
Powerdomains, Powerstructures and Fairness

Yiannis N. Moschovakis1 and Glen T. Whitney2?

1 Department of Mathematics, UCLA, Los Angeles, CA 90024
2 Department of Mathematics, University of Michigan, Ann Arbor, MI 48109

Abstract. We introduce the framework of powerstructures for compar-
ing models of non-determinism and concurrency, and we show that in
this context the Plotkin powerdomain plot(D) [6] naturally occurs as
a quotient of a refined and generalized player model ipf (D), following
Moschovakis [2, 3]. On the other hand, Plotkin’s domains for countable
non-determinism plot

ω
(D) [7] are not comparable with these structures,

as they cannot be realized concretely subsets of D.

If, as usual, we let the programs of a deterministic programming language L
denote points in some directed-complete poset (dcpo) D, then programs in non-
deterministic extensions of L should naturally correspond to non-empty subsets
of D, members of the set of players3

Π = Π(D) =df {x ⊆ D ||| x 6= ∅}. (1)

This idea immediately encounters a problem with non-deterministic recursive

definitions. In the deterministic case, the open terms of L (its program trans-

formations) denote (Scott) continuous functions on D. Their least fixed points
(which exist precisely because D is a dcpo) provide a means of interpreting recur-
sion. On Π(D), which does not carry a natural, complete partial ordering, how
are we to interpret non-deterministic program transformations so that they still
have “canonical” fixed points? No known semantics solves this basic problem in
the modeling of non-determinism in an entirely satisfactory way.

For a concrete example, let Str be the dcpo of integer streams, where (follow-
ing [5]) a stream is a finite or infinite sequence, or a finite sequence of the form
a1a2 . . . ant, where the terminator t is some fixed non-integer witnessing “termi-
nation.” Now Π(Str) is the set of non-deterministic integer streams, and many
of the usual, non-deterministic constructs are naturally interpreted by functions
on Π(Str) as follows:

x or y =df x ∪ y (2)

merge(x, y) =df {µ[α, β] ||| α ∈ x, β ∈ y, µ: N → {0, 1}} (3)

fairmerge(x, y) =df {µ[α, β] ||| α ∈ x, β ∈ y, µ a fair merger}. (4)

? During the preparation of this paper, Moschovakis was partially supported by a NSF
Grant and Whitney was supported by a Fellowship from the Fanny and John Hertz
Foundation.

3 The term derives from the original construction in Moschovakis [2, 3] which was cast
in game theoretic terms, for a specific domain D of partial strategies.

Here or stands for free, binary choice, µ[α, β] stands for “interleaving α and β
by the merger µ” in the obvious way, and a (strict) fair merger (following Park
[5]) is any sequence of 0’s and 1’s which is not ultimately constant. Note that as
operations on players, these merges remain distinct. If D has further structure,
then additional operations of this sort can be defined, such as state-dependent

fair merges, see [3].
To model non-deterministic recursion within domain theory, we must em-

bed Π(D) in some powerdomain D∗, and not totally arbitrarily. For example,
D is embedded in Π(D) by the natural map d 7→ {d}, and we would want
to have “liftups” of the continuous functions in (D → D) to continuous func-
tions in (D∗ → D∗) which respect composition, yield the correct least fixed
points, etc. Even such simple requirements seem to force undesirable conse-
quences about D∗, however. Consider the first and most interesting powerdo-
main construction plot(D) of Plotkin [6] (see also Smyth [8]) as an illustrative
example. plot(D) does not faithfully model fairness because it identifies sets in
Π(D) which are equivalent under4 the “observational Egli-Milner equivalence re-
lation” 'em. This collapses the merge and fairmerge operations on Π(Str), e.g.,
fairmerge(a∞, b∞) 'em merge(a∞, b∞), where a∞ is the infinite string of ‘a’s.
In addition, the equivalence relation 'em identifies certain unguarded recursions
with similar, but intuitively distinct, guarded recursions, e.g., see Smyth [8].

To circumvent these imperfections of the powerdomain constructions, Mos-
chovakis [2, 3] introduced (over some specific domains D) a model ipf (D) for
non-determinism and concurrency in which programs are interpreted by ar-
bitrary players, and program transformations are modeled by implemented
player functions (ipfs) on Π(D). These ipfs encode more than their values on
players: there exist distinct ipfs f and g such that f(x) = g(x) for all x ∈ Π(D).
The extra, intensional information carried by an ipf makes it possible to as-
sign “canonical solutions” to systems of recursive equations, so that the laws of

recursion are obeyed; we will make this precise further on. The or, merge, and
fairmerge operations introduced above are naturally modeled by certain ipfs
(and incidentally “unnaturally” modeled by others, distinct from but extension-
ally equal to the natural ones.)

Our principal aim here is to show that (with modest hypotheses on D) the
Plotkin powerdomain plot(D) can be recovered in a natural way from ipf (D),
while the countable powerdomains plotω(D) appear to represent a fundamen-
tally different modeling of fairness. For this, we will also introduce a refined
construction of ipf (D) (for any D) and establish precise properties of ipf (D)

4 The terminology for various pre-orders on Π(D) is not entirely standardized. In this
paper, we will use the lower preorder (x vl y if for all a ∈ x, there exists b ∈ y

such that a ≤ b) and the upper preorder (x v
u y if for all b ∈ y, there exists

a ∈ x such that a ≤ b). The usual “Egli-Milner preorder” is the conjunction of
these two. However, as outlined in Smyth [8], the easiest construction of the Plotkin
powerdomain for countably algebraic D is in terms of the “observational Egli-Milner”
preorder, defined as x <

∼ y if for all finite sets A of finite elements, A vl x implies
A vl y and A v

u x implies A v
u y. Each preorder induces an equivalence relation,

for example x 'em y if x <
∼ y and y <

∼ x.

