
A mathematical modeling of pure, recursive

algorithms

Yiannis. N. Moschovakis∗

Department of Mathematics, UCLA

ynm@math.ucla.edu

February 9, 1989

Abstract

This paper follows previous work on the Formal Language of Re-
cursion FLR and develops intensional (algorithmic) semantics for it:
the intension of a term t on a structure A is a recursor, a set–theoretic
object which represents the (abstract, recursive) algorithm defined by t

on A. Main results are the soundness of the reduction calculus of FLR
(which models faithful, algorithm–preserving compilation) for this se-
mantics, and the robustness of the class of algorithms assigned to a
structure under algorithm adjunction.

This is the second in a sequence of papers begun with [16] in which
we develop a foundation for the theory of computation based on a math-
ematical modeling of recursive algorithms. The general features, aims and
methodological assumptions of this program were discussed and illustrated
by examples in the preliminary, expository report [15]. In [16] we studied
the formal language of recursion FLR which is the main technical tool for
this work, we developed several alternative denotational semantics for it
and we established a key unique termination theorem for a reduction calcu-
lus which models faithful (algorithm–preserving) compilation. Here we will
define the intensional semantics of FLR for structures with given (pure)
recursors, the set–theoretic objects we use to model pure (side–effect–free)
algorithms: the intension of a term t on each structure A is a recursor
which models the algorithm expressed by t on A. Basic results of the paper

∗During the preparation of this paper the author was partially supported by an NSF
Grant.

1

include the soundness of the FLR reduction calculus for this semantics1 and
the persistence under algorithm adjunction of the class of algorithms thus
assigned to a given structure. This last result is an intensional version of
the central result in abstract recursion theory, which in turn generalizes the
classical (first) Recursion Theorem of Kleene. It provides strong evidence of
the robustness of our choice of representation of algorithms.

The paper naturally depends heavily on [15] and [16]. I have attempted,
however, to introduce enough examples and comments so that the casual
reader can get the gist of what I am trying to do.2

1 Recursors

As an illustration of the modeling of algorithms we will adopt, consider the
familiar algorithm for computing x2, but on the structure

A = (N, 0, zero, pred, plus),

i.e. when we take as “given” on N the constant 0, the predecessor and addi-
tion functions pred, plus and the Boolean–valued identity with 0, zero(x) =
if (x = 0) then 1 else 0:

sq(x) = times(x, x) where (1)
times(u, v) = if zero(v) then 0

else plus(times(u, pred(v)), u).

We view (1) as the definition not of the square function—which is assumed
known—but of a specific recursive algorithm for computing it; and we take
the point of view that this recursive algorithm is specified completely by
equation (1), so that there is no need to explain further (for example) how
the recursion in this definition will be implemented. As a first approximation
then, we might model this algorithm by the pair of functionals

f0(times, x) ' times(x, x),

f1(u, v, times, x) ' if zero(v) then 0 else plus(times(u, pred(v)), u),

1FLR reduction is also complete for glogal equality of intensions, but we will not prove
this here.

2I have omitted historical comments and general references to past work relating ab-
stract recursion and computation. The most important papers which have influenced this
work are (in chronological order) Kleene [7], McCarthy [10], Kleene [8], Landin [9], Platek
[19], Gandy [4], Moschovakis [11], [12], Barwise–Gandy–Moschovakis [2], Scott–Strachey
[20], Moschovakis [13], [14], Kechris–Moschovakis [5], Feferman [3], Normann [17], Backus
[1]. Some additional discussion of sources is included in [15].

2

where times varies over partial, binary functions on N ; the abstract com-
putation of x2 determined by this algorithm involves computing (in some
unspecified way) the least fixed point times of the equation

times(u, v) ' f1(u, v, times)

and then setting x2 = times(x, x). This approach assumes that each value
of the functional f1 can be computed in one step on the structure A, i.e. it
does not analyze the required computation of such values directly in terms
of the givens of the structure A. To model the situation more accurately, we
will “expand” the definition (1) in the form

sq(x) = times(x, x) where (2)
{
times(u, v) ' if test(v) then initvalue() else loop(u, v),
test(v) ' zero(v),
initvalue() ' 0,

loop(u, v) ' plus(loop1(u, v), u),
loop1(u, v) ' times(u, loop2(v)),
loop2(v) ' pred(v),
}

and represent the algorithm intended by (1) on A by the tuple of functionals

sq = [g0, g1, . . . , g6], (3)

where g0 = f0 and the remaining six gi’s are defined by the fixed point
equations in (2), e.g.

g4(u, v, times, test, initvalue, loop, loop1, loop2) ' plus(loop1(u, v), u).

Now each gi is defined immediately in terms of the givens of A, so that it is
natural to assume that its values can be computed in “one step” on A.

