
The Bulletin of Symbolic Logic

Volume 10, Number 3, Sept. 2004

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS?

LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The Euclidean algorithm on the natural numbers N = f0, 1, . . . g can be
specified succinctly by the recursive program

ε : gcd(a, b) =

(
b, if rem(a, b) = 0,

gcd(b, rem(a, b)), otherwise
(a � b � 1),

where rem(a, b) is the remainder in the division of a by b, the unique natural
number r such that for some natural number q,

a = bq + r (0 � r < b).(1)

It is an algorithm from (relative to) the remainder function rem, meaning
that in computing its time complexity function cε(a, b), we assume that the
values rem(x, y) are provided on demand by some “oracle” in one “time
unit”. It is easy to prove that

cε(a, b) � 3 log2 a (a > b > 1).

Much more is known about cε(a, b), but this simple-to-prove upper bound
suggests the proper formulation of the Euclidean’s (worst case) optimality
among its peers—algorithms from rem:

Conjecture. If an algorithm α computes gcd(x, y) from rem with time
complexity cα(x, y), then there is a rational number r > 0 such that for
infinitely many pairs a > b > 1, cα(a, b) > r log2 a.

Our main aim here is to prove the following relevant result:

Theorem A. If a recursive programα decides the coprimeness relationx ? y
from=,<,+,�� , iq and rem, then for infinitely many coprime pairs a > b > 1,

cα(a, b) >
1

10
log2 log2 a.(2)

Received December 22, 2003; revised April 22, 2004.
Van den Dries acknowledges support from NSF grant DMS 01-00979. Moschovakis ac-

knowledges support from the Graduate Program in Algorithms and Computation (MΠΛA)
and University of Athens Grant 70/4/5633.

c
 2004, Association for Symbolic Logic
1079-8986/04/1003-0004/$3.90

390

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 391

In fact, (2) holds for all coprime a > b > 1 such that���a
b
�p2��� < 1

b2
(3)

(and there are infinitely many such a, b by a classical result).

We use standard notations: throughout a, b,m, n are natural numbers,
a �� b = a � b if a � b and 0 otherwise, a j b () a divides b,

a? b () gcd(a, b) = 1 (a, b � 1),(4)

and iq(a, b) is the integer quotient of a by b, the unique q in (1) if b > 0; we
make iq and rem totally defined on N2 by setting iq(a, 0) = rem(a, 0) = a.
Analgorithmdecides a relationR(~x) if it computes its characteristic function

÷R(~x) =

(
1, if R(~x),

0, otherwise.

Our result is (in one direction) stronger than the Conjecture (for recursive
programs), since it allows more given functions and it takes just one step to
decide a? b from gcd(a, b) by (4), but it gives a lower bound one log below
what we would like to prove, and in this business one log is infinitely far
away.
We also prove a few additional lower bounds, including the following,
which establishes the optimality of the Stein algorithm for the gcd among its
peers. (The Stein algorithm is specified in Section 4.)

Theorem B. If a recursive program α decides coprimeness from =, <, +,�� , 2 � x, iq(x, 2), and rem(x, 2), then for all a > 2,
cα(a, a

2 � 1) > 1
10
log2(a

2 � 1).(5)

There are few lower bound results for relative number-theoretic algorithms
in the literature, and for coprimeness we can point only to [6]. The authors
of [6], however, allow multiplication among the givens, and so they can only
establish (for the RAM and decision tree models) a lower bound that is
“one log lower” than Theorem A. It may be that the lower bound claim in
Theorem A can be extracted from their proof, but this is not immediate. In
any case, we believe that the main value of our results lies in the number-
theoretic specification of “difficult inputs”, on which all recursive programs
that compute a certain function from fixed givens exhibit the same poor per-
formance—up to the constants involved, the 1/10 in Theorems A and B;
this suggests a connection between computational and Diophantine com-
plexity that may be worth investigating. Notice also that Theorem Amay be
viewed as a general version (for arbitrary recursive programs from rem) of
Lamé’s Theorem, which identifies the pairs of successive Fibonacci numbers
as inputs where the Euclidean algorithm exhibits its worst performance.

392 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The work for this communication started with [9], on the related but more
special topic of relative primitive recursive algorithms. Van den Dries [1]
solved a basic problem left open in [9] by a method that includes the key
idea of considering inputs which are “good approximations” of irrationals
as in (3). We have attempted to keep this communication as elementary as
possible, and we have included in the first two sections enough background
material so that it can serve as abroadly accessible entry intoArithmeticCom-
plexity. The forthcoming [2] contains many stronger results about uniform
and non-uniform algorithms from various given functions on N (including
multiplication), and it provides a more comprehensive introduction to this
fascinating subject.

Organization of the paper. After specifying our notational (and other)
conventions in Section 1, we introduce recursive programs and establish their
basic properties in Section 2. These programs are well-known—they go back
to [7], after all—but they have not been used much in complexity studies;
the lemmas in Sections 2 and 6 suggest that recursive programs are a most
useful tool for establishingworst-case lower bounds1 that apply to all (call-by-
value) computational models. The main result of Section 3 is Theorem 6, a
logarithmic lower bound for recursive programs deciding primality from the
“givens” of Theorem B. In Section 4 we prove Theorem B. The arguments in
these two sections, while very simple, introduce most of the ideas and some
of the preliminary facts used in the more difficult proof of Theorem A in
Section 5. In Section 6 we extend our results to Random Access Machines
by a method which suggests that these lower bounds hold for all algorithms
from the relevant givens, and we formulate a Refined Church-Turing Thesis
which expresses this proposal in a concrete, mathematical form.2x1. Preliminaries and notation. For any two sets A,W , an n-ary partial
function f : An ⇀W is a function f : Df !W defined on some subset of
An. For such f we use notation as follows:

f(~x)# () ~x 2 Df (f(~x) converges),

f(~x)" () ~x /2 Df (f(~x) diverges),

f(~x) = g(~x) () [f(~x)# & g(~x)# &f(~x) = g(~x)] or [f(~x)"& g(~x)"],
fv g () (8~x)[f(~x)# =) f(~x) = g(~x)],

and on occasion (in definitions) we use the ungrammatical “f(~x) =" ” as
synonymous with “f(~x)" ”. Partial functions compose strictly:
1It is quite possible that recursive programs are also useful in the study of average case

complexity, but we do not now have any relevant results.
2Suitable versions of these results also hold for non-uniform algorithms, such as arithmetic

circuits, but we leave those versions for [2].

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 393

f(g1(~x), . . . , gn(~x)) = w() (9w1, . . . , wn)[g1(~x) = w1& � � �& gn(~x) = wn
&f(w1, . . . , wn) = w].

Let P(An,W) be the set of all f : An ⇀ W , and consider functionals,
partial functions

F : Am � P(An11 ,W1)� � � � � P(Ankk ,Wk)⇀W
which take tuples in some A and partial functions (on various sets) as
arguments and give a value in some setW (in case of convergence). Such a
functional F is monotone, if

F (~x, f1, . . . , fk)# &f1v g1& � � �&fk v gk=) F (~x, f1, . . . , fk) = F (~x, g1, . . . , gk),

and it is continuous if

F (~x, f1, . . . , fk)#=) (9 finite f01 vf1, . . . , f0k vfk)[F (~x, f01 , . . . , f0k) = F (~x, f1, . . . , fk)],
where a partial function is finite if it has finite domain of convergence.

