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THE LOGIC OF FUNCTIONAL RECURSION! 

1. INTRODUCTION 

Recursive definitions of functions abound in mathematics and logic: in the 
classical theory of recursive functions on the set N of natural numbers
of course; in (so-called) abstract or generalized recursion theory; and, most 
significantly, in programming languages, where (especially since the work of 
Scott [9]) it has become clear that the main "programming construct" is def
inition by recursion. And so it is important to understand how properties 
of recursively defined functions-follow logically from their definitions. The 
paper could be called the logic of programs, but the title above is more 
specific, more general (in some ways), and also more honest, since the aus
tere, mathematical formulation in which the problem is best understood is 
quite removed from actual programming practice. The formal proof systems 
and completeness results of this paper are related to "program verification" 
very much like predicate logic and its completeness are related to axiomatic 
set theory; they are certainly relevant, but not of much help in establishing 
specific, concrete results. 

In its most general form, a recursive definition of a function is expressed 
by a fixpoint equation of the form 

p(u) = I(u,p) (p: M -+ W,I : M x (M -+ W) -+ W), (1) 

in which the functional 1 provides .a method for computing (or attempting 
to compute) each value p(u) of p : M -+ W, perhaps using ("calling") other 
values of p in the process. In applications, we deal mostly with mutual recursive 
definitions of the form 

A = lo(jj} where {Pl(Ut} = !I(Ul,P), .. ·,Pn(un) = !I (un,P)}; (2) 

the idea here is that first we "solve" the system 

Pl(Ut} = !I(Ul,P),··· ,Pn(un) = In(un,p), 

and then we apply the "head" functional 10 to the "solutions" to get the 
required value. It is not hard to reduce such mutual recursions to the sim
pler (1), but their logic becomes more rather than less complex in the process 
and, in the end, it is best to take (2) as basic. So the language of functional 
recursion is, in effect, the language of the "where" construct, and it is formal
ized in the Formal (or Functional) Language of Recursion FLR introduced 

1 During the preparation of this paper the author was partially supported by an NSF 
Grant. 
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in [5]. It is possible (and useful) to think of FLR as a very abstract program
ming language, rich enough so that the more familiar, friendlier programming 
languages can be "faithfully" interpreted in it. 

The basic Monotone Fixpoint Theorem insures the existence of a least so
lution for (1), when the range W of the "unknown" function p is a complete 
poset, and the functional f is monotone.2 This (and its corollaries) suffice 
for the development of denotational semantics for deterministic programming 
languages. The situation is very different for languages with non-deterministic 
and "concurrent" constructs, whose interpretation requires the assignment of 
"canonical solutions" to (1), in situations where W is not a poset and so least 
solutions do not exist; it then becomes a serious problem how to justify the 
choice of one proposed method over another . Part of the motivation for this 
work is the hope that a better understanding of the laws of logic which gov
ern deterministic recursion will help us understand, evaluate and compare the 
various approaches to "concurrency modeling." 

The main contributions of this paper are: first, the introduction of a new 
class of least-fix ed-point interpretations for FLR (and programming languages 
in general), a refinement of denotational semantics which is closer to our in
tuitive understanding of deterministic programs and mathematically simpler; 
second, the completeness and decidability of an equational proof system £0 
for (absolute) identities between FLR expressions (program equivalence), with 
respect to the new interpretations; and, third, the completeness of a stronger 
system £ for FLR-sentences which are valid consequences of a first order the
ory, suitably defined. The axiom systems £0 and £ of Sections 7 and 10 are not 
complete (and could not be complete) for the generiJ,1 consequence relation, but 
they are strong enough so that many natural proofs of program correctness 
can (in principle) be formalized in them. They are also sound for the models 
of concurrent systems introduced in [6, 7, 8], and so the completeness results 
(especially) support the proposition that the logic of non-deterministic and 
concurrent (recursive) programs is the same as that of deterministic programs. 

Acknowledgment. This paper generalizes and extends some of the basic 
results of the joint work [1], which deals with FLRo, the propositional (or 
eq'uational) part of FLR. I have omitted specific references to [1] (partly for 
reasons of space and also because the final form of [1] is not quite ready yet), 
and I have tried to make this paper self-contained, but, ideally, the two papers 
should be read together. I am grateful to my students Monica McArthur, 
Larry Moss and Glen Whitney and to Tonny Hurkens, for their many ideas 
and invaluable contributions to this project. 

2A partially ordered set (poset) W is (directed) complete (a dcpo) if every directed 
X ~ W has a least upper bound supX; f : U --t V is monotone if x::; y ==> feu) ::; fey); 
and (for complete U, V), f : U --t V is Scott-continuous if for every non-empty, directed 
X ~ U, f(supX) = sup{J(x) I x E X}. There is no room in this paper to motivate or 
explain the basic ideas of poset theory and the fixpoint theory of programs, and so I will 
assume that the reader is familiar with them. 
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Term: A .- ff I tt 
I P(Zl, ... , Zn) 
I f(Zl, ... , Zn, 11"1,···, 1I"m) 
I if Ao then Al else A2 fi 
I Ao where {p1(ud = AI, ... ,Pn(Un) = An} 

Z ulA 
i-term: 11" P li(ul, ... , un)A 
Expression: E := ulAI1I" 
Equation: c .- U1 = U2 I u = A I A = u I Al = A2 111"1 = 11"2 

TABLE 1. The syntax of FLR. 

2. THE SYNTAX OF FLR 

We fix formal, basic (individual) variables uo, U1,... and for each n E N, 
formal function variables Po, Pi' , . .. of arity n. An FLR signature is a pair 
-r = ({fi liE I},kind) of a set of functional symbols {fi liE I} and 
a mapping which assigns to each fi a tuple kind(fi) = (n, k1 , ... , km). The 
general idea is that in the intended interpretations of FLR(-r), each fi will 
be interpreted by a functional J;(U1, ... , un, PI,··· ,Pm), where each Ui ranges 
over the interpretation of the basic variables, and each Pj ranges over the 
interpretation of function variables of arity k j . Functional symbols of kind (n) 
(with m = 0) will be interpreted by functions, including nullary functions 
when the kind is (0}.3 

The expressions of FLR(-r) comprise the variables, the terms, and the 
i-terms, which will be interpreted by functions and so have arities associated 
with them. They-and the (well formed) equations-are defined simultane
ously by the inductive clauses in Table 1 and the following remarks, in which 
we also specify which variable occurrences are bound, the remaining ones be
ing free. We use "metavariables" u, v for formal basic variables and p, q, r for 
function variables, sometime with subscripts and in vectors, U = U1, ... , Un. 

Notice that basic variables are not terms, but function variables are i-terms, 
a mild eccentricity of the language which, however, fits in with the intended 
semantics. 

(1) In P(Zl' ... , Zn) and f(Zl, ... , Zn, 11"1,· .. , 1I"m)' each Zi is a basic vari
able or a term; P is a function variable of arity n; and f is a functional symbol of 

3There are three inessential differences between this and the original presentation of 
FLR in [5]. First, only one sort of basic variables is allowed here, as is common in proof 
theory, and so the truth values cannot be assigned to basic variables, although they are 
allowed to be values of terms; second, the conditional is "typed" differently, i.e., its first 
argument must be a term (not a basic variable); and third, I write l(u) rather than A(U), to 
avoid appealing inadvertently to classical properties of the A-calculus which are not valid 
in all interpretations of FLR, some of which are strongly intensional. The two versions are 
equivalent in expressive power for the class of models considered in [5]. 
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kind (n, k1' . .. ,km ) with kj = arity( 7rj) . If f is a nullary symbol-a constant
we will write f rather than fO. 

(2) In the conditional expression, Ao, A1 and A2 are terms. We view this 
expression as an abbreviation of the more formal 

cond(iOAo, iOA1' iOA2), 
which makes it clear that the conditional will be interpreted as if it were a 
given functional symbol, of kind (0,0,0, O) . 

(3) In the recursive term Ao where {p1(iIt} = A1, ... ,Pn(iIn) = An}, each 
Ai is a term, P1, . .. ,Pn are distinct function variables, and each iIi is a (pos
siblyempty) list of distinct basic variables of length arity(Pi). An occurrence 
of a variable x in the head Ao or some recursion part Ai of this term is 
free, if it is a free occurrence of x in Ai, x is not some Pj, and also x is not 
one of the basic variables in the list iIi. For an example, consider 

..1 = pO where {pO = pO} (3) 
which plays a special role in the theory. 

(4) In i(iI)A, A is a term and U1, . . . , Un are distinct, basic variables. This 
i-term has arity n, and an occurrence of a variable U is free in it if it is free in 
A and not one of the UiS . We also count function variables among the i-terms, 
basically identifying P with i(iI)p(iI) . We set i(iI)i(ii)A =df i(iI, ii)A when the 
lists iI and v have no common variables, so we can meaningfully prefix i-terms 
by the i operator. 

(5) In a well-formed i-equation 7r1 = 7r2, the two sides must have the same 
arity. 

For examples of expressions, see the list of axioms in Table 2. 

