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Second Recursion Theorem (SRT). Fix a set V ⊆ N, and suppose that
for each natural number n ∈ N = {0, 1, 2, . . . }, ϕn : N1+n ⇀ V is a recursive
partial function of (1 + n) arguments with values in V so that the standard
assumptions (a) and (b) hold with1

{e}(~x) = ϕne (~x) = ϕ
n(e, ~x) (~x = (x1, . . . , xn) ∈ Nn).

(a) Every n-ary recursive partial function with values in V is ϕne for some e.
(b) For allm, n, there is a recursive function S = Smn : N

m+1 → N such that
{
S(e, ~y)

}
(~x) = {e}(~y, ~x) (e ∈ N, ~y ∈ Nm, ~x ∈ Nn).

Then, for every recursive, partial functionf(e, ~y, ~x) of (1+m+n) arguments
with values in V, there is a total recursive function z̃(~y) of m arguments such
that

{
z̃(~y)

}
(~x) = f(z̃(~y), ~y, ~x) (~y ∈ Nm, ~x ∈ Nn). (1)

Proof. Fix e ∈ N such that {e}(t, ~y, ~x) = f(S(t, t, ~y), ~y, ~x) and let
z̃(~y) = S(e, e, ~y).2 ⊣

Wewill abuse notation and write z̃ rather than z̃( ) whenm = 0, so that (1)
takes the simpler form

{z̃}(~x) = f(z̃ , ~x) (2)

in this case (and the proof sets z̃ = S(e, e)).
The partial functions ϕn in the standard assumptions are called univer-
sal (for the recursive partial functions into V), with corresponding partial
evaluation functions Smn .
Kleene states the theoremwithV = N, relative to specificϕn, Smn , supplied
by his Enumeration Theorem, m = 0 (no parameters ~y) and n ≥ 1, i.e., not
allowing nullary partial functions. And most of the time, this is all we
need; but there are some important applications where choosing “the right”
ϕn , Smn , restricting the values to a proper V ( N or allowing m > 0 or
n = 0 simplifies the proof considerably. With V = {{0}} (singleton 0) and
m = n = 0, for example, the characteristic equation

{z̃}( ) = f(z̃) (3)

is a rather “pure” form of self-reference, where the number z̃ produced by
the proof (as a code of a nullary semirecursive relation) has the property
f(z̃), at least when f(z̃)↓.

1I will use both ϕne (~x) (sometimes without the
n) and Kleene’s favorite {e}(~x) for the value

of the recursive partial function of n arguments with code (Gödel number) e, choosing in
each case that notation which makes it easier to see the relevant point.
2The proof has always seemed too short and tricky, and some considerable effort has gone

into explaining how one discovers it short of “fiddling around” with Hypothesis (b) which is
evidently relevant, cf. Rogers [1967]. Some of his students asked Kleene about it once, and
his (perhaps facetious) response was that he just “fiddled around with (b)”—but his fiddling
may have been informed by similar results in the untyped ë-calculus.
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Kleene uses the theorem in the very next page to prove that there is a largest
initial segment of the countable ordinals which can be given “constructive
notations”, in the first application of what we now call effective grounded (or
transfinite) recursion, one of the main uses of the result; but there are many
others, touching most parts of logic and even classical analysis.
My aim is to list, discuss, explain and in many cases prove some of the
most significant applications of the Second Recursion Theorem, in a kind of
“retrospective exhibition”of thework that it has done since 1938. Altogether,
I will discuss eighteen results in which SRTplays an important role, and I will
prove thirteen of them, at least in outline.3 These were selected (obviously)
by what I know and what I like, but also because of their foundational
significance and the variety of ways in which they witness how SRT is used.
It is quite impressive, actually, the power of such a simple fact with a one-line
proof; but part of its wide applicability stems precisely from this simplicity,
which makes it easy to formulate and establish useful versions of it in many
contexts, even outside ordinary recursion theory on N. Some of the more
important applications are in Effective Descriptive Set Theory, where the
useful versions of SRT are obtained by replacing N by the Baire space
N = (N → N) (or any Polish space, for that matter) and applying various
suitably formulated “recursion theories”.
Speaking rather loosely, the identity (1) expresses a self-referential prop-
erty of z̃(~y) and SRT is often applied to justify powerful, self-referential
definitions. I will discuss some of these in Part 1, and then in Part 2, I
will turn to applications of effective grounded recursion, which was Kleene’s
favorite (and as far as I know only) way of applying SRT. The Appendix
gives a brief account of some basic facts I need which are not as generally
known as they should be, especially about recursion and definability in Baire
space.4 The paragraphs in the Appendix are numbered A1, A2, . . . , and
there are occasional references to them in the text.
Incidentally, Kleene always refers to the recursion theorem, even inhis [1952]
where he also states and proves the First Recursion Theorem, and this is
the way that the result was generally called for quite some time. To the
best of my knowledge, Rogers [1967] was first to suggest that it should
be called the Second Recursion Theorem in contexts where the first one is
also discussed, but I rather like the name and would vote to adopt it in
general.5

3Well, some of the proofs are a bit abbreviated and require effort to reconstruct them fully
from what is presented; I thought that this is not entirely unsuitable in a work whose aim is
primarily to honor Stephen Cole Kleene.
4I will assume that the reader knows the basic elements of ordinary (classical) recursion

theory onN, but even in this, I will occasionally recall some simple definitions as I need them,
partly to set up notation.
5Theorem 3.2 below is a simultaneous generalization of both recursion theorems.
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Part 1. Self-reference.

Leo Harrington often embarks on the construction of some horrendously
complex recursive partial function ϕz̃ by invoking SRT in the following,
all-powerful form:

You need a number z̃? You got it!

I do not know a more precise (or more eloquent) quick description which
captures all uses of SRT to express self-reference.6

§1. Self reproducing Turing machines. In one of the standard definitions,
a deterministic Turing machineM on the alphabet Σ = {a0, . . . , aN−1} and
with states q0, . . . , qK operates on semi-infinite “tapes” with symbols from Σ
in some of their cells. The machineM is determined by a finite sequence of
transitions, i.e., quintuples of the form

qi s qj s
′ m

where qi is the old state; s is the mark in the scanned cell, and it is either
in Σ or the fresh (not in Σ) blank symbol  ; qj is the new state; s

′ is the
new symbol or  , put in the scanned cell; and m is the move, one of left,
center, right. If we assume for simplicity that Σ has at least three symbols, 0,
1 and the comma “,” then the transition above is specified uniquely by the
non-empty sequence of symbols from Σ (no blanks)

i in binary, s, j in binary, s ′, mm

where s is either a symbol or just omitted, and similarly for s ′, and the move
is coded by one of the two digit combinations 10, 00, 01; for example

q0  q2 , right is specified by the string 0, , 10, , , 01 .

We can then identify every Turing machine M on Σ with a finite sequence
of such strings separated by commas, i.e., another string in the set Σ∗ of
non-empty strings from Σ.

Theorem 1.1. On every alphabet Σ with N ≥ 3 symbols, there is a Turing
machineM which started on the blank tape outputs itself.