Mutual recursion. The properties of recursive programs can all be deduced
from the following, well-known result:

The Fixed Point Lemma. For every monotone and continuous functional

F : An � P(An,W)⇀W,
the recursive equation

f(~x) = F (~x, f)

has a v-least solution f : An ⇀W , characterized by the conditions
(8~x)[f(~x) = F (~x, f)];

if (8~x)[g(~x) = F (~x, g)], then fv g.
Similarly, every system of mutual monotone and continuous recursive equa-
tions

f1(~x1) = F1(~x1, f1, . . . , fK)

...

fK (~xK) = FK (~xK , f1, . . . , fK)

(with domains and ranges matching so that the equations make sense) has av-least solution tuple f1, . . . , fK .

394 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The one-equation case is proved by defining recursively

f
0
(~x) =",

f
n+1
(~x) = F (~x, f

n
),

and setting f = supffn j n = 0, 1, . . . g, i.e.,
f(~x) = w () (9n)[fn(~x) = w].

The general case is similar.
This is all we need from recursion theory.

Partial algebras. To apply the basic model-theoretic notions to the theory
of computation, we must introduce two small wrinkles, as follows.
First, we need to allow partial functions and relations in structures, since
computations often diverge: a (pointed) partial algebra is a structure of the
form

A = (A, 0, 1, fφAgφ2Φ),(6)

where 0, 1 are distinct points in the universe A, and for every φ 2 Φ,
φA : An ⇀ A

is a partial function of some arity n associated by the signature Φ with the
symbol φ. Typical example of a partial algebra is the structure of arithmetic

N = (N, 0, 1,=,+, �),
which happens to be total, i.e., the symbols ‘=’, ‘+’ and ‘�’ are interpreted
by total functions, the characteristic function of the identity in the first
case, and addition and multiplication for the other two. Genuinely partial
algebras typically arise as restrictions of total algebras, often to finite sets: iff0, 1g � B � A, then

A �B = (B, 0, 1, fφA �Bgφ2Φ),
where, for any f : An ⇀ A,

f �B(x1, . . . , xn) = w () x1, . . . , xn, w 2 B &f(x1, . . . , xn) = w.
Conditionals. The second wrinkle on the classical notions is that we must
allow conditionals among the terms, which are now defined from the symbols
in the signature Φ and variables v0, v1, . . . by the recursion

E :� 0 j 1 j vi j φ(E1, . . . , En) j (if (E0 = 0) then E1 else E2).(Φ)

Written out in full, this says that the Φ-terms comprise the smallest set of
strings of symbols which contains 0, 1 and all the variables, and is closed
under the formation rules

E1, . . . , En 7! φ(E1, . . . , En),
E0, E1, E2 7! (if (E0 = 0) then E1 else E2).

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 395

For the semantics, we introduce for each set A the (closed) Φ[A]-terms by
replacing the variables by arbitrary members of A in the definition of terms,
i.e., with x 2 A,

E :� 0 j 1 j x j φ(E1, . . . , En) j (if (E0 = 0) then E1 else E2).(Φ[A])

The members of A which occur in a Φ[A]-term E are its parameters.
If we use the familiar convention of naming Φ-terms by E(x1, . . . , xn) to
indicate the variables which (may) occur in them and x1, . . . , xn 2 A, then
E(x1, . . . , xn) is the Φ[A]-term resulting by replacing each xi by xi .
Semantics. The partial function E 7! den(E) : fΦ[A]-termsg ⇀ A is
defined by the following recursive clauses:

den(0) = 0, den(1) = 1, den(x) = x
den(φ(E1, . . . , En)) = φ

A(den(E1), . . . , den(En))

den(if (E0 = 0) then E1 else E2)
=

(
den(E1), if den(E0) = 0,

den(E2), if den(E0)# &den(E0) 6= 0.
We call den(E) the denotation of the Φ[A]-term E (if den(E)#). When we
need to exhibit the algebra in which the denotation is computed, we write
den(A, E), or we use model-theoretic notation,

A j= E = w () den(A, E) = w.

Partiality introduces some complications which deserve notice. For exam-
ple, if we view subtraction as a partial function on N, then for all x, y, z 2 N,

(N, 0, 1,+,�) j= (x + y)� y = x;
but if x < y, then

(N, 0, 1,+,�) 6j= (x � y) + y = x
because (x � y)"– and then, by the strictness of composition, (x � y) + y"
also. On the other hand,

den(E0) = 0 =) den(if (E0 = 0) then E1 else E2) = den(E1),
whether den(E2) converges or not.

Partial subalgebras and imbeddings. A (partial) subalgebra of A is any

partial algebra B = (B, 0, 1, fφBgφ2Φ), such that B � A and for every
φ 2 Φ,

φB(~x) = w =) φA(~x) = w.

We indicate this by B �p A. If f0, 1g � B � A, then clearly
A �B �p A;

396 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

but also B0 �p A, if B0 is the partial algebra on B in which all symbols of
Φ are interpreted by totally undefined partial functions.
In the same way, a (partial algebra) imbedding é : B�A is an injective
map é : B�A such that é(0) = 0, é(1) = 1, and for all φ 2 Φ, ~x,w in B ,

φB (~x) = w =) φA(é(~x)) = é(w),
where, of course, é(x1, . . . , xn) = (é(x1), . . . , é(xn)). This implies (by an easy
induction) that for every Φ-term E(~x) and x1, . . . , xn, w 2 B ,

B j= E(~x) = w =) A j= E(é(~x)) = é(w),(7)

with é(~x) = (é(x1), . . . , é(xn)).

Generated subalgebras. For any X � A and any number m, we define the
set Gm(X) generated from X inm steps in a partial algebra A in the obvious
way:

G0(X) = f0, 1g [X,
Gm+1(X) = Gm(X) [fφA(~x) j ~x 2 Gm(X), φ 2 Φ, φA(~x)#g.(8)

Clearly

A �G0(X) �p A �G1(X) �p � � � ,
X � Y =) A �Gm(X) �p A �Gm(Y),

and by induction on k, for all m

Gk(Gm(X)) = Gm+k(X).(9)

When we need to indicate the algebra in which the generation is taking place,
we write Gm(A, X) instead of Gm(X).x2. Recursive (McCarthy) programs. A (formal) recursive program on the
signature Φ is a system of recursive term equations

α :

8>>><>>>: fα(~x) = f0(~x0) = E0(~x0, f1, . . . , fK),f1(~x1) = E1(~x1, f1, . . . , fK),
...fK (~xK) = EK(~xK , f1, . . . , fK),(10)

where each Ei(~xi , f1, . . . , fK) is a term in the (extended) program signature
sig(α) = Φ [ff0, f1, . . . , fKg.

As indicated, the individual variables inEi are all from the list~xi of (distinct)
variables. The (distinct) new function symbols f0, . . . , fK are the recursion
variables of α, the terms Ei are its parts, and E0 is its head. Notice that the
head recursion variable f0 does not occur in any of the parts of α. For f = fi
we shall also write Ef for the part Ei .

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 397

We allow K = 0 in this definition, in which case the program is just an
explicit definition assigning a name to the partial function defined by a Φ-
term. On the other hand, algorithms are often expressed by a single recursive
equation, e.g.,

gcd(x, y) = (if (rem(x, y) = 0) then y else gcd(y, rem(x, y)))

for the Euclidean, and in this case we need to add a trivial head equationf0(x, y) = gcd(x, y)
to accord with the “official” definition; we will assume this is done when
needed.

