by van Emde Boas in [11]. The imbedding method, however, can be extended to
yield very widely applicable lower bounds, as follows.

Suppose first that A ⊆ B and

A = (A, 0, 1, φ1, . . . , φk), B = (B, 0, 1, φ1, . . . , φk, ψ1, . . . , ψl)

are algebras, where we view each φi as a partial function on B, defined only when
all its arguments are in A. We call B a logical extension of A if every permutation
π : A→A such that π(0) = 0, π(1) = 1 has an extension πB : B→B which is an
automorphism for all the “fresh givens” of B, i.e.,

πB(ψj(x1, . . . , xm)) = ψj(π
B(x1), . . . , π

B(xn)) (j = 1, . . . , l, x1, . . . , xm ∈ B).

It is quite easy to verify that every standard computation model relative to some
functions Φ on a set A—Turing machine, RAM, etc.—can be faithfully represented
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by a recursive program on some logical extension B of (A, 0, 1,Φ), so that, in
particular, its time complexity is no smaller than the CB complexity of the recursive
program which represents it.

Suppose next that A is a Φ-algebra and f : An → A is such that

(5) f(~x) ∈ G∞(~a) (~a ∈ An).

According to the Basic Principle, this condition is satisfied by every function which
is computed by an algorithm from the givens of A. We say that an imbedding
π : Gm(~a) A respects f at ~a if

f(~a) ∈ Gm(~a) & π(f(~a)) = f(π(~a)),

and we define the imbedding complexity of f in A by

(6) ıAf (~a) = the least m such that every π : GA

m(~a) A respects f at ~a.

Theorem 4 (van den Dries,YNM, Itay Neeman). If f : An → A and some recursive

program α computes f on a logical extension B of A, then (5) holds, ıAf (~a) is defined

for every ~a ∈ An, and

ıAf (~a) ≤ CB(α)(~a).

And a judicious combination of the proofs of this Theorem and Theorem B2

gives the most general version of the lower bound result for coprimeness which we
have been using as our basic example:

Theorem B. If A = (N, 0, 1, +, −· , <, =, iq, rem), a ⊥ b and

∣

∣

∣

a

b
−

√
2
∣

∣

∣
<

1

b2
,

then

ıAgcd(a, b) >
1

10
log2 log2 a,

so that for every recursive program β which decides coprimeness in some logical

extension B of A, CB(β)(a, b) >
1

10
log2 log2 a.

One can give arguments in favor of a Church-Turing Thesis for algorithms, by
which every algorithm from given functions and relations Φ on some set A can

be faithfully represented by a recursive program in some logical extension B of

(A, 0, 1,Φ). This would then remove the “vague” qualification from Theorem B1.
Whatever the value of such foundational arguments, however, the lower bound of
Theorem B applies to the time complexities of all known computation models. The
method can also be used to establish very generally applicable lower bounds from
various givens for many relations on N, including “a is prime”, “a is a perfect
square” or “square-free”, the Jacobi symbol ( a

n
), etc., cf. [3, 4, 1].

Relevant results (by different methods) in the literature can be found in [7, 6, 9].
In these papers, however, multiplication is included among the givens, and so their
results are not directly comparable to the theorems we analyzed here—except for
van den Dries’ Theorem A, which gives a better lower bound than that in [6].
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