
A game-theoretic, concurrent and fair model

of the typed λ-calculus, with full recursion

Yiannis N. Moschovakis⋆

Department of Mathematics
University of California

Los Angeles, CA 90095-1555, USA

and Department of Mathematics
University of Athens

Panepistimioupolis, Athens, Greece

This paper, and the talk on which it is based, were strongly influenced by
two, contradictory words of advice. First, there is Gian-Carlo Rota’s eloquent
injunction in [17] to “publish the same result often”; and so I will take some time
to describe again and (I hope) motivate and explain better the game-theoretic

model of concurrency, with fair merge and full recursion introduced in [7] and
further studied in [9, 8, 10, 12]. Second, there is this young computer scientist
friend of mine, who complaints about conferences in which “everyone presents a
finished, polished paper on what they did the year before, so that the talks are
stylized and do not lead to meaningful interaction among the participants”; and
so I put off writing the paper until after the meeting, and I spent all my time up
to it perfecting as best I could the new theorem I wanted to present. Still not
quite what I would like to prove, this result adds products and function spaces
to the constructions of [7, 9], which then yield a concurrent model of the typed

λ-calculus which still accommodates fairness and full recursion. As it happened,
game-theoretic semantics of higher-type languages were featured prominently
in this conference, quite different from mine, to be sure, but, still, not entirely
unrelated, and so my unconventional choice for structuring the talk and this
paper made good sense in the end.

After a brief, somewhat loose, first formulation of the basic problem which
motivated [7, 9] in the remainder of this introduction, I will review these two
papers in Sections 1 and 2. About a third of this repeats material in [9] (the
basic definitions), to keep this paper reasonably self-contained, while the rest
comprises examples, explanations, commentary and some argumentation; it is
best to read these sections in conjunction with Sections 1 – 4 and 6 – 8 of [9].
The new results on higher types are presented in Section 3, in a form which (I
hope) will convey some part of their meaning even to those who will skim quickly
(or even skip over) the first two sections.

⋆ During the preparation of this paper, the author was partially supported by a Grant
from the National Science Foundation.

A. The Basic Problem (roughly). Suppose L is a programming language
interpreted on some domain1 D, so that the denotation [[A]] of each program

(closed term) A of L is some point in D, and each n-ary program transformation

A(v1, . . . , vn) (open term with n free variables) is assigned some (countably)
continuous function fA : Dn → D. If L∗ is an extension of L by some non-

deterministic constructs, for example autonomous choice, A∨B, it is then natural
(following Park [13]) to interpret the programs of L∗ by non-empty subsets of
D, members of

P = P(D) = {x ⊆ D | x 6= ∅}, (1)

so that in particular [[A ∨ B]] = [[A]]∪ [[B]]. Set functions compose naturally, and
so it is easy to find in P(D) denotations for programs which are explicitly defined
from the givens, but how about recursive definitions? In other words, if we follow
the classical, Scott-Strachey [18] fixpoint interpretation of recursion, how do we
solve equations of the form

x = f(x) (f : P → P),

and for what set functions f : P → P can we do this? The standard answer
to this question is the theory of powerdomains [15, 19], but it does not solve
the problem when we include the fair merge among the givens of L∗. What,
precisely, this means and why I was interested in it, I will explain in Section 1.

1 Modeling interaction and concurrency with games

Consider the Airlines Reservation System, the classic example of a large, concur-
rent distributed system. There is a huge state, comprising (among other data)
the flight schedules of hundreds of Airline companies; the locations of thousands
of planes and their characteristics (company ownership, mechanical type and
condition, location, etc.); millions of confirmed reservations and waiting lists,
each with its own, complex profile; contractual agreements among Airline com-
panies and directives issued by various boards which regulate the industry; and,
of course, the weather. The state is so enormous and complex that it completely
defies explicit description, and it is very rapidly (almost constantly) changing
by the individual acts of a myriad agents who interact with it at separately
(and randomly) chosen times—travel agents, aspiring travelers, schedule officers,
pilots, Airline company directors, regulators, and (I suppose) nature, which con-
trols the weather. We may assume that each of these agents (from his point of
view) acts purposely and deterministically towards some specific goals, knowing
only a small part of the state and unable to affect it very much; but the totality

1 Throughout the paper, a “domain” is any countably complete partially ordered set
(with a least element ⊥), and a set F ⊆ D is countably closed in the Scott topology

on D if it is downward closed and contains the supremum of every countable, non-
empty, directed set X ⊆ F . More structure is surely required for a robust “domain
theory”, but this is all I need here, and it is best to formulate the basic questions
which concern me in the widest, possible context.

(and interrelation) of their actions induces an “evolution in time” of the system
which appears to be non-deterministic, almost chaotic.

Can we make up a simple mathematical model which makes it possible to
reason usefully about such a huge, amorphous state and the complex interactions
of agents with it? This has been doubted, and so many attempts to model
interactive systems avoid the concept of (global) “state” altogether in favor of
private interaction among the agents, message passing, matching of paired acts,
etc. Before we argue in favor of “state”, let us make precise the simplest, most
obvious attempt to model it mathematically.

1.1 State structures

A state structure is a quintuple

S = (States, ι,Acts, skip, exec), (2)

where the following hold:

1. States is some set of states which contains the initial state ι.
2. Acts is some set of atomic acts which includes the idle act skip.
3. exec : States × Acts → States is a binary operation of act execution, so that

each act a induces a total transition function

s 7→ sa = exec(s, a)

on the states. We assume that s skip = s, for every state s.