Semantics of recursive programs. Fix a partial algebra A and a recursive
program α on the same signature Φ. For any term E(~x, f0, . . . , fK), tuple ~x
from A of the same length as ~x , and partial functions f0, . . . , fK on A of
the right arities, set

den(E(~x, f0, . . . , fK)) := den(E(~x, f0, . . . , fK))
where the righthand side is computed in the sig(α)-partial algebra

(A, f0, . . . , fK) = (A, 0, 1, fφAgφ2Φ, f0, . . . , fK).
It is easy to check by induction on E that such functionals

(~x, f0, . . . , fK) 7! den(E(~x, f0, . . . , fK))
are monotone and continuous, and so the Fixed Point Lemma implies that
the system of recursive equations

fα(~x0) = f0(~x0) = den(E0(~x0, f1, . . . , fK)),
f1(~x1) = den(E1(~x1, f1, . . . , fK)),

...
fK (~xK) = den(EK(~xK , f1, . . . , fK))

defined by α has a least solution tuple

f0, . . . , fK .

The partial function computed by α in A is the one associated with the head
part,

α = αA = fα ,

and a partial function f : An ⇀ A is A-recursive if it is computed by some
recursive program in A.
The classical example is the (total) algebra (N, 0, 1, S,Pd) of unary arith-
metic with the successor and the predecessor functions S(x) = x + 1,
Pd(0) = 0, Pd(x + 1) = x, whose recursive partial functions are exactly
the Turing computable partial functions. This elegant characterization of
Turing computability is due to [7], and so recursive programs are also called
McCarthy programs.

398 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The tree-depth and parallel complexity functions. Fix again a partial al-
gebra A and a recursive program α on the same signature Φ, and for each
(closed) sig(α)[A]-term

M �M (~x, f0, . . . , fK),
let (to simplify notation)

M = den(M (~x, f0, . . . , fK)).

We will define two partial functions

D,C : sig(α)[A]-terms⇀ N
such that

D(M)# () C (M)# () M # .(11)

WhenM # , thenD(M) is the depth of the computation treewhich is naturally
associated with the computation ofM using the equations of α, and C (M)
represents intuitively the maximal “depth” of nested calls to the givens in
this computation. These partial functions satisfy the conditions (1) – (4)
below, which taken together comprise recursive definitions of them; in other
words, D and C are the least partial functions on sig(α)[A]-terms which
satisfy (1) – (4). The definitions are justified by appealing to the Fixed Point
Lemma.

(1) D(0) = D(1) = D(x) = 0 (x 2 A),
C (0) = C (1) = C (x) = 0 (x 2 A).

(2) If φ 2 Φ andM 1# , . . . ,M n # , φ(M 1, . . . ,M n)# , then
D(φ(M1, . . . ,Mn)) = maxfD(M1), . . . , D(Mn)g+ 1,
C (φ(M1, . . . ,Mn)) = maxfC (M1), . . . , C (Mn)g+ 1.

(3) If f is a recursion variable of α, then
D(f(M1, . . . ,Mn)) = maxfD(M1), . . . , D(Mn), df(M 1, . . . ,M ng+ 1,
C (f(M1, . . . ,Mn)) = maxfC (M1), . . . , C (Mn)g+ cf(M 1, . . . ,M n),

where

df(~x) = D(Ef(~x, f1, . . . , fK)),
cf(~x) = C (Ef(~x, f1, . . . , fK)).

(4) For conditional terms:

D(if (N0 = 0) then N1 else N2)
=

(
maxfD(N0), D(N1)g+ 1, if N 0 = 0,
maxfD(N0), D(N2)g+ 1, if N 0# &N 0 6= 0.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 399

C (if (N0 = 0) then N1 else N2)
=

(
maxfC (N0), C (N1)g, if N 0 = 0,
maxfC (N0), C (N2)g, if N 0# &N 0 6= 0.

We have incidentally defined the complexity cf(~x) of each of the mutual least
fixed points of α, and the strict complexity of α is that of its head symbol,

cα(~x) = cf0(~x) = C (E0(~x, f1, . . . , fK)).(SC2)

The basic notion here is the complexity function cα(~x), but the tree-
depth complexity D(M) is a useful tool for proofs. For example, for tuples
~x = (x1, . . . , xn) 2 An and ~y = (y1, . . . , yn) 2 An, set

~x v ~y () xi = yi for all i such that xi 2 f0, 1g or yi 2 f0, 1g.
By an easy induction on D(M (~x)), if C (M (~x)) = 0, then

~x v ~y =) M (~y)# &M (~x) vM (~y).
It follows that if α(~x) = 1 but α(~y) = 0 for some ~y v ~x, then

cα(~x) � 1,(12)

an inequality which simplifies the form of some lower bounds.
When we need to indicate the partial algebra in which the program is
interpreted, we write C (A,M), cα(A, ~x) and use the following notations:

A, α j=M (m) = w () den(A,M) = w &C (A,M) � m,(13)

A j= α(m)(~x) = w () αA(~x) = w & cα(A, ~x) � m,(14) () A, α j= E0(~x, f1, . . . , fK)(m) = w.
We also set

A, α j=M (m)# () for some w,A, α j=M (m) = w,
A j= α(m)(~x)# () for some w,A j= α(m)(~x) = w.

Lemma 1 (The Imbedding Lemma). If é : B�A is an imbedding and α is
a recursive program, then for every term

M (~x) �M (~x, f0, . . . , fK)
in the signature of α, everym, and all ~x in B and w 2 B ,

B, α j=M (~x)(m) = w =) A, α j=M (é(~x))(m) = é(w),
B, α j=M (~x)(m)# =) A, α j=M (é(~x))(m)# .

In particular, these implications hold for the identity imbedding, whenB �p A.

400 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

Proof. The second claim follows from the first, which is proved by induc-
tion on D(M (~x)) computed in B, taking cases on the form of M (~x). For
example, in the case of a recursive call

M (~x) � f(M1(~x), . . . ,Mn(~x)),
suppose

den(B,M (~x)) = w, C (B,M (~x)) = m.

By the definition of complexity, there are k, l such that k+l � m and suitable
wi such that

den(B,Mi(~x)) = wi , C (B,Mi(~x)) � k (i = 1, . . . , n),

den(B, Ef(w1, . . . , wn)) = w, C (B , Ef(w1, . . . , wn)) � l.
Now all D(Mi(~x)) as well as D(Ef(w1, . . . , wn)) are less than D(M (~x)), so
the induction hypothesis supplies the same equations and inequalities with
A in place of B and é(xi), é(wj), é(w) in place of xi , wj , w. The definition of
complexity applied to A yields now the required

den(A,M (é(~x))) = é(w), C (A,M (é(~x))) � m. a
Next we show that the relation A, α j= M (m) = w is absolute for the
generated partial subalgebras A �Gm(A, X).
Lemma 2 (The Absoluteness Lemma). Let α be a recursive program on a
partial algebra A, and M a sig(α)[A]-term whose parameters are in X � A,
such that A, α j=M (m) = w. Then

w 2 Gm(A, X) and A �Gm(A, X), α j=M (m) = w.(15)

Proof is again by induction on D(M), the result being trivial when
D(M) = 0, so thatM is 0, 1 or x.
If M � φ(M1, . . . ,Mn) with a given φ, then the induction hypothesis
guarantees that for every i = 1, . . . , n,

M i 2 Gm�1(X), and A �Gm�1(X), α j=M (m�1)i =M i .

HenceM = φ(M 1, . . . ,M n) 2 Gm(X), and thus
A �Gm(X), α j=M (m) =M.