2

which make it a suitable structure for modeling non-deterministic programs and
program transformations. We will rely heavily on an axiomatization of the “stan-
dard” laws of recursive equations, and on a somewhat novel approach to the de-
velopment of intensional semantics for formal languages, which has applications
beyond its present use. These ideas are described in Section 1.

1 The main notions

For each vocabulary (signature) τ , i.e., set of function symbols with associated
non-negative arities, the expressions of the language FLR0(τ) are given by

E :≡ x | f(E1, . . . , En) | E0 where {x1 = E1, . . . , xn = En} ,

where x is a variable (from some fixed, infinite set of variables) and f ∈ τ .
Intuitively, FLR0 has notation just for function application and for solution of
simultaneous recursion equations. The where operator binds the variables x1

through xn; all other variable occurrences are free. A closed expression is one
containing no free variables, e.g., f

(

g()
)

or x where {x = f(x)} if f is unary and
g is nullary.

In the standard semantics for FLR0, we have a dcpo D together with some
continuous functions on D to interpret the function symbols, and with each
FLR0 expression E and each assignment π : Variables → D, we associate a
point value(E, π) ∈ D. If E is an open FLR0 expression and the list of variables
x = x1, . . . , xn includes all the free variables of E, then

Λ(x)E = λ(y)value(E, {x1 := y1, . . . , xn := yn)}) (5)

is the n-ary function defined by E and x. The more general, intensional semantics

for FLR0 needed here are defined directly in terms of a given interpretation Λ,
making (5) a theorem rather than a definition in the standard case.

The universe of an interpretation Λ is a set Φ of objects with associated
integer arities; Φn comprises the n-ary objects of Φ, and the nullary objects
in Φ0 are its individuals. In a standard interpretation, Φ0 = D is a dcpo and
Φn consists of all the continuous, n-ary functions on D. The interpretation Λ
assigns to each expression E and list of variables x = x1, . . . , xn including all
free variables of E an object Λ(x) E in Φn, so that the following basic conditions
of compositionality hold:

(1) Λ(x) xi depends only on the length of x and on i; in the standard case,
this must be the usual projection function from Dn to D by the ith component.

(2) If Λ(x) Mi = Λ(y) M ′
i for i = 1, . . . , n, then Λ(x) f(M1, . . . , Mn) =

Λ(y) f(M ′
1, . . . , M

′
n). In the standard case, these must be computed by ordinary

function application of the interpretation of f on the given values.
(3) If Λ(y) E(y1, . . . , yn) = Λ(z) E′(z1, . . . , zn) and the substitutions E[M/y]

and E′[M/z] are free, then Λ(x) E(M1, . . . , Mn) = Λ(x) E′(M1, . . . , Mn).
(4) If w = Λ(x) E0 where {y1 = E1, . . . , yn = En} , suppose first that

no yi occurs in x. Then w depends only on Λ(y,x) Ei for i from 0 to n. In

3

general, let x′ be the same as x except that every variable from x occurring as
one of the yi has been replaced by a fresh variable. Then w depends only on
Λ(y,x′) Ei, in the same sense as the last two requirements: if these values are
equal to Λ(u, z′) Mi, respectively, then w = Λ(z) M0 where {u = M} . For a
standard interpretation, w must be computed by taking the least fixed point of
the system yi = Λ(y,x′) Ei for i from 1 to n, and substituting the results (which
are functions of the x′) into E0.

An expression identity E = M is standard if it is valid for all standard
interpretations, i.e., Λ(x)E = Λ(x)M for every list x which includes all the free
variables of both E and M . The simplest example of a standard identity is

f(x where {x = f(x)}) = x where {x = f(x)} (6)

which asserts that “the least fixed point of f is a fixed point of f”. Others
include the Bekič-Scott rules which relate simultaneous and iterated recursion,
the reduction of explicit definition to recursion, etc. It can be shown that the

class of standard identities (on a recursive, countable vocabulary) is decidable,

simply (and usefully) axiomatizable, and the same as the class of identities valid

for all interpretations with individuals D0, the set of all streams of ‘0’s.5 This
robustness of the standard identities suggests that they truly codify the laws of

recursive equations—the rules we use unthinkingly when we manipulate recur-
sive definitions—and we look for modelings of non-determinacy and concurrency
among FLR0 interpretations which satisfy them.

An (abstract, intensional) FLR0-structure is a triple

A = (Φ0, {Φn}n≥1 , Λ),

where Φ =
⋃

Φn is a universe and Λ is an interpretation of FLR0(Φ) into Φ
which satisfies the standard identities and also

Λ(x1, . . . , xn) f(x1, . . . , xn) = f for each f ∈ Φn. (7)

Notice that here we view Φ as both a vocabulary and universe, each f ∈ Φn

being an n-ary function symbol naming itself as enforced by (7). Each dcpo D
gives rise to a standard FLR0-structure, in which Φ0 = D, Φn consists of the
n-ary continuous functions from D to D, and Λ is the standard interpretation
as described above.

