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We introduce in this paper a model for interaction and asynchronous, concurrent 
communication, where each agent’s perrepfion of the system is represented by a 

game of interaction. The model combines (strict) fair merge with full recursion, and 
the main mathematical results provide evidence for the robustness and naturalness 

of a novel interpretation of recursive definitions of non-deterministic processes. Our 
conceptual approach is closest to Park’s, whose ideas are the starting points for this 

work. ‘p 1991 Academic Press, Inc 

1. INTRODUCTION 

Smyth (1978) begins with the observation that “to apply the methods of 
fix-point semantics [to non-deterministic programs], we should find some 
way to construe the powerset of a domain as itself a domain, with a 
suitable ordering.” There is a difficulty with such a program, however, if 
among the non-deterministic constructs of our language we want to include 
the fair merge, as it leads to complex sets which cannot be embedded 
naturally in a domain. In the abstract of his first paper on powerdomains, 
Plotkin (1976) comments that “the main deficiency is the lack of a con- 
vincing treatment of the fair parallel construct.” 

One of the two main aims of this paper is to define natural and useful 
denotational semantics for non-deterministic languages which include both 
full recursion and the fair merge operation. We will not do this with a 
powerdomain construction, but with a novel interpretation of recursive 
definitions which makes it possible “to apply the methods of fix-point 
semantics” in a precise, technical sense, although it is not “least-fix-point” 
with respect to any natural ordering. Thus our semantics go beyong 

* A preliminary version of this paper (Moschovakis (1989b)) appeared in the Proceedings 
c?f rke 1989 LICS Co@rence with the title “A Game-Theoretic Modeling of Concurrency.” 
It was convenient to include in this tinal version some relevant material of the later announce- 
ment (Moschovakis (1990)) which tits in directly with the results here. 
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domain theory and we shall be forced to justify that they are “convincing” 
ab initio. 

The second main aim of the paper is to introduce a conceptual 
framework for studying non-deterministic interaction, in which the 
implementations of a concurrent program or agent X are taken to be 
strategies in a natural two-person game: X is trying to control certain 
aspects of the overall behavior of the system, seemingly against the wishes 
of the other agents who are operating in the same environment and appear 
(to X) to be acting as a single, powerful “opponent,” bent on frustrating his 
efforts. This is a natural view of interactive programming and it yields 
simple and direct game-theoretic definitions of the most basic operations 
on processes. More significantly, this game imagery also yields a novel 
and intuitively appealing solution to the problem of synchronization of 
conflicting, asynchronous, concurrently executed programs which must be 
resolved in any modeling of concurrency. 

It is possible to separate these two strands of the paper, but the results 
of each reinforce the other and together they give a coherent theory of 
interaction and concurrency. We begin with a section of preliminaries 
which makes the paper accessible to the non-expert-the expert should 
skip through this quickly, just to pick up the (mostly standard) notation 
and terminology. In Sections 3 and 4 we describe the game-theoretic 
modeling of processes, and in Section 5 we apply it to the theory of non- 
deterministic networks. In Section 6 we set the stage for the more technical 
development which follows by formulating precise, minimum conditions 
which should be satisfied by any reasonable interpretation of recursion in 
the presence of the merge construct. Sections 7-9 develop the theory of 
non-deterministic recursion, with the proof of the main, technical result 
relegated to the Appendix, Section 10. 

To illustrate the notions, we will refer to the following three standard, 
well known examples which involve the basic puzzles of concurrency 
modeling. 

1.1. Park’s example (Park, 1980). Let 

PzX:=Onext Y:=Onextpar(X:=l,whiZe (X=O)Y:=Y+l), 

where par(E, M) denotes the strict, fair merge of the processes E, M. Park 
argues (essentially) that from a correct understanding of this definition we 
should be able to make precise and prove that in an environment where no 
other process can write to the variable X, P will terminate in some indeter- 
minute state (X= 1, Y= n). The indeterminacy of the final state expresses 
the “unbounded non-determinism” deliberately put in this definition: i.e., in 
arguing about P we should be able to assume that it terminates and assigns 
1 to X and some integer to Y, but nothing more. 
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1.2. Dijkstra’s dining philosophers (Dijkstra, 1976). Five philosophers 
D 0 . ..> D, (named by the integers mod 5) spend their lives alternatively 
thinking and eating. Each philosopher can commence thinking whenever 
he wants, but because of a peculiar arrangement in the dining room, Di 
cannot share the table with either of his adjacent colleagues Dj_ 1, Dj+ , If 
we describe the life of each D, by the recursion 

Di c eat, next think, next Di, 

then the communal life of the system could be specified by 

(1) 

D = par(D,, . . . . D4). (2) 

A correct modeling of this system should assign to the process D all 
deadlock-free and fair behaviors allowed by the given constraint, i.e., all 
possible “scheduling algorithms” which make it possible for each Di to 
continue indefinitely alternating eating and thinking. 

Discussions of Dijkstra’s example sometimes allow interpretations which 
permit deadlock and almost always include the non-fair behaviors in D, 
where some Di may starve after a certain stage. Perhaps this is because in 
his classic monograph Dijkstra (1976) rejects unbounded non-deter- 
minism-and hence fair merge. Here we side with Park (1980, 1983) on the 
issue of fair merge and we accept the natural (in our view), fair interpreta- 
tion of (2). For our purposes, the most interesting aspect of Dijkstra’s 
example is that it makes it clear just how complex the “compatibility 
relations” can be among acts which we might want to have executed 
concurrently-and correspondingly, how complex the appropriate “non- 
deterministic merging” operation may have to be. 

1.3. The merge anomalies. Suppose we have a distinct act n for each 
integer and let S(x) be an operation on processes such that the process 
S(x) copies exactly the process x except that it replaces execution of each 
n by n + 1. Let M be the non-deterministic process defined by the recursion 

M = par( 5, S(M)). (3) 

It is clear that among the behaviors of M is the natural one which executes 
in succession 5, 6, . . . . It follows that M must also exhibit a behavior which 
begins by executing 6, but that is paradoxical: execution of 6 must be 
“driven” by an execution of 5, so how can it precede it? 

This is perhaps the simplest of several examples of merge anomalies dis- 
cussed extensively in the literature, cf. Keller (1978), Brock and Ackerman 
(1981), Park (1980, 1983), Broy (1986) and Oles (1987). It comes from 
interpreting (3) as the recursive definition of a non-deterministic network 
and it has led to suggestions that processes defined by recursion need not 
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satisfy their defining equations, cf. Broy (1986). In our modeling, recursion 
will keep its fundamental fixed point property, but non-deterministic 
networks will be understood differently. 

2. PRELIMINARIES 

2.1. By a simultaneous (or mutual) recursive definition we mean the 
assignment of solutions X,, . . . . X, to a system of equations 

XI =f1 (Xl, . ..1 %I) 

(4) 

x,=f,(-~l, “‘> x,1 

for given functions fi: X, x . . . x X, + Xi (i = 1, . . . . n). In the classical case 
of least fixed point recursion, each Xi is a dcpo, i.e. it comes equipped with 
a partial ordering < in which directed sets have least upper bounds. In 
particular each Xi has a least element, min, = sup 0. It follows that the 
product partial ordering 

b 1) . ..) x,) < (Xi) . ..) xi) 0 Xl 6 1 x; &. . . & x, 6, x:, 

on X=X,x . . . xX, is also a dcpo, and we are further given that each 
function fi is monotone and (countably) continuous as follows: 

I<2’-fj(l) <jfi(2’). 

+ + x,6x, 6 . . . 3fi (, > I u zj = u J$(x’J 

Under these hypotheses, we set for i = 1, . . . . n and k = 0, 1, . . . 

Xi’) =fj(min,, . . . . min,), 

fik+ l) =&(Xl”), . . . . zp’), 

x, = u .fjk’, 
k 

and we verify easily that the tuple xl, . . . . X, satisfies the system (4) and that 
it is in fact the least solution, in the strong sense that for all xi, . . . . XL, 

(for i= 1, . . . . n)[f.(x;, . . . . x;) Gi xl] 3 (for i = 1, . . . . n)[Zi Gi xi]. 

We call the objects Xi (k) the stages of the recursion and we will sometimes 
give proofs by induction on the stages. 
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More generally, we may seek functions 2;: Y -+ Xi, i = 1, .,., n which 
satisfy a system with parameters 

-Xl =fi(xl, ..., -x,, Y) 

(5) 

-x, =fn(.x,, ..., x,, y). 

If the given functions are monotone and continuous on given dcpo’s, then 
the same method yields (pointwise) least solutions which are themselves 
monotone and continuous. 

Here we will need to solve systems like (4) and (5) where the variables 
model non-deterministic processes and vary over collections of sets which 
do not carry natural, nice partial orderings, so that the processfunctions in 
the system cannot be viewed usefully as “monotone and continuous.” The 
main mathematical contribution of the paper consists in developing a 
theory of simultaneous recursive definition for such systems and comparing 
it with least fixed point recursion. As a tool for this comparison we will use 
a simple language L? whose main construct is recursion and for which we 
will define several natural semantics, including the “process semantics” 
which are our main concern. 

2.2. The language Y. A signature z is any set of function symbols, each 
with an assigned non-negative integer, its aritv. The expressions of 
9 = U(r) are defined by the induction 

E ::= x If(El, . . . . E,)J rec(x,, . . . . x,)[E,, E,, . . . . E,], 

where x is any variable (from a fixed, infinite set), f is any function symbol 
of arity n, and a more familiar notation for the recursion construct is 

E, where [xl=E,,...,x,= E,]. (6) 

The variables xi, . . . . x, are bound in the expression (6) and its intended 
value is the value of E, when the variables are assigned the solutions of the 
system 

xi = E, (i= 1, . . . . n), 

however these solutions are obtained. 

2.3. Least-fixed-point semantics. The simplest interpretation of Y is on 
structures of the form @ = (<,9), where < is a dcpo and F is a map 
which assigns to each function symbol f a continuous, monotone function 
F(f) of the correct arity. We let the variables range over the field of < 
and we associate with each expression E and each list of n variables I 
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which includes all the free variables of E a continuous, monotone n-ary 
function fE in the obvious way, taking least-fixed-points to interpret the ret 
construct. We call two 3 expressions E, M least-fixed-point equivalent 
if they are assigned the same function fE =fM, on all structures 0 and 
for all 2. 

2.4. A state structure is a tuple of the form 

Y = (States, I, Acts, skip, exec), (7) 

where the following hold: 

1. States is some set of states which contains the initial state 1. 

2. Acts is some set of atomic acts which includes the no-act act skip. 

3. exec: States x Acts -+ Acts is a binary operation of act execution, 
so that each act a induces a (total) transition function 

s k+ sa = exec(s, a) 

on the states. We assume that s skip = s, for every state s. 

A state structure is trivial if it has only the one state I. 
A history is a finite sequence h = a, a2.. . a,, of acts which acts on States 

in the obvious way, 

In one extreme case states may be identified with histories. More typically 
the state is a store, for (a toy) example 

s = (4 Y, h .‘., z,), (h, ...2 b,)), 

in this case keeping track of the integer contents of two integer variables 
X, Y, a stack Z and a buffer B, presumably to be used for sending messages 
along some channel. The obvious acts to put in such a structure would 
include assignments X := w, Y := w  to the variables push: and pop= on the 
stack and the sending and receiving of messages using the buffer, send:, 
receive’, which alter the state in the obvious way. There may also be other 
acts which do not change the state, e.g. write,, which (presumably) prints 
the current value x of the variable X on some device; we do not assume 
that distinct acts induce distinct transition functions on the state. 

It is quite obvious how to interpret the expressions of 2 on such 
structures, letting the variables vary over “procedures” (denotations of 
programs or program fragments) and interpreting the function symbols by 
given “program transformations.” We will outline the precise definitions, 



120 YIANNIS N. MOSCHOVAKIS 

partly to set notation and because they will form a basis for our generaliza- 
tions later. 

2.5. As usual, a convergent stream from a set U is a finite sequence of 
the form (u,, u2, . . . . u,~, 1) where n >O, each zdi is in U, and 1 is a special 
termination indicator; a divergent (or partial) stream from U is any finite 
(possibly empty) or infinite sequence of members of U. For each U, the set 
Streams(U) of streams from U is naturally partially ordered by the “initial 
segment” relation, with which it is a dcpo; convergent and infinite streams 
are maximal elements. Concatenation of streams is defined so that if u is 
divergent then u * v = u and if u is convergent, then u * v is the concatena- 
tion of u and u as sequences, with the terminator 1 removed from U. 

A stream of acts assigns in the obvious way to each state a stream of 
states, and a convergent stream of acts further induces a transition function 
on the states, 

(s,(a, ,..., a,, l))+-+s(a, ,..., a,, l)=sa,a?...a,. 

2.6. A procedure is a function on states to streams of acts, 

LY: States --t Streams(Acts) 

We take procedures to be the natural denotations of non-interactive, deter- 
ministic programs; e.g., a program which prints out the sequence of primes 
or another which reads from the state the value x of some integer variable 
and eventually sends along a channel the value f(x) of some f at x. In a 
trivial structure the state dependence is of no consequence and a procedure 
is just a stream of acts. The set 17 of procedures is a dcpo with the natural 
partial ordering 

cI 6 /3 0 (Vs)[a(s) is an initial segment of b(s)], 

whose minimum is the constant procedure E.(s)@. 