This object sq is a typical pure recursor and it will be the intension on
A of the formal FLR version of (1). It is a semantic (set–theoretic) object
which not only abstracts from the particular symbols used in (1), but also
incorporates “semantic facts” about A not specified by the notation: for
example, the expression

sq′(x) = times(x, x) where
times(u, v) ' if zero(v) then 0

else plus(u, times(u, pred(v)))

3

(which differs from (1) in the order of the arguments to plus) will be assigned
the same intension sq, simply because plus is commutative in A. On the
other hand, the expression

sq′′(x) = time(x) where
time(v) ' if zero(v) then 0

else plus(time(pred(v)), x)

is assigned by the same process a different intension: it expresses the alter-
native algorithm for computing x2, where x · v is defined by recursion on v

(with x held constant) and then x is substituted in for v.
Implicit in this analysis is the claim that the set theoretic object g in (3)

codes precisely the essential, mathematical and implementation-independent
properties of the “algorithm” intended by definition (1) on the structure A.
As a first attempt to justify this claim, we analyzed several similar examples
in [15], and we will consider some more in the sequel. We will look for addi-
tional justification of this approach to founding computation theory in the
“naturalness” and usefulness of the intensional semantics for the language
FLR.

Recall from section 1B of [16] that a (many sorted) universe is a family
of basic sets

U = {U(i) | i ∈ B}

indexed by a set of basic types B, including “bool”. A space of individuals
U is a product of basic sets, P (U, V) is the pf space of all partial functions
from U to V and among the product spaces we admit the product I of “no
factors”. A functional is any monotone map on a product space to a basic
set, f : X ⇀ W . (These objects are all assigned types in the usual way.)

Definition 1.1 A (pure) recursor on a universe U is a tuple of functionals

f = [f0, f1, . . . , fn] : X ↪→ W, (4)

such that for suitable individual spaces U0 = I, W0 = W , U1, W1,. . . ,
Un, Wn,

fi : Ui × P (U1, W1) × · · · × P (Un, Wn) × X ⇀ Wi.

We call f0 the head part and f1, . . . , fn the recursion parts of f. The
denotation of f is a functional

f : X ⇀ W,

4

defined by
f(x) ' f0(p1,x, . . . , pn,x, x),

where for each x, p1,x, . . . , pn,x are the simultaneous least fixed points of the
equations

pi(ui) ' fi(ui, p1, . . . , pn, x) (1 ≤ i ≤ n).

The restrictions on the types of the functionals of a recursor insure that the
least–fixed–point equations in the definition of the denotation make sense.

With each recursor f as in (4) above and each x ∈ X, we can associate
the parameter–free recursor

f(x) = [f0,x, f1,x, . . . , fn,x] : I ↪→ W

by fixing x in the functionals of f,

fi,x(ui, p1, . . . , pn) ' fi(ui, p1, . . . , pn, x).

Clearly, for every x ∈ X,
f(x) ' f(x)(),

(where the empty space in () stands for the sole member of I) and f is
completely determined by the operation x 7→ f(x). In fact, most often we
will define a recursor f by giving an expression for f(x), using informally the
symbolism of FLR and beginning with the obvious representations

f(x) = rec(u1, . . . , pn)[f0(~p, x), . . . , fn(un, ~p, x)]

= f0(~p, x) where [pi(ui) = fi(ui, ~p, x) : 1 ≤ i ≤ n],

where ~p = p1, . . . , pn. For example, if

f(s, q, x) = rec(u, p)[f0(p, s, q, x), f1(u, p, s, q, x)]

and g, h are functionals of the appropriate types, we can define the substi-
tution of g, h in f by

f ′(x) = f(g(x), λ(v)h(v, x), x) (5)

= rec(u, p)[f0(p, g(x), λ(v)h(v, x), x), f1(u, p, g(x), λ(v)h(v, x), x)].

With each functional f : X ⇀ W we associate the “degenerate recursor”
[f], whose denotation is obviously f ,

[f](x) = f(x).

5

In the rec notation, [f](x) = rec()[f(x)].

The order in which the parts of a recursor are listed has no bearing on
the algorithm coded by the recursor, so (for example) we should have

rec(u, p, v, q)[f0(p, q), f1(u, p, q), f2(v, p, q)]
= rec(v, q, u, p)[f0(p, q), f2(v, p, q), f1(u, p, q)].

The general definition of equality for recursors is a bit messier to state.

Definition 1.2 Two recursors

f = [f0, . . . , fn], g = [g0, . . . , gm] : X ↪→ W

on the same parameter space are strongly equivalent (or just equal) if
they have the same number of parts n and there exists a permutation σ on
{0, 1, . . . , n} with inverse ρ and σ(0) = 0, such that for i = 0, . . . , n and all
ui, x, p1, . . . , pn in the appropriate spaces:

fi(ui, p1, . . . , pn, x) ' gρ(i)(ui, pσ(1), . . . , pσ(n), x).

In the example above we take σ(1) = 2, σ(2) = 1. It is quite trivial to
check that equal recursors have the same denotations.