In an arbitrary FLR0-structure, we think of the elements f of Φ as intensional

functions on A = Φ0, and every n-ary f determines an actual function f : An → A
via

f(a1, . . . , an) =df Λ() f(a1, . . . , an). (8)

We say that f is the extension of f , or that f covers f .
A homomorphism ρ : A → B from A (as above) to B = (Ψ0, {Ψn}n≥1 , Λ′) is

any arity-preserving map from Φ to Ψ =
⋃

Ψn which respects the interpretations,

5 These results will appear in a multi-authored paper The logic of recursive equations,
now in preparation.

4

as follows: extend ρ (by substitution) so that it takes arbitrary expressions of
FLR0(Φ) to expressions of FLR0(Ψ); then it must satisfy

ρ(Λ(x)E) = Λ′(x)(ρ(E)).

Thus, homomorphisms preserve all possible compositions and recursions.

A powerstructure over a dcpo D is an FLR0-structure P = (P, Φn≥1, Λ)
such that there is an injective FLR0-homomorphism ρ from the standard FLR0-
structure over D to P satisfying the following two finite non-determinism con-

ditions :

(1) The map {d} 7→ ρ(d) on the singletons of D extends to a surjective map
π: SP →→ P , where SP is a subset of Π(D) closed under continuous images and
finite unions.

(2) Similarly, for each arity n, the map {F} 7→ ρ(F) on the singletons of
continuous functions extends to a map π which takes each finite set J of n-ary
continuous functions to some π(J) ∈ Φn, so that:

π(J)(πx1, . . . , πxn) = π {F (d1, . . . , dn) ||| F ∈ J, di ∈ xi} . (9)

If for a particular powerstructure P both occurrences of “finite” in these condi-
tions may be replaced by “countable” or “arbitrary”, then the powerstructure
is called countably non-deterministic or fully non-deterministic, respectively. We
also say that P is fine, if the map π on individuals is actually a bijection, so that
P can be identified with a set of players.

The second condition applied to singletons {F} implies that each continuous
F : Dn → D has a lift-up f , such that

f(πx1, . . . , πxn) = π{F (d1, . . . , dn) ||| d1 ∈ x1, . . . , dn ∈ xn}.

In addition, if U = {F1, F2} where F1(d, e) = d, F2(d, e) = e, then the corre-
sponding intensional function π(U) covers the (“quotient” of the) binary union
operation (2). If P is fine and fully non-deterministic over Str and M is the set
of all functions of the form Fµ(α0, α1) = µ[α0, α1] with µ a fair merger, then
π(M) covers fairmerge as defined above (4). Thus, fine, fully non-deterministic
powerstructures can provide powerful and faithful models of “fair concurrency.”

Note that plot(D) together with the continuous functions on it is a power-
structure, but not a fine one: SP is the collection of finitely generable subsets
of D and π identifies Egli-Milner equivalent sets. Neither is plot(D) fully non-
deterministic. The powerdomains plotω(D) enjoy the intermediate property of
countable non-determinism which can be used to define fairmerge, although not
in the direct way described above, for there are uncountably many fair mergers
µ. It is not clear that countable non-determinism provides a rich enough model
to handle the many extant notions of fairness; in particular, we do not expect
to be able to define natural state-dependent fair merges or the fair merge of
countably many streams using only countable non-determinism.

5

2 Main results

Theorem A. For each domain D, there is a fine, fully non-deterministic pow-

erstructure ipf (D) = (Π(D), ipf (D), Λipf) over D.

In the construction of ipf (D), every intensional function essentially arises as
fJ for some J , so every f in ipf (D) ends up being set monotone, i.e.,

x ⊆ y ⇒ f(x) ⊆ f(y), (10)

and this limits the functions on plot(D) we can represent inside ipf (D). Recall
that (for countably algebraic D), plot(D) can be defined as the quotient of
the finitely generable subsets of D (which we will denote by Π0(D)), under the
equivalence 'em. Therefore, each continuous function φ : plot(D) → plot(D)
is induced by some continuous function φ∗ : Π0(D) → Π0(D) on the predomain

Π0(D), i.e.,
φ([x/ 'em]) = [φ∗(x)/ 'em], (x ∈ Π0(D)). (11)

In particular, we say that φ is essentially monotone if it is induced by some
set monotone φ∗. The essentially monotone functions em(D) are closed un-
der composition and recursion, and therefore together with plot(D) and the
standard (least-fixed-point) interpretation comprise an FLR0-structure Pl(D) =
(plot(D), em(D), Λstd). This is a natural FLR0-structure associated with the
Plotkin powerdomain, and it includes all ∪-linear functions [1].

Theorem B. If D is strongly algebraic then there is an FLR0-substructure

ipf 0(D) = (Π0(D), ipf 0(D), Λ0) of ipf (D) with the following properties.

(a) Each player function f in ipf 0(D) respects the Egli-Milner preorder on

Π0(D) and is Scott continuous, so that it induces a continuous function

ρ(f) = φ : plot(D) → plot(D) (12)

on the Plotkin powerdomain by the equation φ([x/ 'em]) = [f(x)/ 'em]. (By the
observation (10), φ is necessarily essentially monotone.)

(b) If we extend the map ρ to Π0(D) by ρ(x) = [x/ 'em], it becomes an

FLR0-homomorphism from ipf 0(D) to Pl(D).

(c) If φ : plot(D) → plot(D) is essentially monotone, then φ = ρ(f) is also

induced by some player transformation f in ipf 0(D); that is, the image of the
homomorphism ρ is exactly Pl(D).

No similar comparison is possible between ipf (D) and plotω(D), however.
The obstacle is that except for extremely simple (e.g., flat) D, plotω(D) cannot
be thought of as a structure on the subsets of D, or precisely:

Theorem C. For any domain D embedding (1⊥ × N)⊥, the free σ-semilattice

over D is not the homomorphic image of (Π(D),v,⊆) with ordinary ⊆ and any
partial order v.