2.7. A procedure function of n arguments is any monotone and 
continuous function 

4: nl’+II. 

Examples of procedure functions are the constant (0-ary and state 
independent) act executions 

a = do(a) = A(s)(a, l), 

one for each a E Acts, the sequential execution 

a next p = ;i(s)[cc(s) * fl(scx(s))], (8) 
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and the conditionals 

cond,(a, /I) = A(s) [if R(s) then a(s) else p(s)], 

one for each relation R on the states. Note that in (8) the state sa(s) is 
defined in the case a(s) is convergent, when the concatenation function 
needs it. In a trivial structure procedure functions are just monotone, 
continuous functions on streams. 

2.8. A procedure structure is a pair G! = (9, F), where 9’ is a state 
structure and F assigns an n-ary procedure function F(f) to each func- 
tion symbol of arity n. To interpret the expressions of Y in a procedure 
structure, we let the variables vary over procedures and we interpret the 
recursion construct by the taking of simultaneous least-fixed-points. In this 
way, for each procedure structure LZ!, each expression E, and each n-tuple 
of variables x’ which includes all the free variables of E, we obtain an n-ary 
procedure function 

4E = procedure( &‘, x’) E, 

the procedure denotation of E relative to I If E is a closed expression (with 
no free variables), then its procedure denotation dE relative to the empty 
list is a function with no arguments, i.e., just a procedure. Two expressions 
E, M are procedure equivalent if they have the same procedure denotation 
$E=dM on every procedure structure and for every .?. Since procedure 
semantics is a special case of least-fixed-point semantics, it follows that 
least-fixed-point equivalent expressions are also procedure equivalent. 

With this simple denotational semantics 9 is a bare-bones command 
language. Because it allows full recursion, however, it is not entirely trivial; 
on a reasonable structure & with a usable conditional, act and sequential 
execution, and a rich enough state to allow for some value passing, it can 
be a “complete” programming language. 

3. THE GAME OF INTERACTION 

The procedure semantics of Y just described assume that its expressions 
(programs) define non-interactive algorithms, intended for execution in an 
environment which leaves them alone: a procedure reads the state just once 
(most likely to get input) and then proceeds to execute a stream of acts free 
of external interference. This is quite unrealistic, of course, even if only 
because execution of any program may be interrupted by a deliberate act 
of the operating system-or by a disaster! Especially for interactive 
programs, it is more profitable to use for denotations “extended proce- 
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dures” which (at least in theory) consult the state before each act execu- 
tion, not just once in the beginning. 

We can also view the expressions of 2 as specifications for the interac- 
tive behaviors of “computing agents” operating in a shared environment. 
Such a computing agent may encounter an unexpected, new state each time 
he interacts with his environment, because of what all the other agents did 
“while he was not looking.” From his perspective, the agent may well 
perceive the situation as a two-person game in which his (apparently 
single) “opponent” takes turns with him acting on the state; and we may 
model the agent’s behavior by the strategy that he is following in that 
game. We now turn this intuitive imagery into a precise “interactive 
semantics” for Y.’ 

3.1. The game. With each state structure Y as in (7) we associate the 
two-person game of interaction G = G(Y) where player II represents some 
computing agent or program fragment and player I represents everybody 
else-the world. A run of G is played in stages, with I and II exchanging 
moves at the n th stage so that they may alter the state g, initially set by 
g- , = z. At stage n, I plays first some state s, which must be accessible from 
gn--I? i.e., such that s, = g,_ 1 h for some history h; II then responds with 
a pair (a,, w,) of an act ~1, and an indicator w, = C? or M’, = 1 and the next 
state is set g, = ~,,a,; if MI,, = 1, the run ends, otherwise we proceed to the 
next stage n + 1. 

We read drawings like 

I so s 1 s2 s3 
. . 

11 (a,, wo) (aI> WI) (4, w2) (a,, w,) (9) 

State: r soao SlQl S2a2 s3a3 

from left-to-right and top-to-bottom; i.e., the indicated moves produce the 
stream 

p = so, (a,, WI)), .Tl, (al, w, ), s2, (4, fi’?), ...3 (10) 

which is a typical run of G. The game is “of perfect information”; i.e., each 
player knows all the moves already made when it is his turn to move. We 
think of the act a, as the main part of II’s move, with the indicator w, = 8 
signifying that II wants another turn while w, = 1 announces II’s exit from 
the game. 

1 Similar modelings of interactive and concurrent systems in terms of games have also been 
presented recently in Abadi, Lamport, and Wolper (1989) and Pnueli and Rosner (1989), and 

(apparently) they have antecedents in older work of Lamport. 
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A payoff for the game G is any set W of runs as in (lo), and we say that 
II wins a run p if p E W. Such payoff sets model specifications for interactive 
programs: an implementation then of the specification W would be any 
winning strategy for II, any method for II to play which insures that the 
resulting run satisfies the given specification. On this picture, interactive 
programming amounts to defining winning strategies for the game G, 
relative to given specifications. Here, however, we are also interested in the 
losing strategies for II, since we want to model all interactive behaviors, not 
only the successful ones. So, peculiar as it may sound, we will not need to 
mention payoff sets again in the sequel. 

To deal with finite sequences of states and acts we will adopt the 
notation 

ii(n) = (u,, . . . . u,). 

A world strategy is a function 

w  : Acts* + States 

on finite equances of acts such that o(a) is accessible from the initial state 
z and for each G(n) (n>O), o(ti(n)) is accessible from w(Z(n- I))cz,~,. Of 
special interest is the “inert” world strategy 

G(0) = 4 O(a,, . ..) a,) = laoal . . *a, 

which represents “no action” by other agents. 
A partial (agent) strategy is any partial function 

rr: States* -*Acts x (i3, 1) 

(11) 

on non-empty sequences of states. (Ultimately we are interested in totally 
defined strategies, of course, but since we will be defining these objects 
using recursion we cannot avoid dealing with partial strategies.) For each 
world strategy w  and each partial agent strategy e we define by recursion 
the (partial) sequences 

so = 40), 

(4, w,) = 43n)), 

s n + 1 = 44n)), 

and the associated streams of acts and states 

0 * 0 = a,, a,, . . . . 

W*o=s,a,,s,a,, . ..) 

(12) 

(13) 



124 YIANNIS N. MOSCHOVAKIS 

terminated after n + 1 acts by 1 if for some (first) n we have w, = 1. Two 
partial strategies are equivalent if they produce the same run against every 
0; i.e., 

a-To(vco)[w*o=w*T], 

which implies that also o l (T = w  l T. It is quite trivial to verify that very 
partial strategy d is equivalent to exactly one normalized T which satisfies 
the following conditions: 

1. T(.F(n))J. * (Vi< n)[T(i(i))l]. 

2. z($n) z (a,, 1) =E. (Vm > n, .T(m))[z($m)) 2: (skip, l)]. 

3. If 7($(n)) 21 (u,, wn) and the next state s,+ , is not accessible from 
~~a,,, then z(f(n + 1)) z (skip, 1). 

3.2. Behaviors and behavior functions. The set 

B = B(Y) 

of behaviors” of a structure Y consists of all the normalized partial, agent 
strategies in 9’. It carries the natural partial ordering 

u 6 T - (vs(n))[a(s(n))l + a(f(n)) = z(s(n))] 

with which it is a dcpo. A behavior function in Y is any monotone and 
continuous 

F: B” -+ B. 

In a trivial structure with just the one state r we will identify a behavior G 
with the stream 

o(n) N 4 if a(i”)21(a,,w,)and[n=Ooro(l”-‘)-(~,_,,a)], 
1 if a(P) N (a,, l), otherwise. 

(14) 

Behavior functions on trivial structures are thus identified with functions 
on streams. 

’ Park (1980) models a (total behavior by a sequence of multiple valued functions on the 
set of states where we use a sequence of functions (us, G,, . ..). with 0,: States”+1 -Acts. 
Thus, apart from the detail that we do not identify acts with transition functions, the basic 
difference is that our agents are endowed with local memory of what they have seen in their 
previous interactions. The indeterminacy modeled by Park’s use of multiple valued functions 
is handled here at the level of process modeling, but we could use multiple valued strategies 
at the outset without affecting any of our results. 
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Obvious behavior functions are act execution 

a = do(a) = 1(.?(n)) if n = 0 then (a, 1) else (skip, 1 ), 

and the conditionals 

cond,(a, ~)(f(n)) = 
G(n)), if Rb,), 
T(f(n)), if iR(s,), 

one for each relation R on the states. 
To define more complex behaviors and behavior functions we will typi- 

cally describe informally how player II should respond to I’s legal moves, 
without worrying about normalization. Consider, for example the sequen- 
tial execution of two behaviors CJ next T .  With the indicated assumptions 
about the moves of rr, the first few moves of II by 0 next T  are as follows: 

I SO Sl s2 J3 $4 

a’: 11 (ao,d) (a,,d) (a,, 1) 

fJnext T :  II (a,, a) (a,, a) (a,, a) T(S3) Z(Sj, sq) 

3.3. A binary merger on a state structure Y is any (total) function 
p: States* + (0, l} on non-empty sequences of states. Given behaviors 
oo, o1 in Y, the disjunctive merge ,uL, [a,, a,] of a,, and a1 by ,LL is defined 
(roughly) by decreeing that in a certain stage of the game it calls a0 or a1 
accordingly as .D gives the value 0 or 1. Rather than give the formal defini- 
tion which is somewhat technical, we indicate the first few moves of the 
play by P v [ao, a,] for given values of p: 

I so Sl $2 $3 $4 

P: 1 0 1 1 0 

PL, Lao, a,]: 11 aI ao(sl) al(so, .d a,(s,, s2, s-)) a,(s,, s4) 

We say that ai is culled at stage n in a run of the game by p v [a,, a,] if 
the run is defined at least as far as stage n and p(S(n)) = i. We say that ai 
terminates at stage n if it is called at stage n and yields a move of the form 
(a, I), in which case, of course, the run by p v [a,, a,] also terminates. 

We define the conjunctive merge psL [ao, a,] of a0 and a, by ,u in the 
same way, but add the stipulation that (as in the definition of next), if some 
ai terminates first, then the merged behavior changes 1 to 8 and from that 
stage on calls the other behavior a, ~ ; independently of the value of p. For 
example: 

643/93/l-9 
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I SO SI s2 s3 s4 

PI 1 0 1 0 0 

00: II (a,, 1) 

CT,: II (60, a) (b,, S) (h,, 8) (h,, 1) 

CleiCfJO~ fJ,l: 11 (bo, 8) ( a,, a) (bl, 8 (h2, 8) (h3, 1). 

A merger p is state independent if its values depend only on the stage of 
the run and not what has been played, i.e., for some v: N + { 0, 11 and all 
sequences of states, 

p(so, . . . . s,) = v(nh 

and the simplest of these is the alternating sequence of O’s and l’s 

/.lo=o, LO, . (15) 

In practice, we will also need n-ary mergers p: States* + (0, . . . . n - I} 
and their disjunctive and conjunctive actions on n-tuples of behaviors 
~[a,, . . . . CJ,, _ ,I, defined in the same way. We will consider several kinds of 
mergers later, but for now we simply note that the functions defined by 3.3 
and the corresponding n-ary functions are behavior functions, i.e., 
monotone and continuous. 

3.4. A behavior structure is a pair d = (9, F), where Y is a state 
structure and 9 assigns an n-ary behavior function 9(f) to each function 
symbol of arity n. We define the semantics of 9 on such structures by 
letting the variables vary over behaviors and interpreting the recursion 
construct again by least lixed point recursion, so that for each expression 
E and each n-tuple of variables R which includes all the free variables of E 
we obtain a behavior function 

FE = behavior(d, 2) E, 

the behavior denotation of E relative to 2. If E is a closed expression (with 
no free variables), then its behavior denotation FE relative to the empty list 
is a function with no arguments, i.e., just a behavior. Two expressions E, M 
are behavior equivalent if they have the same behavior denotation FE = FM 
on every behavior structure and for every 2. We write: 

E = beh M o E, M are behavior equivalent. 

3.5. Interrupt handling. To illustrate the difference between procedure 
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and behavior semantics, suppose that the state as an integer variable X and 
consider the closed expression checkzero defined by the recursion 

checkzero = if X = 0 then skip else {skip next checkzero}. 

The procedure assigned to checkzero checks the state once, terminates if 
X = 0 and idles forever if X # 0; the behavior assigned to checkzero is the 
function on sequence of states such that 

checkzero(s,, . . . . s,) = {f (jib n) X(s,) = 0 then (skip, 1) else (skip, a). 

In a “closed environment” where checkzero is the only program being 
executed both denotations will produce the same sequence of states. On the 
other hand, the behavior denotation of checkzero can be “played against” 
a world where other agents are changing the state and it will have the 
intended effect, i.e., idle until X becomes 0 and only then terminate. If the 
value stored in X records whether an interrupt has been received and exit 
is some behavior which arranges for ending execution in an orderly 
fashion, then for every behavior C-J, 

inthandZe(a) = pLoV [checkzero, a] next [if (X= 0) then exit else skip] 

modifies (T so that it checks for and handles interrupts. Here ,u~ is the 
simplest fair, alternating merger of (15). 