2.1. SUBSTITUTIONS (REPLACEMENTS). By E{iI:= Z} we denote the re
sult of replacing in E every free occurrence of each Ui by the corresponding 
basic variable or term Zi. If E(iI) stands for an expression in which the vari
ables iI may occur free, we will also write, as usual, E(Z) for E(iI){iI:= Z}. 
The substitution E{p:= i(iI)A} of i-terms or function variables for function 
variables is defined by induction, using basic variable substitution in the one 
non-trivial clause, e.g., 

P(Zl,Z2){P:= i(U1,U2)A} = A{U1 := Z~,U2:= Z~}, 
where Z~ = Zl {p:= i(U1 ' u2)A}, and similarly with Z~. And with the abbre
viated notation again: E(7r) = E(P){p:= 7r} , for an i-term 7r. 

3. STRICT SEMANTICS 

3.1. STRICT FUNCTIONALS . With each (non-empty) set M, we associate 
the fiat poset 

Mt = M U {f£, tt, .i}, (4) 
where the truth values f£, tt and .i (bottom, the "undefined") are fixed objects 
outside M; .i :::; x for every x E Mt; and all points other than .i are pairwise 
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incomparable. An (extended) partial function on a set M is any function 
p: Mn -+ Mt, and a (partial, extended, monotone) strict functional on M 
of kind (n, k1 , •.. , km ) is any monotone mapping 

f: M n x (Mkl -+ Mt) x ... X (Mkm -+ Mt) -+ Mt, 

so that every n-ary partial function is a functional of kind (n) . Perhaps the 
simplest functionals are the calls and the strict conditional, 

Calln(Ul,' .. , un,p) = P(Ul, " . , un), 

{ 
qO if pO = tt, 

cond(p, q, r) = rO if pO = ff, 
.1 otherwise, 

(5) 

but equally natural are the functionals which represent the operations of first 
order logic, 

{ 
tt if pO = tt or qO = tt, 

or(p, q) = ff if pO = qO = ff, 
.1 otherwise, 

{ 
tt if (3u E M)(P(u) = ttl, 

EM(P) = ff if ('<Iu E M)(P(u) = ff], 
.1 otherwise. 

All but the last of these are continuous, but EM is discontinuous when M is 
infinite. 

3.2. FUNCTIONAL STRUCTURES. A (strict) functional structure of signature 
T = ({fi liE I}, kind) is a tuple 

9Jt = (M, {Ii liE I}), 

where each Ii is a functional on M with kind(li) = kind(fi). By identifying 
each relation Ri on M with its characteristic function 

XRi (it) = if R( it) then tt else ff, 

we find among these the usual first-order structures of model theory 

9Jt= (M,R1, ... ,Rl,fI, ... ,fm), 

and, more specifically, the standard structure of arithmetic 

l)1 = (N, 0, S, P, Z) (6) 

where S(x) = x+ 1, P(x) = if (x = 0) then 0 else x-I, and Z(x) {:::::} x = O. 
Structures with non-trivial functionals come up naturally as expansions of first 
order structures by functionals such as those above, e.g., 

(9Jt, or, EM) = (M, {Ii liE I}, or, EM)' 

3.3. STRICT DENOTATIONS. A valuation (variable assignment) W in a 
functional structure 9Jt assigns some W(Ui) E M to each basic variable, and 
some n-ary partial function w(Pi') : Mn -+ Mt to every function variable of 
arity n. We now associate with each expression E and each valuation W a 
denotation [Et(w), so that [E]s(w) = w(E) if E is a variable; [A]s(w) E Mt, 
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if A is a term; and [7l'Ds(w) is an n-ary partial function, if 7l' is an i-term of 
arity n. We skip the construction, which is by induction on the definition of 
expressions and follows familiar lines. The salient points are: 

(Dl) ff and tt are interpreted by ff and tt. 
(D2) Application is interpreted strictly,4 i.e., 

{ 
w(P)([ZlDs(w), ... , [ZnDs(w)) 

[P(Zl,"" Zn)Ds(w) = if [Zds(w), ... , [Zn]s E M, 
.L otherwise, 

and similarly with the substitution of terms or variables in the given func
tionals. 

(D3) Conditional terms are interpreted by the strict conditional (5). 
(D4) Recursive terms are interpreted by the taking of mutual, least-fixed

points, and to justify this, we must interleave with the definition a proof that 
for each E, [E]s(w) is monotone in w. Notice that [...1..Ds = .L for the closed 
term ...1.. defined in (3). 

(D5) £( iI) is interpreted by A-abstraction. 

3.4. RECURSIVE DEFINABILITY. The partial functions definable on 9R by 
closed i-terms are the recursive partial functions of 9R, and in the case of lJ1 
they are precisely the classical, recursive partial functions on N; on (lJ1, EN) we 
get the hyperartithmetical functions, and, more generally, for each first-order 
9R, the recursive partial functions of (9R, EM) are precisely the 9R-inductive 
partial functions, with domains of definition the 9R-inductive relations on 9R 
studied in [4]; and for every functional f on N, the recursive, partial functions 
on (1)1, f) are precisely those which are recursive in the sense of Kleene's type-2 
recursion on N. Kleene's higher-type recursion can also be represented (easily 
and naturally) as strict, FLR-definability on the appropriate structure.5 

3.5. STRICT CONSEQUENCE IN FLR. Assuming that all equations listed 
are well-formed, we write 

El = F1 , ... ,Em = F m F s E = F 

if for every functional structure 9R and valuation w in 9R, 

[EiDs(w) = [FiL(w) for i = 1, ... m ==> [EL(w) = [FL(w); 

this is the fundamental notion of logical consequence in the category of 
strict, monotone structures. We will not make a list of strict-valid conse
quences here since plenty will be put down later on, but notice that the (3-
reduction rule fails, 

£(u)p(u,v) = £(u)q(v) ~s p(A,v) = q(v), (7) 

by the trivial counterexample p( u, v) = q( v) = tt, A == ...1... 

4We might set instead [P(Z)J.(w) = if (or record an "error" in some other way) when 
[Z1.(w) is if or tt, but it is easier to handle such finer modelings of computation in the 
context of the more general ]-structures of Section 6. 

5This is essentially the approach to recursion in higher types taken in [2] . 
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4. CONTINUOUS SEMANTICS 

4.1. CONTINUOUS POSET STRUCTURES. If W is a complete poset, then 
each function space 

Cont(Wn -t W) = {p : wn -t W I p is Scott-continuous} 

is also a complete poset under the pointwise partial ordering, and so it makes 
sense to require that a functional 

I : W n X Cont(Wkl -t W) x ... x Cont(Wk~ -t W) -t W 

is continuous. A continuous poset structure of signature T = ({ fi liE I}, 
kind) is a tuple 

2lJ = (W, ff, tt, cond, {Ii liE I}), (8) 

where W is a complete poset; ff and tt are distinct, . discrete points in W 
(maximal and comparable only with 1.); each Ii is a continuous functional 
on W with kind(fi) = kind(fi); and cond is a continuous functional of kind 
(0,0,0,0), such that 

cond(AOtt, AOa, AO(3) = a, } 
cond(AOff, AOa, AO(3) = f3, 
cond(A01., AOa, AO(3) = 1.. 

Perhaps the simplest example is the continuous structure 

!JRt = (Mt, ff, tt, cond, Rt, ... ,Ri, Ii, . .. ,I;") 

(9) 

associated with each first order !JR, where cond is the strict conditional and 
each Il is the strict extension of Ii to Mt (set = 1. when one of its basic 
arguments is not in M). 

4.2. STRICT VS. CONTINUOUS SEMANTICS. The continuous denotation 
function [E]Jw) is defined exactly like the strict one, except that applica
tion is honest, 

[P(Zl, ... , Zn)]JW) = w(p)([ZlL(w), ... , [ZnL(w)), (10) 

and we must verify in each case of the inductive definition that for each E, 
[El(w) is continuous in w. Because of (10), and with the natural notion of 
continuous consequence, the f3-reduction rule holds, 

£(iI)A = £(iI)B Fe A{iI:= C} = B{iI:= C}, (11) 
assuming, of course, that the substitutions are free. This is one, important 
difference between strict and continuous FLR-consequence. For a simpler one 
which involves recursion rather than application and no hypotheses, notice 
that 

Fs p(q()) where {p(u) = tt,qO = q()} =..l (12) 

but 

Fe p(q()) where {p(u) = tt,qO = qO} = tt. (13) 

From this we infer that neither of the equations in (12) and (13) should be 
provable in the logic of recursion, since we would want the theorems to be 
valid under both the strict and the continuous interpretations. 
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4.3. DOMAINS. Suppose 2!J is a continuous structure as in (8) and there 
exists a homeomorphism 

A : Cont(W -t W) -t W (14) 

of W with its (continuous) function space, and consider the expansion 

(2!J,id,ap,A) = (W,ff,tt,cond,{h liE I},id,ap,A), 

where id(x) = x and ap(x,y) = A-1(X)(Y). Structures of this type were first 
constructed by Scott [9] to model the (untyped, extensional) A-calculus and 
its "applied" extensions, and we can see better the connection with these 
systems if we introduce the abbreviations 

A· B == ap(A, B), A(u)A == A(£(u)A) 

on the terms of FLR(r) for the relevant r. The more complex posets of "do
main theory" with "reflection" properties like (14) can also be represented in 
this way as continuous, FLR structures, with the various imbed dings and 
homeomorphisms among function spaces coded by functionals among the 
"givens" of the structure. 