Proof. For each number u, let s(u) be its unique expansion in base N
using the symbols of Σ for digits, and set

ϕn(e, ~x) = w ⇐⇒ s(e) is a Turing machineM

and if we startM on s(x1) s(x2) · · ·  s(xn)

then it stops with the tape starting with s(w) .

6These applications of SRT are treated extensively in Chapter 11 of Rogers [1967], which
includes many of the examples I have chosen to present here.
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The standard assumptions hold with these ϕn (with V = N), because they
are all recursive, the codings are effective, and every recursive partial function
can be computed by a Turing machine.
A Turing machine M on Σ with code e is tidy if whenever ϕne (~x) = w,
thenM stops on the input s(x1) s(x2) · · ·  s(xn) with just s(w) at the left
end of the tape—and just blanks after that.

Lemma. For each n, there is a total recursive function tidyn(e), such that for
every code e of a Turing machine, tidyn(e) is a code of a tidy Turing machine
M ′ on the same alphabet such that ϕne = ϕ

n
tidy(e)

.

This is a standard fact about Turing machines.7

We now apply SRT with these codings and m = n = 0, to get a number z̃
such that

ϕ0z̃ ( ) = tidy
0(z̃);

the machineM with code tidy0(z̃) is clearly self-reproducing. ⊣

There are more specific, concrete results of this type (cf. Margenstern
and Rogozhin [2002]) as well as more general ones in Rogers [1967], but
this simple, natural construction illustrates the power of SRT to realize self-
reference.

§2. Myhill’s characterization of r.e.-complete sets. Recall that a relation
R(~x) on N is semirecursive or Σ01 if there is a recursive relation P(~x, y) which
is monotone in y and defines it, i.e.,

[
P(~x, y)&y < y ′

]
=⇒P(~x, y ′) and R(~x) ⇐⇒ (∃y)P(~x, y). (4)

A set A ⊆ N is recursively enumerable (r.e.) if membership in A is semirecur-
sive, or equivalently, if for some e,

A =We = {x ∈ N : {e}(x)↓}.

An r.e. set A is complete if for each r.e. set B there is a recursive (total)
function f such that x ∈ B ⇐⇒ f(x) ∈ A;8 and it is creative if there is a
unary recursive partial function u(e) such that

We ∩ A = ∅=⇒ u(e)↓ & u(e) /∈ (A ∪We). (5)

The notions go back to the fundamental Post [1944] who showed (in effect)
that every r.e.-complete set is creative and implicitly asked for the converse.

Theorem 2.1 (Myhill [1955]). Every creative set is r.e.-complete.

7The Lemma can be proved by quoting basic facts about Turing machines: each ϕne is
(uniformly) ì-recursive, and each ì-recursive partial function can be (uniformly) computed
by a tidy Turing machine.
8And then one can find a one-to-one f with the same property, cf. Theorem VII

in Rogers [1967], but we will not be concerned with this here.
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Proof. Assume that u(e) satisfies (5), and for a fixed r.e. set B choose a
function z̃(x) by SRT (with V = N, m = n = 1) so that

{z̃(x)}(t) =

{

1, if x ∈ B & u(z̃(x))↓ & t = u(z̃(x)),

⊥ (i.e., undefined), otherwise.

We claim that the function f(x) = u(z̃(x)) is total and that for every x,

x ∈ B ⇐⇒ f(x) ∈ A.

The first claim is immediate, because if f(x) ↑, thenWz̃(x) = ∅ ⊆ Ac , and

so u(z̃(x))↓ by the hypothesis.
For the second, assume first that x /∈ B ; this implies again thatWz̃(x) = ∅,
soWz̃(x) ∩ A = ∅ and hence f(x) = u(z̃(x)) /∈ A. Finally, if x ∈ B , then

Wz̃(x) = {{f(x)}},

and we must have that f(x) ∈ A—otherwise u(z̃(x)) = f(x) /∈ {{f(x)}},
which is absurd. ⊣

This clever argument of Myhill’s has many applications, as we will see in
Section §5, but it is also foundationally significant: it identifies creativeness,
which is an intrinsic property of a set A but depends on the coding of
recursive partial functions with completeness, which depends on the entire
class of r.e. sets but is independent of coding. I believe it is the first important
application of SRT in print by someone other thanKleene—except, perhaps,
for Spector [1955] which appeared in the same year.

§3. The Myhill–Shepherdson Theorem. One (modern) interpretation of
this classical result is that algorithms which call their (computable, partial)
function arguments by name can be simulated by non-deterministic algo-
rithms which call their function arguments by value. It is a rather simple but
interesting consequence of SRT.
Let Pmr be the set of all m-ary recursive partial functions. A partial
operation

Φ: Nn × Pmr ⇀ N (6)

is effective if its partial function associate

f(~x, e) = Φ(~x, ϕme ) (7)

is recursive. In programming terms, an effective operation calls its function
argument by name, i.e., it needs a code of any p ∈ Pmr to compute the value
Φ(~x, p).
There are cases, however, when we need to compute Φ(~x, p) without
access to a code of p, only to its values. We can make this precise using a
Turing machine M with an oracle which can request values of the function
argument p on a special function input tape: when M needs p(~y), it prints
~y on the function input tape and waits until it is replaced by p(~y) before



KLEENE’S AMAZING SECOND RECURSION THEOREM 195

it can go on—which, in fact, may cause the computation to stall if p(~y) ↑.
In these circumstance we say that M computes Φ by value, and we do not
need to be too fussy in specifying this precisely because of the following
characterization in the non-deterministic case with which we are concerned
here.
We fix an enumeration dm0 , d

m
1 , . . . of all unarym-ary functions with finite

domain of convergence, such that the enumeration dm(s, ~y) = dms (~y) and
the convergence condition dm(s, ~y) ↓ are both recursive, and if d (s, ~y) ↓,
then y1, . . . , ym ≤ s .

Theorem (Normal form for Turing computable operations). Apartial op-
erationΦ: Nn×Pmr ⇀ N is computable by a non-deterministic Turingmachine
with an oracle for the function argument if and only if there exists a semirecur-
sive relation R such that

Φ(~x, p) = w ⇐⇒ (∃s)
[
dms ⊆ p&R(~x,w, s)

]
. (8)

This is quite easy to prove, with the correct definition of non-deterministic
computation.9

Notice that the recursive associate f of an effective operation Φ as in (7)
satisfies the following invariance condition:

ϕe1 = ϕe2 =⇒f(~x, e1) = f(~x, e2). (9)

This is used crucially in the proof below.

Theorem 3.1 (Myhill and Shepherdson [1955]). A partial operation Φ as
in (6) is effective if and only if it is computable by a non-deterministic Turing
machine.10

Proof. Take m = 1 and omit it in the notation, for simplicity. One
direction is immediate from the normal form theorem above, which gives
that

f(~x, e) = w ⇐⇒ Φ(~x, ϕe) = w ⇐⇒ (∃s)
[
ds ⊆ ϕe &R(~x,w, s)

]

so that the associate of Φ has semirecursive graph and is recursive.
For the converse, we need two facts:

(a) Every effective operation is monotone, i.e.,

f(~x, e1) = w &ϕe1 ⊆ ϕe2 =⇒f(~x, e2) = w.