This means that plotω(D) is not technically a powerstructure in our sense,
in that it does not represent non-deterministic “programs” (FLR0 expressions)
by their set of possible “outcomes” (subset of D), but provides some altogether
different, less concrete interpretation.

6

3 Details and proofs

To prove Theorem A, we need to define the class ipf (D) of implemented player

functions (ipfs) on an arbitrary dcpo D, specify suitable operations of compo-
sition and recursion on this class, and then show that the resulting structure
ipf (D) = (Π(D), ipf (D), Λipf) is a fully non-deterministic powerstructure. The
complete construction is quite long, but not very different from that given in
detail and with many motivating examples in [3], for a specific D. Here we con-
fine ourselves to a brief sketch, highlighting the differences arising in the general
case; [9] contains a full treatment.

A unary polyfunction on D is a monotone function F : DI → D, where the
index set I is an arbitrary set of integers and DI is the dcpo of maps from I to
D under the pointwise ordering. Each polyfunction induces a function on Π(D)

F̄ (x) = {F (X) ||| X: I → x} ,

and we think of F as an “implementation” of F̄ . However, some polyfunctions
differ inessentially by the integer “tags” they use to name their arguments: we
say that G: DJ → D reduces to F : DI → D, written G � F , if there is an
injection ι: I → J such that G(p) = F (p ◦ ι) for all p ∈ DJ . Let � be the
smallest equivalence relation extending �, and call two polyfunctions F1 and F2

equivalent if F1 � F2. It is simple to verify that if F � G, then F̄ = Ḡ. Finally,
a (unary) implemented player function (ipf) is a nonempty set of polyfunctions
closed under �. Each ipf f induces a function f̄ : Π(D) → Π(D) (its extension)
by

f̄(x) =
⋃

F∈f

F̄ (x) =
{

F (X) ||| F ∈ f, X: I → x where F : DI → D
}

. (13)

The members of f are called its implementations, and a set F of polyfunc-
tionsgenerates f , written f = 〈F〉, if f is the closure of F under �, i.e.,

G ∈ f ⇐⇒ (∃F ∈ F) such that G � F.

It is not difficult to see that a generating set of implementations suffices to
determine the extension of f as per (13). For n-ary ipfs we use polyfunctions
F : DI1 × · · · × DIn → D and proceed similarly.

Polyfunctions generalize the infinitary behavior functions of [3], where, how-
ever, only one index set was allowed, I = N. A more essential difference is the
present choice of polyfunction equivalence, which is less coarse than that of [3]
and produces more natural modelings in the specific examples.6 This choice of
equivalence requires some extra care in the correct definition of ipf composition

and ipf recursion, but these constructions are quite similar to those of [3] and
we will skip them. We mention the one technical notion needed in the proofs
below, to set notation.

6 The desirability of this refinement was discussed briefly in Footnote 8 of [3], but the
methods of that paper were not strong enough to prove the main results with the
present, more natural equivalence relation.

7

An implementation system for a single ipf equation of the form x = f(x)
is a labeled infinite tree F, whose vertices are the set N

∗ of finite sequences of
natural numbers. Each vertex is labeled with an implementation Fτ of f , and so
F determines an infinite system of recursive equations over D,

Xτ = Fτ (λ(i ∈ N)Xτi) (τ ∈ N
∗),

where τi is the result of appending i to the end of τ . We let {X̂τ ||| τ ∈ N
∗} be

the set of mutual fixed points of this system, and put

x̂ =
{

X̂∅ : X̂τ are the simultaneous least fixed points of some F
}

.

This x̂ ∈ Π(D) is the “canonical” ipf fixpoint of the equation x = f(x), and
it is not hard to verify that, indeed, it is a fixed point. The construction of
canonical fixpoints for systems of equations with parameters is similar but more
complicated, and still very close to [3].

The proof of Theorem A now essentially consists of showing that the standard
identities hold in ipf (D). Armed with the axiomatization mentioned in Section
1, it suffices to verify a specific, short list of identities. This method improves
on that of [3], both in content (as we can handle arbitrary D and the refined
equivalence relation) and in simplicity.

3.1 Comparing ipf (D) and plot(D)

Turning to Theorem B, we first need to define ipf 0(D), which is most eas-
ily done topologically. So, place the usual Scott topology on all dcpos; note
that for algebraic D, a base of this topology is given by the collection of sets
ND(e) = {d ∈ D ||| e ≤ d} for e finite. Let C be the Cantor set (all infinite binary
sequences) with its usual topology, and call a subset X of D compact-analytic if it
is the continuous image of C, i.e., if there is a (topologically) continuous function
F : C → D such that F [C] = X. Since C is homeomorphic to the direct product
of countably many copies of itself, it is not hard to see that compact-analytic
sets are closed under countable direct products and continuous images.

Now restrict attention for the remainder of this section to strongly alge-

braic D. These are the “SFP objects” of Plotkin [6]; we need just the follow-
ing properties: If D is strongly algebraic, then there is an increasing sequence
D0 ⊂ D1 ⊂ D2 · · · of finite sets of finite elements of D whose union is all finite
elements of D. Furthermore, there is a family of projections pn: D → Dn such
that pn+1 ◦ pn = pn+1 and for all d ∈ D, d = supn pn(D).