5. STREAMS 

If a is a constant in the signature, then 

Fs,c p(a) where {p(u) = p(a)} = ..L (15) 

i.e., this equation is valid in both strict and continuous semantics, simply 
because the least-fixed-point of p(u) = p(a) is the totally undefined func
tion A(U)..1. On the other hand, it is quite easy to "program" the term 
p(a) where {p(u) = p(a)} in Pascal or C, and if a stands for some act, like 
"ring the bell", and we run the resulting program, we will then get an un
ending sequence of "rings" instead of a dull "hang" -at least until the stack 
overflows. We construct here some very simple models of FLR which account 
for the expected interpretation of (15), and also motivate the definition of the 
more general structures in the next section. 

5.1. STREAM STRUCTURES. Fix a set A (of "acts") and a set M (of "val
ues"), disjoint from A, with specified, distinct points 0,1 EM-think of 
M = N. A convergent stream is any finite (possibly empty) sequence a = 
(ao, ... ,an-I, m) with ao, ... , an-l E A, and m = [a] EM, the value returned 
by a. A divergent stream is any finite or infinite sequence a = (ao, aI, ... ) of 
acts, and it returns no value, [a] = ..i. The set Str = StrA,M of all convergent 
and divergent streams is a complete poset under the "initial part" relation ~, 
and it carries the (continuous) operation of sequential execution, 

{ 
(ao, ... ,an-l,bo,bl,.") ifa= (ao, ... ,an-l,m) 

a j f3 = is convergent, 
a if a is a divergent. 
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Suppose now {Ii liE I} are continuous functionals on Str, let ff and tt be 
the (no-act) streams (0) and (1) respectively, and let 

6 = (M,Str,ff, tt,cond, ;, {(a, 1) I a E A}, {h liE I}), 
where each (a, 1) is is a constant (nullary) function and the (strict) conditional 
is defined by (5). For the semantics, we let the basic variables vary over M 
and the function variables over (M -t Str), and we define the denotation 
function [EDstr(w) by simply copying all the clauses in the definition of the 
strict denotation [EDs(w), except when E == p(Z) or E == I(Z, if), when some 
of the ZiS are terms. For these cases, we first "execute" the acts of the stream 
arguments (from left to right) and then "pass" the returned values (if any) to 
the function, for example, 

[P(Ul' A, U2, U3, B)Dstr(w) = a;.8 ;P(Ul' [a), U2 ,U3" [.8]), (16) 

where a = [ADstr(w), .8 = [BDstr(w), p = w(p) and Ui = W(Ui). The definition 
is a bit messy in the general case, but very natural, and it assigns the correct, 
expected value to the term in (15), if a is the formal constant naming (a,I) . 

5.2. INPUT DEPENDENT AND INTERACTIVE STREAMS. The stream model 
is too simple to account for much of the behavior of programming languages 
with side-effects, e.g., it makes no room for state, input or interaction. One 
step up from it are the input dependent streams, which are functions 
a : S -t StrA,M from a given set of states S and so can account (partially) 
for input. We also assume that each act a E A induces a function s ~ sa on 
the states, and then define sequential composition by: 

(a; .8)(s) = { a(s) . ~f a(s) ~ divergent, 
a(s) ,.8(saOal·· ·an-l) If a(s) - (ao, ... ,an-I,m) . 

Input dependent stream structures and the denotation function [Etds(w) are 
defined by a routine extension of the construction above. 

Still richer in structure are the interactive streams, which are (suitably 
restricted) partial functions a : S* -t (A U M U {..l}) from finite sequences 
of states to acts or values, and model the behavior of reactive agents in an 
interactive environment. (The agent a is reacting at each stage to a new state, 
produced by the execution of acts by other agents since the last time a acted.) 
We will not give any details of this construction here, since we do not need it, 
but it is natural and very simple.6 

6. }-SEMANTICS 

In defining stream semantics, we emphasized the important principle "execute 
the acts first and then pass the returned value" but passed over without com-

6Input dependent streams are (essentially) the procedures and interactive streams the 
behaviors of [6], where these constructions were employed to build models of concurrency. 
A simpler language (with no value passing) was used in [6], but it is routine to extend the 
constructions given there to the present context. 
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ment the choice to evaluate the stream arguments from left-to-right in (16); 
but there is nothing sacrosanct about left-to-right evaluation, and it is clear 
that we would get a different denotation function if we chose to evaluate the 
streams from right-to-Ieft, or (indeed) if we "interweaved" the evaluation of 
the stream arguments in some fixed way.7 If the terms are interpreted in 
some poset more complex than Str, then more than "order of evaluation" 
comes into play: we have a real problem in assigning a value to p(A, B), when 
[A], [B] E W, but the interpretation P : M2 --+ W of p is defined only for 
arguments in M. The obvious way to handle this is to make value passing 
a primitive, one of the "givens" in the structure. 

6.1. J-STRUCTURES AND DENOTATIONS. A monotone functional on a 
set M to a complete poset W is any monotone mapping 

I : M n x (Mkl --+ W) X ••• X (Mk", --+ W) --+ W, 

and a J-structure of signature 7" = ({fi liE I}, kind) is a tuple 

!m = (M, W, ff, tt, cond, {In I n EN}, {Ii liE I}), (17) 

where the following conditions hold: 

(Jl) M is a non-empty set and W is a complete poset, containing the 
discrete elments ff and tt. We make no special assumptions on the relationship 
between M and W-it may be that M = W, M ~ W or M n W = 0. 

(J2) cond is a monotone functional of kind (0,0,0,0) satisfying (9). 
(J3) Each Ii is a monotone functional on M to W with kind(fi) = kind(fi). 
(J4) Each In : (Mn --+ W) --+ Mon(Wn --+ W) is a monotone mapping 

which assigns a monotone, n-ary function In(p) : wn --+ W to each n-ary 
function p : M n --+ Wand does not disturb the nullary functions, l(p) = p. 
We will generally write 

J(P,Ol, ... ,On) =In(p)(Ol, ... ,On) 

for the values of these imbeddings, skipping the superscripts and placing the 
arguments from W on par with the function argument. 

To interpret the FLR-expressions in a J-structure !m, we let the basic 
variables vary over M and the function variables over arbitrary functions 
p : M n --+ W. The denotation function [E]J(w) is defined exactly like the 
strict denotation in Section 3, except that the conditional is given by the 
structure and application uses the given imbeddings. The general definition is 
a bit messy and we will skip it, but the following adaptation of example (16) 
explains the idea: 

[P(Ul' A, U2, U3, B)]/w) = l(A(ab)p(ul' a, U2, U3, b), 0, ,8), (18) 

7The original manual for C [3] deliberately leaves the order of evaluation of expressions 
unspecified, and so delegates the definition of the precise semantics of the language to the 
specific compiler-unless we adopt a non-deterministic interpretation, which is by no means 
trivial because unrestricted recursion is allowed. (The concurrency model of [6] can account 
for this.) All the (simple) C-compilers I have used evaluate from right-to-left. 
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where a = [AVw) , (3 = [BVw), p = w(p) and Ui = W(Ui). For another 
example, involving one of the givens, 

[f(A, u, B, C, 7rl, 7r2)]J = l (.)..(abc)f(a, u, b, C, (71, (72), a, (3, ')'), (19) 

with the notation of (18) for the terms A, B, C and the variable u, and 
(7i = [7ri]/W) for the £-terms 7rl and 7r2. 

6.2 . STRICT VS. CONTINUOUS VS. J-SEMANTICS. Each strict, functional 
structure has an obvious J-associate 

!mJ = (M,Ui liE I})J = (M,Mt,ff,tt,cond,Js,Ui liE I}), 

where cond is the strict conditional and Js is the strict extension map, 

(p ) _ {p(a1, ... ,an) ifal,.··,an E M, 
Js , ai, . .. ,an - I th . 

-L 0 erWlse, 

and it is also obvious that [EL(w) = [E]/w)-the definitions of these two 
denotation functions are identical. The same is true for stream structures, 
which can be identified with J-structures with the imbedding 

Jstr(P, ai, ... ,an) = al ; ... ; an; p([ad,· .. , [anD . 

The situation is just a bit more complex for continuous structures, because 
for them we restricted the function variables to vary over continuous functions, 
but the following is true:8 

6.3. Proposition. Suppose mJ = (W, ff, tt, cond, Ui liE I}) is a contin
uous structure in which the poset W has the Scott property, i.e., every two 
compatible points in W have a least upper bound, for each p : wn -+ W let 

J~(p) = sup{q I q E Cont(Wn -+ W),q ~ p}, 

define fi,e analogously, and let mJJ = (W, W, ff, tt, cond, Je, Ui,e liE I}). 

(1) Each J~ : (wn -+ W) -+ Cont(Wn -+ W) is defined and monotone. 
(2) If [E]/w) is the denotation function on mJJ , then for every expression 

E and every valuation w which assigns continuous functions to the function 
variables, [EDc(w) = [E]/w). 

We skip the (simple) proof of this proposition, but it is worth noting that 
the imbeddings J~ are not continuous. Perhaps this witnesses the known "in
efficiency" of the continuous (call-by-name) interpretation of recursive defi
nitions, but it also makes this unified approach to the known interpretations 
depend essentially on the full Monotone Fixpoint Theorem, rather than the 
much simpler special case for continuous functionals which is traditionally 
used in denotational semantics. 