9A non-deterministic machine gives output w on (~x, p) if at least one computation ofM
on (~x, p) terminates and givesw and no terminating computation gives a different value—but
divergent computations are allowed.
10The use of non-deterministic machines here is essential, because the operation

Φ(p) =

(

1, if p(0)↓ or p(1)↓,

⊥, otherwise

is effective but not computable by a deterministic Turing machine.
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Proof. Assume f(~x, e1) = w&ϕe1 ⊆ ϕe2 and apply SRT with V = N,
m = 0, n = 1, to get z̃ such that

ϕz̃(y) = u ⇐⇒ ϕe1(y) = u ∨
[
f(~x, z̃) = w &ϕe2(y) = u

]
.

Now f(~x, z̃) = w—otherwise ϕz̃ = ϕe1 so that f(~x, z̃) = f(~x, e1) = w by
the invariance condition (9); and so ϕz̃ = ϕe2 , which by (9) again gives the
required f(~x, e2) = f(~x, z̃) = w.

(b) Every effective operation is continuous, i.e.,

Φ(~x, ϕe) = w =⇒ (∃ a finite p ⊆ ϕe)
[
Φ(~x, p) = w

]
.

Proof. Let P(~x, e, w, t) be a (monotone in t) recursive relation such that

f(~x, e) = w ⇐⇒ (∃t)P(~x, e, w, t)

as in (4), assume that f(~x, e) = w, and choose z̃ by SRT such that

ϕz̃(y) = u ⇐⇒ ϕe(y) = u&(∀t ≤ y)¬P(~x, z̃, w, t),

so that ϕz̃ ⊆ ϕe . Check as above that f(~x, z̃) = w—otherwise ϕz̃ = ϕe ;
and so

ϕz̃(y)↓ =⇒ y < ìtP(~x, z̃, w, t),

and ϕz̃ is the required finite partial function.

Let ds = ϕc(s) for a total recursive function c. From (a) and (b) we get
immediately that for every recursive p : Nn ⇀ N,

Φ(~x, p) = w ⇐⇒ (∃s)
[
ds ⊆ p&f(~x, c(s)) = w

]

and then the normal form theoremabove supplies anon-deterministicTuring
machine which computes Φ. ⊣

3.1. Aside: the two recursion theorems.11 A (partial) functional is any
partial operation

Φ: Nn × Pm ⇀ N,

where Pm is the set of all m-ary partial functions, not just the recursive
ones; and it is recursive (or Turing computable) if it is computed by a non-
deterministic Turing machine as described above.12 It is easy to check that
this holds exactly when Φ satisfies (8) for all ~x,w and all p.
The next result is a simultaneous extension of both the first and the second
recursion theorems:

Theorem 3.2 (The Recursion Theorem). For every recursive functional

Φ: N × Nn × Pn ⇀ N,

there is a number z̃ such that:

11Added at the suggestion of the referee.
12These should really be called non-deterministic recursive functionals, but the terminology

has been fixed by long-term usage, including Kleene’s.
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(a) For all ~x, Φ(z̃ , ~x, ϕz̃) = ϕz̃(~x).
(b) If p is any m-ary partial function such that

(∀~x,w)
[
Φ(z̃ , ~x, p) = w=⇒p(~x) = w

]
,

then ϕz̃ ⊆ p.

In particular, ϕz̃ is the leastm-ary partial function which satisfies the identity
Φ(z̃ , ~x, p) = p(~x).

The Second Recursion Theorem (with m = 0) is the version of this result
when Φ(e, ~x, p) = f(e, ~x) does not depend on p; and the First Recursion
Theorem is the version when Φ(e, ~x, p) = Ψ(~x, p) does not depend on e.

Outline of proof. The basic fact is that a recursive functional Φ(e, ~x, p)
is monotone and continuous in p, in the obvious sense. Using this, fix e, let
pe0 = ∅ be the totally undefined n-ary partial function, and define recursively

pek+1(~x) = Φ(e, ~x, p
e
k).

Now pe0 ⊆ pe1 ⊆ pe2 · · · (by monotonicity), and (by continuity) the limit
partial function

pe =
⋃

k p
e
k

is the least fixed point of Φ for the given e, i.e.,

Φ(e, ~x, pe) = pe(~x), (∀~x,w)[Φ(e, ~x, q) = w=⇒ q(~x) = w]=⇒pe ⊆ q.

The construction of pe from e is effective, and so the partial function

f(e, ~x) = pe(~x)

is recursive; and then the result follows by applying the Second Recursion
Theorem to this f. ⊣

This much is simple. What is not so obvious without some discussion is
the foundational significance of the First Recursion Theorem, which Kleene
considered as (perhaps) the strongest argument in favor of theChurch–Turing
Thesis—and a discussion of that would take us far from our topic.

§4. The Kreisel–Lacombe–Shoenfield–Ceitin Theorem. Let F1r be the set
of all unary total recursive functions. By analogy with operations on P1r , a
partial operation

Φ: Nn ×F1r ⇀ N

is effective if there is a recursive partial function f: Nn+1 ⇀ N such that

ϕe ∈ F1r =⇒Φ(~x, ϕe) = f(~x, e). (10)

Notice that such a recursive associate f of Φ satisfies the invariance condition

ϕe = ϕm ∈ F1r =⇒f(~x, e) = f(~x,m), (11)

but is not uniquely determined.
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The next theorem is a version of the Myhill–Shepherdson Theorem ap-
propriate for these operations. Its proof is not quite so easy, and somewhere
in the middle we will appeal to the following, simple result from elementary
recursion theory:

Lemma (Σ01-Selection, XXV in Kleene [1952]). For each semirecursive re-
lation R(~x, t), there is a recursive partial function íR(~x) such that

(∃t)R(~x, t)=⇒ íR(~x)↓ &R(~x, íR(~x)).

In effect, íR(~x) searches for some t which satisfies R(~x, t) and chooses
one if one exists, and we convey this by the notation

ítR(~x, t) = íR(~x)

read some t such that R(~x, t).

Theorem 4.1 (Kreisel, Lacombe, and Shoenfield [1957], Ceitin [1962]).
Suppose Φ: Nn ×F1r → N is a total effective operation.

(a) Φ is effectively continuous: i.e., there is a recursive partial function
g(e, ~x), such that when ϕe is total, then g(e, ~x)↓ for all ~x, and for all p ∈ F1r ,

(∀t < g(e, ~x))
[
p(t) = ϕe(t)

]
=⇒Φ(~x, p) = Φ(~x, ϕe).

(b) Φ is computed by a deterministic Turing machine.

Outline of proof. Fix a recursive associate f(~x,m) of Φ satisfying (10)
and a recursive, monotone in t (as in (4)) relation R(~x,m,w, t) such that

f(~x,m) = w ⇐⇒ (∃t)R(~x,m,w, t).