3.6. Synchronization. One should not understand the polite exchange of 
moves by an agent X and “the rest of the world” as providing somehow a 
model of an asynchronous, concurrent system. Our image of such a system 
is one of asynchronous chaos: many agents are operating on the same 
state at randomly chosen, unrelated times, some acts being executed 
“simultaneously,” others requiring some non-zero time interval for their 
completion. Someone-an operating system or “nature’‘-sees to it that 
truly incompatible acts are not executed simultaneously, but short of that, 
anything goes. The polite exchange of moves sO, (a,, bvO), . . . is an idealized 
version of the agent’s X perception of what is happening, and it is (by its 
nature) a one-dimensional sequence of frames (still pictures) of the actual, 
fluid situation. The agent X can act, we must assume this; and when he 
executes an act a, he is reacting to some state s,, or whatever part of it 
he can see. The actual state of the world is probably changing even as a, 
is being executed, except of course this change cannot affect the execution 
of a, (or that execution could not have happened), it will affect X’s next 
act. 

These idealized frame sequences are this modeling’s solution of the 
s.vnchronizution problem for dependence and causal connection among acts, 
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which in other concurrency modelings is solved by partial orders (Pratt, 
1986) matching pairs of inverse acts (Hoare, 1978; Milner, 1979, 1983) 
etc. There is no common clock, but if we are both trying to reverse the last 
seat on the night plane to Washington, it matters who gets to the Airline 
first: this “mattering” is coded (in different ways) in our respective, frame- 
sequence views of the changing world. The modeling does not attempt to 
provide a global picture of the entire, concurrent system; all we have are 
the frame sequences observed by the individual agents. 

Fix now a procedure structure d. With each procedure 

a = 4s)(@sW), ds)(l), . ..I 

in &’ we associate the behavior I(E) defined by 

(a.dn)~ 1) if 
c (cr)(s(n)) = 

[a(s”)(n + 1) = 11, 
(GL(so)(n), S) otherwise, 

which checks out only the first state s0 it sees and then blindly plays the 
moves dictated by (x(sO). Conversely, with each behavior 0 we associate the 
procedure I - ‘( 0) defined by 

c -‘(o)(s)=w,, * 0, 

where Q, (Qr) = s, o,, (G(n)) = sti(n) and the stream function * is defined by 
(12). Obviously 

f ‘(f(a))=& 

but the composition in the opposite order is not the indentity because the 
map t -’ “loses information.” Using these maps we can lift faithfully 
procedure functions to behavior functions, setting (in the case of a 
procedure function of one variable) 

It is trivial to verify that this interpretation of procedure semantics in 
behavior semantics is faithful, and the (converse) second part of the next 
theorem is also quite easy. 

THEOREM 3.7. Let ,d’ be the behavior structure associated with a 
procedure structure d by replacing each procedure function d in d b)l the 
corresponding behavior function 4’. For every expression E then, zj” #E and 
F, are the functions asociated with E in ~4 and d’, respectively, 

4,Ccc,, . . . . c(n) = t -‘F,(rCa,), . . . . ,(%,,)I 
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for all procedures LY,, . . . . a,. As a consequence, behavior equivalent expres- 
sions are also procedure equivalent. 

Conversely, if two expressions are procedure equivalent, then the-v are also 
behavior equivalent. 

This result is announced in Moschovakis (1990), where in fact it is 
proved for a much stronger language, with fixed, standard interpretations 
of act execution, sequential execution, and conditionals. It may be inter- 
preted as saying that the logic of 2’ (and the stronger language of 
Moschovakis (1990) does not change when we switch from a non-interactive 
to an interactive interpretation. 

4. PLAYERS, TYPES, AND MERGES 

4.1. Players. The behaviors of a state structure Y model deterministic, 
interactive programs and correspond to the Park (1980) abstract paths and 
the behaviors of Pratt (1986). To model non-deterministic processes we will 
use the set of players 

cP=P(cY)= (x~B(c5“) 1 x#@), 

the analog in this approach of the processes of Pratt (1986) or the 
(parameter-free) agents of Milner (1979, 1983). Thus we follow one of the 
general methods in this area of modeling a process by the set of all the 
behaviors it may exhibit, the set of partial strategies representing a process 
in our model capable of “playing” the game of interaction using any of its 
members. Notice, however, that the non-determinism we allow is only 
initial: a player may choose any of his behaviors at the beginning of the 
game, but then he must stick with it for the whole run. A player is 
deterministic if he is a singleton, total if all his behaviors are total, and 
convergent if every run of G by one of his members terminates at a finite 
stage. In a trivial structure a player is just a non-deterministic stream, i.e., 
a non-empty set of streams. 

If x is a player and Q is a set of world strategies, we let 

Q*x={w*o]wE52,aEx} 

be the set of all streams of acts which can result by pitting x against 
the external world represented by S2. When Q = (5ii) represents an inert 
external world, we get the nondeterministic stream 

path(x)={63}*x=(~*o~o~x} 

of all “isolated behaviors” of x. 

(16) 
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The sequential composition of players is defined by 

xnext y= (anextt I aEx,TEy}, 

which illustrates a general method of extending behavior functions to 
player arguments by “distributing”: 

F(x I, . . . . x,) = {F(cT,, . . . . a,) 1 CT, E x, , . . . . gn E x,}. 

We can extend to players in this way act execution, conditionals, etc. Non- 
deterministic players are introduced directly with the disjunction operation 

x or y = x u 1’. 

4.2. More interesting are the merge operations 

par,(x,, . . . . X,)=<p&C~I,-YcJnl I~lE-~],...,~nEX,,~LE}, (17) 

one for each set A4# @ of n-ary mergers. For example, the full (unfair, 
binary) merge is defined by 

merge(x, y) = {pLg, [o, r] ) (T E x, t E y, p any merger}. 

In the interesting applications we choose M by restricting p to satisfy 
various safety and liveliness conditions, e.g. freedom from deadlock, 
fairness, etc. To deal with such properties we introduce the basic notion 
of (act) type of a player. 

4.3. A behavior z is consistent with a set of behaviors a if for every finite 
sequence of state sequences &(n,), . . . . S, (n,), 

(Vi< k)[z(fj(ni))J] * (3aE a)(Vid k)[r(S,(n,)) N a(.?i(nj))]. 

If we think of the set a as coding a property of behaviors, then the r’s 
consistent with a are those which we cannot recognize as not having the 
property a by any finite set of “independent, terminating experiments.” 

A tvpe3 (of behavior) is a set of behaviors a which contains all the 
behaviors consistent with it. For each type a, we let 

P(a)= {x ( @#xGaf 

be the set of all players of type a. The totally undefined behavior @ is 

’ Types are the non-empty closed sets in the natural (non-Hausdorff) topology on 6 viewed 
as a set of partial functions. In Moschovakis (1989b) we used a more retined notion of type 
which comes from the stronger Baire topology, where we view behaviors as total functions 
into (Acts x {d, 1 }) v (I ). The present definition identifies types with safety properties and 
covers all the interesting examples. 
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consistent with every set of behaviors, so it belongs to every type. The 
(smallest) type of a player x is defined by 

type(x) = {z 1 T is consistent with x}, 

and for every type a, obviously, 

x E P(a) 0 type(x) E P(a). 

If x = (G} is a deterministic player, then type(x) is the set of all 
“sub-behaviors” of (T. 

4.4. For each set of acts E. 

eff(E) = (O E B 1 (Vi(n), a, w)[o(F(n) N (a, w) =c- a E E). 

A player of effect type eff(E) never executes an act outside of E. Note that 
eff(Qo = (0). 

4.5. For each set of acts D and each act a, put 

res,(a) = 
a, if aED, 
skip, otherwise, 

(18) 

and extend this restriction map canonically to histories by 

We set 
resD (4 . ..a.)=res,(a,)...res,(a,). 

dep(D)= {a~ B 1 (V/z,, . . . . h,)[a(zho, . . . . zh,) 21 a(z resD ho, . . . . I res, h,)}, 

where ho, . . . . h, are arbitrary histories so that th,, . . . . zh, are arbitrary states 
accessible from 1. The acts executed by a player of dependence type dep(D) 
depend only on “the part of the state” which can be changed by the 
execution of acts in D. 

4.6. A binary merger p is fair on a world strategy o and behaviors (r, r 
if either the stream of acts o * pLg, [cr, r] in the game of o versus the marged 
behavior is finite, or it is infinite and each of CJ, z either terminates or is 
called infinitely often; it is fair on a set L2 of world strategies and types a, b 
if it is fair on all o E Q, cs E a, r E b. (The terminology is set in 3.3 and the 
definitions extend directly to n-ary mergers.) 

The simplest useful examples of fair binary merges are 

fairmergeb, Y) = {Pi Co, tl I g E x, z E y, p fair on all w, c’, z’}, 

parkmew(x, Y) = {pus, Cc, ~1 I (r E x, r E y, ,u state independent 

and fair on all w, u’, 7’). 
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We have used the term “parkmerge” for the fair merge of Park (1983) 
his terminology being more appropriate in our context for the full, state 
dependent fair merge. Assuming that the “while” construct will be inter- 
preted correctly by our treatment of recursion, it is clear that both this 
parkmerge and fairmerge will give reasonable interpretations of Park’s 
example 1.1, the full fairmerge allowing a richer set of “cleverer” scheduling 
algorithms which takes the sequence of states o played by the world into 
account in deciding how long to wait before calling for the assignment 
X := 0 to be executed. 

4.7. Dijkstra’s example, revisited. In the structure appropriate for 1.2, a 
state assigns each philosopher arbitrarily to eat or think, and we have acts 
eat, and think, which change the state in the obvious way; initially all 
philosophers are thinking. A state is possible if it does not assign any two 
adjacent philosophers to eat, otherwise it is deadlocked. From the definition 
of player recursion which we w:ill give in the next section, it will be clear 
that (as expected) the player interpretation of each expression D, in (1) is 
a deterministic player with sole member a behavior Ji which moves 
alternatively think,, eat,, independently of the state. Let 

and let d be the type of behaviors which produce no deadlock against the 
inert world strategy, 

6 E d o UT, .6 is a stream of possible states. 

(The definitions of 8 and . are in (11) and (13)) We define the set M of 
mergers on live arguments by 

p E Mo p is fair on d,, . . . . d4 against 6 

and (V&Ed,, . . . 6,Ed4)[p81(&,, . . . . 6,)Ed]. 

It is clear that the fair, non-deadlock interpretation of Dijkstra’s example 
is the non-deterministic stream of acts 

D = & * par,(D,, . . . . D4) (19) 

defined from this A4, according to (17). 
Clearly (19) gives only a specification of the set of acceptable scheduling 

algorithms and contributes nothing to the problem of constructing clever, 
efficient or in any way special schedulers for Dijkstra’s problem. We do not 
consider this a defect of our approach, as we take it for granted here that 
this is all that correct semantics can do: they can make “algorithmic” 
problems precise, but we cannot expect that they will solve them. 
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5. NON-DETERMINISTIC NETWORKS~ 

One version of the so-called merge anomaly of example 1.3 shows up 
when we try to visualize the function 

f(M) =fairmerge( 5, S(M)) 

and its fixed point A as non-deterministic stream networks, in the most 
obvious, naive manner. Figure l(a) specifies the network 

0 = fairmerge(5, S(M)) 

with input stream M and output stream 0, and Fig. l(b) specifies the 
network 

A4 = fairmerge(5, S(M)) 

with no input. 
There is nothing problematical about the first of these diagrams, which 

appears to give an accurate, network picture of the non-deterministic func- 
tion f: for each (possibly non-deterministic) stream M, 0 = f(M) will 
produce all fair merges of the one-act stream (5, 1) and streams in S(M). 
On the other hand, there are two natural “naive” ways to understand the 
network diagram 1 (b). 

5.1. First understanding. If we understand naively the merge operation 
in l(b) to be “strict”, then the output is 

a, = ($3, (5, 6, . ..I>. 

where the empty stream @ is output if the “implementing” merger p looks 
for input first on the right and (5, 6, . ..) is output if ~1 looks for input first 
on the left-and then never looks left again, since 5 is a terminating stream 
with just one element. 

5.2. Second understanding. If we take the merge in l(b) to be “non- 
strict”-or angelic in Broy’s terminology-so that the merge node will 
necessarily produce output if either of its inputs brings in something, then 
5 (and the information that this input is complete) is eventually received on 
the left, and then the output will be the (deterministic) stream 

&if, = ((5, 6, . ..)}. 

The “anomaly” is that neither of these interpretations produces a fixed 

4 This section is not used in the sequel and may be skipped by those more interested in the 
theory of recursion which follows. 



134 YIANNIS N. MOSCHOVAKIS 
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fairmerge 

5 S a fainnerge M 

a b 

FIGURE 1 

point of the equation (3) A4 = f(M). To understand the cause of the 
problem, let us consider the similar-looking equation 

K= (0 or 1) next K, 

where the non-determinism is put in the (constant) stream 0 or 1. Now the 
merge is not involved and surely the most natural fixed point of this 
equation is 

I?= all infinite sequences of O’s and 1’s. 