It is not difficult to check that for strongly algebraic D, the compact-analytic
subsets of D coincide with the finitely generable ones.7 Therefore, think of
ipf 0(D) as a structure on the compact-analytic subsets of D. To provide the
transformations ipf 0(D), call an ipf f compact-analytic8 if it is generated by a

7 This statement in fact holds for all algebraic D, but the proof requires considerably
more work; see [9].

8 See also [4].

8

family of polyfunctions of the form
{

Fα: DN → D ||| α ∈ C
}

where the function
F : C×DN → D via F (α, p) = Fα(p) is continuous. These ipfs have implementa-
tions continuously parametrized by the Cantor set, which one can think of as a
space of “oracles” for the corresponding non-deterministic function. The closure
properties of compact-analytic sets guarantee that such an f takes compact-
analytic players to compact-analytic players, as f̄(x) = F [C × xN].

It is a fact that the compact-analytic ipfs ipf 0(D) and players Π0(D) are
closed under composition and recursion, which means that Π0(D), ipf 0(D), and
the (restriction of) the usual ipf interpretation form an FLR0-structure ipf 0(D).
The proof of this fact is not difficult from the definitions, and is similar to the
portions of Theorems 8.2 and 8.4 of [3] which state that ipf recursion preserves
“type.”

Lemma. For x, y finitely generable, x <
∼ y is equivalent to the conjunction of

x vu y and x v′
l y, where x v′

l y if for every c ∈ x and every finite a ∈ D such

that a ≤ c, there exists d ∈ y such that a ≤ d.

Intuitively, x v′
l y means that every finite approximation to x is also an

approximation to y. This form of <
∼ will be most useful in the following proofs.

Rephrasing Theorem B, part (a), we now wish to show

Claim. For any ipf f and players x and y, all compact-analytic, we have
(1) If x <

∼ y, then f̄(x) <
∼ f̄(y).

This condition means that f̄ takes 'em-equivalent players to 'em-equivalent
ones, so it induces a monotone function on the Plotkin powerdomain.

(2) The induced function ρ(f) is continuous on the Plotkin powerdomain.

Proof of claim. Let A(d) denote the set of finite elements less than or equal to
a given d ∈ D. Since D is algebraic, A(d) is directed and supA(d) = d. Also let
F : C × DN → D be the continuous parametrization of f .e

Suppose that a is a finite approximation to an element c ∈ f̄(x). By definition
of ipf application, c = Fα(X) for some α ∈ C and X: I → x. By continuity of F ,

a ≤ c = sup {Fα(A) ||| ∀i, A(i) ∈ A(X(i))} .

But a is finite, so some individual term of the right-hand sup must already be
beyond a. That is, for a particular sequence A ∈ DI such that A(i) ∈ A(X(i)),
we have a ≤ Fα(A). Each A(i) is finite below X(i) ∈ x, and hence there is some
Y (i) ∈ y such that A(i) ≤ Y (i). Finally, by monotonicity of Fα, a ≤ Fα(Y) ∈
f̄(y). In other words, f̄(x) v′

l f̄(y).
To finish the first part of the claim, show that f̄(x) vu f̄(y): if d = Fα(Y) ∈

f̄(y), choose a map X: I → x such that X(i) ≤ Y (i) for each i ∈ I. This is
possible since x vu y. Then x 3 c = Fα(X) ≤ Fα(Y) = d.

The second part of the claim asserting the continuity of ρ(f) is more delicate.
Note it suffices to show that for each point z in the Plotkin powerdomain, there
is a sequence of finite elements an with supremum z such that ρ(f)(z) is the
supremum of ρ(f)(an). Let pn: D → Dn be the sequence of projections witnessing

9

that D is strongly algebraic. Choose the set-maximal representative Z∗ of z
from Π0(D), constructed in section 7 of Smyth [8]. Unsurprisingly, the players
An = pn[Z∗] have <

∼-supremum Z∗; we shall verify that the supremum of f̄(An)
is f̄(Z∗). The key property of the choice of representative Z∗ is that if {bi}i∈N
is any increasing sequence with bi ∈ Ai, then the supremum of the bi is in Z∗.

Actually, Z∗ is a supremum of the An in the preorders v′
l and vu, individu-

ally; so we can check that f̄(Z∗) is the supremum of the An in these two preorders
individually, as well. For v′

l, the argument goes similarly to the monotonicity
argument above, but using the stronger approximation

X = sup
I′⊆I,|I′|<∞

sup {A ||| A(i) ∈ A(X(i)) and A(i) = ⊥ for i 6∈ I ′} ,

for a function X: I → Z∗, which results from the pointwise ordering on DI .
To show that f̄(Z∗) is the vu- supremum of the f̄(An), let Y be any vu-

upper bound of the f̄(An), and choose any member d of Y . Then for each n,
there is some αn and map Bn: N → An such that f̄(An) 3 F (αn, Bn) ≤ d. Now,
C is a compact topological space, and every point has a countable neighborhood
base, so C is sequentially compact. Therefore we may safely assume that the
αn converge as n increases, to some α ∈ C. Next notice that the projections
pt “push down” so that F (αn, pt ◦ Bn) ≤ d for any t and n as well. By similar
compactness arguments (using Tychonoff’s theorem to see that DN is compact),
one can choose a subsequence Bnt

so that for each k ∈ N, the sequence of values
pt(Bnt

(k)) ∈ At is eventually monotone as t increases. Hence for each k, this
sequence converges to Z(k) ∈ Z∗, so that

F (αnt
, pt ◦ Bnt

) → F (α, W) = c ∈ f̄(Z∗) as t → ∞.

