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We obtain lower bounds on the cost of computing various arithmetic functions and deciding vari-

ous arithmetic relations from specified primitives. This includes lower bounds for computing the
greatest common divisor and deciding coprimeness of two integers, from primitives like addition,

subtraction, division with remainder and multiplication. Some of our results are in terms of recur-

sive programs, but they generalize directly to most (plausibly all) algorithms from the specified
primitives. Our methods involve some elementary number theory as well as the development of

some basic notions and facts about recursive algorithms.
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1. INTRODUCTION

Motivating question

To what extent is the euclidean algorithm optimal with respect to the number of
steps? Are there algorithms that compute the greatest common divisor of two
integers in many fewer arithmetic steps?

It is well-known that there are real constants c1 > c2 > 0 such that the euclidean
algorithm takes at most c1 log a steps on all integer inputs (a, b) with a > b > 0
and at least c2 log a steps on infinitely many integer inputs (a, b) with a > b > 0,
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2 · L. van den Dries and Y. N. Moschovakis

where each step consists of taking a remainder in an integer division.
One typical result in this paper, Theorem 3.8, is roughly as follows:
Any algorithm computing the greatest common divisor and using addition, sub-

traction, and integer division with remainder as given, will take more than 1
4 log log a

steps on infinitely many integer inputs (a, b) with a > b > 1.
“Using . . . as given” means that in each arithmetic step we add, subtract, divide

with remainder, and compare integers obtained at earlier steps. (There are also
logical steps.)

We prove similar results for the arithmetic complexity of other problems such
as deciding coprimeness of two integers, deciding whether an integer is a perfect
square, a power of two, or a prime number. In some results we restrict to Presburger
(piecewise linear) operations as given, or, in the other direction, allow multiplication
among the primitives as well. Thus we vary both the function to be computed, and
the set of primitives.

With only Presburger operations as given, we obtain single logarithmic lower
bounds for a large class of arithmetic functions; when we also allow integer division
with remainder, we get double logarithmic (log log) bounds (as in the statement
above), and when we allow multiplication as well, we obtain

√
log log-bounds. (All

logarithms are with respect to base 2.)
The following features add extra strength to some of our bounds:

(i) explicit inputs (characterized by natural arithmetic conditions) that witness
the lower bounds;

(ii) lower bounds on just the number of arithmetic steps, not counting logical steps
(equality tests and boolean operations);

(iii) allowing parallelism in the algorithms;
(iv) local (non-uniform) lower bounds for term-complexity with terms using arith-

metic and boolean operations as well as equality tests.

We have tried to make this paper easily accessible to anyone interested in compu-
tational complexity, including those with no background knowledge in this subject.
To achieve this goal we have provided explicit definitions of notions that might be
less familiar to some readers, with brief summaries of basic facts as needed.

After a short preliminary section, this paper divides naturally into three parts,
with the last two largely independent of the first, except that some of the results
of Part 1 are given a more clearly algorithmic interpretation in Parts 2 and 3.

In Part 1 (Sections 3 and 4) we focus on the connection

greatest common divisor – irrationality,

improving results from [van den Dries 2003] and [van den Dries and Moschovakis
2004].

In Part 2 (Sections 5 – 10), we first develop a local (non-uniform) notion of arith-
metic term-complexity, which measures for each N > 0 the minimum complexity
of a term t(~x) that computes a given function f : Nn → N for all n-tuples of num-
bers ≤ N . We formulate and prove a whole array of further results, including in
Section 7 the optimality of the binary gcd algorithm among algorithms that only
allow Presburger operations as arithmetic primitives, and in Section 9 a log log
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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lower bound for terms which decide coprimeness on initial segments of N, from
Presburger operations and division with remainder—the same primitives used by
the euclidean algorithm.

In Part 3 we review briefly the basic theory of recursive programs, and establish
lower bounds for global (uniform) algorithms corresponding to the non-uniform
lower bounds of Part 2. Many of these results have appeared in [van den Dries and
Moschovakis 2004], but they are easy to derive here from the results of Part 2.

The proofs in Part 1 depend on minimal and widely accepted assumptions about
“algorithms”, and so they are completely general. To derive lower bounds for
decision problems in Parts 2 and 3 we must make some assumptions about the
structure of algorithms, but these too are rather innocuous and we can argue that
these lower bounds also hold for all algorithms.

In the last section of the paper we have included a list of upper bounds in the
literature for the complexity of the functions and relations we consider, as we know
them.

The subject in this paper has deep historical roots, but the lower bounds are
recent. To our knowledge, the earliest substantial lower bounds close to ours are
about fifteen years old and are due to Mansour, Schieber and Tiwari [1991a; 1991b].
They use decision-tree complexity.

In another vein, Moschovakis [2003] considers primitive recursive algorithms with
piecewise linear functions as given, proves a linear lower bound on the complexity of
any such algorithm that computes the greatest common divisor function, and asks
if this result persists when the remainder function is included among the primitives.
Van den Dries [2003] answers this question affirmatively. However, these results on
primitive recursion have a negative character, by showing that all such algorithms
are very inefficient compared to known algorithms like the euclidean.

We soon noticed that some ideas in [van den Dries 2003] were relevant beyond
primitive recursion, to essentially all algorithms that compute the greatest common
divisor. We also saw how to improve the bounds in [van den Dries 2003] and extend
its methods to other functions and to decision problems, e.g., coprimeness. This
led to non-trivial lower bounds on algorithms computing various familiar arith-
metic functions and using various combinations of arithmetic operations as given.
A communication with an outline of our methods and some of these results was
published in [van den Dries and Moschovakis 2004]. The present paper is intended
to give a more complete account of these improvements and extensions, and their
applications to lower bounds.

Articles [Moschovakis 2003; van den Dries 2003] were written in ignorance of
[Mansour et al. 1991a; 1991b] and use different methods. Here we recover most
of the lower bounds of [Mansour et al. 1991a; 1991b] in a stronger form by al-
lowing more liberal notions of computation enjoying one or more of the features
(i)–(iv) above. But we do not know whether the triple logarithmic lower bound
of [Mansour et al. 1991a] on the decision-tree complexity for deciding coprimeness
is also valid for our term-complexity (and the same arithmetic primitives); we do
obtain in Theorem 4.1 a better lower bound for computing the gcd using these same
primitives.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Conventions and notations

Throughout, m and n range over N := {0, 1, 2, . . . }. We define the floor or integer
part of x ∈ R by

bxc := largest integer ≤ x.

For positive x ∈ R, log x := log2 x is the base 2 logarithm of x. For a, b ∈ R, b 6= 0
we write

a = qb+ r, q = ba
b
c ∈ Z

and we view the integer quotient q and the remainder r as functions of (a, b):
iq(a, b) := q and rem(a, b) := r. It is convenient to extend iq and rem to all
of R2 by setting iq(a, 0) := a and rem(a, 0) := a, so for all a, b ∈ R we have
a = iq(a, b)b+ rem(a, b), with 0 ≤ rem(a, b) < b if b > 0.

Let a, b ∈ Z. We say that a divides b (notation: a|b) if ax = b for some x ∈ Z.
The greatest common divisor of a, b is by definition the unique nonnegative integer
c =: gcd(a, b) such that cZ = aZ + bZ. (So gcd(a, b) is indeed the largest integer
dividing both a and b, if a 6= 0 or b 6= 0.) We say that a and b are coprime (notation:
a ⊥ b) if gcd(a, b) = 1.

2. THE EUCLIDEAN AND THE BINARY ALGORITHMS FOR THE GCD

This paper is about lower bounds for classes of algorithms computing a given func-
tion; the closer we can get such a lower bound to an upper bound for some known
algorithm in the class, the better. This is why we briefly discuss here upper bounds
for some specific algorithms.

The euclidean algorithm

Some historians believe that this algorithm lies behind the discovery of incommen-
surable magnitudes by the Pythagoreans. Whether or not this belief is correct,
the notions of greatest common divisor and incommensurability fit into a common
algorithmic setting, and we find this illuminating. It helps to understand why the
number of steps needed to decide coprimeness of two integers goes to infinity as
their ratio approximates a fixed irrational number, as we show in several variants
in later sections. Here we summarize the euclidean algorithm in a way that high-
lights this common context. We refer to [Knuth 1973] for more details on this
“granddaddy of all algorithms”.

Let a, b ∈ R, a > b > 0. We define a strictly decreasing (finite or infinite)
sequence of real numbers

r0 > r1 > r2 > . . .

by r0 := a, r1 := b, ri+1 := rem(ri−1, ri) for i > 0 as long as ri 6= 0. The
sequence stops with last term rl+1 = 0 as soon as this value is reached. We then
put l(a, b) := l = the euclidean length of (a, b).
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Key properties

(i) The sequence is finite if and only if a and b are commensurable, that is, a/b is
rational.

(ii) ri+1 < (1/2)ri−1 for i > 0.

In particular, if a, b ∈ Z, then the sequence is finite with last term rl+1 = 0 with
gcd(a, b) = rl and l = l(a, b) ≤ 2 log b.

This bound is good enough for us. A logarithmic upper bound is indeed realistic
in view of an old result by Lamé which says that the “worst case” occurs when the
inputs are consecutive Fibonacci numbers; see [Knuth 1973]. A precise formulation
is as follows.

Let Fn := nth Fibonacci number: F0 = 0, F1 = 1 and Fn+1 := Fn + Fn−1 for
n > 0. For n > 0, let a, b be integers such that a > b > 0, l(a, b) = n and a is
minimal with these properties. Then a = Fn+1, b = Fn.

Above we mentioned only the remainders ri, but in actual implementations of
the algorithm the integer quotients qi := iq(ri, ri+1) get computed as well, and are
also significant: they are the partial quotients of the continued fraction expansion
of a/b.

The binary (Stein) algorithm

(See Section 4.5.2 of [Knuth 1973]). This algorithm computes (recursively) gcd(a, b)
for positive integers a, b as follows: if a, b are both even, use gcd(a, b) = 2gcd(a/2, b/2);
if a is even and b is odd, use gcd(a, b) = gcd(a/2, b); if a and b are both odd, and
a > b, use gcd(a, b) = gcd((a − b)/2, b); the remaining cases are treated by inter-
changing a and b, and using gcd(a, b) = a if a = b.

The basic arithmetic relations and operations used here are: parity, comparison,
subtraction, multiplication by 2 and division by 2. The binary algorithm is simpler
than the euclidean algorithm, in the sense that each step involves only a linear op-
eration. (Another contrast to the euclidean algorithm is that the binary algorithm
does not extend naturally to real numbers.) In practice, this algorithm can be
competitive with the euclidean algorithm on suitable inputs, especially when these
inputs are given in binary notation.

An easy induction shows that it takes at most 2(log a + log b) steps to compute
gcd(a, b) via the binary algorithm. For a precise statement to this effect we refer
to the beginning of Section 7, which contains an optimality result about the binary
algorithm.

PART 1. THE GREATEST COMMON DIVISOR

Here1 we obtain in a purely arithmetic setting lower bounds on the depth of greatest
common divisor computations. Parts 2 and 3 are needed to deal with relations such
as coprimeness.

1The material in this part improves results of [van den Dries 2003] and is due to van den Dries.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Let a, b ∈ Z. We define a sequence (Gn(a, b)) of finite subsets of Z:

G0(a, b) ⊆ G1(a, b) ⊆ G2(a, b) ⊆ . . .

G0(a, b) := {0, 1, a, b}
Gn+1(a, b) := Gn(a, b) ∪ {x+ y, x− y, iq(x, y), rem(x, y) : x, y ∈ Gn(a, b)}.

We set

g(a, b) := least n such that gcd(a, b) ∈ Gn(a, b).

By Section 2 we have g(a, b) ≤ 2 log b when a > b > 0. In Section 3 we obtain a dou-
ble logarithmic lower bound for g on an explicit sequence of rational approximations
to
√

2.
Next we define an increasing sequence of finite subsets of Z,

G×
0 (a, b) ⊆ G×

1 (a, b) ⊆ G×
2 (a, b) ⊆ . . .

in the same way as we defined the Gn(a, b), with G×
0 (a, b) = {0, 1, a, b}, except that

G×
n+1(a, b) contains also all products xy with x, y ∈ G×

n (a, b). We set

g×(a, b) := least n such that gcd(a, b) ∈ G×
n (a, b).

We have a crude upper bound: g×(a, b) ≤ 2 log log b for a ≥ b ≥ 4, see Section 4 of
[van den Dries 2003].2 In Section 4 we prove a

√
log log lower bound for g×.

Notice that g(a, b) counts the number of steps needed to generate gcd(a, b) from
a, b, 0, 1 where at each step we apply +, −, iq and rem to all integers obtained at
earlier steps; and so it can be argued that every algorithm which computes gcd(a, b)
from these operations will take at least that many steps to produce its output. And
similarly with g×(a, b) when we add multiplication to the given operations: any
algorithm which computes gcd(a, b) from +, −, iq, rem and × will need at least
g×(a, b) steps to produce its output.

3. A LOWER BOUND FOR THE GCD FROM +,−,÷
Throughout this section a, b and h denote positive integers. We prove here the
following lower bound for g at certain inputs:

Theorem 3.1. If a2 − 2b2 = 1, b > 2, then

g(a+ 1, b) >
1
6

log log a.

In this connection we recall (see for example [Rose 1994]) that the positive integer
solutions of the Pell equation x2 − 2y2 = 1 grow exponentially: if (an, bn) is the
nth positive integer solution of this equation (n ≥ 1), then

(a1, b1) = (3, 2), (a2, b2) = (17, 12),

and in general

an =
(3 + 2

√
2)n + (3− 2

√
2)n

2
, bn =

(3 + 2
√

2)n − (3− 2
√

2)n

2
√

2
.

2Note that g× differs slightly from the function g× in [van den Dries 2003].

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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The proof of the theorem proceeds in several lemmas, most of which do not
depend on (a, b) satisfying a2 − 2b2 = 1. The full hypothesis comes in through the
following, easy number-theoretic fact, which is even more important in the next
section:

Lemma 3.2. Suppose that a2 − 2b2 = 1. Then

(i) either a ≡ 1 mod 4 and gcd(a+ 1, b) =
√

2(a+ 1), or
(ii) a ≡ 3 mod 4 and gcd(a+ 1, b) =

√
a+ 1.

Proof. Clearly a is odd and b is even. We first consider the case that a ≡ 1
mod 4. Then we have the factorization b2 = (a−1) · (a+1)/2, with coprime factors
a−1 (which is even), and (a+1)/2 (which is odd). Thus a−1 = u2, (a+1)/2 = v2,
and b = uv, with coprime positive integers u, v. Hence gcd(a + 1, b) = 2v =√

2(a+ 1). The case a ≡ 3 mod 4 is treated similarly.

What we really use from this lemma is the following consequence:

a2 − 2b2 = 1 =⇒
√
b ≤ gcd(a+ 1, b) ≤ 2

√
b. (1)

Another key fact we need is an effective measure of irrationality of
√

2 coming
from a theorem of Liouville [Rose 1994]: for all a and b:

|a
b
−
√

2| > 1
5b2

.

Note also that if a2 − 2b2 = 1, then

0 <
a

b
−
√

2 =
1

ab+ b2
√

2
<

1
b2
.

However, the next four Lemmas 3.3 – 3.6 only use the much weaker

|a
b
−
√

2| < 1
b

(2)

and refer to multiples

α := κa, β := κb,

where κ is any positive integer. For the proof of Theorem 3.1 we just need the case
κ = 1 of the next four lemmas, but other uses of these lemmas require higher values
of κ.

Lemma 3.3. Suppose (2) holds, h ≥ 2, b ≥ 10h2 and f = x + yα + zβ with
integers x, y, z such that |x|, |y|, |z| ≤ h, and y and z not both zero. Then

f = β
(
y
√

2 + z + ε
)
, |ε| < 2h

b
< |y

√
2 + z|.

In particular, f 6= 0 and f has the same sign as y
√

2 + z.

Proof. We have
f

β
=
x

β
+ y

a

b
+ z =

x

β
+ y(

a

b
−
√

2) + y
√

2 + z

= y
√

2 + z + ε, ε :=
x

β
+ y(

a

b
−
√

2),

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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so |ε| < 2h
b . If y 6= 0, then |y

√
2 + z| > 1

5|y| by Liouville’s inequality, which in view
of b ≥ 10h2 yields

|y
√

2 + z| > 1
5h

≥ 2h
b
> |ε|,

If y = 0 and z 6= 0, then obviously |y
√

2 + z| = |z| ≥ 1 > 1
5h > |ε|.