There may be acts, distinct from skip which never change the state, but are,
nevertheless important, for example “sound the alarm”. In the Airlines Reserva-
tion System the acts are supposed to be “book (if possible) a first-class seat on
Delta 137, on August 24, 1997 for . . .”, “cancel Delta 137 on August 24, 1997”,
and the like.

A history is a finite sequence of acts h = (a1, . . . , an), and it acts on states
in the obvious way,

sh = (· · · (sa1)a2) · · ·)an.

A state s′ is accessible from a state s, if s′ = sh for some history h—i.e., if s′

can be reached from s by a finite sequence of acts.

In defense of state. Does this mathematical abstraction make sense, and can
it be useful, in view of the enormous complexity (even “fuzziness”) of the state
and the set of acts involved? Consider the somewhat analogous problem of mod-
eling the behavior of systems of particles in classical mechanics. Here too, it is
certainly impossible to specify explicitly the state, which theoretically records
the position and momentum of some millions of particles, perhaps the molecules
of a gas under some specified temperature and pressure distribution; and it is
equally impossible to give a deterministic description of the “evolution in time”
of the system. Still, the concept of “state” is not abandoned; it is assumed (as

a mathematical idealization, if you wish) that the system is in a specific state
at each moment, and this assumption is used in the derivation of useful facts
about the system—in this case laws which predict the evolution in time of some
important, observable aspects of the state. In our case too, the usefulness of the
model should come from how we choose to model agents and how they interact

with the state, which should capture, help understand, and predict interesting,
observable aspects of the system. We will do this with a game.

1.2 The game of interaction

With each state structure S as in (2), we associate the two-person game of

interaction G = G(S), in which Player II represents some agent and Player I
represents the world, i.e., all the other agents interacting with the state. A run of
G is played in stages, with I and II exchanging moves at the nth stage, so that
they alter the current state gn, initially set by g−1 = ι. At stage n, I moves first
some state sn which must be accessible from gn−1; II then responds with a pair
(an, wn) of an act an and an indicator wn = ∂ or wn = 1, and the next current
stage is set, gn = snan; if wn = 1, the run ends, otherwise we proceed to the
next stage n + 1. We picture a run of G by the following diagram, which is read
from left-to-right:

I: s0 s1 s2 s3

· · ·
II: (a0, w0) (a1, w1) (a2, w2) (a3, w3)

State: ι s0 s0a0 s1 s1a1 s2 s2a2 s3 s3a3 · · ·

1.3 Deterministic agents as partial strategies – behaviors

Games are useful because they make it possible to give and use succinct, intu-
itively clear definitions of complex objects whose rigorous definitions are cum-
bersome. For example, a (deterministic) partial strategy σ for Player II in the
game of interaction G is some, specific method which (when it is defined) in-
structs him how to play—how to respond to arbitrary moves by I. Formally, it
is a partial function

σ : States∗ ⇀ Acts × {∂, 1}

on finite sequences of states to pairs (a, w), which II can use to respond by
σ(s0, . . . , sn) to I’s successive moves s0, . . . , sn; and it is normalized if it satisfies
some natural conditions [9, 3.1] which insure that two members of

B = B(S) = the set of behaviors (normalized partial strategies) (3)

are equal (as partial functions) exactly when they induce the same behavior for
II in all runs of the game G(S).

The set B of behaviors is a domain, under the natural partial ordering on
partial functions, and we use behaviors to model deterministic agents. It is easy

to see how natural operations on agents can be defined by continuous functions
on behaviors; sequential execution, for example, is defined ([9, 3.2]) by

σ ; τ = play first by σ, and then (if σ ends the game) by τ . (4)

The role of behaviors in modeling deterministic interaction is explained in
the first, two paragraphs of [9, 3.6] which should, ideally, be read at this point.
In the remainder of this subsection I will attempt to flesh out the example which
is only alluded to there.

Suppose Prof. M wants to book a flight from Los Angeles to Chicago. His
first move is likely to be a call to some travel agency to get information: what
flights are available, whether there is space on them, how much they cost, etc.
Suppose there are three good flights, A, B and C, in the order of desirability in
M’s opinion. His second move is to request a reservation on A, which, however,
is no longer available; so he calls again and requests a reservation on B, luckily
still available, at which point M has finished his job. The run of the game G

which represents this particular interaction of M with the Airlines Reservation
System is

I: s0 s1 s2 s3 s4

M: (skip, ∂) (a, ∂) (skip, ∂) (b, ∂) (skip, 1)

State: ι s0 s0 s1 s1 s2 s2 s3 s3b s4 s4

where a stands for the act of requesting a reservation on Flight A, and similarly
for b and B. In his first move (skip, ∂) M does not (really) act, he only consults the
state to learn what is available; in his second move he requests a seat on Flight
A; he then consults the state in his next move to find out that (unfortunately)
no reservation for him is recorded in the current state s2, which means that his
previous attempt did not succeed; in his next move he succeeds, and so the new
state s3b records a seat for him on Flight B; and, finally, his last move executes
no act, it is done only to consult the state and make sure that his previous act
succeeded, at which time he ends the game.

It is important to note that, in this modeling, the agent M is not represented
by the sequence of acts he executes but by the strategy he is following, which,
in this simple case, amounts simply to consulting the system and then trying
first for A, next for B and lastly for C; the same strategy would have instructed
him to end the game with his third move, had he succeeded to get on A, or to
prolong the game for (at least) two more moves had the second attempt also
failed.