2 Unraveling nested recursions

Suppose
g = [g0, g1] : U × P (U, W) × X ↪→ W

is a recursor with denotation g : U × P (U, W) × X ⇀ W and set

h1(x) = rec(u, p)[f(p, x),g(u, p, x)], (6)

where f is some given functional. The algorithm represented by this recursor
h1 assumes both f and g as “given”, and it is natural to ask if we cannot
replace it by another algorithm which computes the same function directly
in terms of f and the functionals g0, g1 which determine g. Substituting
formally (at first) g for g in (6), we get

h(x) = rec(u, p)[f(p, x), rec(v, q)[g0(q, u, p, x), g1(v, q, u, p, x)]] (7)

and the problem is to understand the algorithmic meaning of this “nested
recursion” and then to model it by a recursor. One basic result is that the
recursor h has the same denotation as

6

h′(x) = rec(u, p, u, v, r)[f(p, x), (8)
g0(r(u, ·), u, p, x), g1(v, r(u, ·), u, p, x)],

where r(u, ·) = λ(v)r(u, v). Park [18] refers to this as the Bekič–Scott prin-
ciple and it has been rediscovered in various formulations by several people.3

Here we will take it as a fundamental principle that the recursor h′ repre-
sents the algorithm intended by the nested recursion h, so that in fact we
have the algorithmic identity

rec(u, p)[f(p, x), rec(v, q)[g0(q, u, p, x), g1(v, q, u, p, x)]] (9)
= rec(u, p, u, v, r)[f(p, x), g0(r(u, ·), u, p, x), g1(v, r(u, ·), u, p, x)].

Part of the justification for (9) comes from an analysis of all the plausible
natural implementations of these two functionals: they should turn out to
be (essentially) the same. We will not elaborate on this here. From the
technical point of view, however, this identification amounts to a definition,
since we already know the meaning of (8) but we do not have a precise
meaning for (7). We will need this definition in its full generality.

Definition 2.1 Suppose that we are given recursors

fi = [fi,0, . . . , fi,m(i)] : Ui×P (U1, W1)×· · ·×P (Un, Wn)×X ↪→ Wi (i ≤ n)

where U0 = I and the remaining individual spaces match as indicated. We
define the recursor combination of f0, . . . , fn by:

rc[f0, f1, . . . , fn] =def [g0,0, . . . , g0,m(0), (10)

g1,0, . . . , g1,m(1),

. . .
gn,0, . . . , gn,m(n)],

where for i ≤ n, j ≤ m(i),

gi,j(ui, vi,j ,r0,1, . . . , r0,m(0), r1,0, . . . , r1,m(1), . . . , rn,0, . . . , rn,m(n), x)

' fi,j(vi,j , ri,1(ui, ·), . . . , ri,m(i)(ui, ·), ui, r1,0, r2,0, . . . , rn,0, x).

We will also use the alternative rec notation for this operation,

rec(u1, p1, . . . , un, pn)[f0(~p, x), . . . , fn(un, ~p, x)] = rc[f0, . . . , fn].

The operation rc is the semantic version of the syntactic operation rc

defined in (2C.2) of [16] in the following sense.

3Cf. the discussion on the recursion theorem in section 4.

7

Fact 2.2 If for i = 0, . . . , n

fi(ui, ~p, x) = rec(vi,1, qi,1, . . . , vi,m(i), qi,m(i))

[fi,0(~qi, ui, ~p, x), . . . , fi,m(i)(vi,m(i), ~qi, ui, ~p, x)],

then the syntactic operation rc applied (formally) to the doubly recursive
expression

rec(u1, p1, . . . , un, pn)[f0(~p, x), . . . , fn(un, ~p, x)]

yields exactly the rec representation of rc[f0, . . . , fn]. a

Now (9) above is a theorem, very easy to check once the notation is
penetrated. Another simple exercise which helps clarify the notation is the
following.

Fact 2.3 If f = [f0, . . . , fn] is a recursor and for each i, [fi] is the recursor
representation of the functional fi, then

rc[[f0], . . . , [fn]] = [f0, . . . , fn],

i.e. in rec notation,

rec(u1, p1, . . . , un,pn)[rec()[f0(~p, x)], . . . , rec()[fn(un, ~p, x)]]
= rec(u1, p1, . . . , un, pn)[f0(~p, x), . . . , fn(un, ~p, x)]. a

The basic fact about the operation of recursor combination is that it
commutes with the taking of denotations. This can be proved directly by a
least–fixed–point argument, but it also follows from (2B.4) in [16].

Theorem 2.4 If f0, . . . , fn are recursors so that their recursor combination
is defined, and if

f(x) = rec(u1, p1, . . . , un, pn)[f0(~p, x), . . . , fn(un, x)]

g(x) = rec(u1, p1, . . . , un, pn)[f0(~p, x), . . . , fn(un, x)],

then f(x) = g(x). a

The recursor combination operation can be used to define many natural
operations on recursors, including substitution, as follows.

8

Definition 2.5 If g : X ↪→ U , h : V ×X ↪→ V ′ and f : U×P (V, V ′)×X ↪→
W , set

f(g(x), λ(v)h(v, x), x) = rec(r, v, p)[f(r(), p, x), g(x), h(v, x)], (11)

where r : I ⇀ U varies over partial functions “with no arguments”. As a
special case, when f is the conditional,

if c(x) then g(x) else h(x) (12)
= rec(p, q, r)[if p() then q() else r(), c(x),g(x),h(x)].