Since each element in the left hand sequence is ≤ d, the limit c ≤ d. Hence every
element of Y has an element of f̄(Z∗) below it, as desired. ut

The previous claim together with the definition that ρ(x) = [x/ 'em] yields
a map from the universe of ipf 0(D) to the standard structure over the Plotkin
powerdomain of D. The next part of Theorem B states that this map ρ is an
FLR0-homomorphism. To see this, it suffices to show that ρ preserves function
compositions and systems of recursive equations, since all FLR0 expressions
are built up from these operations. The fact that ρ(f) ◦ ρ(g) = ρ(f ◦ g) is
easy, because ρ(f) depends only on the extension f̄ . For recursion, suppose
that f(x) is a compact-analytic ipf with player fixed point x̂, and that X is
the least fixed point in the Plotkin powerdomain of ρ(f). We wish to prove
that X = ρ(x̂) = [x̂/ 'em]. (The following argument will directly generalize to
systems of equations with parameters.)

First, ρ(f) fixes [x̂/ 'em], since by definition ρ(f)([x̂/ 'em]) = [f̄(x̂)/ 'em]
and f̄ fixes x̂. Choose a compact-analytic representative x0 of X in the Plotkin
powerdomain; since X is the least fixed point of ρ(f), this means that x0

<
∼ x̂.

On the other hand, we know that f̄(x0) 'em x0 since the 'em-equivalence class
X of x0 is fixed by ρ(f). In particular, f̄(x0) <

∼ x0. To finish the proof, we show
that for any compact-analytic player y, f̄(y) <

∼ y implies that x̂ <
∼ y:

10

Suppose f̄(y) <
∼ y. We shall show separately that x̂ v′

l y and x̂ vu y. Let
a ≤ ĉ∅ ∈ x̂ be a finite approximation to an element of x̂, where ĉ∅ is the top-
level fixed point for some implementation system F of f . By induction on k, each

iterate c
(k)
τ of the corresponding fixed point equations satisfies that the singleton

{

c
(k)
τ

}

v′
l y. Since a is a finite approximation to ĉ∅, it must be less than or equal

to some top-level iterate c
(K)
∅ of F, which is in turn less than some d ∈ y, as

desired.

For x̂ vu y, let d be any element of y. Since f(y) vu y, choose some c ∈ f(y)
such that c ≤ d. Now c must be of the form F (d1, d2, . . .) for some F ∈ f and
d1, d2, . . . ∈ y. Proceeding by induction, once dτ ∈ y is chosen, find some Fτ ∈ f
and dτ ˆ1, dτ ˆ2, . . . ∈ y so that dτ ≥ Fτ (dτ ˆ1, dτ ˆ2, . . .). In this way construct
dτ and Fτ for all finite sequences from N.

The Fτ of course form an implementation system F for the ipf equation
x = f(x). This system has least fixed points d̂τ so that the top-level d̂∅ ∈ x.

But since dτ ≥ Fτ (dτ ˆ1, . . .), it must be that dτ ≥ d̂τ for all τ , by the general

least-fixed-point properties of the d̂τ . In particular, y 3 d ≥ d̂∅ ∈ x as desired.

Only part (c) of Theorem B remains, which says that the homomorphism ρ
produces every continuous, essentially monotone function on the Plotkin pow-
erdomain. To prove this part, we must take an arbitrary essentially monotone
g:plot(D) → plot(D) and construct a compact-analytic ipf f so that ρ(f) = g.
Restated, the goal is to find a continuous function F : C × DN → D such that
F [C × xN] 'em g([x/ 'em]) for any x ∈ Π0(D). One reasonable approach is to
arrange that if X: N → x is surjective and so enumerates x, then F (α, p) will
pick out all members of g([x])∗ as α varies over C.

This approach calls for a “selection function” S which will take an α ∈ C

and some set R of the form R = Y ∗ and return an element of R, so that

{S(α, R) ||| α ∈ C} = R, for every R. (14)

The following labeled tree σ which “generates” D will help to construct S. As
before, let pn: D → Dn be the projections which witness the fact that D is
strongly algebraic. The root of σ is labeled with ⊥; if n − 1 levels have been
constructed, then the new children of a current leaf σu should consist of a set of
nodes labeled with each element of Dn greater than or equal to σu.

We may assume that σ is actually a perfect, infinite binary tree by replacing
each node having k children by a small binary tree with k leaves. Therefore,
identify the nodes of σ with finite binary sequences, and the set of branches of
σ with the Cantor set. We denote by σα the supremum of the labels along the
αth branch of σ. By construction, σα varies over all of D as α ranges over C.
Moreover, an analogue of this property holds at every node. For any node u, let
N(u) denote the set of branches which extend u. Then as α varies over N(u),
σα varies over all elements of D greater than or equal to σu, i.e., ND(σu).

Let R = {Y ∗ : Y ∈ Π0} be the range of the ∗-operation. For the purposes of

11

our proof, any selection function S: C ×R → D satisfying (15) will do:

S(α, R) = σα if σα ∈ R
∀u such that {σu} vl R, ∀α extending u, σu ≤ S(α, R).

(15)

The following construction provides one such S. Fixing an R for the moment,
find all minimal u so that no element of R is greater than or equal to σu. For
such a u, let t be its parent. Then R does contain some element greater than σt,
which is exactly to say that {σt} vl R. Therefore, choose the “leftmost” branch
extending t whose limit is in R, and call this limit mR,u.