How come there was a seat on Flight A in state s0 but none in state s1?
Perhaps because some other guy, Mr. R, got the last seat while M was trying
to order his “choices”: this accords with the rules of the game, by which s1 is
accessible from s0, i.e., s1 = s0a1a2 · · · an for some acts—one of them, apparently,
a request by R for the last seat on A. The states “moved” by Player I (the
“world”) are the results of all the other agents acting on the state in-between its

interactions with M.

Now consider the situation from the point of view of R, who has been trying
desperately to put together a trip from Los Angeles to New York, with a stopover
in Chicago. R is playing his own game of interaction with the Airlines Reservation
System, and the move of his which frustrated M’s first effort was, perhaps, his
22nd, in which he succeeded in changing state s′22 to s′22a

′ (which records his
reservation), following a complex strategy, with much inquiring, requesting and
getting turned down; and he is not through—he still does not have a good
flight to New York. Clearly, M and R do not know each other, they are not
in any sort of direct communication, and their separate interactions with the
Airlines Reservation System are in no way synchronized. If we can speak of “the
interaction between M and R”, then the only significant elements of it are that
they make the same, crucial request for a seat on Flight A, and that R made his
request “before” M. This is recorded in the runs of their separate plays of the
game G, specifically in the facts that s′22a

′
22 records a seat for R, while s2a2 = s2

does not record a seat for M; and these two, different perceptions of the situation
are all that this modeling captures of their conflict. It is hard to see what else
there is to capture, or how to capture this much (as naturally) without a notion
of state.

1.4 Players and fairness

Having resolved to model deterministic agents by behaviors, we next model non-
deterministic agents by non-empty sets of behaviors, points in

P = P(B(S)) = {x | x ⊆ B(S), x 6= ∅}.

I call these objects players, thinking of any x ∈ P as able to exhibit any one
of his behaviors, i.e., to play the game of interaction by any one of the partial
strategies he “possesses”. The precise, relevant definitions are given in [9, 4.1-
4.2,4.6], to which the remainder of this subsection is a commentary.

To begin with, is there a need for non-deterministic agents, especially af-
ter our modeling made it clear that a good part of what is often viewed as
“non-deterministic behavior” is really the “visible part” (the run) of some agent
playing with a deterministic behavior the game of interaction against the state?
In other words, is it necessary to make room in the model for the indecisive Prof.
N., who can follow either one of two equally desirable strategies and resolves to
choose among them only the last minute, by flipping a coin? Perhaps not, but
it is useful (in fact necessary) to be able to view any set of agents as a single

agent, and this leads us to players.
Consider, for example, the time-sharing computing system in some Univer-

sity, where the word is going around that “the logicians are hogging the system”.
There are five logicians, and maybe they don’t like it, but the other faculty lump
them together into a “group”, a single agent—and, indeed, sometimes they act
like a unit, requesting additional resources for their experiments, etc. Now what
“behavior” is this “logic agent” exhibiting? It must be some function of the (as-
sumed deterministic) behaviors of the individual logicians, somehow combining

all five of them, since they all need to be served; and, I think, the best candidate
for it is their (assuredly non-deterministic) “fair merge”.

Adapting Park [13, 14] to this behavior model, let a fair merger (or scheduler)
be any infinite, binary sequence µ : N → {0, 1} which changes value infinitely
often, and for any two players x and y, let

parkmerge(x, y) = {µ[σ, τ] | σ ∈ x, τ ∈ y, µ a fair merger}, (5)

where µ[σ, τ] is the strategy by which (roughly) II plays by σ or τ at the nth
stage accordingly as µ(n) = 0 or µ(n) = 1.2 It seems natural to assume that,
as a single agent, the group of logicians can exhibit any one of the behaviors in
the (similarly defined) quite complex set parkmerge(ℓ1, . . . , ℓ5), where each ℓi =
{σi} is the deterministic (singleton) player modeling a logician—at least when
the “operating system” (or whoever) is using simple, state-independent “fair
schedulers” to make sure that every user is served. The point is that the logicians
are not allocating resources to themselves, and they have no idea how the runs
of their interactive programs are “interleaved” by the system; this interleaving,
in fact, may be done partly by hardware, in a truly non-deterministic fashion.

The main, conceptual argument against using fair constructs in modeling
concurrency is that nobody calls a “fair merger” in his program, but this misses
the point: if I want to prove that my deterministic, interactive program will
succeed in whatever goals I was trying to achieve, I may assume that it will
be given as many chances as it needs to interact with the state (it will not be
“starved”), but I may not assume anything more, as I do not know the scheduler;
and it is at this level of “specification”, if you wish, that fair constructs are
natural and necessary. It is hard to say this more eloquently that Park [13], I
have already paraphrased him once in [9, 1.1], and I will resist trying once more
to improve on his argument.3

1.5 Controlling agent behavior – interaction types and locality

By the formal definitions we have given, agents (players) are all-powerful—they
can see the entire state each time before they make a move and they can execute
every act. Nobody can do this much, and we need one more, basic notion to
come down to a realistic model of “actual” agents. This is a notion of type which
controls not a kind of “value” as in usual type theory (there are no values in

2 The precise definitions are given in [9, 4.6] and [10], where I reserved the more
natural term fairmerge for the more complex operation which uses state-dependent,

fair mergers.
3 Another reason for the banishment of fairness from the theory of interactive com-

putation is the general belief that it cannot be done, which (I think) is widely held
because the usual models are built on (brute) continuity assumptions and do not
make room for it. (This is certainly the case with the arguments in the classic Di-
jkstra [4], against which Park [13] is arguing.) The present theory and (especially)
the higher-type constructions in Section 3 of this paper should go some way towards
removing this prejudice.

this simple model), but the kind of interactive behavior in which an agent can
participate.