Lemma 3.4. Suppose (2) holds, h ≥ 2, b ≥ 10h4, f = x1 + y1α + z1β, g =
x2 + y2α+ z2β, where xi, yi, zi ∈ Z, |xi|, |y1|, |zi| ≤ h for i = 1, 2 and y2 and z2 are
not both 0 (so g 6= 0 by the lemma above). Then

f

g
=

(y1z2 − y2z1)
√

2 + (z1z2 − 2y1y2)
z2
2 − 2y2

2

+ ε, |ε| ≤ 7.

Proof. Decomposing f and g as in the previous lemma yields

f = β
(
y1
√

2 + z1 + ε1
)
, |ε1| <

2h
b

g = β
(
y2
√

2 + z2 + ε2
)
, |ε2| <

2h
b
.

Hence

f

g
=
y1
√

2 + z1 + ε1

y2
√

2 + z2 + ε2
=

(−y2
√

2 + z2)(y1
√

2 + z1 + ε1)
(−y2

√
2 + z2)(y2

√
2 + z2 + ε2)

=
F + δ1
G+ δ2

, F := (y1z2 − y2z1)
√

2 + (z1z2 − 2y1y2), G := z2
2 − 2y2

2 ,

δ1 := (−y2
√

2 + z2)ε1, δ2 := (−y2
√

2 + z2)ε2.

With δ3 := −δ2
G+δ2

we have 1 + δ3 = G
G+δ2

, so f
g = (F+δ1)(1+δ3)

G , hence

f

g
=
F

G
+ ε, ε :=

δ1(1 + δ3) + Fδ3
G

.

It remains to show that |ε| ≤ 7. Clearly,

|δ1| ≤ (1 +
√

2)h|ε1| ≤ (1 +
√

2)
2h2

b
<

5h2

b
≤ 1

2
,

and similarly, |δ2| < 5h2

b ≤ 1/2. Since G is a nonzero integer we have |G| ≥ 1, so
|G+ δ2| > 1/2, and thus |δ3| < 2|δ2|. Also, |F | ≤ 2h2

√
2 + 3h2 ≤ 6h2. Hence

|ε| ≤ 2δ1 + |Fδ3| ≤ 1 + 6h2 10h2

b
= 1 +

60h4

b
≤ 7.

With α = κa, β = κb as above, let

A(κ;h) := Z ∩
{x+ yα+ zβ

w
: x, y, z, w ∈ Z, |x|, |y|, |z| ≤ h, 0 < w ≤ h

}
and set A(h) := A(1;h).

Lemma 3.5. If (2) holds, h ≥ 2, b ≥ 10h8, and f, g ∈ A(κ;h), then the numbers
f + g, f − g, iq(f, g), rem(f, g) belong to A(κ;h8).
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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It follows that for all a, b satisfying (2) and all ν ∈ N,

[h = 223ν

& b ≥ 10h] =⇒ [Gν(a+ 1, b) ⊆ A(h) & Gν(α, β) ⊆ A(κ;h)]. (3)

Proof. Assume (2), h ≥ 2, b ≥ 10h8, and f, g ∈ A(κ;h), g 6= 0. Write

f =
x1 + y1α+ z1β

w1
and g =

x2 + y2α+ z2β

w2

where xi, yi, zi, wi ∈ Z, |xi|, |yi|, |zi| ≤ h, 0 < wi ≤ h for i = 1, 2. Adding these
fractions in the usual way shows that f + g, f − g ∈ A(κ; 2h2) ⊆ A(κ;h8). As to
iq(f, g) and rem(f, g), consider first the case that y2 6= 0 or z2 6= 0. Since

f

g
=
w2x1 + w2y1α+ w2z1β

w1x2 + w1y2α+ w1z2β
,

the previous lemma with h2 for h yields

f

g
=
w2

w1

(y2z1 − y1z2)
√

2 + (2y1y2 − z1z2)
2y2

2 − z2
2

+ ε, |ε| ≤ 7.

Hence

|iq(f, g)| ≤ |w2|
(
|y2z1 − y1z2|

√
2 + |2y1y2 − z1z2|

)
+ 8

≤ h(2
√

2 + 3)h2 + 8 ≤ 7h3.

In particular, iq(f, g) ∈ A(h8). Also

rem(f, g) = f − iq(f, g)g =
X + Y α+ Zβ

w1w2
, with

X = w2x1 − iq(f, g)w1x2

Y = w2y1 − iq(f, g)w1y2

Z = w2z1 − iq(f, g)w1z2.

Hence |X|, |Y |, |Z| ≤ h2 + 7h5 ≤ h8. Thus rem(f, g) ∈ A(κ;h8).
Next, suppose that y2 = z2 = 0, so |rem(f, g)| < |g| ≤ h, in particular rem(f, g) ∈

A(κ;h) ⊆ A(κ;h8). Also

iq(f, g) =
f − rem(f, g)

g
=

(x1 − rem(f, g)w1) + y1α+ z1β

gw1
,

which yields iq(f, g) ∈ A(κ;h+ h2) ⊆ A(κ;h8).

Now (3) follows by an easy induction on ν.

Lemma 3.6. Suppose (2) holds, h ≥ 2, b ≥ 400h4, and f ∈ A(κ;h). Then

|f | <
√
b or |f | > 2

√
b.

Proof. Write f = x+yα+zβ
w with x, y, z, w ∈ Z, |x|, |y|, |z| ≤ h, 0 < w ≤ h. If

y = z = 0, then |f | ≤ h <
√
b. Suppose y 6= 0 or z 6= 0. Then x + yα + zβ =

β(y
√

2 + z + ε) as in lemma 3.3, so |y
√

2 + z| > 1
5h and |ε| ≤ 2h

b < 1
10h . Hence

|f | = |β(y
√

2 + z + ε)
w

| > b

10h2
≥ 2

√
b

where the last inequality uses b ≥ 400h4.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.



10 · L. van den Dries and Y. N. Moschovakis

Proof of Theorem 3.1. Suppose a2 − 2b2 = 1, b > 2, and for any ν ∈ N, let
h := 223ν

. By Lemma 3.5,

b ≥ 10h =⇒ Gν(a+ 1, b) ⊆ A(h).

With the key inequality (1), Lemma 3.6, and b > a/2, this gives

a ≥ 800h4 =⇒ gcd(a+ 1, b) /∈ Gν(a+ 1, b) =⇒ g(a+ 1, b) > ν.

Thus with ν := g(a+ 1, b) we have a < 800h4. Since b > 2 we have ν ≥ 1. Taking
logarithms, the inequality a < 800h4 yields

log a < log 800 + 4 log h = log 800 + 4 · 23ν < 10 + 4 · 23ν < 26ν ,

hence log log a < 6ν, which completes the proof of Theorem 3.1.

Other inputs.

The next theorem gives a similar lower bound for g on a much bigger set of inputs.
The inputs of Theorem 3.1 grow exponentially and are thus very sparse, while those
in Theorem 3.8 have subquadratic growth. We also need the inputs of Theorem 3.8
in Section 9 to deal with coprimeness.

Lemma 3.7. Suppose (2) holds, b ≥ 12h2 and κ > h. Then κ /∈ A(κ;h).

Proof. Towards a contradiction, assume κ ∈ A(κ;h), so κ = x+yα+zβ
w with

w, x, y, z ∈ Z, w 6= 0 and |w|, |x|, |y|, |z| ≤ h. Then (x− κw) + yα + zβ = 0, so, as
in the proof of Lemma 3.3,

x

κb
− w

b
+ y(

a

b
−
√

2) + y
√

2 + z = 0,

| x
κb

− w

b
+ y(

a

b
−
√

2)| < 1
b

+
2h
b
<

1
5h
.

But |y
√

2 + z| > 1
5h if y 6= 0 or z 6= 0. Therefore y = z = 0, hence x = κw, so

|x| > h, a contradiction.

Theorem 3.8. Suppose (2) holds with a ⊥ b and a ≥ 2256. Let ν ∈ N be
maximal with a ≥ 20h2 where h := 223ν

. Then

g(α, β) >
1
4

log logα,

where κ := h+ 1, α := κa, and β := κb.

Proof. We have a ≥ 20 · 216, so ν ≥ 1 and b ≥ 12h2. From gcd(α, β) = κ, and
κ /∈ A(κ;h), we conclude g(α, β) ≥ ν + 1 by Lemma 3.5. Also,

a < 20 ·
(
223(ν+1))2 = 20 · 223ν+4

,

so α = κa < 20 ·
(
223ν

+ 1
)
· 223ν+4

, so

logα < log 20 + 23ν + 1 + 23ν+4,

hence log logα < 3ν + 5, so

g(α, β) ≥ ν + 1 >
1
3

log logα− 2
3
≥ 1

4
log logα

where the last inequality uses that a ≥ 2256.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.



Arithmetic Complexity · 11

We claim that the inputs α in this theorem have subquadratic growth. To see this,
let a be any sufficiently large prime number, and then take b such that |a−b

√
2| < 1,

so a ⊥ b. It remains to observe that

α = aκ ≤ a(1 +
√
a/20) ≤ a3/2,

and that the nth prime number is ≤ n11/10 for large enough n.
We can increase the set of inputs further by allowing a real parameter ρ:

Theorem 3.9. Let 0 < ρ ≤ 1. Then there is a b(ρ) > 0 such that for all a, b, if
a > b > b(ρ), |

√
2− a/b| < 1/bρ, and a ⊥ b, then

g(α, β) >
1
4

log log α, where α = κa, β = κb, κ := 1 + b
√
aρ/20c.

Sketch of Proof. First extend the lemmas in this section by taking bρ instead of b
in the inequalities that involve b; next, for large enough a, b as in the hypothesis of
the theorem, take ν ∈ N maximal with aρ ≥ 20h2 where h := 223ν

, and then follow
the proof of Theorem 3.8.

Open problem

Do there exist sequences (αn) and (βn) of positive integers and a real C > 0 such
that αn →∞ and g(αn, βn) > C logαn for all n? A positive solution would answer
one version of the motivating question in the introduction.

4. A LOWER BOUND FOR THE GCD FROM +,−,÷,×
In this section we shall prove the following result:

Theorem 4.1. If a and b are positive integers such that a2 − 2b2 = 1, then

g×(a+ 1, b) ≥ 1
4

√
log log b.

For a polynomial f(Y ) = a0 + a1Y + · · ·+ anY
n ∈ R[Y ] (all ai ∈ R) we put

‖f‖ = max
i
|ai|.

Note that then for f, g ∈ R[Y ] with deg f ≤ n or deg g ≤ n we have

‖f + g‖ ≤ ‖f‖+ ‖g‖, ‖fg‖ ≤ (n+ 1) · ‖f‖ · ‖g‖.

For the proof of the theorem we introduce distinct indeterminates X and Y as place
holders for numbers a and b as above. Consider the integral domain

R := R[X,Y ]/(X2 − 2Y 2 − 1),

so R is the coordinate ring over R of the hyperbola X2 − 2Y 2 = 1. Let x and y
denote the images of X and Y in R. The canonical map R[X,Y ] → R maps the
subring R[Y ] of R[X,Y ] isomorphically onto the subring R[y] of R, and

R = R[x, y] = R[y] + R[y]x, x2 = 2y2 + 1.

For F ∈ R, take the unique f, g ∈ R[Y ] with F = f(y) + g(y)x, and set

‖F‖ = max(‖f‖, ‖g‖).
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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We equip the fraction field R(x, y) of R with the unique ordering that makes it an
ordered field with y > R and x > 0. Note that then

x = y
√

2(1 + εy−1),

where ε ∈ R(x, y) is an infinitesimal, that is, |ε| < 1/n for all n > 0. We are
actually going to work inside the subring Q[x, y] = Q[y] + Q[y]x of R, and on this
subring the ordering is easy to make explicit: let F ∈ Q[x, y], F 6= 0, and write
F = f(y) + g(y)x with f, g ∈ Q[Y ]. Let d := max(deg f, 1 + deg g) ∈ N, and let
r, s ∈ Q be the coefficients of Y d in f and Y d−1 in g, respectively. (So d = 0 means
f = r 6= 0 and g = s = 0.) Then F = (r + s

√
2)yd(1 + εy−1) with infinitesimal

ε ∈ R(x, y), so

F > 0 ⇐⇒ r + s
√

2 > 0.

This suggests defining a degree function on Q[x, y] by

degF := max(deg f, 1 + deg g) ∈ N for F 6= 0, deg 0 := −∞.

Note that then, for F,G ∈ Q[x, y]:

deg(FG) = degF + degG, degF ≤ 0 ⇐⇒ F ∈ Q.

We define the set P (n, h) ⊆ Q[x, y] as follows:

P (n, h) :=
{F
c

: F ∈ Z[x, y],degF ≤ n, ‖F‖ ≤ h, c ∈ Z, 0 < c ≤ h
}
.

Below, h is a positive integer, and a, b are positive integers such that a2−2b2 = 1.
Then, writing F ∈ R as F = f(y) + g(y)x with f, g ∈ R[Y ], we have the evaluation
map F 7→ F (a, b) := f(b) + g(b)a : R→ R. This map respects the ring operations;
it also respects the ordering when restricted to P (n, h) with h small compared to
a:

Lemma 4.2. If b ≥ 20h2 and F ∈ P (n, h), F > 0, then F (a, b) > 0. If b ≥ 80h4,
then the evaluation map F 7→ F (a, b) : P (n, h) → Q is injective and preserves
order: F,G ∈ P (n, h), F < G =⇒ F (a, b) < G(a, b).

Proof. Assume that b ≥ 20h2. We begin with an easy bound:
Suppose r, s ∈ Z are not both zero, and |r|, |s| ≤ h. Then

1
6h

< |r + s
a

b
| < 3h, r + s

√
2 > 0 =⇒ r + s

a

b
> 0.

To see this, note that 1
5b2 < |

√
2− a

b | <
1

2b2 , so

|r + s
a

b
| ≤ |r + s

√
2|+ |s||

√
2− a

b
| < 3h.

Hence |(r + sab )(r − sab | = |r2 − s2 a
2

b2 | = |r2 − 2s2 − s2

b2 | >
1
2 , since |r2 − 2s2| ≥ 1.

Thus |r + sab | >
1

2|r−sa/b| >
1
6h . The remaining implication follows from

|(r + s
√

2)− (r + s
a

b
)| = |s||

√
2− a

b
| ≤ h

2b2
<

1
6h

< |r + s
a

b
|.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Next, let 0 < F ∈ Z[y] + Z[y]x, with ‖F‖ ≤ h, and put d := degF . The case
d = 0 is trivial, so we assume d > 0. Write F = f(y) + g(y)x, with

f = rdY
d + · · ·+ r0 ∈ Z[Y ], g = sd−1Y

d−1 + · · ·+ s0 ∈ Z[Y ].

From F > 0 we obtain rd + sd−1

√
2 > 0, and hence rd + sd−1

a
b > 0. Setting

s−1 := 0, we have:

F (a, b) =
d∑
i=0

cib
i, ci := ri + si−1

a

b
for i = 0, . . . , d.

The polynomial
∑
ciY

i ∈ R[Y ] has leading coefficient cd = rd + sd−1
a
b , which is

positive, so this polynomial takes only positive values for real arguments > 1 +
max{ |ci|

|cd| : 0 ≤ i < d}; this last quantity is by the bound above ≤ 1 + 18h2 < 20h2,

so F (a, b) =
∑d
i=0 cib

i > 0.
The second part of the lemma follows from the first part by noting that P (n, h)+

P (n, h) ⊆ P (n, 2h2), and 20(2h2)2 = 80h4.

Lemma 4.3. Let h ≥ n ≥ 1, b ≥ 210h4, and G ∈ P (n, h). Then

degG ≤ 0 =⇒ |G(a, b)| <
√
b,

degG > 0 =⇒ |G(a, b)| > 2
√
b.

Proof. If degG ≤ 0, then G ∈ Q and |G| ≤ h <
√
b. Suppose degG = d > 0

with d ≤ n. So G = f(y)+g(y)x
c with f, g ∈ Z[Y ],

‖f‖, ‖g‖ ≤ h, max(deg f, 1 + deg g) = d, c ∈ Z, 0 < c ≤ h.

Put F := f(y) + g(y)x and write

f = rdY
d + · · ·+ r0 ∈ Z[Y ], r0, . . . , rd ∈ Z,

g = sd−1Y
d−1 + · · ·+ s0 ∈ Z[Y ], s0, . . . , sd−1 ∈ Z.