We can draw again, however, the pictures for the networks 

0 = (0 or 1) next K, K= (0 or 1) next K 

(see Fig. 2), and by staring at those and using the same intuitions about 
networks which led to ii;l, and A, above we should arrive at the much 
smaller value for the output of Fig. 2(b) 

I&= (0, T} = {(O,O, . ..) ), (1, 1, . . ..I. 

a b 

FIGURE 2 
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The analogy between these two examples suggests that “the merge 
anomaly” (at least this version of it) is not really about the merge opera- 
tion, but about our understanding of non-deterministic streams in general. 
Broy (1986) gives a similar analysis and concludes that recursive, non-deter- 
ministic stream definitions must be interpreted as systems of recursive, deter- 
ministic stream definitions. Our conclusion is (in part) that definitions of 
networks like the above do not involve recursion at all but only a form of 
“indirect self-reference”, and that the modeling must take into more explicit 
account the implicit assumption that communication between streams is by 
buffers. 5 

5.3. For each non-empty set of acts E, the behaviors of type 

stream(E) = dep(@) n eff(E) (20) 

are “blind” to changes in the state and cannot execute an act outside E, so 
they can be identified with streams of actions in E. This is done formally 
ia the one-to-one function 

stream(o) = A(n) 
if a(P) N (a,, MI,) & [n =Oor c7(znP’) = (a,-,, a)], 
if C(P) N (a,,, 1 ), otherwise, 

but in practice we will use CJ and stream(a) synonymously when 
CJ E stream = stream(Acts). Ditto for the non-deterministic E-streams, 
i.e., players of type stream(E), to which we extend the map above by 
distributing 

stream(x) = {stream(a) 1 0 E x1. 

In modeling networks we will use extensively the types of extended 
streams 

extream(E) = stream(Eu {skip}), (21) 

which in addition to executing acts in E may “pass” (or “stutter”), i.e., 
output skip. 

5.4. Restriction. The map resE of (18) can be extended to behaviors by 

redo) = W(n)) 
(resAa), ~11, if 0(,?(n) z (a, IV), 
undefined if g(F(n) is undefined, 

5 There is nothing new to these ideas which can all be found in one form or another in Park 
(1983). The remainder of this section may be viewed as a development of Park’s analysis, 
perhaps providing some natural justification for the introduction of hiutons which seems 
somewhat ad hoc in Park (1983). 
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so that (immediately) res,(o)~eff(Eu {skip}). We will use the same 
notation resE for the function on players 

res,(.x) = (resE(g) 1 f.7 E x}. 

5.5. The essence essfol) of a stream of acts cx (according to Park) is the 
stream obtained by deleting all occurrences of skip in ~1, except that 
ess(skip, 1) = (skip, 1) since we have not allowed the empty, convergent 
stream. We extend this function to behaviors by 

ess(a) = stream-’ ess stream(o), 

and further to players by distributing. Note that for every x, ess(x) = 
{ess(c) ( OEX> is of type eff(Acts\(skip~), 

5.6. Adapting Kahn (1974) to our framework, a program schema is a 
finite oriented graph G where edges need not have nodes at both ends and 
where each edge e is labeled with a set of acts D(e), intuitively the acts of 
sending messages of a ertain kind along e. It is assumed that 

e # e’ * [D(e) n D(d) = a]. 

Inputs are the edges with no beginning node, outputs are those with no 
ending node, and the inputs of each edge e are the edges ending at the 
beginning node of e. In addition to the input edges, there may also be 
non-input edges (with a beginning node) which have no inputs. We will 
identify a program schema with the state structure whose acts are those in 
the D(e)‘s and skip (assumed not in any D(e)), and where each state is a 
function which assigns to each edge e a history H(e) E (D(e) u {skip})* of 
acts in D(e) u {skip), representing what has already occurred along e. In 
the initial state all these histories are empty. 

5.7. For each edge e of a program schema G, let 

indep(e) = dep u (D(e’) 1 e’ is an input edge of e} 
> 

be the dependence type of possible acts on the input edges to e. A network 
on a program schema G is an assignment 

A“ = {N(e) 1 e an edge of G} 

to each edge of a total player N(e) of type 

T(e) = indep(e) n eff(D(e) u {skip}). 

The network is deterministic if each N(e) is deterministic, i.e., the singleton 
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N(e) = {oe} of a behavior, otherwise it is non-deterministic. Note that 
by this definition, if e has no input edges, then N(e) is a (possibly) non- 
deterministic, extended D(e)-stream. 

If the edge e has input edges e,, . . . . e, then the player N(e) assigned to 
e induces a function 

f,: P(extstream(D(e,))) x ... x P(extstream(D(e,))) 

+ P(extstream(D(e))) 

by the formula 

fe(xl, . . . . x,) = path fairmerge(N(e), .x1, . . . . x,,), (22) 

where path is defined by (16). These extended stream functions are adapta- 
tions to our setup of Park’s >-functions in (Park, 1983); they make 
explicit the assumption that communication along channels is by buffers and 
their use is characteristic of the present modeling. There is an implicit 
appeal to them in the next key definition. 

5.8. The life of a network ,/I/̂  with players N(e,), . . . . N(e,) assigned to its 
edges is the extended stream 

life(M)=path fuirmerge (N(e,), . . . . N(e,,)). 

The stream system defined by the network is the set of tuples 

? 

(23) 

hfe(,K) = { (ess res,(,,,(a), . . . . ess res,,,m,(a)) 1 17 E li@(A”)}, (24) 

and the (non-deterministic stream determined by the network along each 
edge e is 

str(N), = ess res,(,, (life(N)). 

Directly from the definitions, we have 

if e has no inputs, then str(N), = ess(N(e)). 

It is natural to think of the inputs to a network as variables and its other 
players as constants, so that the life and the streams of the network are 
functions of its inputs. 

The use of fuirmerge in (23) is of course the key element of this 
modeling, which represents a network by all fair interleavings of the 
activity in the nodes. The discussion in 3.6 should make it clear that our 
analysis does not exclude “simultaneous” sending of messages between 
nodes, it only codes it by the many possible private views of such activity 
at the individual nodes. The use of player types here gives a concrete 
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example of how changes in the state which may be happening even while 
an agent (node) is acting must not interfere with his acts, but may affect 
his subsequent actions, as discussed rather vaguely in 3.6. Note also that 
the modeling of each node by a total player gives the most direct non- 
deterministic semantics to the simple programming language Kahn ( 1974) 
uses to motivate his results. 

Before we go into the representation of Example 1.3 in this modeling, let 
us consider (following Park, 1983) a kind of “converse” to definition (22), 
i.e., how we can represent an arbitrary monotone, continuous function on 
streams by a total player. Suppose 

F: stream(D(e,)) x stream(D(e2)) -+ stream(D(e)) 

is monotone and continuous with two arguments (for simplicity), and 
define ~,(S(rz)) by recursion on the length n + 1 of the sequence of states 
.j;(n 1, 

T&(n)) = 
the first act in F(H(s,, e,), H(s,, ez)) not in ?‘, if such exists, 

skip, otherwise, 

(25) 

where H(s,, ei) is the history of acts along e, coded in the state s,, and 
viewed as a finite stream (possibly with the terminator 1 at the end) so we 
can plug it into F, and 

i” = ess(t,(s(o)), TF(S( 1)) . ..) r,(S(n - 1))). 

Clearly rF is a total strategy and if e,, ez, e are all distinct edges (so that 
the acts along them are distinct), then for all C-J~ ~stream(D(e,)), 
c2 E stream(D(e,)), 

F(a,, 02) = ess res,(,, fairmerge({r,), {IT, ,\, (cJ~)) ). (26) 

On the other hand, if e = e,, then the right-hand-side of (26) involves an 
“indirect self-reference” which amounts to recursion and we can verify that 
for all 02, 

ess res,,,,fhirmerge( (rF}, (g2))) = {the least fixed point of F(a,, 02) = o1 ). 

We can use this construction and straightforward least-fixed-point 
arguments to show that the present modeling of networks extends conser- 
vatively the semantics of Kahn, Park, and Broy. 
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THEOREM 5.9. Suppose G is a program schema, for each non-input edge 
e we are given a set Ye of monotone, continuous stream functions Of type 

F: stream(D(e,)) x ... x stream(D(e,)) -+ stream(D(e)) 

on the input edges of e, and for each input edge e of G we are given a non- 
deterministic stream x, E B(stream(D(e))). Define a network by assigning 
the x,‘s to the input edges and to each non-input edge e the total player 

where each tl; is defined as in (25), and let &e(M) be the extended stream 
describing this network. A tuple (a,, . . . . rr,,,) of streams is in the stream 
system of this network defined bv (24) zf and only if (a,, . . . . a,,) is the 
sequence of simultaneous least fixed points of some system 

orn =F,w(a,, . . . . cm), 

where F, , . . . . F,,, is an arbitrary choice of functions, Fi E Se8, i = 1, . . . . m. 
In particular, tf each Fe is a singleton and the input edges are assigned 

deterministic streams, then the hypothesis describes an arbitrary Kahn 
network and the conclusion asserts that its representation in this modeling 
yields the stream system assigned to it by the Kahn semantics. The general 
case shows similar agreement with Bray’s modeling, for networks without his 
ambiguity operator. 

THEOREM 5.10. Suppose G is a program schema with non-input edges “of 
two kinds,” for each input edge and each edge e of the first kind we are given 
a stream or a set offunctions Ye as in 5.9, and for each edge e of the second 
kind we are given a merge operation on two specified input edges e’, e2 of e, 

fe(x,, ~~)=fairmerge(x,, x2). 

Define a network by assigning to each edge e of the first kind a total player 
as in 5.9 and to each edge e of the second kind the total player 

N(e)=fairmerge({t,}, {TX}), 

where zi is assigned to the identity function Ii along e’ as in (25). It follows 
that for every tuple ((T,, . . . . a,) of streams in the stream system of this 
network, there is a choice of functions F, E 8 for each edge e, of the first kind 
so that 

ei of the first kind= oi = F,(a, , . . . . a,); 
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and if ei is of the second kind, then cri is a full (non-strict, angelic) merge of 
the appropriate inputs ul, ~2, i.e., it can be decomposed into two disjoint 

copies of 0’ and u’. 

Proof We choose (strict, fair) mergers at the edges of the second kind, 
use a direct fixed point argument as in the preceding theorem and then 
chase the result of applying the essence function. 1 

This last theorem is the easy part of the main result of Park (1983) 
which explains how Park’s modeling of “non-strict, fair (angelic) merge” in 
terms of strict, fair merge and hiatons can be adapted to our setup. It 
applies to the “anomalous” equation 

M = .fairmerge( 5, S(M)) 

which may be viewed as defining a Park network which has two edges of 
the first kind with the single stream functions 5 and S attached to them, 
and just one merge edge. The stream determined by this network on the 
merge edge is 

A, = ((5, 6, . ..I}. 

the stream which comes from the second naive understanding of the 
network in 5.2. 

One can also formulate in this setting and prove the full strong result in 
Park (1983), which gives a “computational justification” of the method, but 
this is quite lengthy and we will skip it, especially as it does not add much 
to what is already in Park’s paper. 

6. MINIMUM CONDITIONS FOR PROCESS SMANTICS 

Having settled on players to model non-deterministic processes, we now 
seek the appropriate objects to model process transformations. Arbitrary 
process functions f: Yn + 9 will not do because (for one thing) we will 
want fix-point equations of the form x = f(x) to have solutions. The usual 
way of insuring the existence of fixed points by choosing the monotone, 
continuous player functions also does not work, since there is no obvious 
way to turn 9 into a dcpo. In fact we have been unable to define a 
reasonable process semantics for LY which models process transformations 
with any set of player functions (which includes the fair merge operation), 
and we will use intensional operations which are not determined by their 
graphs. Now we will attempt to motivate and justify our choice of this 
modeling in the next section, but it is admittedly an unusual option. To 
make clear just what is achieved by the construction in the next two 
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sections, we set down here minimal conditions of “reasonableness” which 
must be satisfied by any process semantics for Y with the fair merge. 

6.1. Fix a state structure Y and a signature z which includes function 
symbols do(a) for each act a of 9, next, cond, (R some relation on the 
states), or, and fairmerge. An abstract interpretation of 2’= 2?(r) over Y 
is a triple 

d= ({QnjntNT ~~~~~~~~ den) 

which satisfies the following conditions, 

1. Each extension map x,, : @,, + (9” + 9) associates an n-ary player 
function x,4 with each abstract (intensional) function q5 E @,,. It is of course 
allowed that each @‘, is a set of n-ary player functions and 1, is the identity. 

2. The denotation map den assigns to each expression E of 2’ and 
each list I = x1, . . . . x, of distinct variables which includes all the free 
variables of E, an abstract n-ary function den(x’)EE @,,. 