An interaction type in a state structure S is any set of behaviors a which
is (Scott-)closed ; a behavior σ is of type a if σ ∈ a; and a player x is of type a if
x ⊆ a (see [9, 4.3–4.5], where these sets are just called types). Interaction types
are closed under intersection, and so each player has a least type,

type(x) = ∩{a | a is a type and x ⊆ a}.

This is hard to compute in specific cases, but it is often easy to see (or to insure,
if we are specifying x) that a certain player x is of some simple type a, and this
can give us a great deal of information about x’s behaviors.

For example, for any set E of acts, define the effect type

eff(E) = {σ | (∀s0, . . . , sn, a, w)[σ(s0, . . . , sn) = (a, w) =⇒ a ∈ E ∪ {skip}]},

so that a player of type eff(E) can only execute (real) acts in E.4 There is a
similar, somewhat more complex notion of dependence type dep(E) which deter-
mines the part of the state which any σ ∈ dep(E) can see—basically, the part
which has been built up from the initial state by acts in E, see [9, 4.5]. It is easy
to define more complex types, for example such that if σ ∈ a, then σ cannot
execute an act b unless some other act c has already been executed twice—and
then σ must execute d just after he executes b, etc.

In the example of the Airlines Reservation System, the effect types of Prof. M
and Mr. R (and even the indecisive Prof. N.) are those determined by “reserva-
tion acts”, and their dependence types code the part of the state which includes
scheduled flights and recorded reservations. For a simpler and more important
example, consider the following.

An integer variable over a state structure S is a pair

V = (writeV , readV),

where writeV : N → Acts is a function assigning a distinct act to each integer,
readV : States ⇀ N is a partial function, and for every state s, every integer n

and every history h which does not include any writeV (m) acts,

readV (swriteV (n)h) = n;

in short, if someone “writes” n to V , then any “read” after that will recover n,
as long as no subsequent “write to V ” act has been executed. We let

ActsV = {writeV (n) | n ∈ N}

be the set of write-acts of V , and we call V local to two players x and y relative

to a set of players P0, if for every z ∈ P0 other than x and y,

type(z) ⊆ eff(Acts \ ActsV) ∩ dep(Acts \ ActsV),

4 The act skip is not automatically included in every effect type in [9, 4.4], to give a
finer modeling, which is not, however, very useful.

i.e., if no agent in P0 other than x or y can either write to V or read the integer
value stored in V .

Similar definitions can be given for stacks, buffers, private channels between
agents, etc. These are toy examples, to be sure, and much more sophisticated
definitions must be given for real systems, but, I hope that they suggest how, in
principle, this could be done on this modeling of interaction.

1.6 Review of the model

It is proposed that a concurrent, interactive system can be usefully modeled by
a state structure S and a set PS of players in P(B(S)), the non-empty sets of
behaviors over S. The members of PS represent the agents who are interacting
with S (and indirectly with each other), each of them (separately and concur-
rently) playing the game G(S) with one of his behaviors σ ∈ x against all the
others. Any group of players can be combined into a single player by a fairmerge

operation, suitably defined by analogy with (5). Each player x has a (least) in-
teraction type, type(x), and we can infer useful facts about the behaviors of x

from the knowledge that type(x) ⊆ a, for any type a.
Finally, the “time evolution” of the system can proceed along any sequence

of states s0, s1, s2, . . ., where

s0 = σ(ι), sn+1 = σ(s0, . . . , sn),

and σ is any behavior in fairmerge{x | x ∈ PS}, the fair merge of all the agents.

2 Recursion and intensionality

If agents (or processes)5 are modeled by players over some state structure S,
how do we represent process transformations, and how can we define natural
operations of composition and recursive definition on these transformations? As
it happens, this is primarily a mathematical problem, which does not depend
on our taking the posets of behaviors B(S) as basic domains, and so we will
formulate it abstractly—keeping the case D = B(S) in mind as a rich source of
examples.

So, for this section, fix some domain D, and let P = P(D) be the set of
players over D as in (1). The aim is to give a brief review of the results in [9,
10, 12] and to set the stage for the new results in the next section.

2.1 Implementable player functions

According to Park (and others), an (abstract) “implementation” of a function
f : P → P is any continuous F : D → D such that

d ∈ x =⇒ F (d) ∈ f(x) (x ∈ P),

5 The two terms “agent” and “process” have been given many precise definitions,
reflecting the many theories in concurrency modeling. I use them synonymously and
only informally, in comments, resorting to the rigorous term “player” in the precise
formulation of definitions and results.

and f is “implementable” if there exists a (“full”) set F of implementations
which determines all its values, i.e.,

f(x) = {F (d) | d ∈ x, F ∈ F} (x ∈ P).

This is a natural but technically imperfect notion, not closed under substitution,
e.g., it does not cover the unary “execute twice” operation

t(x) = x ; x = {σ ; τ | σ, τ ∈ x},

which is fully implemented by the single, binary implementation

F (σ, τ) = σ ; τ.

It is not hard to see that, to get a robust notion, we need not only n-ary imple-
mentations, for every n, but infinitary ones, and so we arrive at the following,
precise definitions [9, 7.1], [12, Section 3].