Let X0, X1, . . . be an effective enumeration of all (total) functions which are
ultimately 0.

Lemma 1. If ϕe is total and Φ(~x, ϕe) = w, then for every s , there is a k
such that

Φ(~x,Xk) = w &(∀u < s)
[
Xk(u) = ϕe(u)

]
,

i.e., ϕe can be approximated arbitrarily well by ultimately 0 functions Xk for
which Φ(~x,Xk) = Φ(~x, ϕe).

Proof. Assume f(~x, e) = w and fix s . Choose by SRT some z̃1 such that

ϕz̃1(u) =

{

ϕe(u), if u < s ∨ (∀t < u)¬R(~x, z̃1, w, t),

0, otherwise,

and verify that Φ(~x, ϕz̃1) = w and ϕz̃1 is ultimately 0. ⊣Lemma 1

The next, main lemma is considerably stronger than the first claim (a),
and will also help show the second claim (b).
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Lemma 2. There is a total recursive function z̃(e, ~x) such that for fixed ~x, e
and z̃ = z̃(e, ~x), if f(~x, e) = w and (∀t)

[
¬R(~x, z̃, w, t)=⇒ϕe(t)↓

]
, then

g(e, ~x) = ìtR(~x, z̃, w, t)↓, and (a)

for all p ∈ F1r , (∀t < g(e, ~x))
[
p(t) = ϕe(t)

]
=⇒Φ(~x, p) = w. (b)

This implies, in particular, the first claim (a) in the theorem, since the
hypotheses of the lemma are trivially true when ϕe is total.

Proof. Assume the hypothesis and choose by SRT a total recursive z̃(e, ~x)
so that with z̃ = z̃(e, ~x),

ϕz̃(u) =

{

ϕe(u), if (∀t < u)¬R(~x, z̃, w, t),

Xk∗(u), otherwise,

where

k∗ = ík
[
Φ(~x,Xk) 6= w& g(e, ~x)↓ &(∀t < g(e, ~x))(Xk(t) = ϕz̃(t))

]
.

To prove (a) by contradiction, notice that if g(e, ~x) ↑, then ϕe is total (by
the hypothesis) and ϕe = ϕz̃ , and so f(~x, z̃) = f(~x, e) = w, which means
that g(e, ~x)↓.

To prove (b), also by contradiction, suppose that there is a total, recursive
p which agrees with ϕe on all t < g(e, ~x), but Φ(~x, p) 6= w. By Lemma 1
(with s = g(e, ~x)), there is then an ultimately 0 function Xk which also
agrees with ϕe on all t < g(e, ~x) and such that Φ(~x,Xk) = Φ(~x, p) 6= w,
which implies that k∗ ↓ and ϕz̃ = Xk∗ ; but this is a total recursive function
and

Φ(~x, ϕz̃) = w 6= Φ(~x,Xk∗),

which is absurd. ⊣Lemma 2

To prove (b) of the theorem, we use Lemma 2 to verify that for all total,
recursive p,

Φ(~x, p) = w

⇐⇒ (∃e)
(

f(~x, e) = w & g(e, ~x)↓ & (∀t < g(e, ~x))
[
ϕe(t) = p(t)

])

.

This is immediate in the direction ⇒, taking e such that ϕe = p; and for
the converse, notice that the hypotheses of Lemma 2 hold of any e which
satisfies the right-hand-side, and then the lemmagives the left-hand-side. The
equivalence can be used to show (quite easily) that Φ(~x, p) is computable
by a deterministic Turing machine, on total, recursive p. ⊣

The restriction in the theorem to total operations on F1r is necessary,
because of a lovely counterexample in Friedberg [1958].
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Ceitin [1962] proved independently a general version of (a) of Theo-
rem 4.1: every recursive operator on one constructive metric space to an-
other is effectively continuous. His result is the central fact in the school of
constructive analysis which was flowering in Russia at that time, and it has
played an important role in the development of constructive mathematics
ever since.

§5. Incompleteness and undecidability. We prove in this section two basic
theorems which relate SRT to incompleteness and undecidability results:
a version of the so-called Fixed Point Lemma, and a beautiful result of
Myhill’s, which implies most simple incompleteness and undecidability facts
about sufficiently strong theories and insures a very wide applicability for
the Fixed Point Lemma.
Working in the language of Peano Arithmetic (PA) with symbols 0, 1,+, ·,
define first (recursively) for each x ∈ N a closed term ∆x which denotes x,
and for every formula ÷, let

#÷ = the code (Gödel number) of ÷, p÷q ≡ ∆#÷ = the name of ÷.

We assume that the Gödel numbering of formulas is sufficiently effective so
that (for example)13 #ϕ(∆x1, . . . ,∆xn) canbe computed from#ϕ(v1, . . . , vn)
and x1, . . . , xn. A theory (in the language of PA) is any set of sentences T
and

Th(T ) = {#è : è is a sentence and T ⊢ è}

is the set of (Gödel numbers of) the theorems of T . A theory T is sound if
every è ∈ T is true in the standard model (N, 0, 1,+, ·); it is axiomatizable if
its proof relation

ProofT (e, y) ⇐⇒ e is the code of a sentence ó

and y is the code of a proof of ó in T

is recursive, which implies that Th(T ) is recursively enumerable; and it is
sufficiently expressive if every recursive relation R(~x) is numeralwise express-
ible in T , i.e., for some ϕR(v1, . . . , vn) whose free variables are in the list
v1, . . . , vn,

R(x1, . . . , xn)=⇒T ⊢ ϕR(∆x1, . . . ,∆xn),

¬R(x1, . . . , xn)=⇒T ⊢ ¬ϕR(∆x1, . . . ,∆xn).

13By the usual convention, we view ϕ(v1, . . . , vn) as a pair (ϕ, (v1, . . . , vn)) of a formula
and a sequence of variables, and then ϕ(∆x1, . . . ,∆xn) is the formula obtained by replacing
each vi in all its free occurrences in ϕ by ∆xi .
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Theorem 5.1 (Fixed Point Lemma). If T is axiomatizable in the language
of PA and Th(T ) is r.e.-complete, then for every formula è(v) with at most v
free, there is a sentence ó such that

T ⊢ ó ⇐⇒ T ⊢ è(póq). (12)

Proof. Let ø0, ø1, . . . be recursive partial functions satisfying the stan-
dard assumptions, let14

u ∈ A ⇐⇒ (∃n)
[
Seq(u)& lh(u) = n + 1&øn((u)0, (u)1, . . . , (u)n)↓

]
,

so that A is r.e. and there is a total recursive function r such that

u ∈ A ⇐⇒ r(u) ∈ Th(T ).