Notice that if g = [g], h = [h] are the recursor representations of func-
tionals, then (11) is different from the functional substitution of g and h

into f defined in (5).

To illustrate these definitions, suppose we define the identity on N by
the recursion

id(x) = rec(n, id)[id(x), if zero(n) then 0 else succ(id(pred(n)))], (13)

where we have assumed as given 0, zero, succ and pred, by their represent-
ing recursors. To compute the recursor which models id, we start with
the definition of the conditional in (12) and use the recursor combination
formulas,

id(x) = rec(n, id)[id(x), (14)
rec(p, q, r)[if p() then q() else r(),

zero(n),
0,
succ(id(pred(n)))]

= rec(n, id, n, p, n, q, n, r)[id(x),
if p(n) then q(n) else r(n),
zero(n),
0,
succ(id(pred(n)))].

Next we should reduce the compositions in the last expression and apply
recursor combination again; when we are done we will have seven functionals
in id, all of them “immediately” computable in terms of the given recursors.

9

3 Intensions

Recall from [16] that a structure signature is a triple τ = (B, S, d) with B

a set of types, S a set of function(al) symbols and d a function which assigns
to each function symbol f ∈ S a function type d(f) over B; a functional

structure of signature τ is a pair A = (U ,F) where U is a universe over
B and F assigns a functional F(f) of type d(f) on U to every function
symbol in S. For our purposes here it is natural and useful to allow for
richer structures which may have arbitrary recursors among their givens.

Definition 3.1 A recursor structure of type τ = (B, S, d) is a pair

A = (U ,F),

where U is a universe on B and

F = {F(f) | f ∈ S}

is a family of recursors, such that for each f ∈ S, the type of the denotation
F(f) is d(f). The associated functional structure is

A = (U ,F),

of the same signature and on the same universe, where for each function
symbol f,

F(f) = F(f).

Denotations on A are computed in A; i.e. for each list of variables ~x

which includes all the free variables of a term t, we set

den(~x, t) on A = den(~x, t) on A, (15)

following definition (1D.3) of [16]. We think of A as an “algorithmic refine-
ment” of A, whose recursors represent algorithms that compute the given
functionals of A.

Functional structures are special cases of recursor structures with degen-
erate recursors. Structures with non–degenerate recursors arise naturally as
expansions, e.g. we may wish to add to the simplest structure for arithmetic

N = (N, 0, succ, pred, zero) (16)

10

the recursor id of (13) which computes the identity function. The expansion
(N, id) has the same signature but is different from its associated functional
structure (N, id), where we take the identity function on N as immediately
computable. These two structures, however, have the same denotations.

Recall from [16] that a context is a set E of basic and pf variables and
an expression is immediate in a context E if it is congruent to a basic
variable, p(v1, . . . , vn) with p, v1, . . . , vn ∈ E or λ(u1, . . . , um)p(v1, . . . , vn)
with p, v1, . . . , vn ∈ E ∪ {u1, . . . , um}.4

In the remainder of this section we will prove the following main result
of the paper.

Theorem 3.2 Main Result. Fix a recursor structure A.

(a) There is a unique way to associate with each term t, each context E

and each list of variables ~x ≡ x1, . . . , xk which includes all the free variables
of t, a recursor

int(~x, E)t : X ↪→ W,

where X is the space of the same type as the list ~x and W is the basic set of
the value type of t, so that the following conditions are satisfied.

1. int(x1, . . . , xk, E)xi = [λ(x1, . . . , xk)xi].

2. If t1, . . . , tn are immediate in E, then

int(~x, E)p(t1, . . . , tn) = [den(~x, p(t1, . . . , tn))].

3. If t1, . . . , tn are immediate in E and f is interpreted on A by the
recursor f, then

int(~x, E)f[t1, . . . , tn](x) = f(den(~x, t1)(x), . . . , den(~x, tn)(x)).

4. If t is not immediate in E and a, b are sequences of terms, then

int(~x, E)p(a, t, b) = rec(r)[int(r,~x, E ∪ {r})p(a, r(), b), int(r,~x, E)t].

4One preprint version of [16] unfortunately used a simplified notion of context and
immediacy, reasonable for the results of that paper but inadequate for what we will do
with it here. This is the correct definition as it will appear in the published version of the
paper.

11

5. If t is not immediate in E and a, b are sequences of terms or λ-terms,
then

int(~x, E)f[a, t, b] = rec(r)[int(r,~x, E ∪ {r})f[a, r(), b], int(r,~x, E)t].

6. If λ(u)t is not immediate in E and a, b are sequences of terms or λ-
terms, then

int(~x, E)f[a, λ(u)t, b]
= rec(u, r)[int(r,~x, E ∪ {r})f[a, r, b], int(u, r,~x, E)t].