A (unary) polyfunction on D is any continuous function

F : DN → D (6)

(where DN is the set of infinite sequences from D), and it is an (abstract) im-

plementation of a function f : P → P if

X : N → x =⇒ F (X) ∈ f(x) (x ∈ P); (7)

we call f : P → P implementable if all its values are computed by some (full)
set of implementations F , i.e.,

f(x) = {F (X) | X : N → x, F ∈ F} (x, y ∈ P). (8)

The definition extends naturally to n-ary implementable functions f : P(D)n →
P(D), using n-ary polyfunctions F : (DN)n → D for implementations.

2.2 The problem of concurrent recursion

The implementable functions (of all arities) on P(D) give a rich class of process
transformations, which includes union x ∪ y, and also sequential execution x ; y
and the parkmerge (5) (along with all reasonable, strict merge operations) when
D = B(S). It is obviously closed under composition, since (for example, easily)

f(g(x)) = {F (λ(i)Gi(X)) | F ∈ F , Gi ∈ G}

when F and G implement fully f and g respectively. There is a problem with
recursion, however, not only how to define it on the implementable functions,
but also how to justify any proposed definition, since it will no longer be the
familiar, least-fixed-point recursion of domain theory. The idea is to look for a
definition of recursion which (at the least) satisfies the same equational laws as

least-fixed-point recursion, and so we turn to a consideration of these laws next.

2.3 The standard recursive identities

For each set τ of formal function symbols (the signature), each with an assigned
non-negative arity, the terms of the formal (equational) language of recursive

equations6 FLµ0(τ) are defined inductively by the clauses:

E :≡ x | f(E1, . . . , En) | µx[x = E]

where x is any variable and f is any n-ary function symbol. The idea is to
interpret f(E1, . . . , En) by application, as usual, and to understand the last
recursion construct as providing a “canonical” fixed point of the function of x

defined by E. In the standard models of FLµ0, the variables range over some
fixed domain D; the function symbols are interpreted by continuous functions
on D; and µx[x = f(x)] is the least fixed point of f . A term identity E = F is
standard if it is valid in every standard model, e.g., the fixpoint rule

f(µx[x = f(x, y)], y) = µx[x = f(x, y)].

The standard FLµ0 identities are very well understood; they form a decidable
class, and they can be simply axiomatized,7 which makes it easy to determine
whether they hold of any proposed interpretation of the recursion construct. It
is natural to insist that a precise definition of concurrent recursion should satisfy
them, and, of course, it should also yield the expected fixed points in simple,
specific examples—but then there is no such definition, because of the following,
basic result of Whitney:

B. The Whitney obstruction. If D has an infinite, increasing sequence con-

verging to a maximal element, then it is not possible to interpret the function

symbols of FLµ0 by arbitrary implementable functions on P(D), and define

µx[x = f(x)] so that (with normal application) all standard identities hold,

and in addition:

(1) If f(x) = {F (d) | d ∈ x} with a continuous F : D → D, then

µx[x = f(x)] = {µd[d = F (d)]}.
(2) µx[x = x ∪ c] ⊆ c ∪ {⊥}, for every c ∈ P(D).
(3) µx[x = f(x) ∪ g(x)] ⊇ µx[x = f(x)].

The first of these conditions says that µx[x = f(x)]) extends faithfully to P(D)
the “least-fixpoint” operation on D, and the last two express simple, weak fea-
tures of our understanding of a “canonical fixpoint operation”—Whitney calls
them ∪-normality.

6 This language is equivalent in expressive power with FLR0 (called L in [9, 2.2]),
which takes mutual recursion as a primitive and is used and studied extensively
in [12, 5].

7 The decidability of the class of standard identities is an old result, probably due
to Courcelle, Kahn and Vuillemin [1], and an explicit axiomatization was probably
first given (in categorical form) in Bloom-Esik [2]. See [5] for a careful study of them
and additional references, and also [11], for an extension of the decidability and
axiomatization results to the full, Formal Language of Recursion FLR of [6] which
allows functional recursion.

Results of this type had been known for some time, e.g., the so-called “Brock-
Ackerman anomalies” in [3]. Most involved some specific, seemingly natural in-
terpretation of non-deterministic recursion, which was then shown to have some
peculiar property—typically that it did not satisfy some standard identity or
that some minimal, natural fairness condition was not satisfied, although this
language was not used. The Whitney obstruction, however, is quite definitive,
and it appears to kill any possibility of developing a natural theory of computa-
tion which allows both full recursion and fairness (used almost imperceptibly in
the proof of B, to apply (2) with a player c which is not closed).

And yet, the model in [7, 9] claimed to do just what the Whitney obstruction
prohibits (and much more), so what is the catch?

2.4 Implemented (intensional) player functions

The idea is to replace the (usual, extensional) “implementable functions” on
P(D) by the intensional “implemented functions”, which are identified (as com-
putation procedures) with specific sets of implementations. As always with in-
tensional notions, some care must be taken to define “identity” correctly, and
so the precise definition is a bit technical; I will reproduce it here for the sake
of completeness, but it will remain somewhat opaque without a careful reading
of [9, Section 7].8

For each X : N → D and each function π : N → N, let

Xπ(t) = X(π(t)), (9)

and for any two (unary, for simplicity) polyfunctions F and G, let

F . G ⇐⇒ (∃π : N → N)(∀X : N → D)[F (X) = G(Xπ)]; (10)

if F . G, we say that F is reducible to G.

A unary, implemented player function (ipf) on a domain D,

f : P(D) ; P(D),

is any (non-empty) set f of unary polyfunctions on D which is closed under
reducibility, and it determines (computes) the implementable function f ,

f(x) = {F (X) | X : N → x, F ∈ f}.