We will use SRT with V = {{0}} and

ϕn(e, ~x) = 0 ⇐⇒ øn(e, ~x)↓ ⇐⇒ r(〈e, ~x〉) ∈ Th(T ) (13)

which clearly satisfy the standard assumptions; in addition, every semirecur-
sive relation R(~x) satisfies

R(~x) ⇐⇒ {e}(~x) = 0

with some e ∈ N.
Given è(v), SRT (with m = n = 0) gives us a number z̃ such that

{z̃}( ) = 0

⇐⇒ r(〈z̃〉) is not the code of a sentence or T ⊢ è(∆r(〈z̃〉)). (14)

Now r(〈z̃〉) is the code of a sentence, because if it were not, then the right-
hand-side of (14) would be true, which makes the left-hand-side true and
insures that r(〈z̃〉) codes a sentence, in fact a theorem of T ; and if r(〈z̃〉) =
#ó, then

T ⊢ ó⇐⇒ r(〈z̃〉) ∈ Th(T )⇐⇒{z̃}( ) = 0

⇐⇒T ⊢ è(∆r(〈z̃)〉)⇐⇒ T ⊢ è(póq). ⊣

The conclusion of the Fixed Point Lemma is usually stated in the stronger
form

T ⊢ ó ↔ è(póq),

14For any tuple ~x = (x0, . . . , xn−1) ∈ Nn, 〈~x〉 codes ~x so that for suitable recursive relations
and functions,

〈~x〉 = fn(x0, . . . , xn−1), Seq(w)⇐⇒ w is a sequence code, lh(〈~x〉) = n, (〈~x〉)i = xi ;

u ⊑ v ⇐⇒ lh(u) ≤ lh(v)& (∀i < lh(u))
ˆ

(u)i = (v)i
˜

, 1 codes the empty sequence, and

〈u1, . . . , un−1〉 ∗ 〈s〉 = 〈u0, . . . , un−1, s〉.
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but (12) is sufficient to yield the applications. For the First Incompleteness
Theorem, for example, we assume in addition thatT is sufficiently expressive,
we choose ó such that

T ⊢ ó ⇐⇒ T ⊢ ¬(∃u)ProofT (póq, u) (15)

where ProofT (v, u) numeralwise expresses in T its proof relation, and we
check that if T is consistent, then T 0 ó, and if T is also sound, then
T 0 ¬ó. The only difference from the usual argument is that (15) does
not quite say that ó “expresses its own unprovability”—only that it is is
provable exactly when its unprovability is also provable. For the Rosser
form of Gödel’s Theorem, we need to assume that T is a bit stronger (as we
will explain below) and consistent, though not necessarily sound, and the
classical argument again works with the more complex Rosser sentence and
this same, small different understanding of what the Rosser sentence says.
There is a problem, however, with the key hypothesis in Theorem 5.1 that
Th(T ) is r.e.-complete. This is an immediate consequence of the definitions
for sufficiently expressive and sound theories, including, of course, PA, but
not so simple to verify for theories which are consistent but not sound. In
fact it holds for every consistent, axiomatizable theory T which extends
the system Q in Robinson [1950]—which is the standard hypothesis for
incompleteness and undecidability results about consistent theories that need
not be sound.15

The basic facts (and all that we need to know) aboutQ are that it is sound,
axiomatizable, sufficiently expressive, it can prove all true, quantifier-free
sentences, and also, for each k ∈ N,

Q ⊢ (∀x)
[
x ≤ ∆k ∨ ∆(k + 1) ≤ x

]
,

Q ⊢ (∀x)
[
x ≤ ∆k ⇐⇒ x = ∆0 ∨ x = ∆1 ∨ · · · ∨ x = ∆k

]
,

where x ≤ y : ≡ (∃z)[x + z = y].

Theorem 5.2 (Myhill [1955]). If T is any consistent, axiomatizable exten-
sion of Q, then Th(T ) is creative, and hence r.e.-complete.

Outline of proof. We will use SRT with V = {{0, 1}} and the coding

ϕe(~x) =







1, if e codes a formula è(v1, . . . , vn) whose free variables

are in the list v1, . . . , vn, and Q ⊢ è(∆x1, . . . ,∆xn),

0, if e codes a formula è(v1, . . . , vn) whose free variables

are in the list v1, . . . , vn, and Q ⊢ ¬è(∆x1, . . . ,∆xn),

⊥, otherwise,

15For a specification of Q and its properties, see (for example) Boolos, Burgess, and
Jeffrey [1974] or even Kleene [1952], §41. Notice also that Theorem 5.2 does not lose
much of its foundational interest or its important applications if we replace Q by PA in its
statement—and the properties of Q that we use are quite obvious for PA.
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where by ϕe(~x) = ⊥ we mean that ϕe(~x) ↑. This satisfies the standard
assumptions of SRT, by a typical (if not entirely trivial) exercise in using the
properties of Q—including the fact that it is sound.
Choose a recursive, monotone in y relation R(m, e, y) as in (4) such that

e ∈Wm ⇐⇒ (∃y)R(e,m, y),

let R(v1, v2, v3) numeralwise express R(e,m, y) in Q, set

èm(v) : ≡ (∃y)
[
ProofT (v, y)& (∀u ≤ y)¬R(v,∆m, u)

]

and choose by SRT a total, recursive z̃(m) such that

ϕz̃(m)( ) =







1, if z̃(m) is not the code of a sentence,

or z̃(m) = #ó and Q ⊢ èm(p¬óq),

0, if z̃(m) = #ó and Q ⊢ ¬èm(p¬óq),

⊥, otherwise.

The definition implies that z̃(m) is always a code of a sentence óm, and the
coding then gives the following two equivalences:

Q ⊢ óm ⇐⇒ Q ⊢ èm(p¬ómq), (16)

Q ⊢ ¬óm ⇐⇒ Q ⊢ ¬èm(p¬ómq). (17)

We show that

Wm ∩ Th(T ) = ∅=⇒
[
T 0 ¬óm &#¬óm /∈Wm

]
,

which establishes that Th(T ) is creative and completes the proof.
Fix m and suppose thatWm ∩ Th(T ) = ∅.
(i) Assume, towards a contradiction, that T ⊢ ¬óm, and let k be the code
of a proof. Now Q can prove ProofT (p¬ómq,∆k) and it also knows that for
every i ≤ k, ¬R(p¬ómq,∆m,∆i) (since #¬óm /∈ Wm), and so by its basic
properties,

Q ⊢ èm(p¬ómq);

now (16) gives Q ⊢ óm, and hence T ⊢ óm which makes T inconsistent. So
T 0 ¬óm.
(ii) Assume towards a contradiction that #¬óm ∈ Wm. Again, Q knows
that R(p¬ómq,∆m,∆k) for some k, and then it can prove the universal
sentence

¬èm(p¬ómq) ≡ (∀y)
[
¬ProofT (p¬ómq, y) ∨ (∃u ≤ y)R(p¬ómq,∆m, u)

]

by taking cases on whether y ≤ ∆k or not and using (i); it follows by (17)
that Q ⊢ ¬óm, and so T ⊢ ¬óm, which contradicts (i). ⊣

As a consequence, consistent, axiomatizable extensions of Q are undecid-
able and hence incomplete; moreover, the Fixed Point Lemma Theorem 5.1
applies to them, and so we can construct specific, interesting sentences that
they do not decide, a la Rosser.
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A minor (notational) adjustment of the proofs establishes Theorems 5.1
and 5.2 for any consistent, axiomatizable theoryT , in any recursive language,
provided only that Q can be interpreted in T ,16 including, for example, ZFC;
and then a third fundamental result of Myhill [1955] implies that the sets of
theorems of any two such theories are recursively isomorphic.17