(b) If ~p = p1, . . . , pn and for i = 0, . . . , n,

fi = int(ui, ~p,~x, E ∪ {ui, ~p})ti,

then

int(~x, E)rec(u1, p1, . . . , un, pn)[t0, t1, . . . , tn] = rc[f0, f1, . . . , fn].

(c) The intension of a term computes its denotation, i.e. for any E,

int(~x, E)t(x) ' den(~x, t)(x).

(d) The FLR reduction calculus is sound for intensions, i.e.

s ∼E t =⇒ int(~x, E)s = int(~x, E)t. a

The rules for manipulating intensions in (a), (b) are the semantic versions
of the syntactic rules of the FLR calculus, and it may be argued directly
that “they preserve the algorithm”. We used all of them in the examples, to
transform (1) to (2) and (13) to (14). They imply uniqueness of intensions,
and in fact they “overdetermine” the notion, in the sense that it is not
obvious how to define intensions so that (a) and (b) hold. It is possible to
reformulate these conditions so that they become a definition, but then (d)
is not that trivial; to prove it we must redo “the semantic version” of the
unique termination property for the FLR reduction calculus, the main result
of [16]. We will adopt an indirect approach, which defines intensions using
normal forms of terms and then uses the syntactic results of [16] to prove
the Main Result.

12

The key idea is that in a functional structure, if we reduce a term t to
normal form

nf(t, E) ≡ rec(u1, . . . , pn)[t0, . . . , tn],

then we should obviously set

int(~x, E)t = [den(~p,~x, t0), . . . , den(un, ~p,~x, tn)].

To deal with the general case, we will first expand each recursor structure
A into a functional structure A◦, we will define a natural translation of the
language of A into the language of A◦ and we will compute intensions there.

Definition 3.3 With each recursor structure A we associate its func-

tional expansion A◦ by replacing each recursor f = [f0, f1, . . . , fn] in A

with the functionals f0, f1, . . . , fn. The signature (B, S, d)◦ of A◦ is an ex-
pansion of the signature of A; we keep the symbol f which named f to name
f0 and we introduce new symbols f1, . . . , fn for the recursion parts (if any)
of f.

Notice that if A is a functional structure of signature τ , then τ◦ = τ and
A◦ = A.

Definition 3.4 Fix a structure A of signature τ . With each term or λ-
term t of FLR(τ) and each context E, we associate the translation tr(t, E),
an expression of the same category as t in FLR(τ◦). The definition of
tr(t, E) is by recursion on t.

Tr 1. If t is a variable, then tr(t, E) ≡ t.

Tr 2. tr(p(t1, . . . , tn), E) ≡ p(tr(t1, E), . . . , tr(tn, E)).

Tr 3. tr(λ(u)t, E) ≡ λ(u)tr(t, E ∪ {u}).

Tr 4. As a typical example of this case, suppose

t ≡ f[w, s, λ(u)t∗]

where w is immediate in E and s, λ(u)t∗ are not immediate in E. Suppose
f has n + 1 parts in A (n = 0 is possible), so that we have function symbols
f, f1, . . . , fn in FLR(τ◦). We set

13

tr(f[w, s, λ(u)t∗], E)
≡ rec(v1, q1, . . . , vn, qn, r, u, p)

[f[~q, w, r(), p], f1[v1, ~q, w, r(), p], . . . , fn[vn, ~q, w, r(), p],
tr(s, E), tr(t∗, E ∪ {u})],

where r, p and the vi, qi are fresh variables. In the general case we translate
in this way those arguments of f which are not immediate in E and leave
the immediate ones alone.

Tr 5. If t ≡ rec(u1, . . . , pn)[t0, . . . , tn], compute first for each i the
translation t∗i ≡ tr(ti, E ∪ {ui, p1, . . . , pn}) and set

tr(t, E) ≡ rec(u1, . . . , pn)[t∗0, . . . , t
∗

n].

The basic fact about this translation operation is that it preserves the
syntactic, intensional equivalence relation of [16].

Theorem 3.5 Under the hypotheses of definition (3.4),

s ∼E t =⇒ tr(s, E) ∼E tr(t, E),

and if A is a functional structure, then for every t, E,

t ∼E tr(t, E).

Proof of the main assertion is by induction on the definition of →E and
∼E and most of the cases are trivial. The interesting cases are R2 and R3.
We consider a special case of R2 which illustrates the method. Suppose

f[w, t, s] →E rec(r)[f[w, r(), s], t] (t not immediate in E)

where w is immediate in E but s is not. Assuming for simplicity that the
recursor interpreting f has just two parts, the translations of the two sides
of this reduction are:

L ≡ rec(u, q, rt, rs)[f[q, w, rt(), rs()], f1[u, q, w, rt(), rs()], t
◦, s◦],

R ≡ rec(r)[rec(u, q, rs)[f[q, w, r(), rs()], f1[u, q, w, r(), rs()], s
◦], t◦],

where t◦, s◦ are the translation of t and s in E. Now

R →E rec(u, q, rs, r)[f[q, w, r(), rs()], f1[u, q, w, r(), rs()], s
◦, t◦] (17)

14

by an application of the reduction rule R4, and the right hand side in the
reduction (17) is congruent with L.