Now define S(α, R) = mR,u if α ∈ N(u), and S(α, R) = σα, otherwise. There
is at most one initial sequence u of α so that mR,u is defined, and if there is
none then σα ∈ R since R is closed under limits of approximations to itself; these
observations ensure that S is well-defined and satisfies properties (14) and (15).

Finally define for X ∈ DN, α ∈ C,

F (α, X) = S
(

α, g([X[N]])∗
)

,

and let f be the ipf generated by the sections Fα. We must prove both that
F is continuous and that ρ(f) = g. So, compute the inverse image of a generic
neighborhood ND(a) under F , as follows. Let U be the set of all minimal u so
that σu ≥ a. By construction of S,

S−1(ND(a)) =
⋃

u∈U

N(u) × {R ||| {σu} vl R} .

Since each N(u) is open in C, we need only show that the collection of all X so
that {σu} vl g([X[N]])∗ is open in DN. Fix a u and let b = σu for convenience
of notation. Note first that if {b} vl R, i.e., if ∃d ∈ R s.t. b ≤ d, then there
is some finite set of finite elements A 3 b so that A <

∼ R. That is, letting
B = {[R] : {b} vl R}, then

B =
⋃

A finite
A3b

Nplot(D)(A),

and so B is open in plot(D). This means that g−1(B) is also open in plot(D),
and hence is of the form

g−1(B) =
⋃

A∈A′

Nplot(D)(A), (16)

for some collection A′ of finite sets of finite elements of D.
Unfortunately, saying that the range X[N] of a function from N to D is

bigger than a given finite set of finite elements A in the order <
∼ is not an open

condition on X, because every value of X must then be greater than or equal to
some element of A. The following argument which converts (16) into a collection
of neighborhoods in the order vl is therefore the crux of the continuity proof.

Suppose y is given so that A vl y for some A ∈ A′. Clearly one can choose
some subset z ⊆ y such that A vu z as well, so that in fact A <

∼ z. Then

12

g([A]) <
∼ g([z]), so {b} vl g([A])∗ v′

l g([z])∗. But g is essentially monotone, so
g([z])∗ ⊆ g([y])∗, and hence {b} vl g([y])∗, which is to say that g([y]) ∈ B.

Conversely, if there is no A ∈ A′ such that A vl y, then certainly no A ∈ A′

has A <
∼ y, and so g([y]) 6∈ B. Thus equation (16) can be improved to

g−1(B) =
⋃

A∈A′

{[y] ||| A vl y} .

Finishing the proof of F ’s continuity therefore only requires showing that any
set of the form X =

{

X ∈ DN ||| A vl X[N]
}

for A a finite set of finite elements
is open in DN. But A vl X[N] just means there is some finite set of natural
numbers whose images under X meet ND(c) for each c ∈ A. Any candidate set
of natural numbers of the appropriate size yields a finite condition on X, and so
the entire set X is a union of basic neighborhoods in DN.

It remains to show that ρ(f) = g. If x ∈ Π0 and X: N → x, then X[N] ⊆ x.
By the essential monotonicity of g, g([X[N]])∗ ⊆ g([x])∗. This inequality with

f(x) =
⋃

X:N→x

F [C × {X}] =
⋃

X:N→x

g([X[N]])∗

shows that f(x) ⊆ g([x])∗. Equality will be achieved if for some X, X[N] 'em x.
Collecting for each n and each element a of pn[x] some element da ∈ x with
a ≤ da produces a countable set which is 'em-equivalent to x. Then an X that
enumerates {da} suffices.

This completes the proof of all three parts of Theorem B, providing a vivid
picture of the Plotkin powerdomain as a powerstructure quotient of the player
model.

3.2 Countable non-determinism

Since both the ipf structure ipf (D) and the powerdomains for countable non-
determinism plotω(D) seek to improve on the ability of earlier powerdomains
to model fairness, it is natural to compare them. Is there a “countable non-
determinism” analogue of Theorem B? Unfortunately, the answer is “no,” for the
simple reason that plotω(D) does not constitute a powerstructure. The points in
plotω(D) cannot (all) be viewed as subsets of D. In other words, although it still
may be true that “direct existence [of plotω(D)] along the lines of [6, 8] should
be established,” as Plotkin [7] suggests, no construction which stays within the
subsets of D can accomplish this goal.

Let W be the domain (1⊥ × N)⊥, which is just a tree with root ⊥ and
countably many branches of length 2. Concretely, we take the elements of W to
be ⊥ and all pairs of the form (0, n) or (1, n) for any n ∈ N. The ordering on
W is that ⊥ < (0, n) < (1, n) for any n, and these are the only relations. W is
very close to being flat, having maximal chain length 3 as opposed to 2. Also,
say that one dcpo D embeds another E if there is a projection from D onto a
subdcpo D′ ⊆ D such that D′ and E are isomorphic.

13

Proof of Theorem C. We begin by showing that P = (Π(W)/ 'em, <∼,⊆) is a
σ-semilattice, where ⊆ is the ordinary subset relation (modulo 'em). First note
that since W has only finite elements, <

∼ is just the conjunction of vu and vl

on W . Since every <
∼-chain in Π(W) has countable length, (Π(W), <∼) is a dcpo

exactly if it contains a least upper bound for each sequence. Let x0
<
∼ x1

<
∼ · · ·

be such a sequence, and check that its supremum is

x =

{

sup
n

an ||| an ∈ xn, am ≤ an for m ≤ n

}

.

Next, ⊆ must have least upper bounds of arbitrary countable sets from P.
But

⋃

n xn is the ordinary ⊆-least upper bound of {xn ||| n ∈ N}, so [
⋃

n xn/ 'em]
is the least upper bound of {[xn] ||| n ∈ N} on P.