§6. Solovay’s theorem in provability logic. The (propositional) modal for-
mulas are built up as usual using variables p0, p1, . . . ; a constant ⊥ denoting
falsity; the binary implication operator → (which we use with ⊥ to define
all the classical propositional connectives); and a unary operator �, which
is usually interpreted by “it is necessary that”. Solovay [1976] studies inter-
pretations of modal formulas by sentences of PA in which � is interpreted
by “it is provable in PA that” and establishes some of the basic results of the
logic of provability. His central argument appeals to SRT at a crucial point.
An interpretation of modal formulas is any assignment ð of sentences of

PA to the propositional variables, which is then extended to all formulas by
the structural recursion

ð(⊥) ≡ 0 = 1, ð(ϕ → ø) ≡ (ð(ϕ)→ ð(ø)),

ð(�ϕ) ≡ (∃u)ProofPA(pð(ϕ)q, u).

A modal formula ϕ is PA-valid if PA ⊢ ð(ϕ) for every interpretation ð.
The axiom schemes of the system GL are:

(A0) All tautologies;
(A1) �(ϕ → ø)→ (�ϕ → �ø) (transitivity of provability);

(A2) �ϕ → ��ϕ (provable sentences are provably provable); and

(A3)
(

�(�ϕ → ϕ)
)

→ �ϕ (Löb’s Theorem).

The inference rules of GL are:

(R1) ϕ → ø,ϕ=⇒ø (Modus Ponens); and
(R2) ϕ=⇒�ϕ (Necessitation).

Theorem 6.1 (Solovay [1976]). A modal formula ϕ is PA-valid if and only
if it is a theorem of GL.

Solovay shows also that the class of PA-valid modal formulas is decidable,
and he obtains a similar decidable characterization of the modal formulas ϕ
such that every interpretation ð(ϕ) is true (in the standard model), in terms
of a related axiom system GL′.
The proof of Theorem 6.1 is long, complex, ingenious and depends essen-
tially (and subtly) on the full strength of PA. It is nothing like the one-line

16A (weak) interpretation of T1 in T2 is any recursive map ÷ 7→ ÷∗ of the sentences of T1
to those of T2 such that T1 ⊢ ÷=⇒T2 ⊢ ÷

∗ and T2 ⊢ (¬÷)
∗ ↔ ¬(÷∗).

17Pour-El and Kripke [1967] have interesting, stronger results of this type, whose proofs
also use the Second Recursion Theorem.
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derivations of Theorems 1.1 and 5.1 from standard facts about the relevant
objects by a natural application of SRT or even the longer, clever proofs
of Theorems 2.1, 3.1, 4.1 and 5.2 in which SRT still yields the punch lines.
But I cannot see how one could possibly construct (or even think up) the
key, “self-referential” closed term l of Solovay’s Lemma 4.1 directly, without
appealing to the Second Recursion Theorem,18 and so, in that sense, SRT is
an essential ingredient of his argument.

Part 2. Effective grounded recursion.

Some years back, the French analyst Claude Dellacherie visited UCLA to
learn what the logically trained descriptive set theorists there might have to
say about potential theory, and after a few days of looking amusingly con-
fused declared that he had finally understood: Codage!, he said, “encoding:
this is all you guys do!” Logicians, of course, understand well their propen-
sity to code—assign to objects names that determine their relevant properties
and then compute, decide or define functions and relations on these objects
by operating on the codes rather than the objects coded—but I think that it
is more prevalent and more important in the results to which we turn now
than in most other areas of logic.
It is appropriate to start this partwith the first application of SRT inKleene
[1938], which introduced effective grounded (transfinite) recursion.

§7. Constructive ordinals. Ordinal numbers can be viewed as the order
types of well ordered sets, but also as extended number systems, which go
beyond N and can be used to count (and regulate) transfinite iteration.
Church and Kleene developed in the 1930s an extensive theory of such
systems, aiming primarily at a constructive theory of ordinals; this was never
realized fully, but the results of Kleene and his student Spector on ordinal
notations had a profound effect on definability theory in first and second
order arithmetic and (later) in effective descriptive set theory.
A notation system for ordinals or r-system (inKleene [1938]) is a setS ⊆ N,
together with a function x 7→ |x|S which assigns to each x in S a countable
ordinal so that the following conditions hold:

(ON1) There is a recursive partial function K(x) whose domain of con-
vergence includes S and such that, for x ∈ S,

|x|S = 0 ⇐⇒ K(x) = 0,

|x|S is a successor ordinal ⇐⇒ K(x) = 1,

|x|S is a limit ordinal ⇐⇒ K(x) = 2.

18Which Solovay invokes to define a function h : N → {0, . . . , n} by the magical words
“Our definition of h will be in terms of a Gödel number e for h. The apparent circularity is
handled, using the recursion theorem, in the usual way.”
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(ON2) There is a recursive partial function P(x), such that if x ∈ S and
|x|S is a successor ordinal, then P(x)↓, P(x) ∈ S and |x|S = |P(x)|S + 1.
(ON3) There is a recursive partial function Q(x, t), such that if x ∈ S
and |x|S is a limit ordinal, then for every t,

Q(x, t)↓, Q(x, t) ∈ S, |Q(x, t)|S < |Q(x, t + 1)|S ,

and |x|S = limt |Q(x, t)|S .

In short, an r-system assigns S-names (number codes) to some ordinals,
so that we can effectively recognize whether a code x names 0, a successor
ordinal or a limit ordinal, andwe can compute anS-name for the predecessor
of each S-named successor ordinal and (S-names for) a strictly increasing
sequence converging to each S-named limit ordinal.
A countable ordinal is constructive if it gets a name in some r-system.
The empty set is an r-system, as is N, which names the finite ordinals, and
every r-system (obviously) assigns names to a countable, initial segment of
the ordinal numbers. It is not immediately clear, however, whether the set of
constructive ordinals is countable or what properties it may have: the main
result in Kleene [1938] clarifies the picture considerably by constructing a
single r-system which names all of them.
Following Kleene, we define the finite ordinal codes by the recursion

0O = 1, (t + 1)O = 2
tO ,

and for any z, we set zt = ϕz(tO).

Lemma. There is an r-system (S1, | |) such that:

(i) 1 ∈ S1 and |1| = 0.
(ii) If x ∈ S1, then 2

x ∈ S1 and |2
x | = |x |+ 1.

(iii) If for all t, et ↓, et ∈ S1 and |et | < |et+1|, then 3 · 5
e ∈ S1 and |3 · 5

e | =
limt |et |.

Proof. Call an r-system(S, | |S) good if it satisfies the conditions

(i) If x ∈ S, then x = 1, or x = 2y for some y, or x = 3 · 5e for some e.
(ii) If 1 ∈ S, then |1|S = 0.
(iii) If 2x ∈ S, then x ∈ S and |2x |S = |x|S + 1.