3. If M is obtained from E by an alphabetic change of the bound 
variables and the (free) replacement of each xi by some zi, then den(x’)E= 
den(z’)M. In particular, each n-ary function symbol of T  is assigned a 
unique abstract n-ary function T= den(Z) f(Z) (with any choice of 2) and 
a player function T= XJ 

This basic definition allows trivial interpretations which (for example) may 
assign the same object to all closed expressions. We call an abstract inter- 
pretation minimally reasonable if in addition it satisfies the following three 
conditions. 

4. Correctness for substitution. If an m-ary function letter f is 
assigned the player function .T and X,den(x’) Ei = gi for i = 1, . . . . m, then 

wW3 f(E, , . . . . Em) = WL?=~T(S~ (4, . . . . g,(x’)). 

5. Soundness for recursion. If two expressions E, M are least-lixed- 
point equivalent, then for all 2, den(Z) E = den(x’)M. 

6. Adequacy. If f is one of the specified function symbols do(a), 
next, cond, , or, and fairmerge in the signature, then f is the associated 
player function, as we defined these in the last section. 

The minimally reasonable interpretations of dip cannot be entirely trivial, 
since they interpret correctly the explicit part of the language and they 
interpret mutual recursion (at least) by the taking of fixed points. On the 
other hand, which fixedpoints is not specified by the conditions above, and 
there may well exist minimally resonable interpretations which are 

643/93/l-10 
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thoroughly unreasonable as concurrency modelings. The interpretation we 
will construct will be much more than minimally reasonable. On the other 
hand, I am not aware of any other concurrency models which combine the 
fair merge with full recursion and which are minimally reasonable in this 
sense, even in the special case where the underlying state structure is trivial 
(with just the one state I), so that procedures and behaviors are just 
streams of acts and players are sets of streams (traces). 

7. MODELING PROCESS TRANSFORMATIONS 

The basic plan is to model a process transformation by the set of its 
“implementations,” but it must be refined in two ways. 

1. We will use a natural but unfamiliar notion of “abstract 
implementation” which may depend on an infinite sequence of arguments. 

2. Instead of considering extensionally functions which are deter- 
mined by all their implementations, we will adopt an intensional approach 
which identifies a function with a speczjk (suitably closed) set of implemen- 
tations. 

There is an obvious notion of an abstract implementation for functions 
on players which (in similar contexts) has been suggested by many, 
including Park and Broy: if, for example 

is a binary player function6 then an abstract implementation for f would 
be any monotone, continuous function 

F:BxB+B 

such that cr E x, t E y 3 F(o, z) E~(x, y ). For each of the functions next, or, 
par,,,,, and many others, there is a set I of such abstract implementations 
which determines the function, i.e., 

f(x,y)={F(o,r)laEx,zEy,FEZ}. (27) 

This suggests that we admit in our modeling only functions which satisfy 
(27) with some I. Consider however the function 

rwice( x) = x next x. (28) 

6 We will often use unary and binary functions to illustrate definitions and results about 
arbitrary n-ary functions. 
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To compute twice(x) we (may) need to “call x twice”, and there is no 
guarantee that the same behavior from x will be produced both times, if 
indeed x is a non-deterministic player. Thus the most natural implementa- 
tion of this function is the operation of two arguments 

H(o, z) = 0 next t, (29) 

and we have twice(x) = {H(o, r) 1 (T, r EX}. Going one step further, 
consider the recursion 

y = x next y 

which defines p(x) for each x. Clearly j(x) = x next x next x. s ., the com- 
putation of y(x) calls x infinitely many times if x is a conveergent player, 
and there is no reason why the same behavior from x will be called every 
time; if x is an infinite set of single act executions, then our intuition tells 
us that every infinite sequence of executions of acts from x is a possible 
value of y(x). Thus, to accommodate identification of variables and recur- 
sive definitions we must admit implementations of functions on players 
which depend on infinitely many arguments. 

7.1. An infinitary behavior function (or just behavior function when no 
confusion can arise) is any monotone and continuous (in the obvious 
sense) 

F: (N+ B)” + B, 

which assigns to each n-tuple of players X = x,, . . . . x,, the player value 

F(Z)= {Ftp,, . . . . P,) I ply . . . . pn: N+ B, range(p,)Ex,, . . . . range(p,)Ex,) 

= {F(P,, . . . . p,) 1 pl: N-+x1, . . . . p,,: N-U,}. 

The first of these two equivalent expressions for F(R) explains the idea 
better, but the second is more convenient and we will generally prefer it. 
We set 

BF,={Fl F:(N+B)“+B), 

B=u BF,, 

and we call FE BF, an abstract implementation of a player function 
f: 9”’ + 9, if (Vk)[F(Z) c f(2)]. A player function f is determined by a set 
Zc BF, if for all 2=x,, . . . . x,, 

f(Z)= {F(p,, . . . . p,) 1 pI: N-+x1, . . . . pn: N-+x,, FEZ} 

= u {F(X) 1 FEZ}. 
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7.2. Reducibility in BF. For each p: N -+ B and K: N + N, let 

p”(i) = p(+i)), 

and if Fe BF, and rc, p: N+ N, set 

F”Tp, q)=F(p”, @‘I, (P, 4: N+ B). (30) 

We say that an infinitary behavior function G of two arguments is reducible 
to F and write G < F, if G = F7[,P for suitable z, p: N + N. The version of 
(30) for functions of one variable is 

F”(p) = F(f) = FMi)p(40)) 

and a bit messier for functions of n arguments. 
Quite trivially, for all p : N + B, n, p: N -+ N, 

(p”Y= pnp> 

FnP( p) = F( p”“) = FP( p”), 

where np is the composition of rc, p: N + N. Similar (messier) equations 
hold for functions with more arguments and we will use them routinely, 
without reference. 

FACT 1.3. The relation < of reducibility is u (partial) preorder 
(transitive and reflexive) on each B F,. Moreover, 

G < F* (VZ)[G(jr) c F(Z)], 

so that (in particular) tf F is an abstract implementation of some function 
f: 9” --f 9, then so is G. 

Proof Suppose for simplicity that F, G are unary and G = F” for some 
rc: N + N. The inclusion F;“(x) s F(x) follows trivially from the fact that 
range(p) s x implies that range( p”) L x. 1 

We now come to the basic definition of the modeling. 

7.4. An implementedplayer function (ipf )’ is a set f of intinitary behavior 
functions (f’s abstract implementations) closed under reducibility. For each 
n-tuple of players 2 = x, , . . . . x,, the player value f(2) is defined by 

f(?)={F(p I,..., p,)Ip,:N-,.u ,,..., pI1:N-‘x,,FEf}. 

’ In Moschovakis (1989) we used the term inrensionnl pluwr functions (also abbreviated ipf) 
for this notion. 
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A set IC B F generates f if 

f= (F( F<G for some GEZ) 

Note that (immediately from 7.3) if I generates j; then it determines the 
values of j, 

f(,?) = u {F(Z) 1 FEZ). 

The requirement of closure under reducibility ensures that ipf’s view their 
arguments as sets rather than sequences of behaviors and eliminates trivial 
distinctions. Without it, (J(p)p(O)} and {I(p)p( l)} would be considered 
distinct intentional representations of the identity function, and it is not 
clear how that could be useful. 

7.5. Lifting behavior functions to ipf’s. With each (finitary) behavior 
function F: B” -+ B we associate the ipf F’ generated by the single behavior 
function 

F’(p,, ..., P,,) = F(Pl (O), .‘.7 P,(O)). 

When no ambiguity can arise we will identify F with its “lift-up” FJ. 
For example, the ipf next modeling sequential composition of processes 

is the set of all behavior functions reducible to 

S(P, 9) = ~(0) next q(O), 

i.e. (easily) the set of all behavior functions of the form 

SdP, 9) = p(k) next q(l) (k, I E N). 

Similarly, the n-ary projection function 

proj”.‘(x,, . . . . x,) = xi (1 <i<n) 

is identified with the set of all P;“s, 

P:?P, > . . . . p,) = pi(k). 

When n=i= 1, 

proj’, ’ = id 

(31) 

(32) 

is the ipf representation of the identity function on players, whose 
implementations are precisely all Pk ” s. On the other hand, the ipf twice 
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which models the process function .Y next x is generated by the single 
behavior function 

T(P) = ~(0) next p(l), (33) 

and it is not the lift-up F’ of any behavior function F-that would have to 
be a unary F since twice is unary and T is unary and T is clearly not 
reducible to any unary F.8 

7.6. Intensional and extensional equality of ipf ‘s. Clearly f = g implies 
the extensional equality (Vz)[f(z) = g(z)] but not vice versa.’ We adopt an 
intensional use of A, so that if a term t(x) has a ckear intensional meaning, 
then f= A(x) t(x) is the ipf defined by it. We will also use on occasion the 
convenient abbreviation 

f(z) =pror g(z) Of = g, 

7.7. Composition of ipf ‘3. For given ipf’s g, h 1, h2, the composition 

f = 4-u) g(h, (xX h2 (x)) 

is the ipf generated by all behavior functions of the form 

F(P)= G(i(i) H,.Ap), 44 H2,i(~)), 

* The abstract implementations in twice are all behavior functions of the form 

T,.,(p) = p(k) next p(l) (k 1~ N), 

including the implementations Tk,k which compute x ~e.~t x by storing the behavior in x sup- 
plied by the first call to their argument and then using the same behavior for the second call, 

if one is needed. One may argue that it is not natural to admit these “smart” implementations 
in twice and it is possible to introduce finer, intensional modelings of process transformations 

which avoid it, e.g. by taking ipf’s to be subsets of BF closed under the equivalence relation 
induced by the preorder <. Here we are primarily interested in studying the extensional 

properties of process transformations and we have adopted the coarsest intensional modeling 
for which we can develop the theory; see 9.6. 

9 For example, in the trivial structure with just the one (initial) state t, the behavior 
function 

0 if pG!)(~)f orp(3)(r)t, 
0) = 

‘; 
P(O), otherwise ifp(2)(t) 2 p(3)(t). 

P(l), otherwise 

is (easily) an implementation of the identity but it is clearly not reducible to any P>’ in (31); 
thus Pi’ and {Pi’, I} g enerate distinct ipf’s which are extensionally equal. Note that to com- 

pute id(x) by this I we might have to make three distinct calls to x, and from a completely 
naive point of view it seems quite absurd to admit I is a “natural” implementation of id. 
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where G is an abstract implementation of g and ZIZ,,~, Hz,i are abstract 
implementations of h,, h, respectively. The definition is similar for n-ary 
compositions. 

FACT 7.8. (1) Zff= A(x) g(h(x)), thenfor every x, f(x)= g(h(x)), and 
similarly for the composition of functions of any number of arguments. 

(2) For each binary ipfg, zf h =2(x, y) g( proj2, ‘(x, y), proj’.‘(x, y)) 
is the ipf obtained by composing g with the indicated projection functions, 
then h = g, i.e., 

g(proj2,‘k 4’1, proj2,‘(.x, y)) =proc g(x, y). 

(This is a sample result for compositions of this type.) 

Proof: To show first that f(rc) L g(h(x)) in part (l), assume that 
o E f (x), so by the definition 

CT= G(J.(i) ff,(p)), 

for some p such that p[N] CX. By 7.3, each H,(x)c h(x), so each 
q(i) = Hi(p)) E h(x) and hence r~ = G(q) E g(h(x)). The converse inclusion 
g(h(x)) G f(x) is equally simple. 

To check the inclusion g&h = A(x, y) g(proj2,1(x, y), proj’.‘(x, y)) in 
part (2), suppose G is some abstract implemenation of g and for each i, 
choose the abstract implementations 

H,, Aq, r) = q(i), H2,A4, r) = r(i) 

of proj2x1 and proj2,2, respectively; now the behavior function 

H(q, r) = G(i(i) H,.i(q, r), 4i) Hz.i(q, r)) = G(q, r) 

is an abstract implementation of h by the definition, and it is exactly G. 
Conversely, the typical abstract implementation of h is of the form 

Wq, r) = W(i) q(n(i)), W WA)) = G(q”, rP) 

for suitable rr, p: N -+ N and G E g, so HE g by the closure of g under 
reducibility. 1 

The point of (2) is that we will be using (often without mention) the 
classical method of Godel for reducing explicit definition to composition, 
e.g., 

f(x, 2: x) = f(proj’.‘(x, y), proj2,2(x, y), proj2,‘(x. y)). (34) 

We want to be sure that the intensional version of (34) is also valid, i.e., 

f(x, y, x) =prOCf(proj2,‘(x, y), proj2,2(x, y), proj2.‘(x, y)). 
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8. PROCESS RECURSION 

Suppose that f is a unary ipf and assume first that each abstract 
implementation F’E~ lives on a singleton; i.e., it depends only on one 
argument so that (in effect) F: B -+ B. To compute the “least” fixed point 
of the equation x=f(x) in the usual way, we want to start computing 
some FO of on an unspecified argument and interpret each “call” for .Y as 
a call for some arbitrary FEJ: This suggests setting 

X= { lim F,F,...F,(@) 1 F,, F,, . ..~f). (35) 
n - ‘-m 

which in fact yields a “natural” fixed point of x = f(x). We can reformulate 
this definition, by assigning to each sequence F= (FO, F,, . ..) of behavior 
functions in f the sequence (r;b, F,, . . . ) of simultaneous least fixed points of 
the equations 

oi = FAgi+ 1) (i=O, 1, . ..). 

and verifying that (35) is equivalent to 

X= {&, 1 F,, F,, . ..Ef). 