These simple observations imply that if r FJ E = F, then the consequence 
r F E = F is also valid under the strict, the continuous and the stream 

8We could avoid the restriction of this proposition to posets with the Scott property 
by interpreting the n-ary function variables in a J-structure over some (almost) arbitrary, 
complete subposet of (Mn -t W), but it is not clear that this increased applicability of the 
theory is worth the additional complications it introduces. 
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interpretations of FLR. The converse is not true for any of these semantics. 
For example, easily, 

Ps p(a) where {p(u) = f(u,b)} = q(b) where {q(v) = f(a,v)}, (20) 

Pstr f(a, b) = p(a) where {p(u) = f(u, b)}, (21) 

but (20) fails in stream semantics (and hence in J-semantics also), and (21) 
fails in J-semantics, using the right-to-Ieft evaluation on streams. It is implicit 
in the proof ofthe Main Theorem 9.1 that (somewhat surprizingly), the input
dependent stream structures (with arbitrary, continuous givens) are sufficient 
to determine all J-valid equations between FLR expressions. 

7. THE SYSTEM £0 

A sequent of the proof system Eo is a formal expression r => e, where r == 
el, ... ,en is a set of FLR( T) equations, the hypotheses, and e == E = F is a 
single equation, the conclusion. The provable sequents (theorems) of Eo are 
defined inductively by the axioms and (closure) rules in Table 2 and by the 
comments and explanations below, and we write 

r r E = F if and only if r => E = F is a theorem. 

In commenting on the axioms and rules, we will also discuss the more inter
esting points of the proof of the following result, whose details we will skip: 

7.1. THE SOUNDNESS THEOREM. If r r E = F, then r Pl E = F. 

The structural axioms and rules (Sl) - (S3) are standard, and so are the 
axioms for equality (FL1) - (FL4), where f* in (FL3) is any of the functional 
symbols or the conditional. (FL5) is the generality or abstraction rule, and 
(FL6) is a very restricted form of .a-reduction which requires some explana
tion. 

7.2. IMMEDIACY AND LINEARITY. An f-term f(Zl, ... , zn)A is immediate 
if A == p( il) where il is a sequence of basic variables; and linear if the variables 
Zl, ... ,Zn occur exactly once in A, and in the same order in which they oc
cur in the prefix. (So fOp(u, s, w, t, w), f(s)p(u, s, w, t, w), f(u, t)p(u, s, w, t, w) 
and every function variable p (== f(il)p(il)) are immediate and linear, but 
f(w)p(u, s, w, t, w) and f(s, t)p(u, t, w, s) are not linear and f(s)p(s, a) is linear 
but not immediate.) 

It is quite simple to verify that (FL6) is valid in J-semantics, but it cannot 
be strengthened by omitting either of the restrictions, because of (7) and: 

f(u)p(u) = f(u)q(a, u) ~str p(b) = q(a, b). (22) 

(Suppose a and b name the constants (a,l) and (b, 1), and let q(u, v) = tt = 
(1); now [q(a, u)]str = (a,l) and we can validate the hypothesis by setting 
p(u) = (a, 1); but then [P(b)]str = (b, a, 1), while [q(a, b]str = (a, b, 1).) 

The axioms (C1) - (C3) about the conditional are also natural (and J-valid, 
by definition), but (FR1) - (FR7) about the recursion construct require some 



THE LOGIC OF FUNCTIONAL RECURSION 191 

(81) t=>t 
(82) From r => t, infer r, tl => t 
(83) From r => tl and r,tl => t, infer r => t 

(FL1) => E = E, E = F => F = E, E = F, F = G => E = G 
(FL2) Xl = Yl , ... , Xn = Yn => p(Xl , ... ,Xn) = p(Yl , ... , Yn) 
(FL3) El = F l , ... , En = Fn => J*(El , ... , En) = J*(Fl , ... , Fn) 
(FL4) => P = f( u)p( u) 
(FL5) From r => A(Z) = B(Z), infer r => f(X)A(x) = f(Y)B(Y) 

provided none of the variables in z occurs free in r 

(FL6) f(x)A(x) = f(Y)B(Y) => A(Z) = B(Z) 
provided either f(x)A(x), f(Y)B(Y) are immediate and linear 

or Z is a sequence of basic variables 

(C1) => if tt then A else B fi = A 
(C2) => if ff then A else B fi = B 
(C3) => if ..L then A else B fi = ..L 

(FR1) => p(X,A,Y) =p(X,rO,Y)where{rO = A} 
(FR2) => J*(E,f(u)A,F) = J*(E, r, F) where {r(u) = A} 
(FR3) => f(Z,P) = r(Z) where {r(u) = f(u,P)} 

(FR4) => (Bo(q,P) where {ql (VI) = Bl (q,p), . .. , qm(vm) = Bm(q,P)}) 

where {Pl(UI) =Al,···,Pn(un) =An} 

= Bo(r',P) where {rl (vI) = Bl (r',P), ... , rm(vm) = Bm(r',P) , 

PI (iII) =Al, ... ,p(Un) =An} 

(FR5) => Ao(PJwhere{Pl(ul) = Bo(q,p) 

where {ql (vd = Bl (q,p), ... , qm(vm) = Bm(q,p)}, 

P2(V2) = A2(PJ, ... ,Pn(un) = An(PJ} 

= Ao(P) where {PI (uI) = Bo(r',P), rl (vI) = Bl (r',P), ... , 

rm(Vm) = Bm(r',P),P2(V2) = A2 (P) , ... ,Pn(un) = An(PJ} 
provided no variable in Ul is free in any Bi with i > 0 

(FR6) => Al where {PI (iII) = AI, ... ,Pn(un) = An} 
= PI (uI) where {PI (Ul) = AI,.·. ,Pn(Un) = An} 

(FR7) => A where { } = A 

I (FC) I The Finite Closure Rule. 

I (RI) I The Recursion Inference Rule. 

TABLE 2. The axiom system eo. 

Note: All substitutions are assumed free, and the variables r, r on the right of 
(FR1) - (FR5) are fresh-i.e., they do not occur on the left of these equations. 
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attention, as they express the most basic equational properties of definition 
by functional recursion. In (FR2), f* stands for any functional symbol or the 
conditional. Most interesting are (FR4) and (FR5) , the Bekic-Scott equa
tions, which reduce nested recursion to mutual recursion; and (FR6), the 
fixpoint equation, which asserts that the recursion construct indeed defines 
fixed points of the mutual recursion determined by its parts.9 

The validity of these equations in all )-structures can be established easily 
by standard arguments of fixpoint recursion. 

This leaves the last two, basic rules of inference about recursion which 
require some explanation. 

7.3. FINITE ITERATES. The least fixed point of a monotone functional 
f(u,p) is obtained by iteration starting with .1, 

]f(u) = f(u,'\(u).1), p{(u) = f(u,suP7J<{p7J), 

and setting p = p{ , for the least ordinal ~ such that p{ = sUP7J<{ p7J. The Finite 
Closure Rule (FC) asserts that if ~ = k is a finite ordinal (a natural number), 
then p = pk. It is a bit messy to express in FLR, partly because we must deal 
with mutual recursions, and (more substantially) because we do not have a 
general "replacement" rule, and so the finite iterates of a recursive term are 
also recursive terms. 

For a given recursive term 

A = Ao(p') where {PI (u't) = Al (Ul ,p), . . . ,Pn(-un) = An(un,P)}, 

set, by induction on k, simultaneously for i = 0, .. . , n 

a?(ui,p) = Ai(Ui, T) where {rl (ud = P(Ul), . . . , rn(Un) = p(un)} 

a~+1 (Ui' p) = Ai (Ui' T) where {rl (Ul) = a~ (Ul' p), 

. .. , rn(un) = a~(un'P)}' 
where r are fresh variables. Now the (syntactic) kth iterate of A is 

Ak = a~(l), 
so that, for example, 

AO = Ao(T) where {rl(ul) = 1.., ... ,rn(Un) = 1..}. 

It is easy to verify (directly from the definitions) that A k denotes in )
structures exactly the kth iterate of the recursion which determines [A]J . 

The Finite Closure Rule FC. For each recursive term A, with a k and 
A k defined as above, 

£(ul)ai(ul, 1) = £(ul)aHul, 1), ... , £(un)a;'(un, 1) = £(un)a;(un, 1) 
~ A = AI. 

This says only that if the recursion stabilizes in the second stage, then this 

9The fresh variables r are needed in (FR4) and (FR5) to avoid conflicts when some qj 

occurs free in some Ai; the simpler versions with Ti = qi are theorems when no variable 
occurs both free and bound on the left , and we will tacitly assume this in applying the 
axioms in the sequel. 
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is the fixpoint, but the general fact about recursions which stop after k steps 
follows from it easily. 