We call the members of f its (natural, given) implementations, and, as a rule,
they do not exhaust the set of implementations of f—and so we often have f = g

with f 6= g.9 Implemented player functions of n arguments are defined similarly.

8 This is the notion from the “coarse” modeling of [9], not the finer one in [12]. I have
not been able to establish the results in the next section for the finer model.

9 On the flat domain N⊥ = N ∪ {⊥}, for example, the polyfunction

G(X) = if (X(0) = 0) then X(1) else X(1)

is a peculiar implementation of the identity function, which is not reducible to the
natural implementation I in (11).

Each set G of polyfunctions generates an ipf, namely

[G] = {F | F . G, for some G ∈ G}.

The implemented identity on P(D) is the ipf ı = [{I}] generated by the single
polyfunction

I(X) = X(0), (11)

and its natural implementations are (easily) all polyfunctions of the form

Ik(X) = X(k) (k ∈ N).

The composition

f(x) = g(h1(x), h2(x))

of given ipfs g, h1 and h2 (as an example), is generated by all polyfunctions of
the form

F (X) = G(λ(i)H1,i(X), λ(i)H2,i(X)), (12)

where G, H1,i and H2,i are, respectively, natural implementations of g, h1 and
h2. It is easy to verify that this set is, in fact, closed under reducibility, and that

f(x) = g(h1(x), h2(x)).

I will not attempt to repeat here the crucial definition of ipf recursion,
which requires both some technical preparation and several examples, to make
sense; it is given in [9, Section 8], and again in [20, 12], for a finer model. Some
care is also needed to make precise the notion of intensional model for FLµ0, and
this, too, is done in the same papers, although some will prefer the categorical
version in Bloom-Esik [2]. When all this is said and done correctly, we have the
following, basic result from [9, 12]:

C. Main Old Theorem. For each, countably complete poset D, the set P(D)
of players with the implemented player functions, ipf composition and ipf re-

cursion, form an intensional model of FLµ0 which validates all the standard

identities, and also Whitney’s conditions (1) – (3).

It is important to add that in the natural examples, on specific domains,
ipf recursion yields the natural fixed points, those which we would expect from
implementation considerations, cf., [9, 7.8].

3 Multidomains

The standard example of a multidomain, and the only one we have constructed
up to this point, is the triple

Π(D) = (P(D), D, Σ0), (13)

where D is any domain and Σ0 is the semigroup NN of number-theoretic func-
tions, with composition, acting on DN by

X 7→ Xπ = λ(t)X(π(t)). (14)

This singling-out of Σ0 (why not just speak of P(D), as we have until now?)
suggests what is involved in generalizing the notion: to define products and
function spaces so that we get an (intensional) model of the typed λ-calculus
starting with the Π(D)’s, we need to isolate the properties of Σ0 which are used
in the proofs of the Main Old Theorem and make that “structure” part of the
definition of multidomain; the more complex multidomains we will construct
will utilize a correspondingly more complex structure. With the definition of
structure at hand, the formulation of the main result in the next subsection can
be understood independently of its proof, on which I will comment briefly in
Subsection 3.2.

An action semigroup on a domain D is a semigroup Σ, together with a
continuous mapping X 7→ Xπ (X : N → D) for each π ∈ Σ, so that the following
hold:

1.
(

λ(t)⊥
)π

= λ(t)⊥, for every π ∈ Σ.

2. The trivial action semigroup Σ0 is embedded in Σ, with its standard action
in (14).

3. For all X : N → D and π, ρ ∈ Σ, (Xπ)ρ = Xπρ.
4. For each sequence π0, π1, . . . of objects in Σ, there is a single π ∈ Σ, such

that
Xπ(t) = Xπt(0) (X : N → D, t ∈ N).

This last is a sort of “completeness property”, trivially satisfied by Σ0 with
π(t) = πt(0).

A player x ∈ P(D) is invariant under Σ, if, for every X : N → x and every
π ∈ Σ, Xπ : N → x. (Every player is invariant under Σ0.)

3.1 The cartesian closed category of multidomains

In reading the theorem, notice that Parts (1) – (5) are true if we replace “multido-
main” by “domain” throughout, and they express the simplest facts of domain
theory; and so these basic results extend to the richer structures of the category
M, in which we can model concurrency and fairness, by Part (6).

D. Main New Theorem. There is a category M of multidomains, with ad-

ditional structure and properties as in Parts (1) - (6).

Part (1) The objects. Each object of M is a triple Π = (Π, D, Σ), where D

is a domain, Σ is an action semigroup on D, and

Π ⊆ P(D) = {x | x ⊆ D, x 6= ∅}

is a set of Σ-invariant players on D, with {⊥} ∈ Π, satisfying a certain

completeness condition. We call Π a multidomain over the base domain D.

Each domain D is represented in M by the deterministic multidomain of

singletons

D = ({{d} | d ∈ D}, D, Σ0),

over itself and with the trivial action semigroup Σ0. In particular, when I = {⊥},
I is a terminal object in M.

Part (2) The morphisms. Each morphism f : Π1 ; Π2 of M projects to

(or implements) a set mapping f : Π1 → Π2, so that composition is respected,

gf = g ◦ f ; the identity ı : Π ; Π implements the identity function, ı(x) = x.

For the deterministic multidomains, the projection operation is a bijection of

Hom(D1,D2) with the domain Cont(D1 → D2) of continuous functions on D1

to D2.

The morphisms of M are called implemented player functions, and their pro-
jections implementable player functions.