This form of the definition generalizes to the case where f is an arbitrary 
ipf, as follows. 

8.1. Simple fixed points. An implementation system for a single equation 

x =.f(x) 

is a set 

F= {F, 1 WV*} 

of abstract implementations in f indexed by the finite sequences of integers. 
For each such F we define the system 

F= (Fu 1 uEN*} 

of behaviors as the simultaneous least fixed points of the equations 

nu = F,,‘,(a,,, oul, . ..I (UEN*), 

where ui = (i) = the extension of the sequence u by i. Finally, we let 

X = {F, 1 F is an arbitrary impl. system for x = f (x)} (36) 
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be the player defined recursively by the equation x = f(x). Note that in the 
notation established by 2.1, 

where the stages Ff’ are defined by the recursion 

p+ I’=?7 (p$, j3”) 
u u ul 9 ... ) . 

THEOREM 8.2. For each unary ipf f, if X is defined by (36), then 

.f = f(2). 

Moreover, if for some type a, 

f:P(a)-,g(a) 

in the sense that x~P(a) =z-f(x)~ P(a), then x~P(a). 

Proof: Check first (easily) that for each implementation system F for f 
and each sequence u E iV*, the set 

F(u)= {F,*” 1 UEN*) 

is also an implementation system for f and it satisfies 

F(u), = F, * t>> 

so that in particular, for each HEN*, 

p,, = F(u)@ E ?c. 

Thus 

D E X * o = Fa for some F = FB (A(i) F,,,) tzf(X). 

Conversely, if 0 Ed, then rzr = FO ( p) with some PO of and for each i E N, 
p(i) = r;ii E X for some implementation system F’ off: Now define F by 

and check (easily) that G = F,(p) = FD, so that cr E X. 
For the second assertion about types, the hypothesis means that if F is 

any abstract implementation off and p[N] E a, then F(p) E a. Using the 
fact that @~a to get the induction started, we prove from this that if 
u ++ Fr) is the n th iterate in the simultaneous recursion which determines 
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u ++ F,, for some implementation system F, then F’“’ E a; hence 
F*,, = U FF’ E a, since types are clearly losed under monotone” unions. 1 

The point of the second assertion in the theorem is that we can establish 
safety properties of fixed points from assertions about preservation of safety 
properties by the defining equations. This should be true of every inter- 
pretation of recursion. 

We can extend directly the definition above to systems of equations, with 
parameters, using systems indexed by sequences of tuples. As an example, 
we treat the case for a system with two equations and one parameter. 

8.3. Mutual recursion. We let 

(~O,l}xN)*=((u,u)~uE({O,1}*,uEN*,~u~=~u~) 

be the set of finite sequences of pairs from (0, 1) and N, which we view as 
pairs of finite sequences of the same length. An implementation system for 
a system of equations (in the parameter 2) 

x =f(x, y, z) 

I’= g(.x, y, r) 

is a pair of sets indexed by ( { 0, t ] x N)*, 

F=(F,.,.I(tc,u)~r((O,l}xN)*), G=(G,.,l (u,u)~({O, l}xN)*}, 

where each F,,, and each G,, are abstract implementations in f and g, 
respectively. Each such pair (F, G) determines the indexed sets of intinitary 
behavior functions F,,,, G,,. : N -+ B 

{F’u., I (u, L~)E((O, 1) xN)*), {G,., I (U,U)E({O, l)xN)*J 

which are the simultaneous least fixed points of the equations 

and the implemented player functions defined recursively by the system are 

it= {F,,, ( (F, G) as above}, j= (G,., I (F, G) as above). 

The motivation is exactly as in the case of a single equation; i.e., we think 
of computing X(Z) by starting on f(x, y, 2) on the given z and unspecified 
x, y and “calling” f when x is required and g when y is required; these 
“calls” must be via totally independent abstract implementations of f and 
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g, L and Gu,,, where the indexing is coded so that when u ends in 0 the 
call is by f and when the u ends in 1 then the call is by g. For example, 
with u = u = fa and skipping the argument Y, i.e., abbreviating 

Fu., = pu.,(r), G,, = G,,(r) 

to simplify the notation on the right, 

F,.@(r) =F~.Qr(~~O,.~O,r ~~o,,~l~~ p,oxc2,, . . . . Go,,o,, ~toi,cl,~ G,o,c2,9 . . . . r) 

GO,IZr(r)=GIZr.Q((F,l),(o,, hcl,, h2,, .-) %,,co,, ~~1,,~1,~ G,1,.c2,, ...) 4. 

For the general case of systems of n equations the definition uses systems 
indexed by ( { 0, . . . . n - 1 } x N)*. 

THEOREM 8.4. The ipf’s defined recursively by a system satisfy the 
svstem; thus for the special case of a system of two equations as in 8.3, 

Jf(z) =procf(W), Y(z), z), 

Y(z) =)mx g(-f(z), Y(z), z). 

Moreover, if a, b, are types and 

f:~(a)x~(b)x~(c)-+~(a), 

g: P(a) x P(b) x P(c) -+ P(b), 

then X: 9(c) +9(a), j: P(c) + P(b). 

Proof is an elaboration of the proof of 8.2, so we will only only outline 
briefly the 

n(z)f(x(=), j(z), Z)E.T (37) 

part which involves composition of ipf’s. Replacing z by id(z) to reduce the 
explicit definition to composition and using 7.8, we get that the arbitrary 
abstract implementation of the left-hand-side of (37) is of the form 

L(r) = F’(l(i) X,(r), l(i) Yi(r), l.(i) r(z(i))), 

where F’ of, each Xi and Yi are in +U, j, respectively, and rc: N + N. By the 
definition of the fixed points, we can find systems of implementations 
(F’,‘, G1.i) and (Fly’, Go,‘) (note the asymmetric indexing) which define X, 
and Yi respectively, so that 

oi L(r) = F(;(n(i) F”.ira,D(r), A(i) G - @.@(r), r), 



152 YIANNIS N. MOSCHOVAKIS 

where we have also replaced F’ by F on the simpler argument r using the 
closure off under reducibility. As in the proof of 8.2 now, define the pair 
(F, G) as follows: 

F 0.0=& G ,.,,=anyGEg, 

F,,. jl, = F;,;. , cm,, = Gi.‘t,, 
7 

It follows easily that I;,~, = F’.),.,, GZlr,,” = Cf..‘,.,, so that in particular 

FO.O(r) = fl44 ~~O~.~r~(r), 44 Gco,,ci,(r), rl 
-3-l 01 = F(J44 F 0,0(r) l(i) G 0,0(r), r) 

= L(r) 

and L=FO,,EX. 1 

There is no obvious characterization of these fixed points in terms of 
some order in 9, because (as is well understood) spaces of sets like 9 do 
not carry nice orders. However: 

FACT 8.5. The fixed point .U of x = f(x) defined by 8.1 is minimal among 
fixed points of x = f(x) in the upper preorder” on players; i.e., for every 
fixed point j of x = f (x), 

(VT E jq3a E X)[o G 51. 

It follows that if.? is a total player, then it is the largest (as a set) fixed point 
off: 

Proof: Assuming that z E j and f(y) = y, we have that t = F, (l,(i)z,) 
for some F0 E f and suitable T;E j, so that in turn, for each i 

~5i = F,i,(Kd T,,~) 

for some Fcj, E f and zi, j E ~7, etc., so that we can choose an implementation 
system F = (F, ) UE N*} for f and members Z,E j satisfying 

7, = F,(4i) tU * (iI) (u E N*), (38) 

with the given z = zQI. Since the behaviors {FU 1 UE N*} in X determined by 
F are the least simultaneous fixed points of the equations (38), we have 
FU z 7, for every U, and in particular this holds for u = 0, completing the 
proof of the main assertion. The corollary follows immediately. m 

“This is a natural ppreorder on classes of subsets of a poser used in the construction of 
powerdomains. In Moschovakis (1989) we called it the “Milner preorder,” following Broy 
(1986). but it appears that “upper” is a more appropriate name for it. 
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This is the only obvious restriction on X in terms of natural preorders 
on 9. 

8.6. EXAMPLES. Fix the trivial structure with just the one state I and 
acts a, b, and skip, so that behaviors are just streams of these acts and 
behavior functions are monotone, continuous stream functions. 

(1) The equation 
x = (a nexr x) or (b next x). 

has no z-least solution, since the two sets of infinite sequences of a’s and 
b’s which are ultimately constant both satisfy it; X is the E-largest fixed 
point, which is also the unique upper-minimal fixed point. 

(2) For the most trivial equation x = X, X = (@} is the E-least fixed 
point. 

(3) The equation 
x=xorbor(anextx) 

has a s-least fixed point which consists of all the finite, convergent streams 
of the form a . . . abl; it has a E-largest fixed point which consists of all 
streams; it has a s-least, upper-minimal fixed point which consists of all 
the finite divergent streams of a’s and all the streams in the z-least fixed 
point; and X is none of these: it consists of all the streams in the E-least, 
upper-minimal fixed point together with the infinite stream a. a .. . . Note 
that the streams in X are what we would expect to get by implementing the 
“naive” understanding of this equation. 

It is quite easy to construct more complex examples which make it seem 
quite unlikely that we can find a “structural” (algebraic) characterization of 
this notion of recursion. Thus we should look for its justification on the 
general properties it satisfies, and these are expressed naturally as results 
about the semantics of Y-structures where we take ipf’s as the given 
functions. 

8.7. A process structure is a pair d = (9, 8), where Y is a state struc- 
ture and B assigns an n-ary ipfP(f) to each function symbol of arity n. 
In the process semantics for 9 we associate with each expression E and 
each n-tuple of variables 2 which includes all the free variables of E an ipf 

fE = process(d, 2) E, 

using ipf composition defined by 7.7 and interpreting recursive expressions 
using ipf recursion: e.g., if 

E= rec(u, v)CEO(u, v), E,(u, u), E2(u, u)], 
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then for any k which includes all the free variables of E we let 

f, = process(d, u, v, 2) E, (i=O, 1,2), 

we let 17, v be the ipf’s defined recursively by the system 

u =f1 (u, u, X) 

L’=.fz(u, u, a), 

and we set 

process(&‘, 2)E=i(Z?)f,(ti(2), v(k), k). 

If E is a closed expression (with no free variables), then its process denota- 
tion fE relative to the empty list is an ipf with no arguments, i.e., just a 
player. Two expressions E, M are process equivalent if they have the same 
process denotation fE = fM on every process structure and for every .?. We 
write 

E --=pMK M o E, M are process equivalent. 

8.8. Ltj’ting behavior into process semantics. For each behavior rs in a 
behavior structure 3, set 

.1(o) = {a}, 

and with each behavior function F (binary, for simplicity), associate the 
process function FJ defined by 7.5, whose abstract implementations are all 
behavior functions of the form 

Fk.‘( P, q) = F( p(k), q(O). 

The next result expresses the faithfulness of this interpretation and it can be 
proved by a direct fixed-point argument which we will skip. 

THEOREM 8.9. Let zIJ be the process structure (of the same signature) 
associated with a behavior structure -c@ by replacing each behavior function 
F in JZ? by the corresponding process function FJ. For every expression E, 
then, tf FE and fE are the functions associated with E in JZZ and ,al’, respec- 
tively, then ,for all behaviors a1, . . . . (T,, 

&(a,, . . . . ~,)=J-‘fE(J(~I)> ~~~,J(~?J). 
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9. THE MAIN PROPERTIES OF THE MODEL 

In the next section we will prove the following main result of the paper. 

THEOREM 9.1. The Transfer Principle. If two expressions of the 
language d;p are behavior equivalent, then they are also process equivalent; in 
symbols, 

Ezbe,, MS E= pror M. 

The converse of this is immediate from 8.9, so that the expression identities 
which are valid in all behavior structure are also valid in all process 
structures. 

Since recursion is defined by the taking of least fixed points in behavior 
semantics, we have immediately the corollary: 

THEOREM 9.2. Least-fixed-point equivalent Z-expressions are also 
process equivalent. l1 

The fact that fixed points satisfy their defining equations is an obvious 
special case of this result, since 

is valid in least-fixed-point semantics so that by 9.2 it also holds for process 
semantics. This is Theorem 8.2, a special case of the more general 8.4, 
which also follows from 9.2. Additional basic corollaries are the well- 
known rules which reduce nested to mutual recursion: 

THEOREM 9.3 The BekibScott Rules. For all expressions and sequences 
of expressions and variables as indicated, the following identities are valid in 
process semantics : 

rec(Z)[rec(y’)[E, 12?], i]= rec(G, P)[E, fi, @J, (39) 

rec(R,, 2, Z2)[i?,, rec($)[M, iV], ET] = rec(Z-,, 2, -9, s22)[f!Z,, M, #, &J. 

(40) 

In fact we will need to prove these first, as lemmas for the general transfer 

I’ [Added November 29, 19901 I now have a complete axiomatization of least-fixed-point 

equivalence for expressions of .Y and a proof of the decidability of this class of identities. 
Using this construction, Tonny Hurkens has proved that least-fixed-point equivalence concides 
with procedure eqrcivaience for e.rpressiorts of Y, and hence also with process equivalence by 
the results of this paper. 