7.4. THE RECURSION INFERENCE RULE. Suppose we want to prove that 
if f(u,v,p) is a monotone functional and f(u,v,p) = f(v,u,p), for all u, v, 
then 

p(u, v) where {p(u, v) = feu, v,p)} 

= q(v,t,u)where{q(u,t,v) = f(u,v,q(·,t,·)),r(s) = g(s)}, 

where q(., t, .)) = A(U, v)q(u, t, v). First we notice that the occurrence or r 
is spurious-r never figures in the value of the expression on the right-and 
then that there is a plausible connection between p on the left and q on the 
right, namely that for all t, 

A(U, v)p(u, v) = A(U,V)q(v,t,u). (23) 
To make the idea precise, we let pI'. and qf. be the iterates of the recursions 
which determine the fixpoints p and q, and (using the assumed commutativity 
of f) show by (trivial, transfinite) induction that for all u, v, ~ and t, 

pf.(u,v) =qf.(v,t,u), 

from which the desired equation follows immediately. 
The Recursion Inference Rule formalizes this method of proof, and is viewed 

best as a classical elimination rule for the recursion construct. It is unfortu
nately a bit messy to make precise, and all we can do in this space is to put it 
down and mention that its soundness for J-semantics is (quite easily) proved 
after the manner of the example. The "connections" used in it are general
izations of (23): finite systems of immediate i-terms which relate some of the 
recursion variables of one recursion term with some of another, enough so that 
A = B can be established in every J-structure by (transfinite) induction, as 
in the example. 

A (basic variable) projection is a map 

a(uo, ... , un-I) = (u".(o),- .. , U".(m-l) (24) 
on variable tuples determined by a function 7r : {i I i < m} -t {j I j < n}, 
where (conventionally) a(V) = ( ) if m = o. These are useful in describing 
variable substitutions: e.g., if a(u, v) = (u, v, u) and E(x, y, z) is an expression, 
then E(a(u, v)) = E(u, v, u) and E(a(x, x)) = E(x, x, x). 

Suppose r is a set of equations and 

A = Ao where {PI (uI) = Al (UI), ... ,Pm(Um) = Am(um)} 
B = Bo where {ql(V\) = BI(vI), .. . ,qn(vn) = Bn(Vn)}, 

(25) 

in which the function variables PI, ... ,Pm, ql, ... ,qn are all distinct; and sup
pose the list x = Xl, ... ,Xk includes all basic variables which are free in either 
A or B. A finite set of equations 

~ = {7r1 = PI, ... , 7r c = Pc} 

between immediate i-terms is a preconnection of A and B relative to r if: 
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(1) For each i, 7I"i = £(Z)Pk(ai(i', x)) and Pi = £(Z)ql(ri(i', x)), with suitable 
Pk, ql, where the basic variables in i' are fresh for A and B, and ai, ri are 
projections; 

and its claims are the sequents 

(2) r, E ~ Ao = Bo, and r, E I- Ak(a(i', x)) = BI(r(i', x)), for every 
equation £(Z)pk(a(i',x)) = £(Z)ql(r(i',x)) in E. 

The Recursion Inference Rule RI. Suppose A and B are recursive 
terms as in (25), no Pi occurs free in any BI, no qj occurs free in any A k , and 
none of the variables in p, if are free in r : from the claims in any preconnection 
between A and B relative to r, infer r ~ A = B. 

A connection is a preconnection whose claims are all provable, and, most 
often, we use RI in the following form: 

RI. If a connection exists between A and B relative to r, then r I- A = B . 

7.5. EXAMPLE. To see why the restriction on the variables p and ifis needed, 
notice that if r does not occur in A, then I- A = A where {r(U) = B}, for any 
B; because A = A where { } is an axiom, and the empty set is a connection of 
A where {r(U) = B} with A where { }. (But it is not a connection if r occurs in 
A, which is why we cannot prove rO = rO where {rO = rO} (i.e., rO = ..l) . 

8. FORMAL PROOFS 

After a few basic facts, we will prove here the key lemma we need for the 
Main Theorem in the next section. 

8.1. Lemma. With the syntactic conventions of Table 1 and assuming that 
all substitutions are free: 

*1. 71" = P I- E(7I") = E(p), if 71" and p are linear and immediate i-terms. 
*2. The Part Replacement Property. If r I- Ai = Bi for i = 0, ... , n and no 
Pi occurs free in r, then 

r I- Ao where {P1 (U1) = A 1, ... ,Pn(un) = An} 

= Bo where {P1(U1) = B 1, ... ,Pn(un ) = Bn}. 
*3. The order in which the parts are listed in a recursive term is irrelevant. 
* 4. The Duplication Equation. 

Ao(q, r,P') where {q(U1) = B(q,P'), r(ut} = B(r,P'), 

P1(U2) = A 1(q,r,P'), .. ·,Pn(un) = An(q,r,P')} 

= Ao(q,q,P') where {q(U1) = B(q,P'), 

P1 (U2) = A1 (q, q,P'), . .. ,Pn(un) = An(q, q,P')} 

*5. X = Y I- E(X) = E(Y), if X and Yare basic variables or terms. 
*6. If F is obtained from E by a renaming of bound variables, then I- E = F. 
*7. The Bekic-Scott Lemma. With r fresh and r(u,·) = £(iJ)r(u, iJ), 
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Bo(u,qj where {ql(Vt} = Bl(qj , . .. ,qm(Vm) = Bm(qj} 

= Bo(u,r(u, .)) where {rl (u, vt} = Bl (i(u, .)), 

... , rm(Vm) = Bm(i(u, .))}. 

*8 . The Extended Fixpoint Equation. 

PI (rul) where {Pl(Ut} =Al(ud · ··} 

= Al (rul) where {Pl(ud = Al (Ul) . . . }. 
*9. f- Ao where {PI (Ul) = P2(rul) ,P2(U2) = A2(U2) , . . . } 

= Aowhere{Pl(ud = A2(rul),pz(U2) = A2(U2) , .. . }. 
*10. The Bottom Rule. Ifr f- Ai(ui,pjwhere{p= I} =..l, for i = 1, . .. ,n 

and no variable in p or any Uj occurs free in r , then 

r f- Ao(P) where {Pl(Ul) = Al, . .. ,Pn(un) = An} 

= Ao(P) where {p= I}, 
where p = I abbreviates the obvious. 

*11 . f- p(u) where {p(U) = if p(ru) then A else B fi} = ..l . 
Proof *1 is proved by induction on the length of the given expression E(r) , 

and all the cases are trivial, except perhaps for the following two. 
E(r) = r(Z). If 1T = i(x)A(x) and p = i(Y)B(Y), then E(1T) = A(X*) and 

E(p) = B(Y*), where X* = y* by the induction hypothesis; now A(X*) = 
B(X*) by Axiom (FL6) (because A(x) and B(Y) are linear and immediate), 
and B(X*) = B(Y*) by (FL2). 

E(r) = Ao(P, r) where {PI (Ul) = Al (p, r), . . . ,Pn(un) = An(P, r)}. Now 
E(1T) and E(p) are obtained by substituting 1T and p for r in each Ai(p, r), the 
induction hypothesis gives us Ai(P, 1T) = Ai(p, p) , and we can get E(1T) = E(p) 
from *2- but we do not have *2 yet. Let instead 

C = Ao(q, p) where {ql (ud = Al (q, p) , . . . , qn(un) = An(q, 1Tn, 
where the variables q are fresh. By the induction hypothesis, 

1T = p,p= q f- Ai(P, 1T) = Ai(q,p), 

p = q f- Ai (p, p) = Ai (q, p), 
for i :::; n, and so {pi = qi I i = 1, ... , n} is a connection which establishes 
A(1T) = C and A(p) = C from 1T = p. 

*2, *3 and *4 are easily proved by the same method, of introducing fresh 
recursion variables and applying RI twice, with {q = r' , r = r', p = jJ} the 
connection required for *4. *5 and *6 are proved by induction on E , using 
Part Replacement * 2 when E is a recursive term, and for * 7, we use * 1 to 
verify that {i(Zi)qi(Zi) = i(zi)ri(u,Zi) Ii = 1, . .. ,m} is a connection which 
establishes the required identity. For *8, abstract on the fixpoint rule (FR6) 
by (FL5) and then use variable specification, (FL6). 

For *9, first insure that no variable occurs both free and bound, and then 
(showing the variables and with only two parts, for simplicity) compute: 
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AO(P1 ,P2) where {P1 (U1) = P2(TUd,P2(U2) = A2(U2 ,P1 ,P2n 
= AO(P1 ,P2) where {P1(Ut} = r(Tut}, 

r(u2) = A2(U2 ,P1, r),P2(u2) = A2(U2,P1 ,P2n 
(by Duplication) 

= AO(P1 ,P2) where {P1 (ut) = r(Tu1) where {r(u2) = A2(U2,P1 , rn, 
P2(U2) = A2(U2,P1 ,P2n, (by (FRS)) 

= AO(P1 ,P2) where {P1 (ut) = A2( TU1, P1, r) 
where {r(u2) = A2(u2 ,P1,rn, 
P2(U2) = A2(U2,P1,P2n}, (by *8) 

= AO(P1 ,P2) where {P1 (U1) = A2( TU1, P1, r) , 
r(u2) = A2(u2,P1 ,r),P2(u2) = A2(U2,P1 ,P2n 

by (FRS) 
= AO(P1 ,P2) where {P1 (U1) = A2(TU1 ,P1 ,PZ),P2(U2) = A2(U2,P1 ,P2n 

(by Duplication). 
For * 10, the hypothesis gives the antecedent for an application of the Finite 

Closure Rule Fe, which then yields the required conclusion. 
Finally, for *11, first compute: 

..1 = if ..1 then A else B fi (C3) 
= if qO then A else B fi where {qO = ..1} (FR2) 
= if p( TU) then A else B fi where {p( U) = ..1} , 

the last via the connection {i(u)qO = i(u)p(un . Now the Bottom Rule (BR) 
(with C(P) = p(U») gives 

p( U) where {p( u) = if p( TU) then A else B fi} = p( U) where {p( u) = ..1} , 
and the right-hand-side is = ..1 by expanding ..1 as above and using another 
trivial connection. -1 

We can use *7 to get a more general version of the Bekic-Scott Rule with
out the restriction on the variables u1 - hence its name; notice that, despite 
appearances, u is not free in B 1 , B2 , . .. on the right side of *7.10 

8.2. Lemma (Chains of conditionals). If for i = 1, .. . , n , Ai = Pi+! (TiUi) 
or Ai = if Pi+1(TiUi) then Bi else Ci fi (with n + 1 = 1 and arbitrary projec
tions Ti), then 

I- P1 ( U 1) where {P1 ( u 1) = A 1 , .. . , Pn (un) = An} = ..i. 
Proof The hypothesis (together with (C3)) sets up an application of the 

Bottom Rule * 10, which then yields the required conclusion. -1 
The significance of the next notion will not become clear until we use it in 

the next section. 