Suppose next thatM � f(M1, . . . ,Mn), with a recursive variable f. Then
by the induction hypothesis, there are k, l such that k + l � m, and for
i = 1, . . . , n,

M i 2 Gk(X), A �Gk(X), α j=M (k)i =M i ,

and also Ef(M 1, . . . ,M n) 2 Gl (M 1, . . . ,M n), and
A �Gl (M 1, . . . ,M n), α j= Ef(M 1, . . . ,M n)(l) =M.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 401

Therefore

M 2 Gl (M 1, . . . ,M n) � Gl (Gk(X)) = Gk+l (X) � Gm(X).
It follows that

A �Gm(X), α j=M (k)i =M i , i = 1, . . . , n,

A �Gm(X), α j= Ef(M 1, . . . ,M n)(l) =M,
and so A �Gm(X), α j=M (m) =M .
The case for the conditional is simpler and we skip it. a
A stronger absoluteness result for “computation space” is proved in [2],
and used there to get lower bounds for non-uniform algorithms.x3. Primality. We establish here a logarithmic lower bound for recursive
programs which decide primality from

Lin = f=, <,+,�� , 2 � , 1
2
� ,Parityg (operations on N)(16)

where 2 � (x) = 2x, 1
2
� (x) = iq(x, 2) and Parity(x) = rem(x, 2). It is a

simple result, but it sets the pattern for all that follows.

Lemma 3 (Uniqueness). If xi , yi 2 Z and jxi j, jyi j < a
2
, then

x0 + x1a = y0 + y1a () [x0 = y0&x1 = y1],

x0 + x1a > y0 + y1a () [x1 > y1 _ (x1 = y1&x0 > y0)].
Proof. The second equivalence easily implies the first one, and follows
itself from the next equivalence applied to (x0 � y0) + (x1 � y1)a.
Let x, y 2 Z and jxj, jyj < a; then

x + ya > 0 () [y > 0] _ [y = 0& x > 0].
To see this, suppose first that x + ya > 0. If y < 0, then a � (�y)a < x
which contradicts the hypothesis, so y � 0; and if y = 0, then x = x+ya >
0. For the converse, if y > 0, then y � ya > jxj, so x + ya > 0; and the
second disjunct y = 0& x > 0 yields x + ya = x > 0. a
For each tuple of natural numbers ~a = (a1, . . . , an), let

(17) Bm(~a) =
nx0 + x1a1 + � � �+ xnan

2m
2 Nj x0, . . . , xn 2 Z and jxi j � 22m, i � no,

402 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

where Z = f. . . ,�2,�1, 0, 1, 2, . . . g is the set of integers. The members of
Bm(~a) are natural numbers. In full detail:

x 2 Bm(~a) () x 2 N and there exist x0, . . . , xn 2 Z
such that x =

x0 + x1a1 + � � �+ xnan
2m

,

and for i = 0, . . . , n, jxi j � 22m,
which, in particular, implies that 2m j x0 + x1a1 + � � �+ xnan � 0. We let

N Lin = (N, 0, 1,Lin) = (N, 0, 1,=, <,+,�� , 2 � , 1
2
� ,Parity).(18)

The generated sets Gm(X) below are with respect to N Lin.

Lemma 4 (Inclusion). For all ~a 2 Nn and all m:
(1) 0, 1 2 Bm(~a) � Bm+1(~a).
(2) For every k-ary function f in Lin,

x1, . . . , xk 2 Bm(~a) =) f(x1, . . . , xk) 2 Bm+1(~a).
(3) Gm(~a) � Bm(~a).
Proof. (1) Taking ~a = (a, b) for simplicity, observe first that

0 =
0 + 0 � a + 0 � b

20
2 B0(a, b),

and similarly for 1. The second inclusion holds because

x0 + x1a + x2b

2m
=
2x0 + 2x1a + 2x2b

2m+1

and j2xi j � 2 � 22m < 22(m+1).
(2) For addition, let x, y 2 Bm(a, b), so
x + y =

x0 + x1a + x2b

2m
+
y0 + y1a + y2b

2m

=
2(x0 + y0) + 2(x1 + y1)a + 2(x2 + y2)b

2m+1

and the coefficients in the numerator satisfyj2(xi + yi)j � 2(22m + 22m) = 22(m+1).
The same works for subtraction. The claim about division by 2 is trivial,
and for multiplication by 2, notice that

2
�x0 + x1a + x2b

2m

�
=
4x0 + 4x1a + 4x2b

2m+1
,

and j4x0j � 4 � 22m = 22(m+1).
(3) follows immediately from (2), by induction on m. a

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 403

Lemma 5 (Imbedding). Suppose 22m+2 � a, and set ë = 1 + 2m. Then we
have a partial algebra imbedding é : N Lin �Gm(a)�N Lin given by
é
�x0 + x1a

2m

�
=
x0 + x1ëa

2m
(jx0j, jx1j � 22m, x0 + x1a

2m
2 Gm(a)).

Proof. Lemma 3 and part (3) of Lemma 4 imply that the equation above
defines a map é : Gm(a)! Q , since

22m =
1

2
22m+1 <

a

2
by the hypothesis. This map takes values in N, because

x0 + ëx1a = x0 + x1a + (ë� 1)x1a = x0 + x1a + 2mx1a,
so that if 2m j (x0 + x1a), then also 2m j (x0 + ëx1a). It is injective and
order-preserving, by Lemma 3 again, applied to both a and ëa.
To check that it preserves addition when the sum is inGm(a), suppose that
X,Y,X +Y 2 Gm(a), and write

X =
x0 + x1a

2m
, Y =

y0 + y1a

2m
, X +Y = Z =

z0 + z1a

2m

with all jxi j, jyi j, jzi j � 22m . Now
Z =

(x0 + y0) + (x1 + y1)a

2m
,

and jx0 + y0j, jx1 + y1j � 2 � 22m = 22m+1 < a
2
by the hypothesis, and so by

the Uniqueness Lemma 3,

x0 + y0 = z0, x1 + y1 = z1,

which gives éX + éY = éZ. The same argument works for subtraction,
multiplication and division by 2, and parity. a
Theorem 6. If a recursive program α decides primality from Lin, then for
all primes p,

cα(p) >
1

4
log2 p.

Proof. Assume the hypothesis, let í = cα(p) where p is prime, and
suppose towards a contradiction, that

N Lin j= α(í)(p) = 1 with 22í+2 � p.(19)

(1) N Lin �Gí(p) j= α(í)(p) = 1, by (15).
(2) N Lin j= α(í)(ëp) = 1 with ë = 1 + 2í , by Lemma 5.
(3) α decides primality, so ëp is prime—which is absurd.

Thus (19) is false, and so 22í+2 > p, which gives 2í+2 > log2 p; since í � 1
by (12), we have the required

4í � 2í + 2 > log2 p. a

404 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

The same argument (with judicious choices of ë) can be used to establish
the same lower bounds for the complexity of recursive programs from Lin
which decide the relations

x is a power of 2, x is a perfect square, and x is square-free.

We leave these (and more general results for extensions of Lin and non-
uniform algorithms) for [2].x4. The optimality of the Stein algorithm. This modern algorithm com-
putes gcd(x, y) from the givens in Lin, defined in (16).

Proposition 7 ([5], Vol. 2, Sect. 4.5.2). The program ó with the single re-
cursive equation

gcd(x, y) =

8>>>>>>>><>>>>>>>>:
x if x = y

2 gcd(x/2, y/2) otherwise, if Parity(x) = Parity(y) = 0,

gcd(x/2, y) otherwise, if Parity(x) = 0,Parity(y) = 1,

gcd(x, y/2) otherwise, if Parity(x) = 1,Parity(y) = 0,

gcd(x�� y, y) otherwise, if x > y,

gcd(x, y�� x) otherwise.

computes gcd(x, y) for x, y > 0 with

có(x, y) � C � log2max(x, y)
for some positive constant C .