To prove the last assertion of the theorem, check first (trivially) that if
A is a functional structure and t is a recursive term, irreducible in E, then
t ≡c tr(t, E); hence for any t, tr(nf(t, E), E) ≡c nf(t, E) and by the first
part tr(t, E) ∼E tr(nf(t, E), E), so tr(t, E) ∼E nf(t, E) ∼E t. a

Definition 3.6 Definition of intensions. Fix a structure A, let A◦ be its
functional expansion, and suppose that ~x is a list of variables which includes
all the free variables of some term t and E is a context. If

nf(tr(t, E), E) ≡ rec(u1, p1, . . . , un, pn)[t0, t1, . . . , tn]

is the E–normal form of the translation of t, then we set

int(~x, E)t = [den(~x, t0), den(~x, t1), . . . , den(~x, tn)].

Because of Theorem 3.5, we have immediately:

Fact 3.7 If A is a functional structure and

nf(t, , E) ≡ rec(u1, p1, . . . , un, pn)[t0, t1, . . . , tn],

then int(~x, E)t = [den(~x, t0), den(~x, t1), . . . , den(x, tn)]. a

Proof of the Main Result. Part (d) follows immediately from Theo-
rem 3.5.

Part (c) is also routine, if a bit tedious: check first that the operation
tr preserves denotations as does intensional equivalence ∼E (for any E) by
Theorem (2B.4) of [16], and then appeal to the definitions of denotations of
recursive terms in [16] and of recursors in section 1.

In part (a), (1)–(3) are trivial and (4)–(6) follow directly from (b) and
(d).

Proof of part (b). Suppose first that A is a functional structure and for
i = 0, . . . , n let

t∗i ≡ nf(ti, E ∪ {ui, ~p}),

fi(ui, ~p, x) = int(ui, ~p, x, E)t∗i .

15

By the definition of normal forms and the fact that intensions are preserved
when we pass to normal form, the value of the left–hand–side of (b) is

L = int(~x, E) rc rec(u1, . . . , pn)[t∗0, . . . , t
∗

n].

and the value of the right–hand–side of (b) is

R = rc[f0, . . . , fn].

Now each t∗i is an irreducible recursive term and its intension fi is just
the sequence of denotations of its parts; using this and the fact that rc
“unravels” doubly recursive functional expressions exactly as rc unravels
doubly recursive terms, we can verify L = R by a direct computation.

If A is an arbitrary recursor structure and if t◦i is the translation of ti in
the appropriate context, then

int(~x, E)rec(u1,. . . , pn)[t0, . . . , tn)
= int(~x, E)rec(u1, . . . , pn)[t◦0, . . . , t

◦

n)

and we can apply the result on the functional structure A and (once more)
the fact that a term has the same intension as its translation. a

4 Algorithms

In choosing basic notions for a theory of computation, one must decide at
the outset what will be taken “for granted”: in particular, if we admit a
certain set W as a the domain of some computable function, should we nec-
essarily also admit the identity function idW and/or the (binary) identity
relation =W on W as given? The question has some merit in theories which
allow only special (structured) domains of computation, for which it may
argued (from the assumed structure) that an obvious algorithm which com-
putes one or the other of these operations is automatically available. In the
present approach, however, we allow arbitrary basic sets in universes and
there is no justification for such assumptions. We take as primitives only the
Boolean constants 0, 1, the conditional, the operations of substitution and
λ-substitution and (most significantly) recursion.5 As a practical matter,
our approach is clearly the least restrictive, since the general theory applies

5These are the primitives for the theory of pure algorithms, with no “state dependence”
or “side effects” with which we are concerned in this paper.

16

to structures which include all the identity functions and relations among
the givens.

Since a single basic variable v is a term of FLR which naturally defines
the identity function on the basic set of its type, we will use only the in-
tensions of special terms to model the algorithms of a structure. These
are defined in (1E.4) of [16]. What we need here is the characterization,
that a term t is special exactly when its normal form in any context E is an
irreducible recursive term

nf(t, E) ≡ rec(u1, . . . , pn)[t0, . . . , tn]

such that none of the irreducible explicit parts ti is a single variable—i.e.
when each ti is in one of the simple forms

p(s1, . . . , sm), f[s1, . . . , sm],

with the sj’s immediate in E ∪ {ui,~p}.

Definition 4.1 An algorithm of a recursor structure A is any recursor

f : X ↪→ W

on the universe of A, such that for some list of variables ~x with type that of
X and for some special term t(~x) whose free variables are all included in ~x,

f = int(~x, ∅)t(~x).

If K is a class of recursors of the same signature τ , then a (global) K–
algorithm is an operation which assigns to each A ∈ K a recursor fA, so
that for a fixed special t(~x) as above in the common language,

fA = intA(~x, ∅)t(~x).

The A– (or K–) recursive functionals are the denotations (or global de-
notations) of the algorithms of A (or K).