8.3. SIMPLIFIED TERMS. A recursive term (with no free function variables) 

A = Ao where {P1 (U1) = A1, ... ,Pm(um) = Am} (26) 
is simplified if it satisfies (I) - (V) below, where, in (II) we also classify the 
recursion parts of these terms into forms and we assign to each of them a 
character. 

lOThis more general Bekic-Scott Rule was taken as basic in [5]. 
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(I) Ao == PI (X), with some basic variables X, and these are the only free 
occurrences of variables of A. 

(II) Each recursion part Ak is a form and has a character, as follows. 

(SF1) Fixed forms. Ak is .1, ff or tt, and it is its own character. 
(SF2) J-forms. Ak == Pi(ZI, . .. , Za), where each Zj is either a basic vari

able or an immediate term; the character of Ak is the pair 0, s}, where s is 
the number of ZjS which are terms (rather than variables) . 

(SF3) Functional forms. Ak == fi(u, if) , where U is a list of basic variables 
and if is a list of immediate i-terms; the character of Ak is (f, i). 

(SF4) Conditional forms . Ak == if C1 then Cz else C3 fi, where C1 , Cz and 
C3 are immediate terms; the character of Ak is condo 

The character of a variable Pi is the same as the character of the form Ai 
which defines it. 

(III) Every J-form Ak == Pi(ZI, ... ,Za) is strict, i.e., its character is O,n + 1} 
for some n (not every Zj is a variable). 

(IV) If Ak == if Pi (TkUk) then Cz else C3 fi is a cond-form, then Pi does not 
have fixed character. (Ak is not immediately resolvable.) 

(V) There is no chain of conditionals, i.e., no sequence of variables 

ql == Ph, ... ,qK == PjK' 
so that for i = 1, ... , K, Aji == if qi+l (TUji) then Bi else Ci fi or Aji 
qiH (TUj,) (with K + 1 = 1). 

8.4. Lemma. Every term without free function variables is provably equal 
to a simplified one. 

Proof It is easy to see that by applying repeatedly the axioms (FR1) -
(FR7) , Lemma 8.1 (especially Part Replacement and the Bekic-Scott Lemma), 
we can transform every term without free function variables to a provably 
equal almost simplified term, i.e., one which satisfies (I) and (II) in 8.3. To 
insure that (III) - (V) also hold, we will use the following three facts, where 
A is almost simplified. 

(T1) Elimination of conditional chains. If A has a conditional chain as 
in (V) and A* is obtained from A by replacing each part qi(Vi) = Aji by 
qi(Vi) = .1, then r A = A*. 

(T2) Elimination of resolvable conditionals. If A has a conditional part 

pdUk) = if Pi (Tk'flk) then Cz else C3 fi, 
where Ai is a fixed form, then r A = A *, where A * is obtained by replacing 
the definition of Pk with its obvious value: Pk (Uk) = .L, if Ak == .L, Pk (Uk) = 
Cz, if Ak == tt, and Pk(Uk) = C3 , if Ak == ff. 

(T3) Reduction of non-strict J-forms . If A has parts Pk(Uk) = Pi(TkUk), 
Pi(Ui) = Ai(Ui) where Ai(Ui) is not a J-form, and if A* is obtained from A by 
replacing the definition of Pk by Pk(Uk) = Ai(TkUk), then r A = A*. 

These are all easy to verify, using 8.2 for (T1), axioms (C1) - (C3) for (T2), 
and *9 for (T3). (To show (T1), for example, first insert K copies of the chain 
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by the Duplication Equation *4, each defining the i 'th term in the chain; and 
then isolate each of these by Bekic-Scott and replace it by qi(Ui) = ..1, using 
Lemma 8.2 and Part Replacement.) 

The rank of an almost simplified term A is the triple r = (0, c, b) , where 0 

is the number of non-fixed forms in A; c is the number of cond-forms in A; 
and b is the number of non-strict J-forms, those with character U, O}. We order 
ranks lexicographically. It is clear that an application of (T1) lowers the rank, 
and so does an application of (T2)-although it may introduce new chains and 
increase b; and an application of (T3) also lowers the rank, if Ai is not a cond
form-although it may make some of the existing conditionals immediately 
resolvable. We now apply these transformations (with the restriction on (T3)), 
in any order, as long as it is possible, until we obtain in the end an almost 
simplified term A *, provably equivalent to the given A, which satisfies (IV) 
and (V). It may still contain some non-strict J-forms Pk(Uk) = Pi(TkUk), with 
Pi(Ui) = Ai(Ui) a cond-form, but now we can apply (T3) to eliminate them, 
clearly without violating (IV) or (V) in the result (although the rank will be 
increased). -1 

9. COMPLETENESS OF £0 FOR EQUATIONS 

In this section we will outline a proof of the followingll 

9.1. Main Theorem. (1) If 1=) E = F, then f- E = F. (2) An expression 
equation E = F is J-valid if and only if it is true in all continuous J-structures. 
(3) The class of J-validexpression equations is decidable . 

9.2. REASONABLY FREE STRUCTURES A J-structure (17) is reasonably 
free if M has at least two members and the following conditions are satisfied. 

(1) Every functional/; of 9R is injective and never takes on the values 1., 
tt or ff; and for i =1= j, /; and Ii have disjoint ranges. 

(2) If /3 = cond(p, q, r) = cond(p', q', r') and pO fj {1., tt, ff}, then /3 is not 
in the range of any Ii; /3 fj {1., ff, ttl; and P = p', q = q', r = r'. 

(3) If pis n-ary with n > ° and ai , ... , an E W, then /3 = J(p, ai , .. . ,an) fj 
{1., tt, ff} ; /3 is not in the range of any /;; and /3 =1= cond(p', q, r) if P' 0 fj 
{1., tt, ff}. In addition, J is strongly injective on non-nullary arguments, i.e., 
if J(p, al , · . . ,am) = J(q , /31,' . . ,/3n) and m , n > 0, then m = n and for 
i = 1, . .. , m, ai = /3i. 

9.3. Lemma. For each FLR signature T, there exists a continuous, reason
ably free T-structure 9R. 

Proof We let M = Nand W = (N -t StrA,N) be the set of functions from 
N to the set of streams which return integers and execute acts in the set 

A = {fi liE I} U {jiH liE N} U {ff, tt, cond} 

11 For the "propositional" part of FLR, this result is proved in [1], which also gives refer
ences to related, older work (about (2)) . . 
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of the formal symbols of FLR( T) and a symbol jn for each In with n > o. We 
let tt = (1), ff = (0), and we interpret each J; by a functional which codes its 
name and all its arguments, e.g.,12 

{

(n+2)' if (s)o =0, 
pO((sh), if (s)o = 1, 

J;(n,p,q)(s) = (fi' 1); q((sh, (sh)((sh), if (s)o = 2, 

.1, otherwise. 

The imbedding is defined using the same idea, e.g., 

{ 

a((sh) , if (s)o = 0, 
_. . ,B((sh), if (s)o = 1, 

J2(P,a,,B)(s) - 02,1), p((sh, (sh)((sh), if (s)o = 2, 

.1, otherwise. 

Ditto for the conditional, except that we give the right values when its first 
argument is .1, tt or ff-in all other cases we start with cond and then we code 
all three arguments. -l 

9.4. STRICT J-FORMS. Suppose Ak == Pi(ZI, ... ,Za) is a recursion part in a 
simplified term, so that by (III) of 8.3 at least one Zi is not a variable. We call 
these J-forms because their evaluation in J-semantics involves the imbedding 
J, and we will sometimes re-write them as 

(27) 

indicating how they are to be evaluated: here Zb1 , • • • ,Zb, are exactly those 
Zj's which are terms (not variables), tbl' ... , tb, is a sequence offresh, distinct 
basic variables to refer to them, and 

Zj == { Zj, ~f Zj ~s a variable, 
tbj ' If Zj IS a term. 

For example, we rewrite 

P(SI' T2(SI, S3), S4 , T3 ()) == J(£(t2' t4)p(SI ' t2, S4 , t4), T2(SI , S3) , T3 ()). 

If all the Z;'s are terms, then the J-form is especially simple, 

P(ZI' Z2, Z3) == J(£(tl' t2, t3)P(tl' t2, t3) , ZI, Z2, Z3) 

== J(p, ZI, Z2, Z3). 