Proof. That the gcd satisfies these equations and is determined by them
is trivial. To check the complexity bound, notice that (at worst) every other
application of one of the clauses involves halving one of the arguments—
the worst case being subtraction, which, however must then be immediately
followed by a division, since the difference of two odd numbers is even. a
We prove here Theorem B, which establishes the optimality (up to a mul-
tiplicative constant) of Stein’s algorithm among recursive programs from
Lin.
For the remainder of this section, x, y, z, xi , yi , zi range over Z.
Lemma 8. Let a > 2 and b = a2 � 1. Then a? b, and if jxi j, jyi j < a

4
for

i = 0, 1, 2, then

x0 + x1a + x2b = y0 + y1a + y2b () x0 = y0&x1 = y1&x2 = y2,

x0 + x1a + x2b > y0 + y1a + y2b() [x0 > y0& x1 = y1&x2 = y2] _ [x1 > y1&x2 = y2] _ [x2 > y2].
Proof. The identity 1 = a � a � b exhibits that a? b.
The second equivalence implies clearly the first one, and follows itself from
the following Claim, applied to (x0 � y0), (x1 � y1), (x2 � y2).

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 405

Claim. If jxj, jyj, jzj < a
2
, then x + ya + zb > 0 if and only if either x > 0

and y = z = 0; or y > 0 and z = 0; or z > 0.
If z = 0, then the Claim follows from Lemma 3. If z 6= 0, compute
x + ya + zb = x + ya + z(a2 � 1) = (x � z) + ya + za2; nowj(x � z) + yaj � a + a2

2
< a2 � jzja2

(using the hypothesis a > 2), and so the sign of (x � z) + ya + za2 is the
same as the sign of z, as required to complete the proof of the Claim. a
Proof of Theorem B. It suffices to derive a contradiction from the hy-
pothesis that α decides coprimeness fromLin, but for some a > 2 and í � 1,
with b = a2 � 1,

N Lin j= α(í)(a, b) = 1 with 22í+3 < a;(20)

because for each such α and every a > 2 we must then have

2cα(a, b) + 3 � log2 a,
and since cα(a, b) � 1 by (12) and log2(a2 � 1) < 2 log2 a,

5cα(a, b) � 2cα(a, b) + 3 � log2 a > 12 log2(a2 � 1)
which is the desired conclusion.

So assume (20), set ë = 1 + 2í , and notice that 22í <
1

4
a, so that as in

Lemma 5 we have an imbedding

é : N Lin �Gí(a, b)�N Lin,
defined by

é
�x0 + x1a + x2b

2í

�
=
x0 + x1ëa + x2ëb

2í

(jx0j, jx1j, jx2j � 22í , x0 + x1a + x2b
2í

2 Gí(a, b)),
using now Lemma 8 instead of Lemma 3. This gives

N Lin j= α(í)(ëa, ëb) = 1
by Lemma 1, so ëa and ëb are coprime—which they are not. ax5. The main result. To prove Theorem A using the strategy in the proof
of Theorem 6, we need to establish analogs of the key Uniqueness, Inclusion
and Imbedding Lemmas 3, 4, 5 when division with remainder are among the
givens, and these require just a bit of number theory. In this section x, y, z
and xi , yi , zi range over Z.

406 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

A fraction
a

b
(or, for easier typing, the pair of numbers (a, b)) is a good

approximation of
p
2 if b � 2, a? b and���a

b
�p2��� < 1

b2
.(21)

There are infinitely many good approximations of
p
2, [4, Theorem 185]. On

the other hand, by Liouville’s Theorem, none of these is too good, i.e., for
all y, z with z 6= 0,3 ���y

z
�p2��� > 1

5z2
.(22)

A pair of numbers (a, b) is difficult if a ? b,
2 � b < a < 2b,(23)

and for all y, z,

0 < jzj < a

2
p
10
=) ���a

b
� y
z

��� > 1

10z2
.(24)

Lemma 9. (1) Each good approximation of
p
2 is difficult.

(2) If (a, b) is a difficult pair, then for all y, z,

0 < jyj < a

2
p
10
=) jya + zbj > a

20jyj .(25)

Proof. (1) Let (a, b) be a good approximation of
p
2. Then (23) follows

from

1 <
p
2� 1
4
� p
2� 1
b2
<
a

b
<
p
2 +

1

b2
� p
2 +
1

4
< 2.

For property (24) of difficult pairs, let 0 < jzj < a

2
p
10
, and use (22):���a

b
� y
z

���� jy
z
�p2j � ja

b
�p2j

>
1

5z2
� 1
b2
>
1

5z2
� 4
a2
>
1

5z2
� 1

10z2
=
1

10z2
.

3The proof of Theorem 191 in [4] shows that if î 2 R and f(î) = 0 for some irreducible
polynomial f(T) 2 Z[T] of degree n > 1, then for all y, z with z 6= 0,���y

z
� î��� > 1

C jzjn ,
with C = supfjf0(t)j j î � 1 < t < î + 1g. For f(T) = T 2 � 2 and î = p

2, we can set

C = 5 because supf2t j p2� 1 < t < p
2 + 1g < 5.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 407

(2) is very useful and easy: Let (a, b) be a difficult pair and suppose that

0 < jyj < a

2
p
10
. Thenjya + zbj = jyjb���a

b
+
z

y

��� > jyjb
10y2

=
b

10jyj > a

20jyj . a
Lemma 10 (Uniqueness). Suppose (a, b) is a difficult pair, 1 � ë 2 N, andjxi j2, jyi j2 < p

a

2
p
20
for i = 0, 1, 2, 3 with x3, y3 > 0. Then

x0 + x1ëa + x2ëb

x3
=
y0 + y1ëa + x2ëb

y3() [y3x0 = x3y0& y3x1 = x3y1&y3x2 = x3y2],

x0 + x1ëa + x2ëb

x3
>
y0 + y1ëa + y2ëb

y3() [y3x1 = x3y1&y3x2 = x3y2&y3x0 > x3y0]

or [y3(x1ëa + x2ëb) > x3(y1ëa + y2ëb)].

Proof. The two equivalences follow from the next two Claims applied to
(y3x0 � x3y0) + (y3x1 � x3y1)ëa + (y3x2 � x3y2)ëb.
Claim 1. If x + yëa + zëb = 0 and jxj, jyj, jzj < p

ap
20
, then

x = y = z = 0.

Proof of Claim 1. Assume the hypothesis. The case y = z = 0 is trivial,
and if y = 0 and z 6= 0, then

b � ëjzjb = jxj < p
ap
20
,

which contradicts a < 2b. So we may assume that y 6= 0. From a > 2 we
obtain 0 < jyj < p

ap
20
<

a

2
p
10
, so by (25):jyëa + zëbj � jya + zbj > a

20jyj > jxj.
This contradicts the assumption that yëa + zëb = �x, and completes the
proof of Claim 1.

Claim 2. Suppose that jxj, jyj, jzj < p
ap
20
. Then

x + yëa + zëb > 0 () [x > 0& y = z = 0] _ [yëa + zëb > 0].
Proof of Claim 2. If y = 0, then the equivalence follows from Lemma 3;
and if y 6= 0, then jyëa+ zëbj > jxj as above, and so adding x to yëa+ zëb
cannot change its sign. This completes the proof of Claim 2, and of the
Lemma. a

408 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

Next we need a version of the Inclusion Lemma 4 that allows division with
remainder among the givens, and for this we must use forms with varying
denominators. Below we let h 2 N and set
C (a, b ; h) =

nx0 + x1a + x2b
x3

2 N j jx0j, jx1j, jx2j � h, 0 < x3 � ho.
When (a, b) is difficult and h2 <

p
a

2
p
20
, the fractions in this set have the

form that makes Lemma 10 applicable. Their closure under the operations
in Lin is easy:

Lemma 11. For h � 2 and any k-ary function f 2 Lin,
z1, . . . , zk 2 C (a, b ; h) =) f(z1, . . . , zk) 2 C (a, b ; h3).