Then we have, with the notations in the proof of Lemma 4.2,

F (a, b) =
d∑
i=0

cib
i, ci := ri + si−1

a

b
for i = 0, . . . , d,

where s−1 = 0. Hence

|
d−1∑
i=0

cib
i| ≤ 3h

d−1∑
i=0

bi ≤ 3nhbd−1,

while |cdbd| > bd

6h , and thus

|G(a, b)| ≥ |F (a, b)|
h

≥
(
bd/6h

)
− 3nhbd−1

h

= bd
( 1
6h2

− 3n
b

)
> 2

√
b.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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Put A(n, h) := Z ∩ {F (a, b) : F ∈ P (n, h)}. It is easy to check that
(i) A(n, h) +A(n, h) ⊆ A(n, 2h2),
(ii) A(n, h) ·A(n, h) ⊆ A(2n, (4n+ 1)h2).

Lemma 4.4. Let n ≥ 1, h ≥ 4n+ 1, b ≥ (2h)50n, and s, t ∈ A(n, h). Then

iq(s, t), rem(s, t) ∈ A
(
3n− 1, (2h)11n

)
.

Proof. Write s = f(b)+g(b)a
c and t = k(b)+l(b)a

d with f, g, k, l ∈ Z[Y ],

‖f‖, ‖g‖, ‖k‖, ‖l‖ ≤ h, deg f,deg k ≤ n, deg g,deg l ≤ n− 1,

and c, d ∈ Z, 0 < c, d ≤ h. The conclusion of the lemma holds trivially if t = 0, so
we shall assume below that t 6= 0.

We first treat the simple case deg(k(y) + l(y)x) = 0. Then l = 0 and k ∈ Z, so
|t| ≤ h, hence |rem(s, t)| < h, and thus

iq(s, t) =
s− rem(s, t)

t
=

(
f(b)− rem(s, t)c

)
+ g(b)a

ct
,

from which we get

iq(s, t) ∈ A(n, h+ h2) ⊆ A
(
3n− 1, (2h)11n

)
,

rem(s, t) ∈ A(0, h) ⊆ A
(
3n− 1, (2h)11n

)
.

For the rest of the proof we assume that deg(k(y) + l(y)x) > 0. Multiplying s
and t by k(b)− l(b)a yields

s

t
=
d[f(b)k(b)− g(b)l(b)(2b2 + 1) +

(
g(b)k(b)− f(b)l(b)

)
a]

c[k(b)2 − l(b)2(2b2 + 1)]
.

So with N := 2n and H := (4n+1)h3, we have s
t = φ(b)+ψ(b)a

θ(b) where φ, ψ, θ ∈ Z[Y ],
θ(b) 6= 0, and

deg φ ≤ N, degψ ≤ N − 1, 0 < deg θ = 2deg(k(y) + l(y)x) ≤ N,

‖φ‖ ≤ H, ‖ψ‖ ≤ H, ‖θ‖ ≤ H.

We can also assume that the leading coefficient ` of θ is positive.
If deg(φ(y) +ψ(y)x) < deg θ, then |φ(b) +ψ(b)a| < θ(b) by Lemma 4.2, so either

iq(s, t) = 0 and rem(s, t) = s, or iq(s, t) = −1 and rem(s, t) = s + t, and in either
case we have the desired result. For the rest of the proof we can therefore assume
that

N ≥ max{deg φ, 1 + degψ} ≥ deg θ > 0.

Pseudo-division of φ and ψ by θ—see Chapter 6 in [von zur Gathen and Gerhard
1999]—gives

`Nφ = q1θ + r1, `Nψ = q2θ + r2

where qi, ri ∈ Z[Y ], deg ri < deg θ for i = 1, 2, and

‖q1‖ ≤ 2N−1HN , ‖r1‖ ≤ 2NHN+1,

‖q2‖ ≤ 2N−2HN , ‖r2‖ ≤ 2N−1HN+1.

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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(Details: if deg φ < deg θ, put q1 = 0 and r1 = `Nφ; if deg φ ≥ deg θ, then
0 ≤ deg φ− deg θ ≤ N − 1, and we can use the bounds of Exercise 6.44 on p. 193
of [von zur Gathen and Gerhard 1999]; if degψ < deg θ, put q2 = 0 and r2 = `Nψ;
if degψ ≥ deg θ, then 0 ≤ degψ− deg θ ≤ N − 2, and we can use again the bounds
of that same exercise.) Hence

`Ns

t
= q1(b) + q2(b)a+

r1(b) + r2(b)a
θ(b)

.

Let c2 be the coefficient of Y (deg θ)−1 in r2. Then

|c2
√

2| < 2N−1HN+1
√

2 < 2NHN+1` = leading coefficient of 2NHN+1θ.

Thus by Lemma 4.3 and the way Q[x, y] is ordered, we have

|r1(b) + r2(b)a| < 2NHN+1θ(b),

provided b ≥ 80
(
2NHN+2)4. This last inequality on b follows from our assumption

b ≥ (2h)50n because (2h)50n ≥ 80
(
2NHN+2)4. (To derive this last inequality, note

that it is equivalent to

250nh50n ≥ 80 · 28n(4n+ 1)8n+8h24n+24,

that is, to 242nh26n−24 ≥ 80 · (4n+ 1)8n+8. In view of h ≥ 4n+ 1, it is enough that
242n(4n + 1)18n−32 ≥ 80, and this is easily verified for n = 1, and is obvious for
n > 1.) From |r1(b) + r2(b)a| < 2NHN+1θ(b) we get

|r1(b) + r2(b)a
θ(b)

| < 2NHN+1.

Therefore, with ρ := b r1(b)+r2(b)aθ(b) c:

iq(`Ns, t) = (q1(b) + ρ) + q2(b)a, |ρ| ≤ 2NHN+1.

Now iq(s, t) = iq(`Ns,t)−i
`N

with i ∈ {0, . . . , `N − 1}, and `N ≤ HN , so

iq(s, t) =
(q1(b) + ρ− i) + q2(b)a

`N
,

‖q1 + ρ− i‖ ≤ 2N−1HN + 2NHN+1 +HN .

Next, for the remainder we have

rem(s, t) = s− iq(s, t)t

=
f(b) + g(b)a

c
− [(q1(b) + ρ− i) + q2(b)a][k(b) + l(b)a]

d`N

=
d`Nf(b) + d`Ng(b)a

cd`N
− (q1(b) + ρ− i)k(b) + q2(b)l(b)(2b2 + 1)

d`N

− [(q1(b) + ρ− i)l(b) + q2(b)k(b)]a
d`N

=
d`Nf(b)− c

(
q1(b) + ρ− i

)
k(b)− cq2(b)l(b)(2b2 + 1)

cd`N

+
[d`Ng(b)− c

(
q1(b) + ρ− i

)
l(b)− cq2(b)k(b)]a

cd`N
.
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Straightforward estimates using the last expression and earlier bounds yield

rem(s, t) ∈ A(3n− 1, (n+ 1)2N+1h2HN+1).

Thus rem(s, t) ∈ A(3n−1, (2h)11n), provided (n+1)2N+1h2HN+1 ≤ (2h)11n. This
last inequality is equivalent to

(n+ 1)22n+1(4n+ 1)2n+1h6n+5 ≤ 211nh11n,

that is, to (n+ 1)(4n+ 1)2n+1 ≤ 29n−1h5n−5, which in view of h ≥ 4n+ 1 holds if
n + 1 ≤ 29n−1(4n + 1)3n−6: this last inequality is easily verified for n = 1, and is
obvious for n > 1.

Corollary 4.5. Suppose that b ≥ 2210m2

. Then

G×
m(a+ 1, b) ⊆ A(3m, 224m2+4

),

Also, gcd(a+ 1, b) /∈ G×
m(a+ 1, b) for m > 0.

Proof. The inclusion clearly holds for m = 0. Next, we have

224(m+1)2+4
>

(
2 · 224m2+4)11·3m

2210(m+1)2

>
(
2 · 224m2+4)50·3m

,

inequalities that are best checked for m = 0 by inspection, and are easily proved
for m > 0. With these inequalities, the inclusion follows by induction on m using
the previous lemma.

In view of the inequality right after the proof of Lemma 3.2, the claim about
gcd(a + 1, b) follows from Lemma 4.3 (with n := 3m, h := 224m2+4

, m > 0). Thus
gcd(a+ 1, b) /∈ A(n, h).

Proof of Theorem 4.1. The non-membership result about gcd(a+1, b) in this

corollary means that g×(a+1, b) > m whenever b ≥ 2210m2

, m > 0, that is, whenever
b ≥ 2210

and 0 < m ≤ 1√
10

√
log log b. It follows that g×(a + 1, b) > 1√

10

√
log log b

if b ≥ 2210
, which yields the theorem for b ≥ 2210

; the result holds trivially for
2 ≤ b < 2210

.

PART 2. LOWER BOUNDS FOR (NON-UNIFORM) TERM COMPLEXITY

The basic idea in Part 1 was that the computation of gcd(α, β) cannot take fewer
steps than those needed to construct the value gcd(α, β) from α and β using the
primitives, cf. the remarks at the end of the introduction to Part 1. In order to
derive lower bounds for arithmetic decision problems which take values in {0, 1},
we require more precise notions about algorithms. We introduce these in Sec-
tion 5 for simple algorithms given by explicit terms with conditionals and equality
tests, and we derive lower bounds for these algorithms over initial segments of N
in Sections 6 – 10. In Part 3 we derive corresponding uniform lower bounds for
algorithms expressed by recursive programs. The idea in both of these parts is to
establish lower bounds on complexity using embeddings, roughly as automorphisms
are used to establish non-definability in a first order language.
ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.
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In connection with the non-uniform term algorithms of this Part, it is worth
noting that, because of the “lookup” algorithm, we cannot expect better than
logarithmic lower bounds, from any but the most trivial primitives. Lemma 5.2
states a precise version of this well-known fact.

5. COMPUTATION IN PARTIAL ALGEBRAS AND TERM-COMPLEXITY

An adequate notion of computation demands that the function computed by an
algorithm may be partial as opposed to total . Moreover, certain basic functions
like “division by 2 on Z” are partial by nature. We write f : X ⇀ Y to indicate that
f is a partial function from X to Y , that is, f is a function with domain D(f) ⊆ X
and codomain Y . This includes of course (total) functions f : X → Y . We write
f(x)↓ (read “f(x) converges”) to indicate that x ∈ D(f). In some places, we will
also appeal to the natural partial ordering of partial functions,

f v g ⇐⇒ (∀x ∈ X)[f(x)↓ =⇒ f(x) = f(y)] (f, g : X ⇀ Y ).

Partial algebras

Let Φ be a signature, that is, a set of function symbols, each equipped with an arity
in N, and let

A =
(
A, 0A, 1A, (φA)φ∈Φ

)
,

a Φ-algebra with 0, 1; thus 0A and 1A are distinguished elements of the set A with
0A 6= 1A, and φA : An ⇀ A is a partial n-ary function on A for φ ∈ Φ of arity n.

In this setting we deal with relations on A via their (total) characteristic func-
tions: the characteristic function χR : An → {0, 1} ⊆ A of an n-ary relation R ⊆ An

is given by χR(a) = 1 if a ∈ R and χR(a) = 0 otherwise.
We often omit the superscript A in 0A, 1A and φA when no confusion with the

corresponding symbols 0, 1 and φ (for φ ∈ Φ) is likely. The distinction between
these symbols and their interpretations in A, whether or not shown on paper,
should of course be kept in mind.

Examples

The two algebras with 0, 1 encountered so far are

Z(1) :=
(
Z, 0, 1,+,−, iq, rem, <

)
and

Z(2) :=
(
Z, 0, 1,+,−, ·, iq, rem, <

)
. (4)

In referring to these structures as algebras we mean that < designates here the
characteristic function of the usual (strict) ordering on Z.

For each integer d > 0, let iq(−, d) denote the function x 7→ iq(x, d) : Z → Z. In
the next section we consider for each integer D > 1 the following algebra with 0, 1:

Z(divD) :=
(
Z, 0, 1,+,−, iq(−, 1), iq(−, 2), . . . , iq(−, D), <

)
. (5)

The algebras Z(1), Z(2) and Z(divD) are infinite and total, but their finite subalge-
bras (defined later in this section) are genuinely partial, and play a key role in the
rest of the paper.
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Objectifying the undefined

For each set A, choose an object ↑ /∈ A to represent “the undefined”, and let
A ↑ := A ∪ { ↑ }. Each partial function f : An ⇀ A extends naturally to a (total)
function

f ↑ : (A ↑ )n → A ↑
by setting f ↑ (a) = ↑ for each a ∈ An↑ \D(f). We call f ↑ the up-arrow extension

of f . Notice that for a ∈ An, f(a)↓ ⇐⇒ f ↑ (a) ∈ A.

Logical symbols

We introduce two symbols Eq and Co. The equality symbol Eq is interpreted in A
by the function

EqA : A2
↑ → {0, 1, ↑ } ⊆ A ↑

given by EqA(a, b) = 1 if a, b ∈ A and a = b, EqA(a, b) = 0 if a, b ∈ A and a 6= b,
and EqA(a, b) = ↑ if a = ↑ or b = ↑ . The conditional symbol Co is thought of
as “if . . . , then . . . , else . . . ” and it is interpreted in A by the ternary function
CoA : A3

↑ → A ↑ given by

CoA(a, b, c) = b if a = 1, CoA(a, b, c) = c if a ∈ A, a 6= 1,

CoA(a, b, c) = ↑ if a = ↑ .

Again, we often omit the superscript A in EqA and CoA when no confusion with
the symbols Eq and Co is likely.

Notice that EqA is the up-arrow extension of the characteristic function of the
equality relation on A, but CoA is not the up-arrow extension of any partial function
on A, because it takes values in A on some inputs which include the object ↑ , e.g.,
Co(1, 0, ↑ ) = 0. (In computer science terminology, Co is a non-strict function
on A ↑ .) We consider 0, 1,Eq,Co as four distinct (logical) symbols, not among
the symbols in Φ and independent of A. In constructing Φ-terms (see below) we
consider 0, 1 as constant (nullary) function symbols, Eq as a binary function symbol,
and Co as a ternary function symbol.

In addition we fix once and for all infinitely many variables: symbols of arity 0,
not in the set {0, 1,Eq,Co} ∪ Φ.

Terms with equality tests and conditionals

A Φ-term with equality tests and conditionals is a word on the alphabet

{variables} ∪ {0, 1,Eq,Co} ∪ Φ

formed according to the usual syntactic rules that take into account the arity of
the symbols.

For brevity we write “Φ-term” instead of “Φ-term with equality tests and condi-
tionals”. The length of a Φ-term is its length as a word. So the Φ-terms of length
one are 0, 1 and the words x and φ where x is a variable and φ ∈ Φ has arity 0; the
Φ-terms of length > 1 are exactly the words φt1 . . . tn where φ ∈ {Eq,Co} ∪ Φ has
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arity n > 0 and t1, . . . , tn are Φ-terms. For better readability we often write such
a Φ-term φt1 . . . tn as φ(t1, . . . , tn).

Term evaluation

Below x, y denote distinct variables, ~x denotes a tuple (x1, . . . , xm) of distinct vari-
ables, and so does ~y = (y1, . . . , yn). In referring to a Φ-term t(~x) we mean a Φ-term
t together with a tuple ~x = (x1, . . . , xm) such that all variables occurring in t are
among x1, . . . , xm. Such a Φ-term t(~x) defines a function

~a 7→ t(~a) : Am↑ → A ↑ , ~a = (a1, . . . , am)

as follows: if t is xi, then t(~a) := ai; if t is 0, 1, then t(~a) := 0, 1, respec-
tively; if t is Eq(t1, t2), then t(~a) := Eq(t1(~a), t2(~a)); if t = Co(t1, t2, t3), then
t(~a) := Co(t1(~a), t2(~a), t3(~a)); if t = φ(t1, . . . , tn) with n-ary φ ∈ Φ, then t(~a) :=
φ ↑ (t1(~a), . . . , tn(~a)).

We only care about the value of t(~a) when all components ai lie in A, but have
to allow ai = ↑ because of the inductive nature of the definition. If it is necessary
to indicate the Φ-algebra A in which t(~a) is computed, we write tA(~a) instead of
t(~a).

Given a Φ-algebra A, we also refer to a Φ-term t(~x) as an A-term.

Boolean operations

We can express boolean operations by Φ-terms as follows. Let ¬(x), ∨(x, y) and
∧(x, y) be the Φ-terms defined by

¬(x) := Co(x, 0, 1), ∨(x, y) := Co(x, 1, y), ∧(x, y) := Co(x, y, 0).

Then we have, with 0, 1 ∈ A:

¬(0) = 1, ¬(1) = 0,
∨(0, 0) = 0, ∨(0, 1) = ∨(1, 0) = ∨(1, 1) = 1,
∧(0, 0) = ∧(0, 1) = ∧(1, 0) = 0, ∧(1, 1) = 1.