Notice that the i-terms which appear in these J-forms are linear; this is key 
both to the interpretation and to the proof theory of the system. 

9.5. NOTATION AND TERMINOLOGY. If A is simplified as in (26) and 9R 
is any structure, we will let PI' .. . ,Pm be the least fixed points of the system 
which determines the value of A on 9R. Note that these functions do not 
depend on the interpretation of the free variables of A, which occur only in 
the head Ao. 

12Here (8)i is is the i'th term of the sequence coded by 8, relative to some fixed coding 
of integer-tuples by integers. 
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Suppose A and B are both simplified, E = F is an equation in the function 
variables P1, ... ,Pm, q1, ... ,qn which occur in these terms, and 9R is a struc
ture. We will say that E = F is true in 9R if every valuation w which assigns 
Pi to each Pi and iij to each qj satisfies E = F. In particular, a preconnection 
E between A and B is true in 9R if every equation in E is true in 9R. 

9.6. Lemma. If A is simplified as in (26), 9R is reasonably free and 

Ak = if Pi (TUk) then C2 else C3 fi (28) 

is a cond-form of A, then the functions Pi and Pk on M never take on values 
in the set {.1, ff, tt}. 

Proof Let us say that the cond-form Ak in (28) has level ° if the character 
of Pi is not cond, and (inductively) level r+1 if Ai has level r. Now (V) implies 
that every cond-form has a level, and we can prove the Lemma by induction 
on the level. 

If Ak has level 0, then Ai cannot be fixed by (IV), and so it is either 
a functional form or a J-form; in the first case, Pi(Ui) is a value of some 
functional Ii, and so outside {.1,ff,tt} by (1) of 9.2; in the second Pi(Ui) is a 
value of In for some n > ° since Ai is a strict J-form by (III), and so again 
Pi( Ui) is outside {.1, ff, tt} by (3) of 9.2; and, in either case, Pk does not take 
a value in {.1, ff, tt} by (2) of 9.2. 

If Ak has level > 0, then Pi does not take on any of the forbidden values 
by the induction hypothesis, and so neither does Pk by (2) of 9.2 again. -l 

The next, key Lemma deals only with (basically) closed preconnections, 
whose i-terms have no free basic variables. 

9.7. Lemma. Suppose E is a closed preconnection between two simplified 
terms 

A = P1 (x) where {P1 (U1) = Adu1), . .. ,Pm(um) = Am(um)} 
B = q1(yj where {Q1(vd = B 1(ih), ... ,qn(vn) = Bn(vn)} 

(29) 

which contains the identity 

i(W)pk(O"W) = i(W)ql(TW), (30) 

and let 9R be a reasonably free structure. 
(1) If either (la) or (lb) are true, then E is not true in 9R. 

(la) Ak and BI have different character. 
(lb) Ak = fi(O"kUk,ir) and BI = fihvl,ji) have the same, functional char

acter, but O"kO"W "¥ TITW. 

(2) If Ak = fi ( O"kUk, 11"1 (ilk), . . . ,n"s( Uk)) and BI = fi ( TIVI, P1 (Vi), ... ,Ps (VI)) 
have the same functional character but (lb) does not apply, let 

E' = E U {£(w)1I"j(O"w) = i(W)pj(TW) I j = 1, ... ,s}, 

where 11"} and pj are alphabetic variants of 1I"j and Pj with the same i-prefix 
and fresh bound variables; then E is true in 9R if and only if E' is true in 9R. 
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(3) If Ak(ih) = if C1 then C2 else C3 fi and BI(Vt) = if Dl then D2 else D3 fi 
both have character cond and 

E' = Eu {l(w) (Cj{Uk := awl) = l(w) (Dj {VI := rw}) I j = 1, 2,3}, 

then E is true in 9Jt if and only if E' is true in 9Jt. 
(4) If Ak and Bl have the same J-form U,s), so that after a renaming of 

the bound variables, 

Ak = J(I(tb" .. . ,tbJpi(Xl" , .,Xa),Xb" . . . , X b.), 

Bl = J(l(tb" . .. , tbJqj(Yl , . . . ,Ya) , Yb" . .. , Yb. ), 

let E' be the extension of E by the equation 

l(w, tb1 , • • • , tbJ(Pi(Xl , .. . , Xa){Uk := aw}) 

(31) 

(32) 

= l( w, tb1 , • •• , tb.) (qj (Yl , ... , y~){ iii := rw} ) 
and also all equations 

l(w)(Xc{uk :=aw}) = l(w) (Yc{iii :=rw}) (c=b1 , . . . ,bs ) ; 

then E is true in 9Jt if and only if E' is true in 9Jt. 
Proof. (1) For (la), notice that if Pk and ql have different characters, then 

the functions 15k and <il take values in disjoint sets, because 9Jt is reasonably 
free (and using Lemma 9.6 if one of them has character cond) . For (lb) , the 
hypothesis of the Lemma implies that the identity 

j;(aw, if) = j;(rw, PJ 
is true in 9Jt; but j; is injective, and so this is not possible if the variable lists 
aw and rw differ even in one place, because we could then assign distinct 
values to it (in m , which has at least two elements) and get back distinct 
values from j; . 

For parts (2) - (4) , we need to show that if E is true, then so is E' . 
(2) By the assumed truth of E and the fact that the mutual least fixed 

points satisfy their defining equations, we know that the identity 

fi(aw, 7r~ (aw) , . . . ) = fi(rw, p~ (rw) , . . . ) 

is true, and since j; is injective, this means that for j = 1, . . . , s, 7rj(aw) = 
pj (rw) is true. 

(3) By hypothesis, Ak(aw) = Bl(rw) is true, and by Lemma 9.6, the values 
of C1 {Uk := awl and Dl {VI := rw} are not in {.1 , ff, tt} ; now (2) of 9.2 implies 
that 

Cj{Uk := awl = Dj{VI := rw} 

is true, for j = 1, 2,3, which by abstraction gives the required result. 
(4) In the notation of 9.4, the hypothesis insures that the equation 

(J(I(tb 1 , ••• , tbJPi(Xl,' . . , Xa) , Xb 1 , • • • , XbJ) {Uk := awl 

= (J(I(tb 1 , • •• , tb.)qj (Yl, . . . , Ya), Yb1 ,· • • , YbJ) {Uk := awl 
is true in 9Jt, and from this , the required result follows easily by the injectivity 
of J. -l 
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PROOF OF 9.1. If A and B are simplified terms with distinct recursion 
variables p and if, and if z is a list of the variables which occur free in either 
A or B, then 

A = Pl(ahZ} where {Pl(Ul) = A1(ud, . . · ,Pm(um) = Am (Um)} 
B = ql(ThZ} where {ql(iJl) = B1(-Ul),···,qn(Vn) = Bn(Vn)} 

with suitable projections ah and Th, and the equation A = B is true on a 
structure 9R exactly when the closed preconnection 

(33) 

is true in 9R. We will consider several preconnections between A and B, and 
we need the following, auxilliary notions. 

(a) An equation i(w)p(aw) = i(W)q(TW) between i-terms is tidy, if every 
variable in the list 'Ill occurs either in p(aw) or in q(TW) , and a preconnection E 
is tidy if all its equations are tidy. It is clear that every equation is provably 
equivalent to a tidy one, and so the same is true of preconnections. The 
useful fact is that (up to alphabetic variance between terms) there are only 
finitely many tidy preconnections between A and B, with an upper bound on 
their number easily computable from the number and arities of the function 
variables p and q. 

(b) A preconnection E is dead, if some equation 1f = P in it falls under 
Case (1) of Lemma 9.7. 

(c) An equation i(w)pk(aw) = i(W)q/(TW) in a preconnection E is fulfilled, 
if it does not fall under Case (1) of Lemma 9.7 and (briefly) E' = E, i.e. , (the 
"tidyfication" of) every equation in the preconnection ~' associated with ~ 
by the operative case (2) - (4) of Lemma 9.7 is an alphabetic variant of some 
equation in E . It is clear that we can determine effectively whether 1f = P 
is fulfilled in E , since deleting empty abstractions and testing for alphabetic 
variance are effective operations. 

We start now with Eo in (33) and we apply Lemma 9.7 repeatedly to 
produce preconnections 

choosing a new unfulfilled identity at each stage, if one exists, and setting 
E i+1 = E~ , as long as (1) of the Lemma does not apply to Ei ; so, at each 
stage, 

Ei is true <==> Ei+l is true. (34) 

Now, the procedure cannot continue indefinitely by (a) above, so that even
tually we reach one of the following situations. 

ALTERNATIVE 1. At Stage e, ~e is dead, and then by (34) ~o-and hence 
A = B-is not true, on every reasonably free structure. 

ALTERNATIVE 2. Every equation in Ee is fulfilled, and then Ee is a con
nection between A and B. 
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The proof of this last fact is very simple now, but it is worth considering an 
example in Case (4) which involves the restricted form of ,B-reduction allowed 
in £0 . 

Suppose that i(X , y)Pk(a(x,y)) = i(x,y)ql(r(x , y)) is in Ee , and that 

Ak(ak(x,y)) == p(P'(x,X),y,p"(y)) 
== J(i(tl, t2)P(tl, y, t2) , p' (x, x), p" (y)), 

B1h(x,y)) == q(x,x,q'(y),y ,q"(y,X)) 
== J(i(tl , t2)q(X , x , t1, y, t2), q' (y) , q" (y , x)). 