Proof. For the case of addition, for example,

x0 + x1a + x2b

x3
+
y0 + y1a + y2b

y3

=
(y3x0 + x3y0) + (y3x1 + x3y1)a + (y3x2 + x3y2)b

x3y3
,

and (using h � 2), j(y3xi + x3yi)j � h2 + h2 � h3.
The other cases are equally simple. a
Lemma 12. Suppose (a, b) is a difficult pair, h � 2, h44 � a, and X,Y 2
C (a, b ; h). Then iq(X,Y), rem(X,Y) 2 C (a, b ; h12).
Proof. We can assume Y > 0. Write

X =
x0 + x1a + x2b

x3
, Y =

y0 + y1a + y2b

y3

where all jxi j, jyi j � h, and x3, y3 > 0. Put Q = iq(X,Y), R = rem(X,Y),
so

X = YQ +R (0 � R < Y).(26)

We must show that Q,R 2 C (a, b ; h12).
Case 1, y1a + y2b = 0. Now R <

y0
y3

� h, and solving (26) for Q we get
Q =

y3
y0

(x0 � x3R) + x1a + x2b
x3

2 C (a, b ; h4).(27)

Case 2, y1a + y2b 6= 0. Then y1a + y2b > 0, by Lemma 10, since Y > 0.
We are going to show that in this case

KY > X with some natural number K � h9,

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 409

so that Q � h9. This yields the Lemma as follows: Solving the division
equation (26) for R gives

R =
(x0y3 � y0x3Q) + (x1y3 � y1x3Q)a + (x2y3 � y2x3Q)b

x3y3
,(28)

from which, easily, R 2 C (a, b ; h12).
Suppose first that y1 = 0; we claim that then KY > X with K = 4h

2. To
see why, note that 2x3(y1a + y2b) = 2x3y2b > a, butjy3(x1a + x2b)j � h2a + h2a = 2h2a,
and so

4h2x3(y1a + y2b) > y3(x1a + x2b).

Now Lemma 10 implies that

4h2
y0 + y1a + y2b

y3
>
x0 + x1a + x2b

x3
(that is, 4h2Y > X),

provided the squares of the relevant coefficients are<

p
a

2
p
20
; but they clearly

are, using h44 � a.
Next, suppose that y1 6= 0; we claim that then KY > X with K =
40h2jy1j � h9. By (25), we have y1a + y2b > a

20jy1j , so
20x3jy1j(y1a + y2b) > a;

but (as in the case y1 = 0)jy3(x1a + x2b)j � 2h2a
and so

40h2x3jy1j(y1a + y2b) > y3(x1a + x2b).
Now Lemma 10 implies that

40h2jy1jy0 + y1a + y2b
y3

>
x0 + x1a + x2b

x3
,

provided the squares of the relevant coefficients are <

p
a

2
p
20
; but they are,

because (multiplying by 2
p
20 and squaring),�

2
p
20(40h2jy1yi j)2�2 � 216 � 55 � h16 < 228 � h16 � h44 � a.

Thus 40h2jy1jY > X , as promised. a

410 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

Now let

N Lin[�] = (N, 0, 1,Lin, iq, rem)
= (N, 0, 1,=, <,+,�� , 2 � , 1

2
� ,Parity, iq, rem),

and for any a, b, set

Cm(a, b) = C (a, b ; 2
24m)

Lemma 13 (Inclusion). For every difficult pair (a, b) and every m,

if 22
4m+6 � a, then Gm(N Lin[�], a, b) � Cm(a, b).

Proof is by induction on m, the case m = 0 being trivial. To apply
Lemmas 11 and 12 at the induction step, we need to verify (under the
hypothesis on a and m) the following two inequalities:

(1)
�
22
4m
�12 � 224(m+1) . This holds because�

22
4m
�12
= 212�24m < 224�24m = 224(m+1) .

(2)
�
22
4m
�44 � a. In the same way:�

22
4m
�44
= 244�24m < 226�24m = 224m+6 � a. a

Lemma 14 (Imbedding). Suppose (a, b) is a difficult pair, 22
4m+6 � a, and

set ë = 1 + a!. Then we have a partial algebra imbedding

é : N Lin[�] �Cm(a, b)�N Lin[�]
defined by

é
�x0 + x1a + x2b

x3

�
=
x0 + x1ëa + x2ëb

x3

(all jxi j � 224m , x3 > 0, x0 + x1a + x2b
x3

2 Cm(a, b)).
Proof. To simplify notation we set h = 22

4m
, so Cm(a, b) = C (a, b; h).

Then h64 = h2
6
= 22

4m �26 = 224m+6 , so h64 � a. It follows that
h24 <

p
a

2
p
20
,(29)

because multiplying by 2
p
20 and squaring yields

80 � h48 < 27 � h48 � h55 < h64 � a.
It will be useful to define the map é of the Lemma on a larger domain:
By inequality 29 and Lemma 10 (with h12 instead of h and ë = 1) we
can define é : C (a, b; h12) ! Q by the equation of the Lemma, subject to

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 411

x0 + x1a + x2b

x3
2 C (a, b; h12), all jxi j � h12, x3 > 0. Lemma 10 (with

the present value of ë) also shows that é is injective and order-preserving.
Moreover, éX 2 N for X 2 C (a, b; h12), because

x0 + x1ëa + x2ëb = x0 + x1a + x2b + (ë� 1)(x1a + x2b),
and x3 j ë� 1 whenever 0 < x3 � h12.
In the rest of the proof, let X,Y 2 Cm(a, b), and write
X =

x0 + x1a + x2b

x3
, Y =

y0 + y1a + y2b

y3
(jxi j, jyi j � h, x3, y3 > 0).

To show that é preserves addition on Cm(a, b), note that

X + Y =
(y3x0 + x3y0) + (y3x1 + x3y1)a + (y3x2 + x3y2)b

x3y3
,

and X + Y 2 C (a, b; h12), because jy3xi + x3yi j � 2h2 � h12. A direct
computation with these expressions shows that é(X + Y) = éX + éY . The
same argument works for all the functions in Lin.
For divisionwith remainder, letY > 0, putQ = iq(X,Y),R = rem(X,Y),
so

X = YQ +R (0 � R < Y).
Because h44 � a, Lemma 12 gives Q,R 2 C (a, b; h12). We claim that

éQ = iq(éX, éY), éR = rem(éX, éY).(30)

(This is more than sufficient for our purpose.) We distinguish two cases,
following the proof of Lemma 12.