Terms as algorithms

Let t(~x) be an A-term, g : Am↑ → A ↑ a function on the up-arrow extension of A,

and S ⊆ Am↑ . We say that t(~x) computes g on S if t(~a) = g(~a) for all ~a ∈ S.
We are primarily interested in the case when S ⊆ Am and g = f ↑ is the up-arrow

extension of a partial function f : Am ⇀ A, in which case we will say simply that
“t(~x) computes f on S”. (But it is useful to have the more general notion.) If
S ⊆ Am and f is the characteristic function of an m-ary relation R ⊆ Am, we also
say that “t(~x) decides” (rather than “computes”) R on S.

We think of terms as expressing algorithms of a particularly explicit nature. In
Part 3 we will consider McCarthy programs which express more general (recursive)
algorithms; by Proposition 11.4 terms define exactly the recursive algorithms of
bounded complexity.
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Depth and arithmetic depth

The depth of a Φ-term t is the natural number defined inductively as follows:

depth(t) := 0 if t is 0, 1 or a variable,
depth(t) := 1 + max{depth(t1), . . . ,depth(tn)} if t = φ(t1, . . . , tn)

where φ ∈ {Eq,Co} ∪ Φ has arity n.

Here and below we set max ∅ := 0, so depth(t) = 1 if t is a constant symbol in Φ.
We modify this depth to arithmetic depth by taking into account only function

symbols in Φ. The arithmetic depth of a Φ-term t is the natural number defined
inductively as follows:

deptha(t) := 0 if t is a variable or 0 or 1,
deptha(t) := max{deptha(t1), . . . ,deptha(tn)}

if t = φ(t1, . . . , tn) where φ ∈ {Eq,Co} has arity n,
deptha(t) := 1 + max{deptha(t1), . . . ,deptha(tn)}

if t = φ(t1, . . . , tn) where φ ∈ Φ has arity n.

In particular, deptha(t) = 1 if t is a constant symbol in Φ.

Embeddings

Let B = (B, 0, 1, . . . ) be a second Φ-algebra.

A map ı : A→ B is said to be an embedding of A into B if ı(0) = 0, ı(1) = 1 and
for each φ ∈ Φ of arity n and ~a ∈ D(φA) we have ı(~a) :=

(
ı(a1), . . . , ı(an)

)
∈ D(φB)

and ı
(
φ(~a)

)
= φ

(
ı(~a)

)
. We write ı : A � B to indicate that ı is an embedding

of A into B. One easily verifies that for such an embedding ı, a Φ-term t(~x), and
~a ∈ Am, we have

tA(~a)↓ =⇒ ı
(
tA(~a)

)
= tB

(
ı(~a)

)
.

In case A ⊆ B and the inclusion map A ↪→ B is an embedding A � B we call A
a subalgebra of B. For each set U ⊆ A with 0, 1 ∈ U we obtain a subalgebra A �U
of A by taking U as its underlying set, and requiring D(φA �U ) = {~a ∈ Un : ~a ∈
D(φA), φA(~a) ∈ U} for each φ ∈ Φ of arity n. (Notice that φA�U may not be a
total function, even if φA is total.)

All proofs of lower bounds in later sections use embeddings of algebras A �U into
A which are not given by the inclusion U ↪→ A.

Composition of terms

We compose terms as follows: given a Φ-term t(~x) and Φ-terms τ1(~y), . . . , τm(~y),
we let t(τ1(~y), . . . , τm(~y)) be the Φ-term t∗(~y) obtained from t by replacing each
occurrence of a variable xi in t by τi. One verifies easily by induction on depth(t)
that then

t∗(~b) = t(τ1(~b), . . . , τm(~b)) for ~b ∈ An↑
depth(t(τ1(~y), . . . , τm(~y)) ≤ depth(t) + max{depth(τ1), . . . ,depth(τm)}

deptha(t(τ1(~y), . . . , τm(~y)) ≤ deptha(t) + max{deptha(τ1), . . . ,deptha(τm)}
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Arithmetic depth and generation

For X ⊆ A and k ∈ N we define the set GA
k (X) ⊆ A generated by X in k steps in

the obvious way:

GA
0 (X) :={0, 1} ∪X

GA
k+1(X) :=GA

k (X) ∪ {φ(~b) : φ ∈ Φ has arity n, ~b ∈ D(φ) ∩GA
k (X)n}.

Note that GA
0 (X) ⊆ GA

1 (X) ⊆ GA
2 (X) ⊆ . . . , and GA

k (GA
` (X)) = GA

k+`(X).
Let ~a = (a1, . . . , am) ∈ Am and put GA

k (~a) := GA
k ({a1, . . . , am}). An easy

induction on k yields

Lemma 5.1. GA
k (~a) = A ∩ {t(~a) : t(~x) is a A-term with deptha(t) ≤ k}. If

GA
k (~a) ⊆ U ⊆ A, then for each Φ-term t(~x) with deptha(t) ≤ k we have tA �U (~a) =

tA(~a).

The second part of this lemma states a useful absoluteness property. Note that
with the notations from Sections 3 and 4 we have

G
Z(1)
k (a, b) = Gk(a, b), G

Z(2)
k (a, b) = G×

k (a, b), a, b ∈ Z.

Examples

(i) Let A = (N, 0, 1,+) and a ∈ N>0. We claim that there is an A-term t(x) such
that t(a) = a2 and deptha(t) ≤ 2 log a.

To see this, write a = 2e(0) + · · · + 2e(k) with integers 0 ≤ e(0) < · · · < e(k),
so k ≤ e(k) ≤ log a < e(k) + 1. Iterated doubling yields 2ea ∈ GA

e (a) for all
e ∈ N, in particular, 2e(0)a, . . . , 2e(k)a ∈ GA

e(k)(a). Adding these numbers yields
a2 ∈ GA

e(k)+k(a). Now use that e(k) + k ≤ 2 log a.

This upper bound is matched by a similar lower bound: deptha(t) ≥ log a for
each A-term t(x) such that t(a) = a2. (To see this, note that by induction on
e ∈ N we have maxGA

e (a) = 2ea.) This lower bound remains valid for A =
(Z, 0, 1,+,−, iq, rem, gcd, <) and a ∈ N>0 because addition and subtraction are the
only primitives of A that can output numbers larger in absolute value than the
inputs.

(ii) In connection with A = Z(1), we can reformulate Theorem 3.1 as saying
that whenever a, b are integers > 2 such that a2 − 2b2 = 1, then any Z(1)-term
t(x, y) such that t(a+1, b) = gcd(a+1, b) must have arithmetic depth greater than
1
6 log log a. Theorem 4.1 can be reformulated in a similar way with lower bounds
on the arithmetic depth of Z(2)-terms computing the gcd of certain integers.

Lower bound arguments as in Example (i) are too crude to deal with arithmetic
functions like b

√
nc. More refined results on growth functions as in Example (ii)

still cannot handle decision problems where 0 and 1 are the only values to be
determined. For such problems we need a more subtle approach.

Term-complexity

We define two non-uniform measures of complexity, one based on depth, the other
on arithmetic depth.
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Let f : Am ⇀ A be a partial function and S ⊆ Am. (In applications S will be
finite.) If there is an A-term t(~x) that computes f on S, then we let cA(f, S) be
the minimal depth of such a term, and call it the term-complexity of computing f
on S in A. If there is no such term we put cA(f, S) = ∞. If f is the characteristic
function of an m-ary relation R ⊆ Am, we also write cA(R,S) for cA(f, S) and call
it the term-complexity of deciding R on S.

When in this definition we replace “depth” by “arithmetic depth”, then term-
complexity turns into arithmetic term-complexity, and the notations cA(f, S) and
cA(R,S) must be replaced by cAa (f, S) and cAa (R,S). Note that cAa (f, S) ≤ cA(f, S).

Usually we have N ⊆ A and 0A and 1A are the elements 0 and 1 of N. In that
case we write cA(f,N) instead of cA(f, S) for S = {1, . . . , N}m, N ∈ N>0, and we
use cA(R,N), cAa (f,N) and cAa (R,N) in a similar way.

We have an easy logarithmic upper bound when addition is a primitive:

Lemma 5.2 The lookup term algorithm. Given any relation R ⊆ Nm and
any integer N > 0 we have cAa (R,N) ≤ 2 logN , where A = (N, 0, 1,+).

Proof. For the simplest case m = 1, argue as in Example (i) above: For n ≥ 1
we have n = 2e(0) + · · ·+2e(k), with e(0) < e(1) < · · · < e(k) and e(k)+k ≤ 2 log n,
so n is the value in A of a closed term of arithmetic depth ≤ 2 log n, and hence the
unary relation x = n on N is decided by a term tn(x) of arithmetic depth ≤ 2 log n.
It follows that R is decided on {1, . . . , N} by the “disjunction” of the terms tn(x)
for which 1 ≤ n ≤ N and R(n) holds. The case m > 1 is handled in the same
way.

In the next two sections we deal with the following situation: We are given an
m-ary relation R ⊆ Am and a finite set S ⊆ Am, and are interested in a lower
bound on cAa (R,S) or cA(R,S). In this connection the following is relevant.

Lemma 5.3. Let ~a ∈ S be such that R(~a) holds. Suppose GA
k (~a) ⊆ U ⊆ A

(k ∈ N), and ı : A �U � A is an embedding such that ı(~a) ∈ S and ¬R(ı(~a)).
Then cAa (R,S) > k.

Proof. Let t(~x) be an A-term such that tA(~a) = 1 and deptha(t) ≤ k. Then
tA �U (~a) = 1 by the absoluteness property of Lemma 5.1, hence tA(ı(~a)) = 1. But
¬R(ı(~a)), so t cannot decide R on S.

This suggests how to go about obtaining lower bounds: construct an embedding
ı as above with k as high as possible.

Robustness of term-complexity

Let B =
(
B, 0B, 1B, (ψB)ψ∈Ψ

)
be a second partial algebra with 0, 1 such that

A = B, 0A = 0B, 1A = 1B. Then A is said to be term-reducible to B if each
n-ary φA

↑ with φ ∈ Φ is computable by a B-term on An↑ . Note that the relation of
term-reducibility is reflexive and transitive. The corresponding equivalence relation
is called term-equivalence, that is, A and B are term-equivalent if and only if A
is term-reducible to B and B is term-reducible to A. In that case A and B are
essentially equivalent from the term-complexity viewpoint. More precisely, we have
the following robustness or invariance feature of term-complexity.
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Lemma 5.4. Suppose Φ is finite and A is term-reducible to B. Then there are
positive integers c(A,B), ca(A,B) such that for all f : An ⇀ A and S ⊆ An we
have

cB(f, S) ≤ c(A,B) · cA(f, S) and cBa (f, S) ≤ ca(A,B) · cAa (f, S).

Proof. For each m-ary φ ∈ Φ, let tφ(~x) be a B-term that computes φ on Am↑ .

Take positive integers c(A,B) and ca(A,B) such that c(A,B) ≥ depth(tφ) and
ca(A,B) ≥ deptha(tφ) for all φ ∈ Φ.

We define inductively for each A-term t(~y) a B-term Bt(~y) as follows: if t(~y) is the
variable yj , then Bt(~y) is yj ; if t(~y) is 0, 1, then Bt(~y) is 0, 1, respectively; if t(~y) =
φ
(
t1(~y), . . . , tk(~y)

)
with k-ary φ ∈ {Eq,Co}, then Bt(~y) := φ

(
Bt1(~y), . . . ,Btk(~y)

)
; if

t(~y) = φ
(
t1(~y), . . . , tm(~y)

)
withm-ary φ ∈ Φ, then Bt(~y) := tφ

(
Bt1(~y), . . . ,Btm(~y)

)
.

An obvious induction using the facts on composition of terms then yields t(~a) =
Bt(~a) for all ~a ∈ An↑ and

depth(Bt) ≤ c(A,B) · depth(t) and deptha(
Bt) ≤ ca(A,B) · deptha(t).

The lemma now follows easily.

Circuits

One could also introduce circuits, directed acyclic graphs whose nodes are labeled
by either a variable (input gate), or a logical symbol (logic gate), or an element of
Φ (arithmetic gate). Circuits do the same job as terms, but can be much smaller in
size as measured by the number of edges of a circuit versus the length of a term; see
[Poizat 1995]. So far our methods only yield lower bounds on computational depth,
and circuits perform no better than terms when depth is the relevant parameter.
Therefore we do not consider circuits in this paper.

6. LOWER BOUNDS WITH LINEAR OPERATIONS AS PRIMITIVES

Throughout this section and the rest of Part 2 we let a, b, c, d, e, sometimes with
subscripts, denote integers, while κ, λ, p,N range over positive integers.

Presburger functions

Presburger arithmetic refers to the first order theory of the structure (Z, 0, 1,+,−, <),
the ordered group of integers with 1 as distinguished element. A classical result
due to Presburger (and Skolem, see [Smoryński 1991]) is that this structure has
elimination of quantifiers when we admit as extra primitives the unary relations
2Z, 3Z, 4Z, 5Z, . . . .

This means the following. A basic Presburger set in Zn is by definition an inter-
section of finitely many sets of the form

{~a ∈ Zn : q(~a) = 0}, {~a ∈ Zn : q(~a) > 0}, and {~a ∈ Zn : q(~a) ∈ dZ},

where q(X1, . . . , Xn) ∈ Z[X1, . . . , Xn] is a polynomial of degree at most 1, and
d > 0. A Presburger set in Zn is by definition a finite union of basic Presburger
sets in Zn.

Then a subset of Zn is (first-order) definable in (Z, 0, 1,+,−, <) iff it is a Pres-
burger set in Zn. Also, a partial function f : Zn ⇀ Z is definable in (Z, 0, 1,+,−, <)
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iff its domain D(f) is a disjoint union of of basic Presburger sets B1, . . . , Bk in Zn
and there are polynomials q1(X), . . . , qk(X) ∈ Q[X], X = (X1, . . . , Xn), of degree
at most 1 such that f(~a) = qj(~a) for all ~a ∈ Bj , j = 1, . . . , k.

Let Lin denote the collection of all partial functions Zn ⇀ Z (for all n) that
are definable in (Z, 0, 1,+,−, <). (We choose this notation to reflect the piecewise
linear nature of these functions.)

Let Φ be a finite subset of Lin, and let A :=
(
Z, 0, 1, (φ)φ∈Φ

)
be the correspond-

ing partial algebra with 0, 1.

Theorem 6.1. Let R ⊆ Z be a unary relation, and let F : N>0 → N>0 be such
that for all λ and p:

(i) R(p) =⇒ ¬R(κp) with κ = 1 + λF (λ),
(ii) F (λ) ≤ dλe, with d, e > 0 independent of λ.

Then there is a p0 ∈ N and a real constant r > 0 such that if p > p0 and R(p)
holds, and N := dpe+2, then

cAa (R,N) > r logN. (6)

In particular, if R(p) holds for infinitely many p, then (6) holds for infinitely
many N .

The proof will show that p0 and r can be chosen to depend only on A and on
(A, d, e), respectively, and not on R.

Corollary 6.2. The relations Ri ⊆ Z and functions Fi, i = 1, . . . , 4, defined
below satisfy the hypothesis of the theorem, and so its conclusion:

R1(x) :⇐⇒ x > 0 and x is prime, F1(λ) = 1
R2(x) :⇐⇒ x > 0 and x is a power of 2, F2(λ) = 2
R3(x) :⇐⇒ x > 0 and x is a perfect square, F3(λ) = λ

R4(x) :⇐⇒ x > 0 and x is square-free, F4(λ) = 2 + λ.

Note that (Z, 0, 1, (φ)φ∈Φ) is term-reducible to Z(divD) as defined in (5), where
D is an integer > 1 depending on Φ. Thus by Lemma 5.4, it suffices to prove the
Theorem for A = Z(divD), and this is what we do below.

Lower bounds for Z(divD)

Let D be an integer > 1, E := D!, and A := Z(divD). Let ~a = (a1, . . . , an), and,
for k ∈ N, put

Bk(~a) := Z ∩
{c0 + c1a1 + · · ·+ cnan

Ek
: |c0|, . . . , |cn| ≤ (2E)k

}
.

Lemma 6.3. We have the following inclusions for k ∈ N:

(i) Bk(~a) ⊆ Bk+1(~a);
(ii) Bk(~a) +Bk(~a) ⊆ Bk+1(~a), Bk(~a)−Bk(~a) ⊆ Bk+1(~a);
(iii) iq

(
Bk(~a), d

)
⊆ Bk+1(~a) for 1 ≤ d ≤ D;

(iv) GA
k (~a) ⊆ Bk(~a).
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Proof. The last inclusion follows from the earlier ones by induction and from
GA

0 (~a) = {0, 1, a1, . . . , an} ⊆ B0(~a).
Let b ∈ Bk(~a), and write

b =
c0 + c1a1 + · · ·+ cnan

Ek
, |c0|, . . . , |cn| ≤ (2E)k.