156 YIANNIS N. MOSCHOVAKIS 

principle. Perhaps they are easier to recognize in the following form which 
refers directly to ipf recursion. 

THEOREM 9.4. Suppose the ipf’s on the right in the list below are defined 
by the recursions on the left: 

x =f(x, y, z): a=i(JJ,Z)i(y,Z) 

y = g(i( y, z), y, 2): j = i;(z) j(z) 

x=fk )‘, =I . 
1 

.f = A(z) X(z) 
y = g(x, y, z) . I j = l(z) j(z) 

We then have 

J= Y, 
x = E”(Z) a( j(z), z), 

and hence, 

(Vz)[X(z) = Z( j(z), z)]. 

9.5. Limitations of the theorem. Suppose 9’ is the extension of 9 by a 
binary construct cond(x, y) and we agree that in the behavior semantics of 
Y, cond(x, y) is to be interpreted by a conditional behavior function 
COND, based on a relation R on the states 

COND,(o, z) = A(.Y(n))[if R(s,) then o(s(n)) else z(.F(n))]; (41) 

in the process semantics of LZ’, cond(x, y) is to be interpreted by an ipf 
generated by some behavior conditional satisfying (41). Now the identity 

cond(x, x) =x (42) 

is valid in all behavior structures, simply because for every sO, R(s,) is 
either true or false, but it is not valid in process structures because if 
x = {a, b}, then the right-hand-side of (42) has only the two, trivial 
behaviors a and b, while the left-hand-side has the additional state- 
dependent behavior 

p($n)) = if R(Q) then a else b. 

Thus we cannot extend the transfer principle directly to languages with 
conditionals. 

This simple obstruction has nothing to do with recursion, it depends 
instead on the well-understood “algebraic” diffkulties that come up when 
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we try to use conditionals in a non-deterministic setting. Although it 
forbids direct extensions of the transfer principle to languages even 
minimally richer than 8, this example still allows for weaker transfer 
principles with which it is consistent. For example, the two sides of (42) 
are “observationally equivalent” under any reasonable definition of 
“observation” for processes: perhaps one can show that behavior equivalent 
expressions in fairly rich languages are observationally equivalent in the 
appropriate process semantics, with a natural, rigorous definition of 
“observational equivalence.” 

9.6. Extensional process semantics. A function f: 9"' + 9 on the set of 
players is (abstractly) implementable if some set I of its abstract implemen- 
tations determines it, so that it is extensionally equal to the ipff* = AZ(f) 
of all its abstract implementations. An extensional process structure is one 
where B assigns implementable player functions to the function symbols 
and we can define semantics for these structures by identifying every 
implementable function f with the ipf AZ(f) and using our definition of 
recursion. The problem is that we cannot prove the basic BekiE-Scott 
Rules 9.3 for this semantics because we have not been able to solve the 
following basic problem about process recursion: 

9.7. Question. Suppose f and g are extensionally equal implemented 
player functions and the equations x =f(x), x = g(x) determine the fixed 
points Xr and Xn respectively; must we have .f,.= X,? 

It appears quite difficult to answer this question positively with the 
methods we will use to prove 9.1. A positive answer would be founda- 
tionally interesting, as it would provide a good, extensional model com- 
bining fair merge with full recursion, but it is more likely that the answer 
is negative. Of course, there may be an enitrely different way to approach 
the subject with some other, natural notion of process recursion which 
bypasses the question entirely. 

10. APPENDIX. PROOF OF THE TRANSFER PRINCIPLE 

It is convenient for the proofs to enrich the language Y with the 
constant (0-ary function symbol) I which abbreviates the recursive 
expression 

I = rec(x)[x,x]. (43) 

This is interpreted in behavior structures by the totally undefined behavior 
Iz, and in process structures by the deterministic player (a}. We will need 

643!93/1-11 
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some preliminary definitions and lemmas, beginning with a “parametriza- 
tion” of the notion of abstract implementation which has more structure 
and is easier to compute with. 

10.1. A representation of an n-ary ipff is any function 

F:Nx(N+B)“+B. (44) 

such that for each u E N, A( p’) F(u, p’) of, i.e., the function F, defined by 

Fu(P) = F(u, $1 

is an abstract implementation off: A representation of an Y-expression E 
is a representation of the ipf fE defined by E-all relative to some structure 
d and some list R of variables including all the free variables of E, which 
we will typically leave implicit. 

By “representation” we will mean a representation of some f, and this 
comes down to just a monotone, continuous function as in (44). A 
representation F’ is reducible to another F if there exists some n: N--f N 
such that 

F’(u, i-3 = F(~u), p’). 

In this case, if F is a representation of some ipff or some expression E, 
then so is F’. For example, the representations of the identity ipf L(x)x are 
all functions of the form F,(u, p) = p(x(u)) = p”(u), where rt: N + N, and 
there is only one representation of the constant I, the constant function 
4u)0. 

To deal with least-fixed-point recursive definitions of representations, we 
will use informally some obvious extensions of the recursion construct of 
2. For example, 

rec(% P, 0, q)[IF(i, P, q), G(u, P, qh Mu, P, q)l = FCC P, 41, 

- - 
where p, q are the simultaneous least-fixed-points of the system 

P(U) = G(u, P, 4) 

q(u) = H(o, P, 9). 

Note that this system of equations is just the “point form” of 

P = J-(u) G(u, P, 4) 

4 = i(u) H(u, P> 4). 
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We will use interchangeably the two notations 

44 rec(u, p, u, q)[F(k P, 41, G(u, P, q), ff(u, P, q)l 

= rec(p, q)Cj.(9 F(i, P, q), i,(u) G(u, P, q), 40) WV, P, 411. 

10.2. REPRESENTATION LEMMA. If the ipf h is defined by the recursion 

h(Z) = rec(,T)[o(R, ?), f, (-2, Z), . . . . f,(% T)], 

then its representations are exactly all functions H satisfying 

H(i, 7) = rec(u,, pi, . . . . u,, p,)CO(i, ik 3, F,(u,,P, 3, . . . . F,(u,, P, 33, 

where 0 and F1, . . . . F, are representations of o andf,, . . . . f, respectively. 

Prooj Assume for simplcity that the recursion is not mutual (n = 1) 
and Z= z is a single variable, i.e., 

h(z) = rec(x)[o(x, z), f(x, z)]. 

Part 1.12 Every representation H of h satisfies 

H(u, r) = rec(i, p)CO(u, P, r), F(i, P, r)l (45) 

with suitably chosen representations 0 and F of o and J; respectiveIy. 
By the definition of composition and ipf recursion, each representation of 

h is of the form 

H(u, r) = C(4i) C,Ar), 4.d r(x,(.d)) 

= 0th A(i) Xu.j(r), r), (46) 

where each rcn, : N -+ N and in the second equation 0 is a representation of 
o and each X,. i is an implementation of the ipf X defined by the recursion 
x = f(x, 2); we have used here-and in the sequel will use without 
reference-the closure properties of classes of representations. By the 
definition of ipf recursion now, XU,i = FU’u.i,lzr (u, ig N), with suitably chosen 
implementation systems F,,;= (Fu,i,I, / v E N*] (u, ie N). Switching to 
single-integer indexing, set for each je N 

“In the computations of this section we use repeatedly a fixed coding of integer tuples 
( ):N*-=-+ N with inverse (M., i) H (IV),, so that, e.g., ((n,m)),=n, ((n,m)),=m. 

We also use the “algebraic” notation for I-abstraction, j’(s, .) = A( ~)f(.x, J), so that, in 
particular, (i, .) = i(,j)(i, ,j). 
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Let n: N + N* be an enumeration of all tuples without repetitions and 
such that ~(0) = 0 and set 

m 6 P? r)=F;.,,,,(4m)P((i n-‘(44 * (m)))), r). 

Fix r for the argument and let p be the least-fixed-point of the equation 

P(S) = F((s),, (s),, P? r) 

= FCS,@ n((sl1) (Gf)P(((Jh> = ‘(4(s),) * (m)))), r). 

We claim that (for the fixed P), 

Xi(r) = P((.L O)), (47) 

so that going back to (46) and computing, we have 

H(u, r) = O(u, J.(i) X,,(r)) by (461, 

= O(u, 44 Xcu,,)(r), r) by def., 

= O(u, 44P(<u, i>, O)), r) by (471, 

= rec(s, p)CO(w 4i)p(<h i>,O>), r), F((sh, bll, p, ?)I. 

This will complete the proof of Part 1, because the expressions involving 0 
and F are representations of o and f respectively, and this puts H in the 
required form (45). 

To prove the claimed (47) we will show that (for the fixed r and all j, k), 

Fj.,cdW = P( CL k) ), 

from which (47) follow s setting k = 0. The proof is by induction on the 
stage of the recursions which define Fj,,,kj(r) and p, i.e., we will show that 
for each n, 

Fj’$,(r) = $“‘( (j, k)). 

At the induction step we have 

~),‘k&f’=Fj,n(k)(~(~) Fj,‘ik’(k).(m), r) by def. 

= fmk, (l.(m)$“‘(<j, x -‘(n(k) * (nz)))), r) by ind. hyp. 

=P -In+“( (j, k)) by def. 
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Part 2. Every H which satisfies (45) is a representation of the ipf h. 
Given (45), define the system G for the equation x =f(x, z) by 

Gab, r) = Gco)(~, r) = f’(O, P, r) 

G,i(P, r) = F(i, p, r) 

which is quite degenerate in that G, depends only on the last term in the 
sequence v E N*. The proof uses the fact that for this (and every) 
implementation system for f, each of the simultaneous least-fixed-points G, 
(II E N*) is an abstract implementation of the ipf X defined by the recursion 
x = f(x, z), which is easy to check as in the proof of 8.2. 

Fix r and let p be the least-fixed-point of 

we will check by induction on the stage n of the recursions defining G, and 
p that 

G!:)(r) = j+“‘(i), (48) 

so that in the limit p(i) = GCi, (r), and by the observation above each p(i) 
is in X. From this it follows immediately that H(u, r) = O(u, p, r) is a 
representation of h. Finally, for the induction step in the proof of (48) we 
compute 

G$+‘)= G,,(A(m) GfJci,,,(r), r) by def. 

= F(i, jP), r) by ind. hyp. and def. of G,i, 
= -tn+ “(if 

P by def. 

This completes the proof of Part 2 and the proof of the Lemma. 1 

10.3. LEMMA. For all ipfsf, g,, . . . . g,, 

.f(gl G), ..., g,(k)) =proc. rec(y,, .-, y,,)Cf(~~, -, y,), gIGI, . . . . g,@)l. 
(49) 

ProojI By the definition of composition (and with n = 2 for simplicity), 
the typical representation of the left-hand-side of (49) is of the form 

LHS(u, r) = Flu, l(i) Gl (i, r), J(j) G2(j, r)) 

= rec(t P, .i q)CF(u, p, q), Gl (6 r), G (j, r)l, 

where F, G,, G2 are representations of f; g,, g,, respectively, and the 
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second equation follows from least-fixed-point recursion; now 10.2 implies 
that it is also a representation of the right-hand-side of (49). Proof of the 
converse inclusion is almost identical. 1 

10.4. Proof of the BekiE-Scott Rules, 9.3. The proof of (39) is very 
similar to the proof just given, using the fact that (39) is valid in least-fixed- 
point semantics. Beginning the same way for a proof of the special case 

rec(x)[E, rec(y)[M, N]] = rec(x, 1’)L-K M, Nl (50) 

of (40), we know by 10.2 that the typical representation of the left-hand- 
side of (50) satisfies 

Uu, r) = rec(i, p)CF(u, P), rec(j, qNG(i, P, q)+ ff(i, P, j, q)ll 

where F. G, H are representations of the ipf’s defined by the respective 
expressions E, h4, N. Now we can use the relevant BekiE-Scott rule for this 
kind of nested recursion (e.g., see Moschovakis, 1989a, Theorem 2B.4) to 
get 

L(u, r) = rec(i, P, i’, j, r)[F(u, PI, G(i, p, r(i, .)I, Mi’, p, j, r(i’, .))I. 

This means that for each fixed r, 

UK r) = F(u, PI, 

where ~7 is the first of the simultaneous least-fixed-points of the system 

p(i) = G(i, P, di, .)I 

r(i’,j)=H(i’, p,j, r(‘, .)). 

By contraction of variables, this system is (easily) equivalent to 

p(i) = G(L P, d<C . >I) 

q(s)= ff((sh, P, (s,, r(((sh, .>)I 

in the sense that it defines the same first least-fixed-point ~7. Thus we have 

Uu, r)= rec(i, P, s, q)C4u, ph G(i, P, cd<4 .)>)I, 

ff((sh, P. b),3 d((Sh? .)))I 

which by the closure properties of representations and 10.2 implies again 
that L is also a representation of the right-hand-side of (50). The converse 
is a bit simpler. 1 
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In addition to these two basic lemmas, we also need to deal with 
identification of variables within recursion. Here is a typical result which 
can be proved easily using 10.2 and simple least-fixed-point arguments. 