Case 1, y1a + y2b = 0. Then 0 � R < Y = y0
y3

� h, so éR = R and
éY = Y . The explicit formula (27) for Q yields

éQ =
y3
y0

(x0 � x3R) + x1ëa + x2ëb
x3

,

and a direct computation with these expressions for éR, éY and éQ gives
éX = éY � éQ + éR, which yields (30) in view of 0 � éR < éY .
Case 2, y1a + y2b > 0. Now Q � h9, which implies éQ = Q. The explicit
formula (28) for R yields

éR =
(x0y3 � y0x3Q) + (x1y3 � y1x3Q)ëa + (x2y3 � y2x3Q)ëb

x3y3
;

with these expressions for éR and éQ we get éX = éY � éQ + éR, which yields
(30) in view of 0 � éR < éY . a

412 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

Proof of Theorem A. Let α be a program as in the hypothesis of the
theorem. We prove the (possibly) stronger result that (2) holds for all
difficult pairs (a, b). So let (a, b) be a difficult pair, put í = cα(a, b), and

suppose, towards a contradiction, that í � 1

10
log2 log2 a. Since í � 1

by (12), this gives 4í + 6 � 10í � log2 log2 a, so
N Lin[�] j= α(í)(a, b) = 1 and 224í+6 � a.(31)

We now proceed as in the proof of Theorem 6. From (31):
(1) N Lin[�] �Gí(N Lin, a, b) j= α(í)(a, b) = 1, by (15).
(2) N Lin[�] j= α(í)(ëa, ëb) = 1, by Lemma 14, with ë = 1 + a!.
(3) α decides coprimeness, so ëa? ëb—which is absurd. ax6. Lower bounds for RAMs and other algorithms. We show in this section
that the lower bounds of Theorems A and B hold for recursive programs
on extensions of the structures N Lin,N Lin[�] by arbitrary “logical” data
structures. This covers Random Access Machines, which can be faithfully
represented by such extended recursive programs; but it also suggests that
the results hold for all algorithms from the relevant givens, and we discuss
this possibility briefly in the last paragraph.

Inessential Extensions. Let A = (A, 0, 1, fφAgφ2Φ) be a partial algebra.
An inessential extension4 of A is a partial algebra

B = (B, 0, 1, fφAgφ2Φ, føBgø2Ψ)
with the following properties:
(IE1) A � B , and A and B have the same 0 and 1;
(IE2) every permutation ð of A fixing 0 and 1 can be extended to a

permutation ðB of B such that for every “new given”ø 2 ΨB of arity n and
all x1, . . . , xn 2 B ,

ðBø(x1, . . . , xn) = ø(ð
Bx1, . . . , ð

Bxn).(32)

Here we view each “old given” φA as a partial function on B , undefined
when one of its arguments is not in A.
We may think of an inessential extension B as enriching A with various
“logical” data structures (arrays, trees, etc.) which are used to express some
algorithm from Φ, but do not include any non-trivial, new functions on A
or affect in any essential way how the partial functions in Φ are used by the
algorithm. Notice, for example, that a simple constant function

ø(x) = w0 (w0 2 A,w0 6= 0, 1),
4This notion is due to Itay Neeman, and improves considerably our original version of

this section.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 413

cannot be a new given of an inessential extension ofA ifA is infinite; because
that would demand of every permutation ð of A fixing 0 and 1 that

ðw0 = ðø(x) = ø(ðx) = w0,

which evidently fails if ð moves w0. In a similar way, if we just add a
new name for an old given φ, the resulting algebra is not automatically an
inessential extension, because φ need not satisfy (32) for every ð.

Lemma 15. Suppose B is an inessential extension of an infinite partial alge-
bra A, and X � A.
(1) If ð and ðB are as in (IE2) and ð fixes every y 2 Gm(A, X), then ðB
fixes every y 2 Gm(B, X).
(2) Gm(B, X) \A = Gm(A, X).
Proof. We show (1) and (2) together by induction on m, the basis being
trivial since

G0(B, X) = X [f0, 1g = G0(A, X).
At the induction step, suppose that ð and ðB are as in (IE2), and that ð
fixes every element of Gm+1(A, X). Let y be an element of Gm+1(B, X).
If y = φ(x1, . . . , xn) with x1, . . . , xn 2 Gm(B, X) and an old given φ,
then x1, . . . , xn 2 Gm(A, X) by (2) of the induction hypothesis, and so
y 2 Gm+1(A, X) and ð(y) = y by the hypothesis on ð. If

y = ø(x1, . . . , xn) with x1, . . . , xn 2 Gm(B, X)
and a newgivenø, thenðB fixesx1, . . . , xn by (1) of the induction hypothesis,
and so by (32),

ðBy = ðBø(x1, . . . , xn) = ø(ð
Bx1, . . . , ð

Bxn) = ø(x1, . . . , xn) = y,

as required. To prove (2), assume towards a contradiction that y 2 A is such
that

y 2 Gm+1(B, X) n Gm+1(A, X).
Take a permutation ð of A that fixes every member of Gm+1(A, X) but
moves y. This is possible because Gm+1(A, X) is finite and A is infinite, and
it contradicts (1), since ðB(y) = ðy. a
Theorem 16. Suppose the recursive program â decides coprimeness in an
inessential extension B of

N Lin[�] = (N, 0, 1,Lin, iq, rem).
Then for every difficult pair (a, b),

câ(a, b) >
1

10
log2 log2 a.

414 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

Proof. Let í = câ(a, b), so í � 1. By the Absoluteness Lemma 2,
B �Gí(B, a, b) j= â (í)(a, b) = 1.

Assume towards a contradiction that í � 1

10
log2 log2 a. As in the proof of

Theorem A it follows that 22
4í+6 � a. Lemma 14 supplies an imbedding

é : A �Gí(A, a, b)�A (A = N Lin[�])
such that for a suitable ë > 1, éa = ëa and éb = ëb. Since é is injective, the
complements ofGm(A, a, b) and é[Gm(A, a, b)] are equinumerous, so we can
extend é to a permutation ð of A, and take ðB to be an extension of ð to B
as in (IE2). Then éB := ðB �Gí(B, a, b) is an imbedding

éB : B �Gí(B, a, b)�B,
because, for the old givens,

éφ(x1, . . . , xn) = φ(éx1, . . . , éxn)

is guaranteed by the hypothesis on é and Lemma 15, which insures that the
only elements to which an old given φ is applied are, indeed, in Gí(A, a, b);
and for the new givens,

éBø(x1, . . . , xn) = ø(é
Bx1, . . . , é

Bxn)

is guaranteed by (32).
The Imbedding Lemma 1 now yields B j= â (í)(ëa, ëb) = 1, so ëa ? ëb,
which is absurd. a
The same argument can be used to show that all the lower bound results
we have established for recursive programs in N Lin and N Lin[�] apply to
recursive programs on inessential extensions of these structures, and we
proceed to show that these “include” RAMs.

Adding functions to an algebra. Given a partial algebra

A = (A, 0, 1, fφAgφ2Φ),
let (A ! A) be the set of all functions from the set A to itself, let ε be the
constant function in (A! A) with value 0, and, using variables a, b, c, t . . .
over A and X,Y,Z, . . . over (A! A), define the operations ap, update, and
indupdate as follows:

(1) ap(X, a) = X (a) (application).
(2) update(X, a, b) = Z, where Z(a) = b, and Z(t) = X (t) for t 6= a.
(3) indupdate(X,Y, a, b) = Z, where Z(Y (a)) = b, and Z(t) = X (t) for
t 6= Y (a) (indirect update).

Consider now the extended partial algebra

A
0 = (A0, 0, 1, fφAgφ2Φ, ε, ap, update, indupdate),

where A0 = A [(A! A), with A \ (A! A) = ;.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 415

Lemma 17. The partial algebra A0 is an inessential extension of A.5
Proof. Given a permutation ð of A fixing 0 and 1, we extend it to a
permutation of A0 (using the same name) by the obvious

(ðX)(t) = ð(X (ð�1(t))).
The crucial (32) is easy to verify for the new givens. For example,

ðε(x) = ð0 = 0 = ε(ðx),

and for application,

ap(ðX, ðt) = (ðX)(ðt) = ð(X (ð�1(ðt))) = ð(X (t)) = ðap(X, t).
We will omit the details. a
Lemma 18. LetM be a Random Access Machine which computes a partial
function f : Nn ⇀ N from the partial functions in a setΦwith time complexity
T (~x). Then there is a recursive program α in the inessential extension A0 of
A = (N, 0, 1,Φ) which also computes f, so that

cα(~x) � T (~x) (f(~x)#).
Proof. By [3] the machineM has the following components:
1. Instructions labelled 0, . . . , N , with N � 1. We assume that 1 is the
initial instruction, where the machine begins the computation, and 0 is the
terminal instruction, which stops the computation.
2. Accumulators acc1, . . . , accK (K � n + 1); each accumulator stores
a natural number. The computation starts with the input ~x stored in the
first n of these, and 0 in the other accumulators; at the end of a convergent
computation the output is the content of accn+1.
3. Infinitely many registers R[0], R[1], . . . ; each register stores a natural
number. Initially, R[j] = 0 for every j.