We must show the equality of these two terms from Ee , which now contains 
by (4) the equations 

i(X,y,tl,t2)P(tl,y,t2) = i(X,y , tl , t2)q(X,x , t1, y,t2) , 

i(x ,y)p'(x,x) = i(x,y)q'(y) 

i(X,y)p"(y) = i(X,y)q"(y,X) . 

From (35), by variable specification and abstraction, we get 

i(tl , t2)P(tl , y , t2) = i(tl , t2)q(X ,x , t1,y , t2) , 

which is a linear identity; and so by linear specification (FL6), we get 

(35) 

(36) 

(37) 

p(p' (x, x) , y, p" (y)) = q(x, x, p' (x , x), y,p" (y)) ; (38) 

and then, from (36) and (37) , using *5 of Lemma 8.1 we get 

q(x, x , p' (x , x) , y, p" (y)) = q(x , x , q' (y) , y , q" (y, x)) 

which with (38) yields the required equation. 
This completes the proof of the Main Theorem for simplified terms, and 

hence for arbitrary terms with no free function variables by Lemma 8.4. The 
result follows for arbitrary terms because A(r) = B(r) is valid or provable 
exactly when A(g) = B(g) is valid or provable, with 9 a fresh functional 
symbol, and then for equations between i-terms, easily, by abstraction. -1 

10. THE FULL SYSTEM £ 

If we think of closed i-terms as expressing programs, then the Main Theo
rem 9.1 says that the system £0 is complete for (denotational) program equiv
alence. But this is clearly not enough-we want to be able to prove more com
plex properties of programs than mere equivalence, and also to reason about 
programs from hypotheses. We describe here, briefly and without proofs, an 
extension of £0 which goes part-way towards achieving this . 

10.1. FLR FORMULAS AND THEIR SEMANTICS. The FLR(T)-formulas are 
defined inductively by 

where c is an equation between FLR( T) expressions. 
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Formulas are interpreted on J-structures of signature T in the obvious way. 
Notice that 

(Vp)[A(p) = B(p)] ~ A(l(u, v)C(u, v)) = B(l(u, v)C(u, v)), 

because in the stream structures of Section 5, the hypothesis is true and the 
conclusion fails when 

A(p) = p(a, b), B(P) = q(a) where {q(u) = p(u, b)}, C(u, v) = f(v, u) . 
However, obviously: 

(Vp)[A(p) = B(p)] F A(P) where {p(U) = C} = B(P) where {p(U) = C}, 
even when p occurs in C, and we will need to include this among the axioms 
of £, to replace the usual "instantantiation" property. 

For each formula ¢ and terms C1, ... , Cn, the formula 

¢where {P1 (U1) = C1, .. . ,Pn(un) = Cn} 
is constructed by "pushing" the recursion construct through the first-order 
operations (and l(u)) until it applies to FLR-terms, e.g., 

(A = B) where {p(u) = C} = Awhere{p(U) = C} = Bwhere{p(U) = C}, 

(l(V)A = l(V)B) where {p(U) = C} = (VV)[(A = B) where {p(u) = C}], 

(-,¢) where {p(U) = C} = -,( ¢where {p(u) = C}), 

etc. It is clear that the denotation of ¢ where {p( U) = C} in a J-structure can 
be computed by first determining the least-fixed-point p of p( U) = C, and 
then evaluating ¢ for p := p. 

10.2. THE SYSTEN £. Sequents (of formulas) are expressions of the form 
r ::::} ¢, where r = ¢1 , .. . ,¢n is now a set of formulas, so they include the 
sequents of equations of £0, and (again), the explicit sequents are those in 
which where does not occur. 

To define the axioms and rules of £, we consider (classical) three-sorted 
structures of the form 

(M, W, {Pn In EN}, {apn In EN}, {In In EN}, {Ri liE I}), (39) 

where M, Ware arbitrary, non-empty sets; each P n is a set of n-ary functions 
from M to W; each aPn : M x Pn -+ W stands for function application; 
the imbeddings In are operations of the same kind as in FLR-structures, 
but without the monotonicity hypothesis (which makes no sense now); and 
each Ri is a relation on arguments from M and functions on M to W, like 
the functionals on J-structures, but, again, with no monotonicity hypotheses. 
Let T* be the first-order signature for such structures which has infinitely 
many relation symbols for each kind, and consider the usual (first-order, three
sorted) language L *. The terms of L * are made up from function variables 
and the aPn primitives, they can be identified with the simple terms of FLR 
(with no functional constants) and they are interpreted on structures of the 
form (39) using the imbeddings In to interpret composition, as in FLR. We 
now let T* be the theory of structures of the form (39) which have enough 
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functions to interpret their terms, i.e. , they satisfy the obvious axioms which 
assert that the p's vary over functions and (the closure of) (3p)('v'u)(P(u) = 
t(u)] for every term t(u) (which is not a basic variable). The Completeness 
Theorem for (many-sorted) first-order logic yields a complete axiomatization 
ofT*. 

The provable formula sequents of £ are defined by combining the axioms 
of £0 with a complete axiomatization of T*, as follows: 13 

(£1) The axioms and rules of £0 in Table 2 are part of £, re-interpreted 
so that r stands for a finite set of formulas. 

(£2) If r ~ </> is a valid sequent of T* , and if r' ~ </>' is obtained from r ~ 
</> by replacing each prime formula R( U, P) throughout by an FLR-equation 
E = F with the same free variables, then r' f- </>' . 

(£3) ('v'p)</>(p) ~ </>where {p(u) = C} for each formula </>(p) and each term 
C . 

It is clear that £ is sound for )-semantics, and (of course) it is not complete, 
but we can easily formalize in it proofs which combine basic properties of 
recursive definitions with first-order arguments whose soundness depends only 
on the fact that the p's stand for functions on the universe M to some set. 
For example: 

10.3. LEMMA. For all terms Al (Ul) , . .. , An (un) and each formula </>(PJ , if 

r , for i = 1, . . . , n, ('lui) (Pi (Ui) = Ai(Ui)], f- </>(P) 
and no Pi is free in r , then 

r f- </>(P) where {PI (ud = Al (Ul), . . . ,Pn(un) = An(un)}. 

10.4. EXAMPLE. Suppose we define addition by some standard recursion 

m + n = p(m, n) where {p(m, n) = A(m, n,p)} 
on the structure of arithmetic (6) , and we want to show that it is commutative, 
m + n = n + m, from the usual axioms-including induction. By induction 
(on first-order formulas) , 

('1m, n)(p(m, n) = A(m, n,p)] f- p(m, n) = p(n, m) , 

from which, by the Lemma, 
p(m, n) where {p(m, n) = A(m, n,p)} 

= p(n,m) where {p(m,n) = A(m,n,p)} , 
i.e., m + n = n + m. 

Speaking a bit loosely, we can use the method of the Example to prove in £ 
properties of recursive definitions which have unique fixed points, and that is 
what we usually expect from formal systems about recursion. The system is 
stronger than this, however, because it extends £0 which is already complete 
for (absolutely) valid FLR-equations, and so can verify many properties of 
recursions which do not have unique solutions. 

13In a detailed exposition of this, one would naturally put down a specific set of axioms 
and rules , directly on FLR-formulas, and then prove the first-order completeness. 
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We end with an extension of the Main Theorem 9.1 which is still fairly weak 
(and none-too-elegant) , but which suggests that there is more completeness 
here than meets the eye. 

10.5. BASIC (FIRST-ORDER) THEORIES. A set of sentences T in FLR(r) is 
a basic theory if: 

(Bl) Every function symbol fi which occurs in a sentence ofT has kind (n) 
(so that it stands for an n-ary function) , and every () in T is a classical, first 
order sentence-with no occurrences of tt, ff, £( it) or conditionals, no where, 
and no function variables. 

(B2) If fi occurs in some sentence of T, then T also contains the sentence 

(Vu)(3v)[fi(U) = vj , 

so that /; is interpreted in J-structures by a function /; : M n -+ M . 

The basic terms of T are the explicit (first order) terms constructed from 
the function symbols which occur in T , so that they will always be interpreted 
in the basic universe M of every J-structure. The proper poset terms are those 
with the opposite property, which will always take values in W \ M: they 
are defined by a new clause to Table 1, similar to that for terms except that 
only symbols fi which do not occur in T are allowed while the ZiS can be 
arbitrary terms. For example, f(g(u), v) is a basic term if f and 9 occur in T 
and a proper, poset term if f does not occur in T; and f(P(u)) where {p(u) = 
g(u,p(u)) is not a basic term, and it is a proper, poset term only if neither f 
nor 9 occurs in T. 

For example, consider the stream structure 

(5 = (N, N U Str, ff, tt,cond,O, 1, +, ·, Z ,; , {(a, 1) I a E A}, {Ii liE I}), 

where (N, 0,1 , +,., Z) is classical arithmetic, and let T be Peano arithmetic 
in just these symbols. The basic formulas of T express first-order properties 
of the integers, while the proper, poset terms describe "computations" which 
"necessarily" involve the execution of acts. 

10.6. Basic Completeness Theorem. The system £ is complete for J
valid sequents r => A = B, where r is a basic theory and A, B are proper, 
poset terms of r . 

This is proved very much like the Main Theorem 9.1 , (roughly) replacing 
variables by basic terms throughout. 
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