Then

b =
Ec0 + Ec1a1 + · · ·+ Ecnan

Ek+1
, |Ec0|, . . . , |Ecn| ≤ (2E)k+1,

so b ∈ Bk+1(~a). Let 1 ≤ d ≤ D and iq(b, d) = (b− i)/d, 0 ≤ i < d. Then

iq(b, d) =
(E/d)(c0 − iEk) + (E/d)c1a1 + · · ·+ (E/d)cnan

Ek+1

with |(E/d)(c0 − iEk)|, |E/d)c1|, . . . , |(E/d)cn| ≤ (2E)k+1,

so iq(b, d) ∈ Bk+1(~a).
Let b, b′ ∈ Bk(~a), write b as above and

b′ =
c′0 + c′1a1 + · · ·+ c′nan

Ek
, |c′0|, . . . , |c′n| ≤ (2E)k.

Then

b+ b′ =
E(c0 + c′0) + E(c1 + c′1)a1 + · · ·+ E(cn + c′n)an

Ek+1
,

with |E(c0 + c′0)|, . . . , |E(cn + c′n)| ≤ (2E)k+1,

so b+ b′ ∈ Bk+1(~a), and similarly with b− b′.

Lemma 6.4. Suppose |c0|, |c1| < a. Then

(i) c0 + c1a = 0 ⇐⇒ c0 = c1 = 0;
(ii) c0 + c1a > 0 ⇐⇒ either c1 > 0, or (c1 = 0 and c0 > 0).

Suppose |c0|, |c1|, |d0|, |d1| < a
2 . Then

(iii) c0 + c1a = d0 + d1a ⇐⇒ c0 = d0 and c1 = d1;
(iv) c0 + c1a < d0 + d1a⇐⇒ either c1 < d1, or (c1 = d1 and c0 < d0).

We leave (i) and (ii) as an easy exercise; note that (iii) and (iv) follow.

Lemma 6.5. Let a > (D + 1)(2E)m, κ ≡ 1 mod Em, and U := Bm(a). Then
we have an embedding ı : A �U � A given by

ı
(c0 + c1a

Em

)
=
c0 + c1κa

Em
, |c0|, |c1| ≤ (2E)m. (7)

Proof. By Lemma 6.4, (7) defines a mapping ı, and it is quite easy to prove that
it is an embedding ı : A �U � A, using Lemma 6.4. We verify here only one item
to explain why the factor D + 1 is included in the inequality on a. Let c ∈ U ∩ dZ
and 1 ≤ d ≤ D be such that c/d ∈ U ; we need to check that then ı(c/d) = ı(c)/d.
Write c = (c0 + c1a)/Em and c/d = (d0 + d1a)/Em with |ci|, |di| ≤ (2E)m for
i = 0, 1. Then (c0 − d0d) + (c1 − d1d)a = 0, so c0 = d0d and c1 = d1d by the
inequality on a and part (i) of Lemma 6.4. Hence ı(c/d) = ı(c)/d.
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The following result is a more precise version of Theorem 6.1 for the algebra
A = Z(divD).

Theorem 6.6. Suppose R ⊆ Z is a unary relation, F : N>0 → N>0 is a function
and d, e > 0 are such that for all λ and p:

(i) R(p) =⇒ ¬R(κp) with κ = 1 + λF (λ),
(ii) F (λ) ≤ dλe.

Then for all p > D + 1, if R(p) holds and N := dpe+2, then

cAa (R,N) > r logN, where r =
1

(2e+ 4 + log d) log 2E
. (8)

In particular, if R(p) is true for infinitely many p, then (8) holds for infinitely
many N .

The specific value of r is of no consequence, of course, but it witnesses the fact
that r is independent of the specific relation R and it exhibits the form of its
dependence on D, e and d.

Proof. Suppose p > D + 1 and R(p). Take m such that

(D + 1)(2E)m < p ≤ (D + 1)(2E)m+1.

Put κ := 1 + EmF (Em), so ¬R(κp). By Lemma 6.5 we have an embedding ı :
A �Bm(p) � A such that ı(p) = κp. Also

κp = (1 + EmF (Em))p ≤ (1 + dEm(e+1))p ≤ dpe+2 = N,

where the last inequality uses (2E)m < p. Hence cAa (R,N) ≥ m+1 by Lemma 5.3,
and it is enough to show that m+ 1 > r logN with the r above.

Using the assumed hypotheses and setting δ = log d:

N = dpe+2 ≤ d(D + 1)e+2(2E)(e+2)(m+1)

≤ d(2E)(e+2)(m+2)

< (2E)(e+2)(m+2)+δ

≤ (2E)(e+2)(m+1)+(e+2)+δ

≤ (2E)(m+1)(e+2+ e+2+δ
m+1 )

≤ (2E)(m+1)(2e+4+δ).

The desired inequality follows from this by taking the logarithms of both sides.

Remark

The proof shows that the logarithmic lower bound is forced by just two inputs: if
p > D + 1 and R(p), then there is a number κ such that κp ≤ N = dpe+2 and any
A-term t(x) that decides R on {p, κp} has arithmetic depth > r logN .

7. OPTIMALITY OF THE BINARY GCD-ALGORITHM

A careful look at the binary algorithm shows that for A = Z(div2) and a, b >
0 we have gcd(a, b) ∈ GA

m(a, b) with m ≤ 2(log a + log b). A little more work
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yields for each positive integer N an A-term t(x, y) of arithmetic depth ≤ 4 logN
that computes gcd on {1, . . . , N}2. (One obtains t(x, y) by imitating what the
binary algorithm does on inputs in {1, . . . , N}2.) Hence there is also for each
positive integer N an A-term t⊥(x, y) of arithmetic depth ≤ 4 logN that decides
the coprimeness relation ⊥ on {1, . . . , N}2.

Theorem 7.1 below shows that the binary algorithm is in a sense optimal for al-
gorithms deciding ⊥ using just linear operations, since the upper bound is matched
by a proportional lower bound. (More precisely, Theorem 7.1 is the non-uniform
version; the uniform version is Theorem 12.2.)

Theorem 7.1. If A := Z(divD) with D > 1, then there is a real constant r > 0
depending only on D such that for all a > (D + 1)2,

cAa (⊥, N) > r logN with N = a3.

The lemmas and proofs involved are very similar to those in the previous section.

Lemma 7.2. Suppose |c0|, |c1|, |c2| < a and b > a2. Then

(i) c0 + c1κa+ c2κb = 0 ⇐⇒ c0 = c1 = c2 = 0;
(ii) c0 + c1κa+ c2κb > 0 ⇐⇒ either c2 > 0, or (c2 = 0 and c1 > 0),

or (c2 = c1 = 0 and c0 > 0).

Suppose |c0|, |c1|, |d0|, |d1| < a/2 and b > a2. Then

(iii) c0 + c1κa+ c2κb = d0 + d1κa+ d2κb⇐⇒ c0 = d0, c1 = d1, c2 = d2;
(iv) c0 + c1κa+ c2κb < d0 + d1κa+ d2κb⇐⇒ either c2 < d2, or

(c2 = d2 and c1 < d1), or
(c2 = d2, c1 = d1, c0 < d0).

Proof. Note that |c0 +c1κa| ≤ a−1+κ(a2−a) < κa2 < κb, so Lemma 6.4 with
b in the role of a yields (i) and (ii). Items (iii) and (iv) are obvious consequences
of (i) and (ii).

The proof of the next lemma is like that of Lemma 6.5.

Lemma 7.3. Suppose D > 1, E = D!, a > (D+1)(2E)m, U := Bm(a, b), b > a2,
and κ ≡ 1 mod Em. Then there exists an embedding ı : A �U � A given by

ı
(c0 + c1a+ c2b

Em

)
=
c0 + c1κa+ c2κb

Em
, |c0|, |c1|, |c2| ≤ (2E)m.

Proof of Theorem of 7.1. Suppose a > (D + 1)2 > (D + 1), and choose m
such that

(D + 1)(2E)m < a ≤ (D + 1)(2E)m+1.

Put b := a2 + 1 and κ := 1 + Em, so a ⊥ b, but κa 6⊥ κb. By Lemma 7.3
we have an embedding ı : A �Bm(a, b) � A such that ı(a, b) = (κa, κb). Also
κb = (1 + Em)(a2 + 1) < a3 = N . Hence cAa (⊥, N) ≥ m + 1 by Lemma 5.3.
From (D + 1)(2E)m+1 ≥ a we obtain m+ 1 ≥

(
log a− log(D + 1)

)
/ log 2E. Using

logN = 3 log a this yields

cAa (⊥, N) ≥ 1
3 log 2E

(logN − 3 log(D + 1)).
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Now the hypothesis a > (D+1)2 together with logN = 3 log a implies that logN >
6 log(D+1), so that logN − 3 log(D+1) > 1

2 logN , and when we insert this in the
inequality just derived we obtain the desired

cAa (⊥, N) ≥ 1
6 log 2E

logN.

Notice that if only division by 2 is assumed, then E = 2! = 2 and so the con-
stant in the lower bound is 1

12—compared to 4 in the upper bound for the binary
algorithm which only uses division by 2.

Remark

As in the previous section, the lower bound is forced by just two inputs: if a >
(D + 1)2 then there is κ > 1 such that κ(a2 + 1) < N := a3 and any A-term that
decides ⊥ on the two inputs (a, a2 + 1) and (κa, κ(a2 + 1)) has arithmetic depth
> (logN)/6 log 2E.

8. LOWER BOUNDS FOR UNARY RELATIONS FROM +,−,÷
For each finite Φ ⊆ Lin the partial algebra (Z, 0, 1,+,−, (φ)φ∈Φ, <) is term-reducible
to Z(1) = (Z, 0, 1,+,−, iq, rem, <). But iq and rem do not belong to Lin, so Z(1) is
not term-reducible to (Z, 0, 1,+,−, (φ)φ∈Φ, <) for any finite Φ ⊆ Lin. In contrast
to the single logarithmic bounds of Sections 6 and 7, the lower bounds we will derive
relative to Z(1) in this section are double logarithmic, and we will establish them
for term complexity rather than the (smaller) arithmetic term complexity.

For unary relations we have an analogue of Theorem 6.1, but for term-complexity.

Theorem 8.1. Suppose R ⊆ Z is a unary relation, F : N>0 → N>0 is a func-
tion, and d, e > 0 are such that for all λ and p:

(i) R(p) =⇒ ¬R(κp) with κ = 1 + λF (λ),

(ii) F (λ) ≤ dλe.

Then for all sufficiently large p such that R(p), if N := p(e+1)b log p
5 c, then

cZ(1)(R,N) >
1
7

log logN. (9)

In particular, if R(p) is true for infinitely many p, then (9) holds for infinitely
many N .

As with Theorem 6.1 this result applies to the unary relations of being prime,
being a power of 2, being a perfect square, and being square-free. We do not
know if a double logarithmic bound as in this theorem holds for the arithmetic
term-complexity cZ(1)

a .

Lemma 8.2. Suppose a > 0, |ci|, |di| <
√

a
2 for i = 0, 1, 2 and c2, d2 6= 0. Then

(i) c0+c1a
c2

= d0+d1a
d2

⇐⇒ c0
c2

= d0
d2

and c1
c2

= d1
d2

;

(ii) c0+c1a
c2

< d0+d1a
d2

⇐⇒ either c1
c2
< d1

d2
, or ( c1c2 = d1

d2
and c0

c2
< d0

d2
).
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This follows easily from Lemma 6.4 by clearing denominators.
Let h be an integer > 1 and put

A(a, h) := Z ∩
{c0 + c1a

c2
: c2 6= 0, |ci| ≤ h for i = 0, 1, 2

}
.

Lemma 8.3. Let a > 2h4, and c, d ∈ A(a, h). Then c + d, c − d, iq(c, d), and
rem(c, d) lie in A(a, 2h4).

Proof. Write

c =
c0 + c1a

c2
, d =

d0 + d1a

d2

with c2, d2 6= 0 and |ci|, |di| ≤ h for i = 0, 1, 2. Then

c+ d =
(c0d2 + c2d0) + (c1d2 + c2d1)a

c2d2
,

hence c + d ∈ A(a, 2h2) ⊆ A(a, 2h4), and similarly for c − d. To deal with iq(c, d)
and rem(c, d) we first consider the case d1 6= 0. Solving for a in d = (d0 + d1a)/d2

and substituting in the expression for c, we get

c =
c1d2

c2d1
d+

c0d1 − c1d0

c2d1
, with

∣∣∣c0d1 − c1d0

c2d1

∣∣∣ ≤ 2h2.

The assumption a > 2h4 easily yields |d| > 2h2, so

c

d
=
c1d2

c2d1
+ ε, with |ε| < 1.

Hence |iq(c, d)| ≤ h2 + 2, in particular iq(c, d) ∈ A(a, 2h4), and

rem(c, d) = c− iq(c, d)d =
c0 + c1a

c2
− iq(c, d)d0 + iq(c, d)d1a

d2

=
(c0d2 − iq(c, d)c2d0) + (c1d2 − iq(c, d)c2d1)a

c2d2
.

Hence rem(c, d) ∈ A(a, h2 + (h2 + 2)h2) ⊆ A(a, 2h4).
Next, suppose d1 = 0. We can assume d 6= 0, so

|rem(c, d)| < |d| ≤ |d0| ≤ h,

in particular rem(c, d) ∈ A(a, 2h4), and

iq(c, d) =
c− rem(c, d)

d
=
c0d0 − rem(c, d)c2d2 + c1d0a

c2d0
,

which yields iq(c, d) ∈ A(a, 2h3) ⊆ A(a, 2h4).

Suppose that a > 2h2 and u ∈ A(a, h). Then by part (i) of Lemma 8.2 there is a
unique triple (c0, c1, c2) such that |ci| ≤ h for i = 0, 1, 2, c2 > 0, gcd(c0, c1, c2) = 1,
and u = c0+c1a

c2
. Denote the component c2 of this unique triple by c2(u). With

these notations we have:
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Lemma 8.4. Suppose a > 2h4, 0, 1 ∈ U ⊆ A(a, h), and κ ≡ 1 mod c2(u) for
each u ∈ U . Then we have an embedding ı : Z(1) �U � Z(1) such that

ı
(c0 + c1a

c2

)
=
c0 + c1κa

c2

whenever |ci| ≤ h for i = 0, 1, 2, c2 6= 0 and c0+c1a
c2

∈ U .

This follows easily from Lemma 8.2, and from Lemma 8.3 and its proof.

Lemma 8.5. Suppose a > 25m

, and put Ak(a) := A(a, 25k

) for 0 ≤ k ≤ m. We
have the following inclusions for k < m:

(i) Ak(a) ⊆ Ak+1(a);
(ii) Ak(a) + Ak(a), Ak(a) − Ak(a), iq(Ak(a), Ak(a)) and rem(Ak(a), Ak(a)) are

subsets of Ak+1(a);

(iii) GZ(1)
k (a) ⊆ Ak(a) and GZ(1)

m (a) ⊆ Am(a).

Proof. The last inclusion follows from (ii) by induction and from GA
0 (a) =

{0, 1, a} ⊆ A(a, 2) = A0(a). The inclusions (ii) follow from 8.3 using the fact that
25k+1 ≥ 2

(
25k)4.

If we were to proceed now as in the proof of Theorem 6.6, we would take λ := 25m

!
(for suitable m depending on p), put κ := 1 + λF (λ), and obtain an embedding
of a certain algebra Z(1) �U into Z(1) that sends p to κp. Unfortunately, κ as a
function of m grows so fast that it would result in a lower bound on c

Z(1)
a (R,N)

(for R as in Theorem 8.1) that is triple logarithmic in N . To achieve a double
logarithmic lower bound we shall work with ordinary term-complexity instead of
arithmetic term-complexity, and introduce the notion of computation space.