Each instruction has one of the forms

a. command; goto b
a. if accj = 0 then goto b else goto c
a. if accj > N then goto 0 else goto accj
0. End

where 1 � a, b, c � N and the commands are of the following types:
1. acci := a (0 � a � N).
2. acci := accj .
3. acci := φ(accj1 , . . . , accjm). where φ 2 Φ is m-ary.
4. R[acci] := accj .
5. acci := R[accj].
6. R[R[acci]] := accj .

5The functions ε, ap, update, indupdate are logical in the sense of Tarski [10], and the
Lemma holds for any extension of A by logical, higher-type objects over A.

416 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

There are many variations on these instructions, which, however, do not
affect the result or require any essential changes in the proof.
Let us first assume for simplicity that the functions

Ca(x) = a, ÷a(x) = if (x = a) then 0 else 1 (0 � a � N)
are among the givens in Φ—it will be easy to remove this assumption at the
end. The required program α has the two equations

f(~x) = g(1, ~x,~0, X), g(a, ~u, X) =

8>>>><>>>>:E0, if a = 0,
...

EN , if a = N,

g(a, ~u, X) otherwise,

where the termsEa are defined for the various types of instructions as follows
(with simple indices, to avoid too many dots):

a. acc1 := 0, goto b: Ea � g(b, 0, u2, . . . , X)
a. acc1 := acc2, goto b: Ea � g(b, u2, u2, . . . , X)
a. acc1 := φ(acc2, . . . , accm), goto b: Ea � g(b, φ(u2, . . . , um), u2, . . . , X)
a. acc1 := R[acc2], goto b: Ea � g(b, X (u2), u2, . . . , X)
a. R[acc1] := acc2; goto b: Ea � g(b, ~u, update(X, u1, u2))
a. R[R[acc1]] := acc2, goto b: Ea � g(b, ~u, indupdate(X,X, u1, u2))
a. if accj = 0 goto b else goto c:

Ea � if (uj = 0) then g(b, ~u, X) else g(c, ~u, X)
a. if accj > N then goto 0 else goto accj :

Ea � if (uj > N) then g(0, ~u, X) else g(uj , ~u, X)
a. End: Ea � un+1.
The precise definition of g is by a nested conditional which combines all
the cases. The proof of the following key fact is by induction on k and uses
critically the definition of C (E) for E a conditional term: if M is started
with instruction a > 0, ~u loaded in the accumulators, R[j] = X (j) for all
j, and M terminates in k steps with w in accn+1, then g(a, ~u, X) = w and
cg(a, ~u, X) � k.
To avoid the assumption that the constant functions Ca and the tests ÷a
are included in Φ, we replace 0, 1, . . . , N by tuples ~a0, ~a1, . . . , ~aN of 0’s and
1’s, for which we can define the corresponding functions using the constants
0, 1 and conditionals. a
Together with Lemma 16 (and its version for Lin), this gives:

Theorem 19. (A) If a Random Access Machine decides the coprimeness
relation x? y from =, <, +, �� , iq and rem with time complexity T (x, y),
then for every difficult pair (a, b),

T (a, b) >
1

10
log2 log2 a.

IS THE EUCLIDEAN ALGORITHM OPTIMAL AMONG ITS PEERS? 417

(B) If a Random Access Machine decides the coprimeness relation x? y
from =, <, +, �� , 2 � x, iq(x, 2), and rem(x, 2) with time complexity T (x, y),
then for all a > 2,

T (a, a2 � 1) > 1
10
log2(a

2 � 1).
The Refined Church-Turing Thesis. In [8] (and earlier articles cited there),
Moschovakis has proposed that all algorithms are relative to givens, and that
they can be faithfully represented by recursive programs on suitable structures
which codify these givens. Now this does not mean that an algorithm
which is (intuitively) relative to certain functions Φ on N can be represented
faithfully by a recursive program in (N, 0, 1,Φ); this fails for RAMS, for
example, whose simulation by recursive programs requires T (n) log2 T (n)
time, because strings of numbers must be coded and manipulated in N [3].
The results of this section suggest—and provide some evidence for—the
following, concrete interpretation of the proposal in [8] for the case of first-
order-algorithms:

Refined Church-Turing Thesis. Every algorithm α from a set Φ of par-
tial functions and relations on a setA can be represented faithfully by a recursive
program â on an inessential extensionB of the partial algebraA = (A, 0, 1,Φ).

This proposal identifies the intuitive notion of (worst case, time) optimality
for relative first-order algorithms with a precise mathematical notion, much
like the classical Church-Turing Thesis does the same for the intuitive notion
of (relative) computability. It is not possible to discuss it intelligently in this
communication, but, if it is true, then the lower bounds we have established
from Lin and Lin[�] hold for all algorithms.

REFERENCES

[1] Lou van denDries,Generating the greatest common divisor, and limitations of primitive
recursive algorithms, Foundations of computational mathematics, vol. 3 (2003), pp. 297–324.
[2] Lou van den Dries and Yiannis N. Moschovakis, Arithmetic complexity, (200?), in

preparation.
[3] P. vanEmdeBoas,Machinemodels and simulations,Handbook ofTheoreticalComputer

Science, Vol. A, Algorithms and Complexity (Jan van Leeuwen, editor), Elsevier and MIT
Press, 1994, pp. 1–66.
[4]G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Clarendon

Press, Oxford, fifth edition, 2000, originally published in 1938.
[5]D. E. Knuth, The art of computer programming. Fundamental algorithms, second ed.,

Addison-Wesley, 1973.
[6] Yishay Mansoor, Baruch Schieber, and Prasoon Tiwari, A lower bound for integer

greatest common divisor computations, Journal of the Association for Computing Machinery,
vol. 38 (1991), pp. 453–471.
[7] J. McCarthy, A basis for a mathematical theory of computation, Computer program-

ming and formal systems (P. Braffort and D Herschberg, editors), North-Holland, 1963,
pp. 33–70.

418 LOU VAN DEN DRIES AND YIANNIS N. MOSCHOVAKIS

[8] Yiannis N. Moschovakis, What is an algorithm?, Mathematics unlimited – 2001 and
beyond (B. Engquist and W. Schmid, editors), Springer, 2001, pp. 919–936.
[9] , On primitive recursive algorithms and the greatest common divisor function,

Theoretical Computer Science, vol. 301 (2003), pp. 1–30.
[10] Alfred Tarski, What are logical notions?, History and Philosophy of Logic, vol. 7

(1986), pp. 143–154, edited by John Corcoran.

UNIVERSITY OF ILLINOIS

DEPARTMENT OFMATHEMATICS

1409 W. GREEN STREET

URBANA, IL 61801, USA

E-mail: vddries@math.uiuc.edu

DEPARTMENT OFMATHEMATICS and DEPARTMENT OFMATHEMATICS

UNIVERSITY OF CALIFORNIA UNIVERSITY OF ATHENS

LOS ANGELES, CA 90095-1555, USA ATHENS, GREECE

E-mail: ynm@math.ucla.edu