Part (3) Products. For each indexed family {Πi}i∈I of multidomains, there

is a multidomain product

Π∗ = Prodi∈IΠi = (Π∗, Prodi∈IDi, Σ
∗)

over the product of the base domains Di, such that :

(a) Π∗ = {Prodi∈Ixi | (∀i ∈ I)[xi ∈ Πi]}, i.e., the players in the product
Π∗ are the cartesian products of the players in the factors.

(b) For each j ∈ I, there is a projection morphism pj : Π∗
; Πj, which

implements the projection function pj(x) = xj .

(c) For each family {fi}i∈I of morphisms, fi : Π ; Πi, there is a unique

morphism

f = 〈fi〉i∈I : Π ; Π∗,

such that, for each i ∈ I, pif = fi.

In the case of two factors, we write Π1 × Π2, 〈f1, f2〉, etc.

Part (4) Function spaces. For any two multidomains Π1 = (Π1, D1, Σ1) and

Π2 = (Π2, D2, Σ2), there is a function multidomain

(Π1 ⇒ Π2) = (Π∗, D∗, Σ∗),

so that the following hold :

(a) D∗ = Cont(D1
N → D2) is the domain of continuous functions from D1

N

to D2.

(b) Π∗ = Hom(Π1,Π2). (This makes sense, because every morphism f :
Π1 ; Π2 is, literally, a subset of D∗.)

(c) There is morphism ap : Π∗ × Π1 ; Π2 which “implements” the appli-

cation function, in the sense that

ap(f, x) = f(x) (f ∈ Π∗, x ∈ Π1).

(d) For each ϕ : Π1 × Π2 ; Π, there is a morphism ϕ∗ : Π1 ; (Π2 ⇒ Π)
such that

ap〈ϕ∗p1, p2〉 = ϕ; (15)

in particular,

ϕ∗(x)(y) = ϕ(x, y) (x ∈ Π1, y ∈ Π2).

It is possible to introduce a more logician-friendly “intensional” terminology
and notation, with variables, in which the basic identity (15) takes the form

(

λ(y)ϕ(x, y)
)

(y) = ϕ(x, y) (intensionally, for x ∈ Π1, y ∈ Π2); (16)

it is not feasible to do this here, and, in any case, those familiar with category
theory would rather see (15). The next, main new result of the paper is also stated
in categorical terms, with the (vague, absent the precise definitions) intensional
version added on as a remark:

(e) With the product operation in Part (3) and this function space operation,

the category M is cartesian closed, i.e., it is an intensional model of the typed
λ-calculus.

Part (5) Recursion. For each multidomain Π = (Π, D, Σ), there is an in-

tensional model of the language FLµ0 (of Subsection 2.3)10 in which the vari-

ables range over Π ; the function symbols are interpreted by arbitrary morphisms

f : Πn
; Π; term substitution is defined using morphism multiplication and the

projection morphisms of M; and all the standard identities hold.

Part (6) The full multidomain. For each domain D, the triple Π(D) in (13)
is a multidomain over D, with the trivial action semigroup and with the following,

completeness property: for every set F of continuous functions on D to D, there

is some f : Π(D) ; Π(D) which implements the set function

f(x) = {F (d) | d ∈ x, F ∈ F}.

Much more is true of the full multidomains, as detailed in Sections 1 and 2.

10 Bloom and Esik [2] formulate this notion in categorical language, but it is quite
complex and (perhaps) not generally known; in most papers on the typed λ-calculus,
e.g., [16], it is only assumed that fixed points exist, which is a weaker claim.

3.2 Some remarks on the proof

The key object which needs to be understood for the proof is the structure
(P(D), D, Σ), with an arbitrary domain D and action semigroup Σ, which is
not exactly a multidomain (because not all its members are invariant under Σ),
but near enough. An implemented player function

f : (P(D1), D1, Σ1) ; (P(D2), D2, Σ2)

is a set f of unary polyfunctions on D1 to D2, as in (6) (but from one domain to
another), closed under reducibility, as in (10), with π in Σ1, and also satisfying
the following “completeness” condition which involves Σ2: if F0, F1, . . . is any

sequence of polyfunctions in f and ρ ∈ Σ2, then the polyfunction

F (X) =
(

λ(i)Fi(X)
)ρ

(0)

is also in f . It is not difficult to extend the theory of ipf composition and recur-
sion to these more general, intensional objects.

A multiposet is any triple

Π = (Π, D, Σ),

where Π ⊆ P(D) is a set of Σ-invariant players, and an ipf

f : Π1 ; Π2

is as above, with the additional stipulations that f : Π1 → Π2 (as a set function),
and

[F ∈ f & (∀X : N → x ∈ Π1)[F (X) = G(X)]] =⇒ G ∈ f.

A multiposet Π = (Π, D, Σ) is recursively closed if every system of ipf equa-
tions on Π to Π has its solutions in Π ; and, finally, a multidomain is any
multiposet Π which is fully complete, i.e., such that every function space
(Λ ⇒ Π) is recursively closed. These are the objects and the morphisms of the
category M. The most difficult part of the proof is the construction of the action
semigroup for the function space—and it is primarily for this part (and, less sig-
nificantly, for the product construction) that we need to introduce the additional
complexity of these structures. It is not possible to discuss this argument here.

3.3 Conclusions and further work

I think the results of this section support the proposition that the theory of
non-deterministic, interactive computation can be developed pretty much like
that of deterministic computation, in a setting broad enough to accommodate
both fairness and full recursion; not conclusively, to be sure, but they make a
start. Among the many problems left open here, I would single out the following
five as most obvious.