Computation space

This subsection is of a general nature, and A is any Φ-algebra. Given a Φ-term
t(~x) and ~a ∈ Am such that t(~a) ↓ , the computation space S

(
t(~x),~a

)
is the finite

subset of A defined inductively as follows:

(S1) if t(~x) is 0, 1, xi, respectively, then S
(
t(~x),~a

)
= {0}, {1}, {ai}, respectively;

(S2) if t(~x) is Eq
(
t1(~x), t2(~x)

)
, then S

(
t(~x),~a

)
= S

(
t1(~x),~a

)
∪ S

(
t2(~x),~a

)
;

and if t(~x) is Co
(
t1(~x), t2(~x), t3(~x)

)
, then

S
(
t(~x),~a

)
=

{
S

(
t1(~x),~a

)
∪ S

(
t2(~x),~a

)
if t1(~a) = 1,

S
(
t1(~x),~a

)
∪ S

(
t3(~x),~a

)
otherwise;

(S3) if t(~x) is φ
(
t1(~x), . . . , tk(~x)

)
where φ ∈ Φ has arity k, then S

(
t(~x),~a

)
=

S
(
t1(~x),~a

)
∪ · · · ∪ S

(
tk(~x),~a

)
∪ {t(~a)}.

Intuitively, S
(
t(~x),~a

)
is the part of A used in computing t(~a) via t(~x). The next

lemma follows by an easy induction on depth(t).

Lemma 8.6. Let t(~x) be a Φ-term and ~a ∈ Am with t(~a) ∈ A. Suppose that
depth(t) ≤ k ∈ N and each symbol in Φ has arity ≤ ` where 1 ≤ ` ∈ N. Then

(i) t(~a) ∈ S
(
t(~x),~a

)
⊆ GA

k (~a);
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(ii) |S
(
t(~x),~a

)
| ≤ (`+ 1)k.

The advantage of S
(
t(~x),~a

)
over GA

k (~a) is that |S
(
t(~x),~a

)
| grows at most ex-

ponentially in k (by part (2) of the above lemma), while |GA
k (~a)| can grow doubly

exponentially in k.
The next absoluteness lemma also follows by an easy induction on t.

Lemma 8.7. Let t(~x) be a Φ-term, ~a ∈ Am and t(~a) ∈ A. Let U ⊆ A be such
that 0, 1, a1, . . . , am ∈ U and S

(
t(~x),~a

)
⊆ U . Then tA �U (~a) = tA(~a).

Proof of Theorem 8.1. Suppose p ≥ 225(e+1), p > d, and R(p) holds. Take
m maximal such that p ≥ 25m+1

, so m ≥ 1, and notice that with M := 25m

, we
have

p ≥M5 > 2M4.

Suppose t(x) is a Z(1)-term of depth ≤ m such that t(p) = 1.

Claim. There exists λ such that for κ = 1 + λF (λ) we have t(κp) = 1 and
κp ≤ N := p(e+1)b log p

5 c.

To prove this claim, set U := S(t(x), p) ∪ {0, 1, p}, and note that by part (i) of
Lemma 8.6 and part (iii) of Lemma 8.5 we have

U ⊆ GZ(1)
m (p) ⊆ Am(p).

By part (ii) of Lemma 8.6 we have |U \ {0, 1}| ≤ K := 3m + 1. We set

λ :=
∏

u∈U\{0,1}

c2(u),

with c2(u) as defined just before Lemma 8.4, with p and M in the role of a and h.
Note that λ ≡ 0 mod c2(u) for all u ∈ U . Put κ := 1+λF (λ), so κ ≡ 1 mod c2(u)
for all u ∈ U . Hence by Lemma 8.4 we have an embedding ı : Z(1) �U � Z(1) such
that ı(p) = κp, and thus t(κp) = 1 by part (1) of Lemma 8.6, using also Lemma
8.7. To finish the proof of the claim it remains to show that κp ≤ N . Using the
assumption p > d, we have

κ ≤ 1 + dλe+1 ≤ 1 + dM (e+1)K ≤ pM (e+1)K ,

hence κp ≤ p2M (e+1)K ≤ p(e+1)K , where the last inequality uses the assumption
M ≤ p

1
5 and K ≥ 3. Finally

K = 3m + 1 < 5m =
5m+1

5
≤ log p

5
,

and hence K ≤ b log p
5 c, so that p(e+1)K ≤ p(e+1)b log p

5 c = N .
Because t(x) was an arbitrary Z(1)-term of depth ≤ m with t(p) = 1, it follows

from the claim that

cZ(1)(R,N) ≥ m+ 1,

and so to complete the proof, it suffices to show that log logN < 7(m+ 1). Using
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the definition of N , we compute:

logN = (e+ 1)b log p
5

c log p

≤ (e+ 1)
(log p)2

5

≤ (log p)3

53
(by the hypothesis 252(e+1) ≤ p),

and so log logN ≤ 3 log log p − 3 log 5. On the other hand, by the choice of m we
have p < 25m+2

, which yields log log p < (log 5)(m+ 2); thus

log logN < (3 log 5)(m+ 2)− 3 log 5 = (3 log 5)(m+ 1)

which yields the required 7(m+ 1) > (3 log 5)(m+ 1) > log logN .

9. A LOWER BOUND FOR COPRIMENESS FROM +,−,÷
Here we derive a log log lower bound for deciding coprimeness in

Z(1) = (Z, 0, 1,+,−, iq, rem, <),

the analog for Z(1) of Theorem 7.1.

Theorem 9.1. For infinitely many positive integers N ,

cZ(1)(⊥, N) ≥ 1
7

log logN. (10)

In fact, for all coprime positive a, b such that |ab −
√

2| < 1
b and a ≥ 2128, if m is

largest with a ≥ 223m+4
, then (10) holds with N := 227(m+1)

.

The proof is very much like that of Theorem 7.1, with almost all the required
estimates already derived in Sections 3 and 7. In the next two lemmas a and b are
positive with |ab −

√
2| < 1

b . (These lemmas do not assume coprimeness of a and b.)
Note that then Gm(a, b) = G

Z(1)
m (a, b), with Gm(a, b) as defined in the beginning

of Part 1. We also use the sets A(h) defined just before lemma 3.5 in terms of a, b
and an integer h ≥ 2.

Lemma 9.2. Let m ≥ 1, h := 223m

, a ≥ h16, b > 0, |ab −
√

2| < 1
b . Then

Gm(a, b) ⊆ A(h), and for each u ∈ A(h) there is a unique tuple (c0, c1, c2, c3) such
that

|ci| ≤ h for i = 0, 1, 2, 3, c3 > 0,

u =
c0 + c1a+ c2b

c3
, gcd(c0, c1, c2, c3) = 1.

Proof. From h ≥ 28, a ≥ h16 and |ab −
√

2| < 1
b we obtain the following lower

bounds on b, to be used in this proof and in the proof of the next lemma:

b >
1
2
a ≥ 1

2
h16 > 400h4 > 10h.

Then Lemma 3.5 yields Gm(a, b) ⊆ A(h). Note that each u ∈ A(h) has the required
form. The uniqueness of the representation follows from Lemma 3.3, which for
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its application to the equality of two numbers of the required form assumes that
2h2 ≥ 2 and 10(2h2)2 = 40h4 ≤ b; these bounds follow from the above.

Let c3(u) denote the component c3 of the unique tuple (c0, c1, c2, c3) that the
lemma above associates to an element u ∈ A(h).

Lemma 9.3. With the same assumptions as the previous lemma, let 0, 1 ∈ U ⊆
A(h) and κ ≡ 1 mod c3(u)|v| for all u, v ∈ U with 0 < |v| ≤ h. Then we have an
embedding ı : Z(1) �U � Z(1) such that

ı
(c0 + c1a+ c2b

c3

)
=
c0 + c1κa+ c2κb

c3

whenever |ci| ≤ h for i = 0, 1, 2, 3, c3 6= 0 and c0+c1a+c2b
c3

∈ U .

Proof. The previous lemma yields a function ı : U → Z satisfying the indicated
identity. We have to show that ı is an embedding Z(1) �U � Z(1). Consider
elements f, g, u ∈ U ,

f =
c0 + c1a+ c2b

c3
, g =

d0 + d1a+ d2b

d3
, u =

e0 + e1a+ e2b

e3
,

with |ci|, |di|, |ei| ≤ h for i = 0, 1, 2, 3, and c3, d3, e3 > 0. Among the things to check
is that if f < g, then ı(f) < ı(g). We have

f − g =
C0 + C1a+ C2b

C3
, where C0 := c0d3 − c3d0,

C1 := c1d3 − c3d1, C2 := c2d3 − c3d2, C3 := c3d3, and

ι(f)− ι(g) =
C0 + C1κa+ C2κb

C3
.

Now |Ci| ≤ 2h2 for i = 0, 1, 2 and b ≥ 10(2h2)2, so by Lemma 3.3, if f < g and
C1 and C2 are not both zero, then C1

√
2 + C2 < 0, and thus ı(f) < ı(g), again by

Lemma 3.3. If f < g and C1 and C2 are both zero, then f − g = ı(f) − ı(g), so
ı(f) < ı(g) as well.

Next assume that f − g = u; we have to check that then ı(f)− ı(g) = ı(u). The
equality f − g = u yields

(C0e3 − C3e0) + (C1e3 − C3e1)a+ (C2e3 − C3e2)b = 0.

Since |Cie3 − C3ei| ≤ 4h3 for i = 0, 1, 2, and b ≥ 10(4h3)2, Lemma 3.3 yields
Cie3 − C3ei = 0 for i = 0, 1, 2, which gives ı(f) − ı(g) = ı(u). Likewise it follows
that if f + g = u, then ı(f) + ı(g) = ı(u).

It remains to show that if iq(f, g) = u, then iq(ı(f), ı(g)) = ı(u), and that
if rem(f, g) = u, then rem(ı(f), ı(g)) = ı(u). If g = 0, then these implications
are trivially valid. In the rest of the proof we assume g > 0; the case g < 0
can be treated in the same way. First assume that also d1 = d2 = 0. Then
0 ≤ rem(f, g) < g ≤ h.

Suppose that rem(f, g) = u; then f ≡ u mod g. Without loss we have c3(f) =
c3, so κ ≡ 1 mod c3g and thus ı(f) ≡ u mod g. In view of ı(g) = g and ı(u) = u,
this yields the desired rem(ı(f), ı(g)) = ı(u).
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Next, suppose that iq(f, g) = u. Put r := rem(f, g). From the identity f − gu−
r = 0 we obtain by substitution for f and u:

(c0e3 − c3e0g − rc3e3) + (c1e3 − c3e1g)a+ (c2e3 − c3e2g)b = 0.

Since b ≥ 10(3h3)2, this yields by Lemma 3.3:

c0e3 − c3e0g − rc3e3 = c1e3 − c3e1g = c2e3 − c3e2g = 0,

which in turn yields ı(f) − gı(u) − r = 0; in view of ı(g) = g and 0 ≤ r < g, this
gives iq(ı(f), ı(g)) = ı(u), as required.

For the rest of the proof we assume that d1 and d2 are not both zero. From the
proof of Lemma 3.5 we recall that

0 ≤ rem(f, g) = f − iq(f, g)g =
X + Y a+ Zb

C3
< g, with

X = c0d3 − iq(f, g)c3d0, Y = c1d3 − iq(f, g)c3d1, Z = c2d3 − iq(f, g)c3d2,

Likewise, ı(f)−iq(f, g)ı(g) = X+Y κa+Zκb
C3

. Note also that by the proof of Lemma 3.5
we have |iq(f, g)| ≤ 7h3.

Suppose iq(f, g) = u; we have to show iq(ı(f), ı(g)) = ı(u). The proof of
Lemma 3.6 with u instead of f shows that if e1 6= 0 or e2 6= 0, then |u| > 2

√
b > 7h3,

which contradicts |u| = |iq(f, g)| ≤ 7h3. So e1 = e2 = 0, hence |u| ≤ h, and thus
ı(u) = u and |X|, |Y |, |Z| ≤ h2 + h3. Also

rem(f, g) =
X + Y a+ Zb

C3
< g =

d0 + d1a+ d2b

d3
,

so

(X − C3d0) + (Y − C3d1)a+ (Z − C3d2)b < 0.

Since b ≥ h7 ≥ 10(h2 + h3 + h3)2, Lemma 3.3 yields

(Y − C3d1)
√

2 + (Z − C3d2) < 0

if Y −C3d1 and Z −C3d2 are not both zero. Again by Lemma 3.3, and trivially so
when Y − C3d1 = Z − C3d2 = 0, this yields

(X − C3d0) + (Y − C3d1)κa+ (Z − C3d2)κb < 0, so

ı(f)− u · ı(g) =
X + Y κa+ Zκb

C3
< ı(g).

From X+Y a+Zb
C3

≥ 0 we obtain likewise that X+Y κa+Zκb
C3

≥ 0. Hence

rem(ı(f), ı(g)) = ı(f)− u · ı(g) =
X + Y κa+ Zκb

C3
,

in particular, iq(ı(f), ı(g)) = u = ı(u).
Finally, let rem(f, g) = u; to derive rem(ı(f), ı(g)) = ı(u), note that

rem(f, g) =
X + Y a+ Zb

C3
=
e0 + e1a+ e2b

e3
= u,
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from which we obtain

(e0C3 − e3X) + (e1C3 − e3Y )a+ (e2C3 − e3Z)b = 0.

Since |X|, |Y |, |Z| ≤ h2 + 7h3h2 ≤ 8h5, the coefficients of 1, a, b in the above ex-
pression are all of absolute value ≤ h7. Since b ≥ 10(h7)2, Lemma 3.3 yields

e0C3 − e3X = e1C3 − e3Y = e2C3 − e3Z = 0,

so
X + Y κa+ Zκb

C3
=
e0 + e1κa+ e2κb

e3
,

that is, ı(f)− iq(f, g)ı(g) = ı(u), and thus rem(ı(f), ı(g)) = ı(u).

Proof of Theorem 9.1. Let a, b be positive and coprime, such that

|a
b
−
√

2| < 1
b
, a ≥ 2128.

Take m be maximal with a ≥ 223m+4
, so m ≥ 1, and put h := 223m

and N :=
227(m+1)

. Then h16 ≤ a ≤ N and 1
7 log logN = m+ 1; assume towards a contradic-

tion that t(x, y) is a Z(1)-term of depth ≤ m deciding coprimeness for all pairs c, d
with 1 ≤ c, d ≤ N , in particular, t(a, b) = 1. Let U := S(t(x, y), a, b) ∪ {0, 1, a, b}
(the computation space for t at input (a, b) augmented with 0, 1, a, b). Then
U ⊆ Gm(a, b) ⊆ A(h) by Lemmas 8.6 and 9.2. Put

κ = 1 +
∏
u∈U

c3(u) ·
∏

u∈U, 0<|u|≤h

|u|.

Then κ ≡ 1 mod c3(u)|v| for all u, v ∈ U with 0 < |v| ≤ h. Let

ı : Z(1) �U � Z(1)

be the embedding of Lemma 9.3. Since ι(a) = κa and ι(b) = κb and t(a, b) = 1
we have t(κa, κb) = 1. Thus to reach a contradiction, it is enough to show that
κa ≤ N , since κa and κb are not coprime and hence cannot be within the interval
[1, N ] in which t(x, y) is assumed to decide coprimeness. Recall that |U | ≤ 3m + 4
by Lemma 8.6, and note that if u ∈ U, 0 < |u| ≤ h, then c3(u) = 1. Hence

κ ≤ 1 +
(
223m

)3m+4

= 1 + 223m(3m+4) = 1 + 2(24)m+4.8m

< 2(64)m

= 226m

,

and then, by the selection of m,

κa < 226m

223(m+1)+4
= 226m(1+27−3m) ≤ 226m(1+24) < 227(m+1)

= N,

which is the desired contradiction.

10. LOWER BOUNDS FOR UNARY RELATIONS FROM +,−,÷,×
We now include multiplication among the primitives by considering

Z(2) =
(
Z, 0, 1,+,−, ·, iq, rem, <

)
.

We have the following analogue of Theorem 8.1. Instead of a log log bound we get
a
√

log log bound.
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Theorem 10.1. Let R ⊆ Z be a unary relation, F : N>0 → N>0 a function, and
d, e > 0 such that for all λ and p:

(i) R(p) =⇒ ¬R(κp) with κ = 1 + λF (λ),
(ii) F (λ) ≤ dλe.

Then for all sufficiently large p, if R(p) and N := pe+3, then

cZ(2)(R,N) >
1
2

√
log logN. (11)

In particular, if R(p) is true for infinitely many p, then (11) holds for infinitely
many N .

As with Theorem 8.1 this result applies to the unary relations of being prime,
being a power of 2, being a perfect square, and being square-free.

Let h ∈ N, h > 0, let X be an indeterminate, and put

Q[X;n, h] : = {F
c

: F ∈ Z[X], degF ≤ n, ‖F‖∞ ≤ h, 0 < c ≤ h}

= {c0 + c1X + · · ·+ cnX
n

c
: |c0|, . . . , |cn| ≤ h, 0 < c ≤ h}.

We make Q[X] into an ordered ring by setting, for non-zero f(X) ∈ Q[X]: f > 0
iff the leading coefficient of f is > 0.