Finally, countable union (i.e., the operation of taking the ⊆-least upper bound
of countably many arguments) must be ω1-continuous and binary union must
be continuous, with respect to <

∼. The former is trivial because there are no
uncountable chains in P; the latter just requires that whenever x = supxn, then
x ∪ y = sup xn ∪ y, which is easy to check because W only has chains of finite
length.

Thus, P is a σ-semilattice; however, it is not free over W . The singleton map
would have to be the obvious {·} : w 7→ [{w}]. Now consider the map f from W
into the σ-semilattice9 Q = (Π(N⊥), <∼,⊆) given by f(⊥) = f(0, n) = {⊥} and
f(1, n) = {n}. f is certainly continuous, and so if P were free, f would have to
factor through the singleton map. The values of F at singletons determine all its
other values, since F must preserve countable unions and W is itself countable.
Therefore, the only possibility for F turns out to be

F (A) =

{

{n ||| (1, n) ∈ A} if A ∩ ({⊥} ∪ {(0, n) ||| n ∈ N}) = ∅,
{n ||| (1, n) ∈ A} ∪ {⊥} otherwise.

But this map F is not continuous (on the “dcpo” part (Π(W), <∼) of the semi-
lattices), which is a contradiction. To see the non-continuity, consider the sets
Hk = {(1, n) ||| n < k}∪{(0, n) ||| n ≥ k}. Clearly the Hk are increasing in <

∼, and
have least upper bound H = {(1, n) ||| n ∈ N}. But F (Hk) = {⊥, 0, 1, . . . , k − 1}
so that supk F (Hk) = {⊥}∪N, whereas F (H) = N is strictly bigger than {⊥}∪N

in Q. (Intuitively, the true free σ-semilattice over W will have to include some
“ideal” element, not corresponding to any set, to be the least upper bound of
the sequence {Hk}k∈N.)

Assume by way of contradiction that the free σ-semilattice S over W is the
homomorphic image of (Π(W), <,⊆) for some partial order <. The homomor-
phism induces some equivalence relation ∼ on Π(W), so that S = (Π(W)/∼, <
/∼,⊆ /∼), with singleton map w 7→ {w} /∼. Since P is a σ-semilattice and the
map w 7→ [{w}] ∈ P is continuous, there is a σ-semilattice map φ:S → P so

9 See Plotkin [7] for a proof that this is the free σ-semilattice over N⊥; the proof that
it is simply a σ-semilattice is analogous to the proof for W .

14

that the following diagram commutes:

W
{·} ↓ ↘ {·}

S
φ
→ P

Now, w 7→ [{w}] ∈ P is an injective map, so the singleton map into S must
be as well, i.e., ∼ cannot identify any singletons. Since the subset relation in S
is ordinary subset (modulo ∼), the ⊂-lub of a countable set A of singletons in S
is just {w ||| {w} ∈ A} /∼. Since W is countable, every element of S is produced
in this way, and since φ must preserve ⊆, this means that the map φ is simply
given by

φ(x/∼) = [x] ∈ P

for any x ∈ Π(W). Thus φ is clearly surjective. Suppose that φ(x/∼) = φ(y/∼),
which means that x is equivalent to y under <

∼. Write x as {a0, a1, . . .} and
y = {b0, b1, . . .} possibly with repetitions so that ai ≤ bi. Since the singleton
map to S is monotone, and countable union in a σ-semilattice is monotone, this
representation of x and y shows that x/∼ < y/∼. Symmetrically, y/∼ < x/∼, so
that φ is injective as well. Hence φ is an isomorphism of σ-semilattices witnessing
S ∼= P. But P is not free over W .

This argument proves the theorem for D = W . To extend to the case that
D embeds W , just notice that any representation of the free σ-semilattice over
D in the given form would yield such a representation of the free σ-semilattice
over W by taking a quotient under the projection from D to W . ut

References

1. M. Hennessy and G. D. Plotkin, “Full abstraction for a simple parallel program-
ming language,” Proceedings of MFCS, Lecture Notes in Computer Science 74, ed.
J. Becvar, Berlin: Springer-Verlag (1979), 108–120.

2. Y. N. Moschovakis, “A game-theoretic modeling of concurrency,” Extended ab-
stract, Proceedings of the fourth annual symposium on Logic in Computer Science,
pp. 154-163, IEEE Computer Society Press, 1989.

3. Y. N. Moschovakis, “A model of concurrency with fair merge and full recursion,”
Information and Computation, 93, 1991, pp. 114-171.

4. Y. N. Moschovakis, “Computable, concurrent processes,” to appear in Theoretical

Computer Science.
5. D. Park, “On the semantics of fair parallelism,” Proc. Copenhagen Winter School,

Springer LNCS 104 (1980), pp. 504-526.
6. G. D. Plotkin, “A powerdomain construction,” SIAM J. of Comput. 5, 1976, pp.

452-487.
7. G.D. Plotkin, “A powerdomain for countable non-determinism,” Automata, Lan-

guages, and Programming 9th Colloquium, Lecture Notes in Computer Science

140, eds. M. Nielsen and E. Schmidt, Berlin: Springer-Verlag (1982).
8. M. B. Smyth, “Power Domains,” J. Comput. System Sci. 16, 1978, pp. 23-36.
9. G. T. Whitney, “Recursion Structures for Non-Determinism and Concurrency, ”

Ph.D. Thesis, University of California, Los Angeles, 1994.

This article was processed using the LATEX macro package with LLNCS style

15