(1) The problem of completeness. The notion of “full completeness” I
have used for the proof is too strong, and seems to correspond to (full) directed

completeness for posets, rather than countable completeness. Now, all interesting
countably complete posets are, in fact, directed complete, but the analog of this
does not seem to be true for multiposets. In particular, I cannot prove fully
complete (and put in M) the (trivially structured) multiposets

cA(D) = {F [C] | F : C → D is continuous} (C = {0, 1}N),

A(D) = {F [N] | F : N → D is continuous} (N = N
N)

of compact analytic and analytic subsets of some D, which are especially im-
portant: cA(D) is (essentially) the Plotkin powerdomain [15] on D (for profinite
D) by the main result in [12], and A(D) (for suitable D) is the simplest multi-
poset in which Park’s fairness can be modeled. (These multidomains are carefully
analyzed in [8, 20].) All the “relevant” recursive equations can be solved in these
structures, they are (in some sense) “sufficiently complete”, and we can make
this precise and work from there, but not in a very elegant way. So the problem
is: Are the multiposets cA(D) and A(D) fully complete, and if not (which is the
more likely), is there a good theory which explains their different properties of

“partial completeness”?

(2) Can we solve “multidomain equations”, much in the way that we solve

domain equations?

(3) Is there a way to define the “full multidomain” Π(Π1) over an arbitrary

multidomain Π1, so that the category is closed under “power”? (We now have
Π(Π1) only when Π1 = D is, essentially, a domain.)

(4) Can we prove that ipf recursion satisfies not just the FLµ0 identities,

but all the identities in the language of the typed λ-calculus with fixed points

which are valid under the standard, domain interpretations? (The problem of
axiomatization of this class of identities is open, and its solution would solve
some open, difficult complexity problems, but this question can be approached
in other ways.)

(5) Is it possible to extend to the higher types the finer model of ipf recursion

in [12]?

These are all technical problems, and I don’t think that they will necessarily
require radically new methods of proof for their solution.

References

1. G. Kahn B. Courcelle and J. Vuillemin. Algorithmes d’equivalence et de reduc-
tion a des expressions minimales dans une classe d’equations recursives simples.
In J. Loeckx, editor, Automata, Languages, and Programming, 2nd Colloquium,
volume 14 of Lecture Notes in Computer Science. Springer Verlag, 1974.

2. Stephen L. Bloom and Zoltan Ésik. Iteration theories: the equational logic of iter-

ative processes. EATCS Monographs in Theoretical Computer Science. Springer-
Verlag, Berlin, 1993.

3. J. D. Brock and W. B. Ackerman. Scenarios: a model of non-determinate compu-
tation. In J. Diaz and I. Ramos, editors, Formalization of programming concepts,
volume 107 of Lecture Notes in Computer Science, pages 252–259. Springer Verlag,
1981.

4. E. W. Dijkstra. A discipline of programming. Prentice-Hall, 1976.
5. A. J. C. Hurkens, Monica McArthur, Yiannis N. Moschovakis, Lawrence Moss, and

Glen T. Whitney. The logic of recursive equations. To appear in the Journal of
Symbolic Logic.

6. Yiannis N. Moschovakis. The formal language of recursion. The Journal of Symbolic

Logic, 54:1216–1252, 1989.
7. Yiannis N. Moschovakis. A game-theoretic modeling of concurrency, Extended

abstract. In Proceedings of the fourth annual symposium on Logic in Computer

Science, pages 154–183. IEEE Computer Society Press, 1989.
8. Yiannis N. Moschovakis. Computable processes, Extended abstract. In Proceedings

of the 1990 POPL meeting in San Francisco. Association for Computing Machinery,
1990.

9. Yiannis N. Moschovakis. A model of concurrency with fair merge and full recursion.
Information and Computation, 93:114–171, 1991.

10. Yiannis N. Moschovakis. Computable concurrent processes. Theoretical Computer

Science, 139:243–273, 1995.
11. Yiannis N. Moschovakis. The logic of functional recursion. In M. L. Dalla Chiara et.

al, editor, Logic and scientific method, pages 179–207. Kluwer Academic Publishers,
1997.

12. Yiannis N. Moschovakis and Glen T. Whitney. Powerdomains, powerstructures
and fairness. In L. Pacholski and J. Tiuryn, editors, Computer Science Logic,
number 933 in Lecture Notes in Computer Science, pages 382–396, Berlin, 1995.
Springer-Verlag.

13. David Park. On the semantics of fair parallelism. In Proceedings of the Copenhagen

Winter School, volume 104 of Lecture Notes in Computer Science, pages 504–526.
Springer Verlag, 1980.

14. David Park. The “fairness” problem and nondeterministic computing networks.
In Foundations of Computer Science IV, pages 33–162, Amsterdam, 1983. Mathe-
matisch Centrum.

15. G. D. Plotkin. A powerdomain construction. SIAM Journal of Computation,
5:452–487, 1976.

16. G. D. Plotkin. LCF as a programming language. Theoretical Computer Science,
5:223–255, 1977.

17. Gian-Carlo Rota. Ten lessons I wish I had been taught. Notices of the American

Mathematical Society, 44:22–25, 1997.
18. D. S. Scott and C. Strachey. Towards a mathematical semantics for computer

languages. In J. Fox, editor, Proceedings of the Symposium on computers and

automata, pages 19–46, New York, 1971. Polytechnic Institute of Brooklyn Press.
19. M. B. Smyth. Modeling concurrency with partial orders. Journal of Computing

System Science, 16:23–36, 1978.
20. Glen T. Whitney. Recursion structures for non-determinism and concurrency. PhD

thesis, UCLA, 1994.