(iv) If 3 · 5e ∈ S, then for every t, et ↓, et ∈ S, |et |S < |et+1|S , and
|3 · 5e |S = limt |et |.

Prove that if S, S ′ are both good and x ∈ S ∩ S ′, then |x|S = |x|S′ (by
induction on |x|S), and set

S1 =
⋃

{S : (S, | |S) is good}. ⊣

Theorem 7.1 (Kleene [1938]). For every r-system (S, | |S), there is a unary
recursive partial function ø such that

x ∈ S =⇒
(

ø(x)↓ &ø(x) ∈ S1& |x|S = |x |
)

.

In particular, the system (S1, | |) names all constructive ordinals.
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Proof. Let K,P,Q be the recursive partial functions that come with
(S, | |S), choose a number e0 such that

{
S(e0, z, x)

}
(tO) = {e0}(z, x, tO) = {z}(Q(x, t)),

fix by SRT (with V = N, m = 0, n = 1) a number z̃ such that

ϕz̃(x) =







1, if K(x) = 0,

2ϕz̃ (P(x)), if K(x) = 1,

3 · 5S(e0,z̃ ,x), otherwise,

and set ø(x) = ϕz̃(x). The required properties of ø(x) are proved by a
simple (possibly transfinite) induction on |x|S . ⊣

In effect, the map from S to S1 is defined by the obvious transfinite
recursion on |x|S , which is made effective by appealing to SRT—hence the
name for the method.
The choice of numbers of the form 3 · 5e to name limit ordinals was made
for reasons that do not concern us here, but it poses an interesting ques-
tion: which ordinals get names in the system (S ′1, | |

′
1), defined by replacing

3 · 5e by (say) 7e and et by ϕe(t) in the definition of S1? They are the
same constructive ordinals, of course, and the proof is by defining by effec-
tive grounded recursion (exactly as in the proof of Theorem 7.1) a pair of
recursive functions ø,ø′ such that

x ∈ S1=⇒
(

ø′(x) ∈ S ′1& |x|1 = |ø′(x)|′1

)

,

x ∈ S ′1=⇒
(

ø(x) ∈ S1& |x|′1 = |ø(x)|1
)

.

(And I do not know how else one could prove this “obvious” fact.)
For a last, elementary application of effective grounded recursion, we
include two simple results in constructive ordinal arithmetic which will also
be useful later:

Theorem 7.2. (a) There is recursive function a +1 b such that

a, b ∈ S1=⇒ a +1 b ∈ S1& |a +1 b| = |a | + |b| (ordinal addition).

(b) There is a recursive function ub(e) such that if ϕ1e is total and for all t,
ϕe(t) ∈ S1, then ub(e) ∈ S1 and for all t, |ϕe(t)| < |ub(e)|.

Proof. (a) Fix f̂ such that {f̂}(z, a, e, nO) = ϕz(a, {e}(nO)), choose z̃
by SRT such that

ϕz̃(a, b) =







a, if b = 1,

2ϕz̃ (a,y), if b = 2y for some y,

3 · 5S(f̂,z̃,a,e) if b = 3 · 5e for some e,

0, otherwise,
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and set a +1 b = ϕz̃(a, b). Notice that a +1 b↓, by a simple induction on b;
now fix some a ∈ S1, and check by induction on |b| that if b ∈ S1, then
a +1 b ∈ S1& |a +1 b| = |a |+ |b|.
(b) Use (a) to define ub(e) such that when ϕe satisfies that hypotheses,
then ub(e) = 3 · 5z for some z such that for all n,

zn = ϕe(0) +1 1O +1 ϕe(1) +1 1O +1 · · ·+1 ϕe(n) +1 1O

associating to the left. ⊣

§8. Markwald’s Theorem. The constructive ordinals are “constructive
analogs” of the classical countable ordinals, and so the constructive ana-
log of the first uncountable ordinal Ω1 is

ùCK1 = sup{|x | : x ∈ S1} = the least non-constructive ordinal,

the superscript standing for Church–Kleene. This is one of the most basic
“universal constants” which shows up in logic—in many parts of it and
under many guises. We establish one of its earliest characterizations.
A countable ordinal î is recursive if it is the order type of a recursive
wellordering on some subset of N.

Theorem 8.1 (Markwald [1954], Spector [1955]). A countable ordinal î is
constructive if and only if it is recursive.

Proof. Suppose first that î = order type(≤∗) where ≤∗ is a recursive
binary relation which well orders its field F = {x : x ≤∗ x}, and let ñ : F →
î be its rank function, a bijection of F with î such that

x ≤∗ y ⇐⇒ ñ(x) ≤ ñ(y) (x, y ∈ F ).

The idea is to construct an r-system (S, | |S) which names all the ordinals
below ù · î, including î, and to do this, we set first

S = the closure of {3y : y ∈ F } under the operation t 7→ 2t ,

and on S we define

|x|S =

{

ù · ñ(y) if x = 3y for some y ∈ F ,

|t|S + 1 if x = 2t for some t ∈ S.

For example, if a, b are the first two elements of F (relative to ≤∗), then

|3a |S = 0, |2
(3a )|S = 1, |2

2(3
a )
|S = 2, . . . |3

b |S = ù, . . .

It is clear that (S, | |S) satisfies properties (ON1) and (ON2) in the definition
of an r-system. To verify (ON3), we first check (easily) that the ordering

x ≤S y ⇐⇒ x ∈ S &y ∈ S & |x|S ≤ |y|S
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is recursive, and we define Q(3y , t) by the recursion

Q(3y , 0) = 3a (where a is the ≤∗-least member of F ),

Q(3y , t + 1) =

{

t, if Q(3y , t) <S t <S 3
y ,

2Q(3
y ,t) otherwise.

It is quite easy to prove that Q(x, t) satisfies (ON3).
For the converse,19 set first

x ≤e y ⇐⇒ ϕ2e (x, y) = 0, (18)

W = {e : ϕ2e is total and ≤e well orders {x : ϕe(x, x) = 1}}, (19)

so thatW codes all recursive wellorderings and also the recursive ordinals,
by

||e|| = order type(≤e) (e ∈W ).

The idea now is to define by effective grounded recursion a recursive function
ϕz̃ such that

x ∈ S1=⇒
(

ϕz̃(x) ∈W & |x | ≤ ||ϕz̃(x)||
)

. (20)

Choose some e0 ∈ W such that ||e0|| = 0; define (easily, by “pasting”
linear orderings together) recursive (total) functions gs and gl such that

e ∈W =⇒
(

gs(e) ∈W & ||gs(e)|| = ||e||+ 1
)

,

(∀t)
[
ϕm(et) ∈W

]
=⇒

(

gl (m, e) ∈W & (∀t)
[
||ϕm(et)|| < ||gl (m, e)||

])

;

and choose z̃ by SRT such that

ϕz̃(x) =







e0, if x = 1,

gs(ϕz̃(t)) if x = 2
t for some t,

gl (z̃ , e) if x = 3 · 5e for some e,

0, otherwise.