Lemma 10.2. If a > h and f ∈ Q[X;n, h], f > 0, then f(a) > 0. If a > 2h2,
then the evaluation map

f 7→ f(a) : Q[X;n, h] → Q

is injective, and preserves order: f, g ∈ Q[X;n, h], f < g =⇒ f(a) < g(a).

The proof is a routine exercise left to the reader.

The set of integer values of polynomials in Q[X;n, h] at a is given by

Z[a;n, h] := Z ∩ {f(a) : f(T ) ∈ Q[X;n, h]}.

Notice that

(i) Z[a;n, h] + Z[a;n, h] ⊆ Z[a;n, 2h2],
(ii) Z[a;n, h] · Z[a;n, h] ⊆ Z[a; 2n, (n+ 1)h2].

Lemma 10.3. Suppose a > 2n+1hn+2, and s, t ∈ Z[a;n, h]. Then

iq(s, t), rem(s, t) ∈ Z[a;n, 2n+1hn+2].

Proof. By symmetry we can assume t > 0. Write s = f(a) and t = g(a) with
f, g ∈ Z[X;n, h] and g 6= 0. If deg f < deg g, then |s| < t, so either iq(s, t) = 0 and
rem(s, t) = s, or iq(s, t) = −1 and rem(s, t) = s+ t, and in either case the desired
result clearly holds. If deg g = 0, then t ≤ h, so |rem(s, t)| ≤ h, and hence

iq(s, t) =
f(a)− rem(s, t)

t
∈ Z[a;n, h2 + h] ⊆ Z[a;n, 2n+1h2n+3].

as desired. Therefore we can assume n ≥ deg f ≥ deg g > 0 in the rest of the
proof. Take 0 < c, d ≤ h such that F := cf and G := dg belong to Z[X] and
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‖F‖∞, ‖G‖∞ ≤ h. Let e > 0 be the leading coefficient ofG. Then pseudo-division of
F by G (cf. [von zur Gathen and Gerhard 1999]) yields, with k = deg f−deg g < n:

ek+1F = QG+R, Q,R ∈ Z[X], degR < degG = deg g

with ‖Q‖∞ ≤ 2n−1hn and ‖R‖∞ ≤ 2nhn+1, for example by Exercise 6.44 in [von zur
Gathen and Gerhard 1999]. Put b := ek+1c, so 0 < |b| ≤ hn+1. Division by b and
substitution of a for X in the equality above yields

s = qt+ r, with q =
dQ(a)
b

and r =
R(a)
b

.

From degR < degG, the inequality assumed about a, and the first part of Lemma
10.2 it follows easily that |r| < t. Writing dQ(a) = q′b + r′ where q′, r′ ∈ Z and
0 ≤ |r′| < |b|, we have

s =
q′b+ r′

b
t+ r = q′t+ (

r′

b
t+ r), |r

′

b
t+ r| < 2t.

We now distinguish four cases.

Case 1. 0 ≤ r′

b t + r < t. Then iq(s, t) = q′ and rem(s, t) = r′

b t + r. We have
q′ = dQ(a)−r′

b , hence by the bounds on ‖Q‖∞, ‖R‖∞:

iq(s, t) ∈ Z[a;n, 2n−1hn+1 + hn+1] ⊆ Z[a;n, 2n+1hn+2],

rem(s, t) =
r′

b
t+ r =

r′G(a)
bd

+
R(a)
b

=
r′G(a) + dR(a)

bd

∈ Z[a;n, hn+2 + 2nhn+2] ⊆ Z[a;n, 2n+1hn+2].

Case 2. −t ≤ r′

b t+ r < 0. Then s = (q′− 1)t+ r′+b
b t+ r with 0 ≤ r′+b

b t+ r < t,
so iq(s, t) = q′ − 1 and rem(s, t) = r′+b

b t+ r. Now q′ − 1 = dQ(a)−r′−b
b , so

iq(s, t) ∈ Z[a;n, 2n−1hn+1 + 2hn+1] ⊆ Z[a;n, 2n+1hn+2],

rem(s, t) =
r′ + b

b
t+ r =

(r′ + b)G(a) + dR(a)
bd

∈ Z[a;n, 2hn+2 + 2nhn+2] ⊆ Z[a;n, 2n+1hn+2].

Case 3. t ≤ r′

b t + r < 2t. Then r′

b > 0; after replacing r′ by r′ − b (and q′ by
q′ + 1) we are back in case 1.

Case 4. −2t < r′

b t + r < −t. Then r′

b < 0; after replacing r′ by r′ + b (and q′

by q′ − 1) we are back in case 2.

Suppose that a > 2h2 and u ∈ Z[a;n, h]. Then by Lemma 10.2 there is a unique
tuple (c, c0, . . . , cn) such that 0 < c ≤ h, |ci| ≤ h for i = 0, . . . , n, gcd(c, c0, . . . , cn) =
1, and u = c0+c1a+···+cna

n

c . Denote the component c of this unique tuple by c(u).
With these notations we have

Lemma 10.4. Let a > 2n+1hn+2, let 0, 1 ∈ U ⊆ Z[a;n, h], and suppose κ ≡ 1
mod c(u) for each u ∈ U . Then we have an embedding ı : Z(2) �U � Z(2) such
that

ı
(c0 + c1a+ · · ·+ cna

n

c

)
=
c0 + c1κa+ · · ·+ cnκ

nan

c
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whenever 0 < |c| ≤ h, |ci| ≤ h for i = 0, 1, . . . , n and c0+c1a+···+cna
n

c ∈ U .

This follows by closely inspecting the proofs of Lemma 10.3 and of items (i) and
(ii) listed just ahead of that lemma.

Lemma 10.5. Suppose a > 223m2

, and put

Ck(a) := Z[a; 2k, 223k2

], 0 ≤ k ≤ m.

We have the following inclusions for 0 ≤ k < m:

(i) Ck(a) ⊆ Ck+1(a);
(ii) Ck(a)+Ck(a), Ck(a)−Ck(a), iq(Ck(a), Ck(a)), rem(Ck(a), Ck(a)) and Ck(a) ·

Ck(a) are subsets of Ck+1(a);

(iii) GZ(2)
k (a) ⊆ Ck(a) and GZ(2)

m (a) ⊆ Cm(a).

Proof. Inclusions (iii) follow from (ii) by induction and G
Z(2)
0 (a) = {0, 1, a} ⊆

Z[a; 1, 2] = C0(a). Inclusions (ii) follow from Lemma 10.3.

Proof of Theorem 10.1. Let p ≥ 2212
, p > d, such that R(p) holds. Take m

maximal such that p ≥ 223(m+1)2

, so m ≥ 1. Put M := 223m2

. Suppose t(x) is a
Z(2)-term of depth ≤ m such that t(p) = 1.

Claim. There exists λ such that for κ = 1 + λF (λ) we have t(κp) = 1 and
κp ≤ N := pe+3.

To prove this claim we set U := S(t(x), p) ∪ {0, 1, p}, and we note that by part
(i) of Lemma 8.6 and part (iii) of Lemma 10.5 we have

U ⊆ GZ(2)
m (p) ⊆ Cm(p).

By part (ii) of Lemma 8.6 we have |U | ≤ K := 3m + 3. Put

λ :=
∏
u∈U

c(u)

where we use the notations of Lemma 10.4 with p, 2m and M in the role of a, n and
h. Then λ ≡ 0 mod c(u) for all u ∈ U . Put κ := 1+λF (λ), so κ ≡ 1 mod c(u) for
all u ∈ U . Hence by Lemma 10.4 we have an embedding ı : Z(2) �U � Z(2) such
that ı(p) = κp, and thus t(κp) = 1 by part (i) of Lemma 8.6, using also Lemma
8.7. To finish the proof of the claim it remains to show that κp ≤ N . We have
κ ≤ 1 + dλe+1 ≤ 1 + dM (e+1)K ≤ pM (e+1)K ≤ pe+2, since

pe+1 = 2(e+1)23(m+1)2

≥M (e+1)K = 2(e+1)(3m+3)23m2

.

Hence κp ≤ pe+3 = N , which establishes the claim.
Because t(x) was an arbitrary Z(2)-term of depth ≤ m with t(p) = 1, it follows

from the claim that cZ(2)(R,N) ≥ m+ 1. In view of

log logN = log(e+ 3) + 3(m+ 1)2

it follows that cZ(2)(R,N) > 1
2

√
log logN provided p > P0 where the constant

P0 > 0 depends only on e.
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The arguments above show that for P = max{d, 2212
, P0} we have

p > P and R(p) =⇒ cZ(2)(R,N) >
1
2

√
log logN.

Decision-tree complexity

With essentially the same primitives, [Mansour et al. 1991b] has a
√

log log lower
bound for “being a perfect square”, and [Meidânis 1991] has such a bound for
primality. As usual in computer science these bounds are expressed as functions of
the length of the binary representation of the input, and therefore show up as

√
log

bounds. A more substantial difference is that the lower bounds in [Mansour et al.
1991a], [Mansour et al. 1991b] and [Meidânis 1991] are for a sequential model of
computation, namely decision-trees, in contrast to our term-complexity.

PART 3. LOWER BOUNDS FOR RECURSIVE PROGRAMS

There is no single term t(x, y) which computes gcd(x, y) for all x, y ∈ N>0, in any
of the algebras we have considered, and similarly for coprimeness and the other
examples we have studied. Thus the lower bounds of Part 2 apply to (non-uniform)
term-algorithms, which compute the relevant function for inputs ≤ N using some
term tN (~x). In this Part we will derive lower bounds for uniform algorithms which
apply to all inputs and are expressed by recursive programs. These uniform results
have an especially simple, “pointwise” form which identifies directly the inputs that
account for the lower bounds. Moreover, their precise formulation sheds some light
on the expected “lower efficiency” of uniform (relative to non-uniform) algorithms,
and we will discuss this phenomenon briefly after the statements of Theorems 12.1
and 12.2.

Weaker versions of some of the results in this part have already appeared in [van den
Dries and Moschovakis 2004], whose last Section 6 also explains how to extend them
to classes of algorithms much wider than those expressed by recursive programs.

11. RECURSIVE (MCCARTHY) PROGRAMS

We follow here the notation and conventions of Section 5, and we let k and K range
over N.

Program syntax

An n-ary recursive or McCarthy Φ-program is a (K + 1)-tuple

α = (α0(~v, ~f), α1(~v, ~f), . . . , αK(~v, ~f))

of terms (with equality tests and conditionals), in the expanded signature

(Φ, ~f) = Φ ∪ {f1, . . . , fK},

where, as usual, ~v = (v1, . . . , vn), is a sequence of (distinct) variables which includes
all the variables that occur free in the terms αi. Here f1, . . . , fK are fresh, n-ary
function symbols, the recursion variables of α. The body of α is the K-tuple of
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terms αi(~v, ~f), which encodes the system of identities

f1(~v) = α1(~v, ~f)
... (12)

fK(~v) = αK(~v, ~f)

The first term α0(~v, ~f) is the head of α.
We allow K = 0, in which case ~f is the empty sequence and α is identified with

its head—so that each Φ-term can be viewed as a program.

Fixed point semantics

Terms in the signature (Φ, ~f) of a recursive program α are naturally interpreted in
expansions

(A, p1, . . . , pK) = (A, 0, 1, {φA}φ∈Φ, p1, . . . , pK)

of a (partial) Φ-algebra A. To interpret α on A, we view the recursion variables
f1, . . . , fK as the unknowns in the system of identities determined by the body of
α. It is well known that each such system has a v-least tuple of partial functions

f1, . . . , fK : An ⇀ A

which satisfies it, essentially because the operations on partial functions defined by
terms are monotone and continuous; in fact

f i =
⋃
s f

(s)

i , where f
(0)

i v f
(1)

i v · · · (i = 1, . . . ,K),

so that the iterates f
(s)

i provide approximations to the tuple (f1, . . . , fK) of mutual
fixed points of the body of α, e.g., see Section 1 of [van den Dries and Moschovakis
2004]. This tuple of partial functions is the first semantic value of α on A, and it
determines the associated expansion

(A, α) = (A, f1, . . . , fK) = (A, 0, 1, {φA}φ∈Φ, f1, . . . , fK).

It depends only on the body of α. The second is the n-ary partial function α :
An ⇀ A computed by α,

α(~a) := α0(~a, f1, . . . , fK).

If K = 0, then (A, α) = A and α is just the partial function explicitly defined by
the head α0(~v). Given a relation R ⊆ An and a set S ⊆ An we say that α decides
R on the set S ⊆ An if for all ~a ∈ S,

α(~a) =

{
1 if ~a ∈ R,
0 otherwise.

Notation

We have exhibited the recursion variables f1, . . . , fK in the parts of a recursive pro-
gram, to emphasize that they can be used to define operations on partial functions.
It will also be convenient to do this in the sequel sometimes, i.e., name (Φ, ~f)-terms
by expressions like t(~x, ~f). Most of the times, however, when it is not needed, we
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will denote (Φ, ~f)-terms as usual, s(~x), u1(~x), . . ., and for each Φ-algebra A we will
interpret them in the associated expansion (A, α). Thus each (Φ, ~f)-term s(~x) de-
fines on each Φ-algebra a partial function ~a 7→ t(~a) by the standard definitions of
Section 5. If none of the recursion variables fi occurs in t(~x), then (obviously) t(~a)
has the same value in A and in (A, α).

Examples

(1) Let A =
(
N, 0, 1,S,Pd

)
where S is the successor function and Pd the predecessor

(with Pd(0) = 0). Then a partial function f : Nn ⇀ N is A-computable exactly
when it is computable by a Turing machine. This is the main result of [McCarthy
1963], where these programs were introduced.

(2) Recursive algorithms are sometimes most naturally defined by a single recur-
sive equation. For example, the euclidean algorithm,

gcd(x, y) =

{
y, if rem(x, y) = 0,
gcd(y, rem(x, y)), otherwise

computes the greatest common divisor of two positive integers. To agree with the
definition of programs given here, we add a trivial head which just “calls” the single
function defined, leading in this case to the program

ε0(x, y) = gcd(x, y),
gcd(x, y) = Co(Eq(rem(x, y), 0), y, gcd(y, rem(x, y))

in the algebra (Z, 0, 1, rem). Formally, this is the pair of terms

ε =
(
gcd(x, y), Co(Eq(rem(x, y), 0), y, gcd(y, rem(x, y))

)
.

Complexity functions

For a Φ-algebra A and a recursive program α of signature (Φ, ~f), let Σ = ΣA
α be

the set of convergent (Φ, ~f)-terms with parameters, i.e., the set of all pairs
(
t(~x),~a

)
such that t(~x) = t(~x, ~f) is a (Φ, ~f)-term, ~a ∈ Am, and t(~a)↓ .

Proposition 11.1. There are two functions

C = CA
α : Σ → N, D = DA

α : Σ → N

which satisfy the following conditions.

(C0) C(xi,~a) = C(0,~a) = C(1,~a) = 0

D(xi,~a) = D(0,~a) = D(1,~a) = 0

(C1) C(Eq(t1(~x), t1(~x)),~a) = max{C(t1(~x),~a), C(t2(~x),~a)}
D(Eq(t1(~x), t1(~x)),~a) = max{D(t1(~x),~a), D(t2(~x),~a)}+ 1

(C2) C(Co(t1(~x), t2(~x), t3(~x)),~a) =


max{C(t1(~x),~a), C(t2(~x),~a)},

if t1(~a) = 1,
max{C(t1(~x),~a), C(t3(~x),~a)},

if t1(~a) 6= 1

ACM Transactions on Computational Logic, Vol. V, No. N, May 2007.



42 · L. van den Dries and Y. N. Moschovakis

D(Co(t1(~x), t2(~x), t3(~x)),~a) =


max{D(t1(~x),~a), D(t2(~x),~a)}+ 1,

if t1(~a) = 1,
max{D(t1(~x),~a), D(t3(~x),~a)}+ 1,

if t1(~a) 6= 1

(C3) C(φ(t1(~x), . . . , tk(~x)),~a) = max{C(t1(~x),~a), . . . , C(tk(~x),~a)}+ 1,

D(φ(t1(~x), . . . , tk(~x)),~a) = max{D(t1(~x),~a), . . . , D(tk(~x),~a)}+ 1,

if φ ∈ Φ

(C4) C(fi(t1(~x), . . . , tm(~x)),~a) = max{C(t1(~x),~a), . . . , C(tm(~x),~a)}
+ C(αi(~x), t1(~a), . . . , tm(~a))

D(fi(t1(~x), . . . , tm(~x)),~a)
= max{D(t1(~x),~a), . . . , D(tm(~x),~a), D(αi(~x), t1(~a), . . . , tm(~a))}+ 1

Proof. This follows by an application of the same Fixed Point Lemma in Sec-
tion 1 of [van den Dries and Moschovakis 2004] which justifies the definitions of f i
and α above.