Let us note immediately two trivial consequences of the definitions and
(c) in the Main Result 3.2:

Fact 4.2 (a) If A and B have the same algorithms, then they have the
same recursive functionals.

(b) The recursive functionals of a structure A are precisely the deno-
tations of special terms on A, and hence A and the associated functional
structure A have the same recursive functionals. a

17

On the other hand, A◦ may have more denotations that A, e.g. if some
recursor of A is defined by

f(x) = rec(u, p)[f(x), g(x)]

so that it “never calls” the functional g, which is then recursive in A◦ but
not in A. Similarly, the associated functional structure A nay have more or
fewer algorithms than A.

Technically it is a definition, but 4.1 is clearly meant to express a claim:
that the intuitive notion of an abstract recursive algorithm can be modeled
faithfully by the technical notion of an absolute intension of a special term
of FLR. This proposed Church’s Thesis for algorithms was discussed
briefly in section 2G of [15]. Here we will provide some evidence for it by
the next result, which suggests that our modeling of algorithms is strongly
robust.

Theorem 4.3 The intensional recursion theorem. If f is an algorithm
of a recursor structure A, then the expansion (A, f) has exactly the same
algorithms as A.

More specifically, if t(~x) is a ∅–irreducible term and

f = int(~x, ∅)t(~x), (18)

and if s(f) is a term in the language of the expanded structure (A, f) which
is irreducible in some context E, then for any list of variables ~y which in-
cludes all the free variables of s(f),

int(~y, E)s(f) = int(~y, E)s(λ(~x)t(~x)). (19)

To understand the intensional recursion theorem, compare it with the
following extensional version, which follows immediately from it by 4.2.

Theorem 4.4 The extensional recursion theorem. If f is a recursive
functional of a structure A, then the expansion (A, f) has the same recursive
functionals as A. a

For the structure N of arithmetic, 4.4 is a version of Kleene’s classical
(first) Recursion Theorem, XXVI in [6]. Kleene also proved the generaliza-
tion to recursion in higher types, but (unfortunately) he buried it in the

18

impenetrable and practically unread section 10 of [8]. (The Discussion

at the end of the same section contains also the key idea for developing
an indexing–free theory of abstract recursion on arbitrary functional struc-
tures.) Essentially as stated here, the extensional recursion theorem was
announced in 4.4 of [14], extending the earlier 6B.4 of [13], and a proof of it
was published in 3.3 of [5].

Kleene viewed his first recursion theorem as providing strong evidence
for Church’s Thesis, as it shows that it is impossible to escape from the
class of recursive partial functions by some form of “diagonalization”, with-
out introducing entirely new principles of computation; cf. the discussion
in §66 of [6]. One may argue similarly that 4.3 supports Church’s The-
sis for algorithms as formulated above: granting our basic framework, the
theorem guarrantees that we cannot escape from the class of algorithms we
assigned to a structure by any form of explicit or implicit definition, short
of introducing new algorithmic principles not included among the primitives
of FLR.

Incidentally, it is quite obvious that every classical Herbrand–Gödel–
Kleene system of equations determines an algorithm in our sense, and we
get all algorithms of N this way. On the other hand, it does not seem possible
to define a Turing machine which “represents faithfully” the algorithm for
computing x2 “intended” by (1)—there is no way to code into a Turing
machine “the recursion” which is the essence of (1) without getting bogged
down into the details of its implementation.

We will come back to a fuller discussion of Church’s Thesis for algorithms
in a future paper in this sequence.

It is necessary to assume in the detailed statement of the theorem that
the term s(f) is irreducible. For example, suppose that over a structure with
some given binary function g,

f(x) = int(x, ∅)g[x, x],

and in the expansion by f, take

s(f) ≡ f[c],

where c names a given constant. Now, clearly

nf(s(f), ∅) ≡ rec(r)[f[r()], c],

nf(s(λ(x)g[x, x)], ∅) ≡ rec(r1, r2)[g[r1(), r2()], c, c],

19

and the intensions of these two terms cannot be the same since the first has
two parts while the second has three. To apply the theorem in such a case,
we first compute the normal form of s(f) in the expanded structure,

s∗(f) ≡ rec(r)[f[r()], c];

now s∗(f) and s(f) have the same intensions and s∗(f) easily has the same
intension as its substitution

s∗(λ(x)g[x, x]) ≡ rec(r)[g[r(), r()], c].

We need a technical lemma.

Lemma 4.5 Suppose t(~x) is simplified, irreducible in the context J , where
no variable in the list ~x = x1, . . . , xn is in J , and let

f = int(~x, J)t(~x); (20)

suppose further that the expressions z1(~y), . . . , zn(~y) are immediate in some
context E ⊇ J ; then

int(~y, E)t(z1(~y), . . . , zn(~y)) = λ(y)f(z1(y), . . . , zn(y)). (21)

Proof. “Simplified” is defined in (2B.13) of [16] and simply means that
there are no vacuous rec()’s in t(~x), and by zi(y) we obviously mean the
value of the expression zi(~y) when ~y = y.