10.5. LEMMA. The following identities are valid in both behavior and 
process semantics : 

rec(x, y,z)Co(x, y,z), y,f(x, Y, z), Ax, Y, 211 

=proc rec(x, ziCo(x, -Y, z), f(-u,.u, ~1, d-7 -y, z)l 

-4x, .v, z)Co(x, y,z),x,f(x, Y, 21, g(x, Y, z)l 

=pror rec(x, .v, z)[o(x, y, z)Cob, Y, z), Lfb, Y, zh g(x, Y, z)l. 

In the sequel we will use the validity of specific identities like this without 
comment. 

10.6. A simple expression is one of the form f(x,, . . . . x,), where f is a 
function symbol and xi, . . . . x, are (not necessarily distinct) variables, e.g., 
f (x, y, x, x). An expression E* is in simplified form if 

E* = rec(x, > . . . . -G)[&,, E,, . . . . &I, (51) 

where for i= 1, . . . . n, Ei is simple and E, is either simple or a variable; we 
allow n = 0, in which case E* = rec( )[E,] with E, simple or a variable. 
Note that this allows Ei = f( ) for a 0-ary function symbol, including 1. 

10.7. SIMPLIFIED FORM LEMMA. Each Y-expression E is both behavior 
and process equivalent to some expression E* which is in simplified form. 

Proof: Using 9.3 and 10.3, show first by an easy induction on the length 
of E that we can find an equivalent E* as in (51) with each Ei simple or 
a variable. Now apply 10.5 to eliminate the E:s with i> 1 which are single 
variables. [ 

We have almost completed the preliminary work for the proof of the 
Transfer Principle except for one remaining difficulty. Suppose 

E= reck y)Cf(x, Y), dx, Y),~(-G ~11 

and E is behavior equivalent to some expression M, also in simplified form. 
We know from 10.2 that for every representation H of E on a fixed process 
structure d, there are representations F1, F2 off and G of g such that 

H= rec(p, q)C44 FIti, P, 41, G) G(i P, 41, ~4i) F2(i, P, s)l. 

If F, = F2, then H is defined by a formula which is essentially an alphabetic 
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variant of E, and it seems quite plausible that we can then concoct some 
behavior structure J&” in which H will in fact be the behavior denotation 
of E, from which point it should be easy to complete the proof. The next 
lemma which guarantees that we can arrange for this equality F, = F2 is the 
heart of the proof of the Transfer Principle. 

10.8. AMALGAMATION LEMMA. Suppose 

E= rec(x, , . . . . -ME,, E,, . . . . -%I 

is an Y-expression in simpltfied form, where in addition to the distinct 
variables x I, . . . . x, there ma-v occur in E other distict variables y,, . . . . y, 
and distinct function symbols f,, . . . . fm. Let q,, uI, . . . . u,, pl, . . . . p,,, 
41 9 . . .T qk, F,, . . . . F,,, be distinct symbols, set 

xIjl=p,, )‘lj,-qm, 

and put 

E” = rec(u,, pl, . . . . u,, p,)CEi, E?, . . . . Etl, 

where each EP is defined as follows: 

1. If E, = zj is a variable, then Ez = 2;. 

2. For any i, if Eir fi(z, , . . . . z,), then Eo = A(u,) E;(ui, zy, . . . . zy). 

For each process structure d, each representation of E is reducible to one 
definable by E”, with a suitable choice of representations F,, . . . . F,,, of (the 
ipf’s interpreting in d) fi , . . . . f, respectively. 

Conversely, every representation defined by E” in this way is a representa- 
tion of E. 

Proof For example, suppose 

E= rec(x, y, z)[o(x, -Y, y, w),f(x, ~1, -‘, y),f(y, y, w, z), o(w, w, x9 Y)I, 
(52) 

so that the only free variable of E is w. The lemma claims that every 
representation of E is reducible to one defined by 

H(u, P,) = rec(i, P.\-, .A P.“, k P=) 

CO(u, P,, P,, P,,.), F(C P.~, P,,., P=, P,L 

F(j, py, P?, pw, P=), Ok pHz2 pwy pz, ~~11, (53) 

where 0 and F are representations of o and f respectively. We give the 
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proof for this one simple example oly, since it illustrates all the points that 
come up in the general case. 

CLAIM. Every representation of E in (52) satisfies 

G(u, P,.) = redi, A, j, P.,., k P,) 

x L-0, (~3 P,, P.y, Py, Pw.1, F, (k ~1, P,,, ~29 P,), 

Fz(j, ~~3 P?> PH,> PI)> O,(k P,,, ~,v> P.X, P,)I> 

with suitably chosen representations 0 1, 0, of o and F, , E;? of J: 

(54) 

Proof of Claim. Let 

01 (x3 Y, z, w) = 0(x, x, J’, w), 

fi(4 Y, z, w) =fk w, z, Yh 

j-2(x, .?J, z, w) =f(y, y> w, z), 

0*(x, y, z, WI = o(w, w, x, Y), 

so that 

E= rec(x, Y, z)[+ (x, Y, z, W),fi c-u, y, z, w),f*k y, z, w), ozb, y, z, M’)l, 

and by 10.2 we know that every representation of E satisfies 

where O;, etc., are representations of or, etc. By the way we defined 
composition of ipfs, there exist a representation O;‘( U, p,, pY, pz, p,) of o 
and functions rci, i= 1, . . . . 4, such that 

0; (u, Py, P!, P:3 P,) = OI’(% PT’9 P=‘Y P:l> PZ) 

= 0, (4 P,3 Px, P.&.> P,,.)? 

where 0, is the representation of o defined by 

O,(% p.x, P1, P-3 P,) = O;(u, P”,‘, PY, P:‘, P?). 

Proof of the claim is completed by repeating the same argument for 
02, F,, F,. 
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To finish the proof of the lemma we need to find representations 0 and 
F such that G is (54) is reducible to H in (53). Set 

0((1,24),p,,p,,,P,~ P,*.)=O,(~, Py’, p.y, Pi”.‘, Pw), 

O((&k), p.x, P,,, P:, P,,.)= O,bk p.x> py> P!‘.“, P?‘), 

F((1, i>. PI, pp, P=, ~w,)=F,(i, P.:‘.“, ~,v, P:‘? P:*“‘)~ 

F1<2, j>, P:, pv, pz, P,,.)=F~(.A P.?‘>, P”.‘), P=, P?*‘>)~ 

in each case interpreting the second clause in the definitions of 0 and F as 
the “otherwise clause,” i.e., 

and similarly for F. Clearly 0 and F are representations of o and f, respec- 
tively. We prove that if H is defined by (53) with this 0, F and if G is 
defined by (54), then 

G(u, p,.f=H((1, a>, p,), (55) 

so that G is reducible to H and the proof of the Lemma is complete. 
Fix p,,, (which remains constant throughout the argument) and consider 

the least-fixed-point equations which determine the values of G and H: 

p,(i) =F2(& P-X> P,., P;, P,) 

P,(A=Fz(.L p.v, ~1, P,, P= 
--- 

: P.x, PJ’? Pz 

p,(k) = Oz(k pw, P,., P\-, P,) 

G(u, P,) = 0, (~3 P,> P,, & P,.) 

(56) 

(57) 

Using the fact that p”, , p”, , p”l- satisfy (57), we can verify by a direct 
computation that the functions j?” (( 1, . )), p”,. (( 2, ) ), Fz (( 2, . )) satisfy 
the system (56), and hence 

Ti d p”, <l, .>* y, 6 p”l <2. .?, p,<j-: c2..). (58) 

To verify the converses of these inequalities we will show by an induction 
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on the stage n of the mutual recursion which determines the least fixed 
points of (57) that 

p”,‘“‘KL .>)Gp,, p”;,‘“‘W,46p”,~ E’“‘W, .>)Gp,. (59) 

Looking at the induction step of the first of these, as an example, 

rY(n+l)((l, i))=F((l, i),p”,‘“‘,p,.,~(n),pN1,‘,‘) 

=F,(i, p”,‘“‘((L .>), P,.,E ‘“‘((2, .>I, iy”‘W, .))I 
-- 

G F, (h P,, Pw, Pz, P,.) 
-. 

= P,(l)3 

where the crucial < step uses the induction hypothesis and the 
monotonicity of F,. The computations involving E and z are similar. 
Putting (58) and the limit case of (59) together, we get 

--- 
G(K P,.) = 0, (~3 p.x, p-9 ~~7 P,.) 

= 0, (u, Ey Cl, .), p”r <‘, .), TV (2, .), p,.) 

=O((L U>?p”,?p”,>p”,> Pw) 

=W<L u>, P,L 

and the proof of (55) and the lemma is complete. 1 

10.9. Proof of the Transfer Principle 9.1. Because of 10.7, it is enough to 
prove that if E, M are behavior equivalent expressions in simplified form, 
then every representation of E is a fixed process structure & = (States, I, 
Acts, skip, 9) is also a representation of M in d. We will show this by 
defining for each given representation of E a behavior structure d’ and an 
interpretation of & into &‘, and then using the equivalence of E and M 
on d’ to get the result. 

Set first 

States’= N x States, with I’= (0, z), 

Acts’= N x Acts, with skip’ = (0, skip), 

(v, s)(u, a) = (0 + u, sa), 

and check that the conditions on states and acts are satisfied. We complete 
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the definition of d’ below by defining a behavioral interpretation 9’ of the 
function symbols of $P which depends on the given representation of E. 

Recall that behaviors take values of the form (a, w) with a an act, 
MJE {a, 1 ), and to convert easily between behavior values in .d and d’ set 

so that 

Mu, (4 WI) = B((4 a), WI = (4 M’). 

With each p : N + B we associate the behavior Ip of d’ defined by 

lP((%, Jcl), ..., (hl, &)I = ato, P(U,)(%, ...> s,)), 

and with each behavior g E 8’ of &’ we associate the function 1~ ‘0: N + B 
by 

l-‘cJ(u)(s,, . . . . s,,) = b((u, so), (0, SlL .“9 (0, s,)). 

Note that /A(U)@ = irj and I-‘@ = A(U)@. It follows that for each UE N 
and states sO, . . . . s,, 

lr’lp(u)(so, . . . . s,) = PlP((4 so), (0, s,), .‘.? (0, s,)) 

= MO, p(uhb . . . . s,)) = P(U)(%, . . . . Sn), 

so that 

p=i-‘Ip (p: N+B) 

and in particular the map p I--+ lp is one-to-one. Finally, with each represen- 
tation F of d-for simplicity binary-we associate the behavior function 1F 
of d’ by 

computing again, 

BWlp, kN(u,> so), . . . . (u,, L,)) = ,WO, F(u,, I-‘lp, l-‘IqNs,, . . . . s,)) 

= PO, F(u,, P, q)h, . ..> .y,)) 

2: F(u,, P, qh, . . . . ~n)r 

so that in particular 

F(u, P, qh, . . . . 3,) 2: B@lp, k)((u, s,,), (0, SI 1, . ..I (0, s,)) (60) 
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and the map 

F- m(F) = 4 P, 4) A(4 so, ...? s,) PWlP, lq)((u, so), (0, Sl), ‘.‘3 (0, &I)) 

(61) 

is one-to-one. 
Suppose now that E(z) is an expression in simplified form and with the 

single free variable z-, for example 

E(z) = rec(x, y, w)Co(u, ~1, go’, x, WI, 4-x, z), 11, 

the treatment of the general case being similar. Every representation of E(z) 
is reducible to one of the form 

Wu, r) = redi, P, j, q, k, ~)Co(u, q, r), (36 q, P, s), W, P, p), @I, 

with 0, G representations of o and g, respectively, and A(k)@ the only 
representation of 1. Define the interpretation 9 on the function symbols 
in d’ so that 

P(o) = 10, P’(g)=IG 

and let H’ be the behavior denotation of E in &“, 

H’(o,) = behavior (d’, a,) E(a,) 

= rec(a,, oy, a,)[IlO(o,, g,), G(a,, op, csL @(a,, or), @I. 

CLAIM. For all r : N + B. 

(81) H(h) = bH’(lr). (62) 

Proof of Claim. For each fixed r, we have 

ff(u, r) = O(u, S, r), H’(h) = lO(,, Iv), 

-- 
where q, cy are determined by the mutual resursions 

p(i)=G(k 4, P, 0) : p s 

s(j) = W, p, r) 1 ’ ’ 

gp = @lo,, cp) -- 
ay = IO((r,, Ir) ’ “’ gq’ 

It will be enough to show that 
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since from this we can compute using (60) 

from which (62) follows by another application of (60). The proof of (62) 
is by a routine induction on the stages of the recursions which define 
- -- 

p, q, aP and 7 and we will omit it. 
Rephrasing the claim, we have shown that if E(Z) is in simplified form, 

then every representation of E(Z) is reducible to some H, satisfying 

(PI) H, = p behavior( ,r9’, ~7~) E( a,); 

if E(Z) --beh M(Z), then of course 

/? behavior(&‘, dr) @a’,) = p behavior(&‘, a’,) M(a’,) = (81) H,, 

where the last equality follows from another application of the Claim to M, 
and then by (61) we get 

H, = H,, 

Now 10.7 implies that H, is a representation of M, which completes the 
proof. 1 
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