For (t(~x),~a) ∈ Σ, the tree-depth complexity D(t(~x),~a) is the depth of a com-
putation tree which is naturally associated with the computation of t(~a) using the
system of recursive equations (12). It is a natural (semantic) extension to programs
of depth(t). We will not have much to say about it, but it provides a useful method
of proving inductively properties of convergent, recursive terms.

The (strict) complexity C(t(~x),~a) measures (roughly) the maximal depth of nested
calls to the primitives in the computation of t(~a). It is a natural extension of
deptha(t) to recursive programs, and it is the main object of our study here.

Lemma 11.2. Let A be a Φ-algebra and t(~x) a Φ-term. For each ~a such that
t(~a)↓ ,

C(t(~x),~a) ≤ deptha(t(~x)).

This is proved by a straightforward induction on depth(t). The Lemma is not
true with equality (rather than ≤) because of the conditional, where the syntactic
measure deptha(t(~x)) counts the formal (putative) calls to the primitives in both
branches, while the semantic measure C(t(~x),~a) has access to the parameters ~a and
disregards the branch which is not used.

The complexity function of a program α is the complexity of its head term,

Cα(~a) = CA
α (~a) = C(α0(~x),~a).

It is defined when α(~a)↓ .
The next proposition is the key tool for the lower bound results in Section 12. It

is the version of Lemmas 5.1 and 5.3 appropriate for recursive programs.

Proposition 11.3. Let A be a Φ-algebra and α an n-ary Φ-program with re-
cursion variables ~f , and let t(~x) be a (Φ, ~f)-term, ~x = (x1, . . . , xm).
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(i) If ı : A � B is an embedding of A into a Φ-algebra B, then for every ~a ∈ Am
such that tA(~a)↓ ,

ı(tA(~a)) = tB(ı(~a)) and CA(t(~x),~a) = CB(t(~x), ι(~a)).

(ii) If ~a ∈ Am, tA(~a)↓ and CA(t(~x),~a) ≤ k, then

tA(~a) ∈ GA
k (~a) and tA(~a) = tA�GA

k (~a)(~a).

(iii) If ~a ∈ An and k are such that α(~a) = 1 and α(ı(~a)) 6= 1 for some embedding
ı : A � GA

k (~a) � A, then Cα(~a) > k.

Proof. (i) and (ii) are proved by routine inductions on D(t(~x),~a), and (iii)
follows directly.

One easy corollary of it is the identification of explicit definability with recursive
definability with bounded complexity:

Proposition 11.4. Let A be a Φ-algebra. Given f : An ⇀ A and S ⊆ D(f),
the following are equivalent:

(i) there is a Φ-term τ(~x) that computes f on S;

(ii) there is an n-ary Φ-program α that computes f on S such that the set {Cα(~a) :
~a ∈ S} is bounded.

Proof (Outline). (i) =⇒ (ii) by Lemma 11.2. For the converse, it is conve-
nient first to add one more equation

f0(~x) = α0(~x, f1, . . . , fK)

to the given program, so that α(~x) = f0(~x) and we can treat the head of α as
part of its body. We first check that each of the iterates f

(s)

i of α in a Φ-algebra
A is defined by an explicit (Φ, ↑ )-term ts,i(~x, ↑ ) which does not depend on A,
where ↑ is a new symbol denoting the undefined, nullary function; this is done by
a simple (if somewhat messy) argument that relies on replacement properties for
partial function variables in (Φ, ~f, ↑ )-terms. It follows that for each m, there is
some s = s(m) such that

f i(~a) = tAs,i(~a, ↑ ) (i = 0, . . . ,K)

for every finite algebra A of size ≤ m, because of the monotonicity of the iterates;
and then by (ii) of Proposition 11.3, if Cα(~a) ≤ k for all ~a ∈ S, m is an upper
bound on the size of GA

k (~a) (which depends only on the arities of the symbols in
Φ, the arity n of α and k) and s = s(m), then

f i(~a) = t
A�GA

k
s,i (~a, ↑ ) (~a ∈ S).

We finish the proof by setting τ(~x) = ts,0(~x, 0), which (easily) has the same value

as ts,0(~x, ↑ ) on S because we have assumed that f0(~a) = t
A�GA

k
s,0 (~a, ↑ ) ↓ when

~a ∈ S.
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Simulating Turing Machines with Lin-programs

We end this section with a simple simulation result which helps relate some of the
lower bounds in the next section to classical complexity estimates.

Proposition 11.5. If a function f : N → N is computable by a Turing machine
M in time T (log n) for n > 0, then there is a natural number k and a Lin-program
α which computes f with cα(n) ≤ kT (log n) for n > 0.

In particular, if f is computable in polynomial time, then it is computable by a
Lin-program α with cα(n) ≤ k logd n, for some natural numbers k, d and all n > 1.

We are assuming here that the input n is entered on a tape of M in binary
notation (which is why we express the complexity as a function of log n), but other
than that, the result holds in full generality: M may or may not have separate
input and output tapes, it may have one or many, semi-infinite or infinite work
tapes, etc. An analogous result holds also for functions of several variables.

Proof (Outline). Consider the simplest case, where M has a two-way infinite
tape and only one symbol in its alphabet, 1. We use 0 to denote the blank symbol,
so that the “full configuration” of a machine at a stage in a computation is a triple
(q, τ, i), where q is a state, τ : Z → {0, 1}, τ(j) = 0 for all but finitely many j’s,
and i ∈ Z is the location of the scanned cell. If we write τ as a pair of sequences
emanating from the scanned cell y0

· · ·x3x2x1x0y0
↑
y1y2y3 · · ·

one “growing” to the left and the other to the right, we can then code (τ, i) by the
pair of numbers

(x, y) = (
∑
j xj2

j ,
∑
j yj2

j).

Notice that y0 = rem(y, 2) and x0 = rem(x, 2), so that the scanned symbol and the
symbol immediately to its left are computed from x and y by Lin-operations. The
input configuration for the number z is coded by the triple (q0, 0, z), with q0 the
starting state, and all machine operations correspond to simple Lin-functions on
these codes. For example:

move to the right : x 7→ 2x+ y0, y 7→ iq(y, 2),
move to the left : x 7→ iq(x, 2), y 7→ 2y + x0.

It is now not difficult to write a Lin-program using these functions which simulates
M .

If M has K > 1 symbols, we can either give essentially the same proof starting
with a coding of tapes using numbers in K-adic expansions, or appeal to some of
the standard reductions of K-symbol Turing machines to 1-symbol machines. The
codings are somewhat messier when M has semi-infinite tapes.

12. LOWER BOUNDS IN THE UNIFORM SETTING

In this section we obtain lower bounds on Cα for programs that decide relations
like those considered earlier in the non-uniform setting of term-complexity. In fact,
things are a bit simpler than before, and results take on a rather attractive form.
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We collect in two theorems the uniform versions of Theorems 6.6, 8.1, 10.1, 7.1 and
9.1. Throughout this section we let a, b, p and λ denote positive integers.

Theorem 12.1. Suppose R ⊆ Z is a unary relation such that for all p, λ and
some function F : N>0 → N>0,

R(p) =⇒ ¬R(1 + λF (λ)).

(i) Let A := Z(divD) where D > 1 is an integer. Then for each unary A-program
α that decides R on N>0,

p > (D + 1)2 and R(p) =⇒ Cα(p) >
log p

2 log 2E
(E := D!).

(ii) Let A := Z(1). Then for each unary A-program α that decides R on N>0,

p > 225 and R(p) =⇒ Cα(p) >
log log p

2
.

(iii) Let A := Z(2). Then there is a constant P > 0 (independent of the relation
R), such that for each unary A-program α that decides R on N>0,

p > P and R(p) =⇒ Cα(p) >
√

log log p

2
.

Note that the hypothesis on F is weaker than in Theorems 6.1, 8.1 and 10.1,
since no polynomial growth is assumed.

Proof. All the real work for these results has been done in Sections 6, 8, 10 in
constructing certain embeddings A �U � A. We only show (iii), since the other
proofs are similar.

Let A = Z(2) and let α be a unary A-program that decides R on N>0. As in
the proof of Theorem 10.1, let p ≥ 2212

be such that R(p) holds; take m maximal

such that p ≥ 223(m+1)2

, so m ≥ 1 and p < 223(m+2)2

, so log log p < 3(m+2)2, hence√
log log p√

3
< m+2. Since 1

2 <
1√
3
, this gives a natural number P ≥ 2212

(independent

of the relation R) such that
√

log log p
2 < m + 1 if p > P . Also, GA

m(p) ⊆ Cm(p),
using notations from Section 10. Put U := GA

m(p), and take λ :=
∏
u∈U c(u), using

the notations of Lemma 10.4. That lemma provides an embedding ı : A �U � A
such that ı(p) = κp where κ = 1 + λF (λ), so by (iii) of Proposition 11.3, we have
Cα(p) ≥ m+ 1 >

√
log log p

2 if p > P .

Theorem 12.2. (i) If α is a binary program which decides coprimeness on
(N>0)2 in Z(divD) (with D > 1), then

p > (D + 1)2 =⇒ Cα(p, p2 + 1) >
log p

2 log 2E
(E := D!).

(ii) If α is a binary program which decides coprimeness on (N>0)2 in Z(1) and
a, b are coprime such that |ab −

√
2| < 1

b , then

a ≥ 2216
=⇒ Cα(a, b) >

log log a
4

.
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Proof. We only show (ii), since the proof of (i) is similar. Assume the hypothe-
ses in (ii) on α, a and b, with a ≥ 2216

, and take m maximal with a ≥ 223m+4
, so

m ≥ 1 and a < 223(m+1)+4
, hence log log a < 3(m+ 1) + 4, and thus

m+ 1 >
log log a

3
− 4

3
≥ log log a

4
.

Setting h := 22m

and κ := 1 + (h2)!, Lemmas 9.2 and 9.3 yield an embedding
ı : Z(1) � Gm(a, b) � Z(1) such that ı(a) = κa and ı(b) = κb. Then (iii) of
Proposition 11.3 gives Cα(a, b) ≥ m+ 1 > log log a

4 , as promised.

Uniform vs. non-uniform lower bounds

It is plausible that uniform algorithms are in general less efficient on inputs ≤ N
than some non-uniform term algorithm tN (~x), so we would generally expect higher
(better) lower bounds for uniform algorithms. In the case of Z(divD), however, with
Presburger primitives, we derived in Theorems 12.1 (i) and 12.2 (i) logarithmic lower
bounds for recursive programs which are the same as the non-uniform lower bounds
of Theorems 6.6 and 7.1, up to a multiplicative constant. For Z(1) and Z(2), we also
derived lower bounds of the same form as in Part 2, but for the complexity function
Cα(~x), which corresponds to arithmetic complexity for terms and is generally lower
than the corresponding uniform version of term complexity—for which better lower
bounds may well be derivable. The cost in increased complexity for uniformity is an
important problem, but this indication of its form (and what causes it) is about the
best we can do now, in the absence of proofs of optimality for the known uniform
algorithms, like the euclidean.

A refinement

We are now going to extend part (ii) of Theorem 12.2 in two directions. First,
the embedding lemma 9.3 on which it depends does not assume that a and b are
coprime, and we shall take advantage of that. Secondly, we increase the set of
inputs for which the lower bound holds by considering a > b with |

√
2 − a

b | <
1
bρ

where ρ is a real parameter, 0 < ρ ≤ 1. The price to pay is that we have to restrict
to inputs with b > b(ρ) where b(ρ) →∞ as ρ→ 0. Here is a precise statement.

Theorem 12.3. Let 0 < ρ ≤ 1. Then there exists b(ρ) > 0 such that if a >
b > b(ρ) and |

√
2 − a

b | <
1
bρ , then for some λ and every binary Z(1)-program α, if

α(a, b) = 1 and α
(
(nλ+1)a, (nλ+1)b

)
6= 1 for some n > 0, then cα(a, b) > log log a

4 .

Proof. In connection with Theorem 3.9 it was already mentioned that the lem-
mas of Section 3 have ρ-versions. This leads to ρ-versions of Lemmas 9.2 and 9.3: in
the first of these lemmas the inequality a ≥ h16 should be replaced by aρ ≥ h16, and
the statement of the second lemma can be kept, with “previous lemma” referring
now to its ρ-version. The proofs are the same, mutatis mutandis.

The rest of the proof follows that of part (ii) of Theorem 12.2 but is included
here to show how b(ρ) depends on ρ and λ on ρ, a. Assume that a > b and
|
√

2 − a
b | <

1
bρ , with aρ ≥ 2216

, and take m maximal with aρ ≥ 223m+4
, so m ≥ 1

and aρ < 223(m+1)+4
, hence

log ρ+ log log a < 3(m+ 1) + 4,
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and thus

m+ 1 >
log log a

3
+

log ρ
3

− 4
3
≥ log log a

4
where the last inequality holds provided b (and hence a) is large enough, say b >
b(ρ), which we assume in the rest of the proof. Set h := 22m

and λ := (h2)!.
Let α be a binary Z(1)-program and let n > 0 be such that α(a, b) = 1 and
α
(
(nλ+ 1)a, (nλ+ 1)b

)
6= 1. With κ := nλ+ 1, the ρ-versions of Lemmas 9.2 and

9.3 yield an embedding

ı : Z(1) � Gm(a, b) � Z(1)

such that ı(a) = κa and ı(b) = κb. Then (iii) of Proposition 11.3 gives Cα(a, b) ≥
m+ 1 > log log a

4 , as promised.

Corollary 12.4. Let 0 < ρ ≤ 1, and let ` : N>1 → R>1 be a function such that
`(n) = o(n) as n → ∞. Then there exists a b(ρ) > 0 (independent of `) such that
for each binary Z(1)-program α that decides the binary relation

{(x, y) ∈ Z2 : x > 0, y > 0 and gcd(x, y) < `(x+ y)}

on (N>0)2 and all a, b, if a > b > b(ρ), |
√

2 − a
b | <

1
bρ , and gcd(a, b) < `(a + b),

then cα(a, b) > log log a
4 .

Proof. Take b(ρ) as in Theorem 12.3, let α be a binary Z(1)-program α that
decides the relation indicated, and let a > b > b(ρ), |

√
2− a

b | <
1
bρ , and gcd(a, b) <

`(a + b). Note that then α(a, b) = 1. Take λ with the property of Theorem 12.3.
The assumption on ` allows us to take an n so large that nλ+1 ≥ `

(
(nλ+1)(a+b)

)
.

Then

gcd
(
(nλ+ 1)a, (nλ+ 1)b

)
≥ `

(
(nλ+ 1)a+ (nλ+ 1)b

)
,

so α
(
(nλ+ 1)a, (nλ+ 1)b

)
6= 1, and thus cα(a, b) > log log a

4 .

Theorem 12.2(ii) is the case where ρ = 1 and `(n) = 2 for all n > 1, but we can
also take `(n) :=

√
n, giving rise to the relation

x > 0, y > 0 and gcd(x, y) <
√
x+ y,

and `(n) := n/ log n, with corresponding relation

x > 0, y > 0 and gcd(x, y) < (x+ y)/ log(x+ y).

Upper bounds

Theorem 12.1 yields lower bounds for programs deciding primeness, being a power
of 2, being a perfect square, and being square-free. Our knowledge on upper bounds
for such programs is as follows.

Primeness is decidable in polynomial time by [Agrawal et al. 2004], and so by
Proposition 11.5, it is decided by a Lin-program α with Cα(n) ≤ C(log n)d for
some positive constants C and d and all n > 1. The lower bound of Theorem 12.1
comes within a power of this upper bound, and we do not know of a better lower
bound in the literature.

There is an obvious Z(div2)-program α that decides “being a power of 2” with
Cα(n) ≤ C log n for some positive constant C and all n > 0, so for this unary
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relation, the lower bound of Theorem 12.1 is matched by a proportional upper
bound.

From [Mansour et al. 1991b] one can extract a Z(2)-program α that decides
“being a perfect square” with Cα(n) ≤ C log log n for some positive constant C and
all sufficiently large n, while Theorem 12.1 gives a

√
log log lower bound.

It seems to be open whether “being square-free” is even decidable in polynomial
time.

For coprimeness, the lower bound in (i) of Theorem 12.2 is matched by a pro-
portional upper bound for the binary gcd algorithm. For Z(1), we do not know of
any work which gets closer to the euclidean log upper bound than the log log lower
bound in (ii) of Theorem 12.2.
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