Suppose first that t(~x) ≡ p(w1(~x), . . . , wm(~x)). Since t(~x) is irreducible
in J , each wj(~x) is immediate in J—which contains none of the xi’s—and
hence if some basic variable xi occurs in wj(~x) we must have wj(~x) ≡ xi;
it follows that p(w1(~z(~y)), . . . , wm(~z(~y))) is irreducible in E, using the fact
that immediacy in J implies immediacy in the larger E. Hence the intension
of t(~z(~y)) in E is just its denotation and (21) follows from (20) by the
definitions.

The argument is the same for the other cases of explicit t(~x).
If t(~x) ≡ rec(u1, . . . , pn)[t0, . . . , tn] is recursive and irreducible in J , then

each ti is explicit, irreducible in J ∪ {ui, ~p}. The result follows in this case
by a simple computation using the explicit case just proved and (b) of the
Main Result 3.2. a

Proof of the Intensional Recursion Theorem. Assume (18) and
suppose first that s(f) is explicit, irreducible in E and (without loss of

20

generality) simplified. There is nothing to prove if f does not occur in s(f),
and if it does, then

s(f) ≡ f[z1(~y), . . . , zn(~y)],

s(λ(~x)t(~x)) ≡ t(z1(~y), . . . , zn(~y))

with z1(~y), . . . , zn(~y) immediate in E, so that the lemma yields (19).
The case when s(f) is recursive can be verified by an easy computation,

using the explicit case and (b) of 3.2. a

References

[1] J. Backus, Can programming be liberated from the von Neumann style?
A functional style and its algebra of programs, Comm. of the ACM, 21
(1978), 613–641.

[2] J. Barwise J., R. O. Gandy and Y. N. Moschovakis, The next admissible
set, J. of Symbolic Logic, 36 (1971), 108–120.

[3] S. Feferman, Inductive schemata and recursively continuous functionals,
in: Colloquium ’76, R. O. Gandy, J. M. E. Hyland eds., Studies in Logic,
North Holland, Amsterdam (1977), 373–392.

[4] R. O. Gandy, General recursive functionals of finite type and hierarchies
of functionals, Ann. Fac. Sci. Univ. Clermont–Ferrand, 35 (1967), 5–24.

[5] A. S. Kechris and Y. N. Moschovakis, Recursion in higher types, in:
Handbook of Logic, J. Barwise ed., Studies in Logic, North Holland,
Amsterdam (1976), 681–737.

[6] S. C. Kleene, Introduction to metamathematics, van Nostrand, Prince-
ton (1952).

[7] S. C. Kleene, Recursive functionals and quantifiers of finite types, I,
Trans. Amer. Math. Soc., 91 (1959), 1–52.

[8] S. C. Kleene, Recursive functionals and quantifiers of finite types, II,
Trans. Amer. Math. Soc., 108 (1963), 106–142.

21

[9] P. J. Landin, The mechanical evaluation of expressions, Computer J.,
6 (1964), 308–320.

[10] J. McCarthy, Recursive functions of symbolic expressions and their
computation by machine, Part I, Comm. of the ACM, 3 (1960), 184–
195.

[11] Y. N. Moschovakis, Abstract first order computability I, II, Trans. Amer.
Math. Soc., 138 (1969), 427–504.

[12] Y. N. Moschovakis, Axioms for computation theories–first draft, in:
Logic Colloquium ’69, R. Gandy, C. E. M. Yates eds., Studies in Logic,
North Holland, Amsterdam (1971), 199–255.

[13] Y. N. Moschovakis, Elementary induction on Abstract Structures, Stud-
ies in Logic, North Holland, Amsterdam (1974).

[14] Y. N. Moschovakis, On the basic notions in the theory of induction, in:
Logic, Foundations of Mathematics and Computability, R. E. Butts,
J. Hintikka eds., Reidel, Dordrecht–Boston (1977), 207–236.

[15] Y. N. Moschovakis, Abstract recursion as a foundation of the theory of
algorithms, in: Computation and Proof Theory, M. M. Richter et al
eds., Lecture Notes in Mathematics (1104), Springer, Berlin (1984),
289–364.

[16] Y. N. Moschovakis, The formal language of recursion, to appear in J.
Symbolic Logic.

[17] D. Normann, Set recursion, in: Generalized Recursion Theory II,
J. E. Fenstad, R. O. Gandy, G. E. Sacks eds., Studies in Logic, North
Holland, Amsterdam (1978), 303–320.

[18] D. Park, On the semantics of fair parallelism, Proc. Copenhagen Winter
School, Lecture Notes in Computer Science (86), Springer (1980), 504–
526.

[19] R. Platek, Foundations of recursion theory, Ph. D. Thesis, Stanford
Univ., 1966.

[20] D. S. Scott and C. Strachey, Towards a mathematical semantics for
computer languages, in: Proc. of the Symposium on Computers and
Automata, Polytechnic Institute of Brooklyn Press, New York (1971),
19–46.

22