The verification of (20) is by an easy induction on |x |. ⊣

§9. The hyperarithmetical hierarchy. Kleene [1955a] associates with each
a ∈ S1 a set Ha ⊆ N so that:

(H1) H1 = N.
(H2) H2b = H

′
b (= the jump of Hb , see A4 in the Appendix).

(H3) If a = 3 · 5e , then x ∈ Ha ⇐⇒ (x)0 ∈ He(x)1
.

19This was already proved (by a different method) in Kleene [1938].
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A set A ⊆ N is hyperarithmetical (HYP) if it is recursive in some Ha , and if
A ≤Te Ha , then the pair 〈e, a〉 is a HYP-code of A.20 A relation P ⊆ Nn is
hyperarithmetical if

P(~x) ⇐⇒ f(~x) ∈ A

for some A ∈ HYP and a recursive function f(~x).
It is easy to check, directly from the definition that

(i) a set A is recursive in some Ha with finite |a | if and only if A is arith-
metical; and

(ii) if |a | = ù, then Ha ≡
T {#è : è is a true PA-sentence },

so that HYP is a proper extension of the arithmetical hierarchy. It was
also defined independently by Davis [1950a, 1950b] and (in a different way)
by Mostowski [1951], both of whom knew most of its basic properties, but
not the two central facts that we will prove in this section.

9.1. Spector’s Uniqueness Theorem. This early, spectacular result extends
the uniqueness property of ù in (ii) above to all constructive ordinals and
shows that HYP truly ramifies into an ordinal-indexed hierarchy of degrees
of unsolvability. The proof is a bit easier to follow if we notice first a simple,
two-variable version of SRT:

Second Recursion Theorem, 2 (SRT2). For any two recursive partial
functions f(u, v, ~x), g(u, v, ~y) on N, there exist ũ, ṽ ∈ N such that

{ũ}(~x) = f(ũ, ṽ, ~x), {ṽ}(~y) = g(ũ, ṽ, ~y).

Proof. Choose e1, e2 such that

{e1}(z, ~x) = {z}(0, ~x,~0), {e2}(z, ~y) = {z}(1,~0, ~y);

fix z̃ by SRT so that

{z̃}(t, ~x, ~y) =

{

f(S(e1, z̃), S(e2, z̃), ~x), if t = 0,

g(S(e1, z̃), S(e2, z̃), ~y), otherwise;

and take ũ = S(e1, z̃), ṽ = S(e2, z̃). ⊣

To simplify notation, set

a ≺ b ⇐⇒ a, b ∈ S1& |a | < |b|, a ≺
∼ b ⇐⇒ a, b ∈ S1& |a | ≤ |b|,

and for each b ∈ S1, let

IS(b) = {a : a ≺ b}

20Actually, Kleene defines Ha only when a ∈ O, a subsystem of S1 which has more
structure and is “more constructive”, while still providing notations for all constructive
ordinals. I will disregard this fine point here, as many basic facts aboutO can only be proved
classically and the attempt to prove them constructively whenever it is possible clouds and
complicates the arguments. In any case, the results we will formulate and prove about S1
imply immediately their versions about O.
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be the set of S1-codes of ordinals below |b|. To avoid towers of exponents,
we also set (with Kleene)

x∗ = 2x .

Theorem 9.1 (The Uniqueness Theorem, Spector [1955]). There are recur-
sive functions v(b) and u(a, b), such that

(A) If b ∈ S1, then IS(b) is recursive inHb∗ with code v(b).
(B) If a ≺

∼ b, thenHa is recursive inHb with code u(a, b).

In particular, if |a | = |b|, then Ha and Hb have the same degree of unsolv-
ability.21

Outline of Proof. Wewill define v(b) and u(a, b) by appealing to SRT2.
Officially, the definitions of these two functions are by cases (in terms of their
codes ṽ, ũ) and then (A) and (B) are proved together by induction on |b|. We
will be rather informal, however, and simply explain how to decide member-
ship in IS(b) by asking questions about membership in Hb∗, and similarly,
whether x ∈ Ha or not by asking questions about Hb, when a ≺

∼ b. We will
avoid index constructions and make few explicit references to the functions
v(b) and u(a, b) or their codes, and we will mix the construction with the
proof, as we would normally do in a set theoretic definition by transfinite
recursion of functions which satisfy specified conditions. Finally, we will
repeatedly appeal to the fact that Hb is uniformly recursive in Hb∗ = H

′
b ,

and that if b = 3 · 5z , then each Hzn is uniformly recursive in Hb , because

t ∈ Hzn ⇐⇒ 〈t, n〉 ∈ H3·5z .

The more interesting of the many cases that follow are 2A.4 and 3B.3.

Case 1, |b| is finite. In this case IS(b) = {1, 1∗, 1∗∗, . . . , 1∗···∗} is a finite set
of “towers of 2”, and the definitions of v(b) and u(a, b) are quite easy, if a
bit messy; we will skip them.

Case 2, |b| is infinite and b = y∗, for some y.

(A) We consider subcases on a and y, to decide whether a ∈ IS(y∗)
recursively in Hb∗.

Subcase 2A.1, a = 1. Now a ≺ y∗ is true.

Subcase 2A.2, a = x∗, for some x. Now

x∗ ≺ y∗ ⇐⇒ x ≺ y ⇐⇒ x ∈ IS(y),

and the induction hypothesis for (A) supplies us with a code of IS(y) from
Hy∗ = H

′
y ; from this we can construct a code of IS(y) from Hb∗ = H

′′
y , and

then use this code to decide from Hb∗ whether x ≺ y.

21The “uniqueness problem”was posedbyDavis [1950a, 1950b], who answered it positively
for |a | < ù2. Davis showed in fact that if |a | = |b| < ù2, then Ha and Hb are many-one
equivalent, i.e., t ∈ Ha ⇐⇒ f(t) ∈ Hb with a recursive function f, and vice versa. This
stronger form of uniqueness holds only for constructive ordinals of the form î + ç with
ç < ù2, cf. Moschovakis [1966], Nelson [1974].
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Subcase 2A.3, a = 3 · 5w for some w and y is not of the form 3 · 5z . In
this case |y | is a successor ordinal while |a | is a limit ordinal (if a ∈ S1), and
so we cannot have |a | = |y |; thus

a ∈ IS(y∗) ⇐⇒ a ∈ IS(y),

and we can use the induction hypothesis for (A) on y to decide from Hb∗
whether a ∈ IS(y∗) as above.

Subcase 2A.4, a = 3 · 5w for some w and y = 3 · 5z for some z. In this
case

a ∈ IS(b) ⇐⇒ 3 · 5w ≺
∼ 3 · 5

z

⇐⇒ (∀m)
[
wm ↓ &wm+1↓ & (∃n)

[
wm+1 ∈ IS(zn)&wm ∈ IS(wm+1)

]]

⇐⇒ (∀m)(∃s)(∃t)
[
wm = s &wm+1 = t&(∃n)

[
t ∈ IS(zn)& s ∈ IS(t)

]]

⇐⇒ (∀m)(∃s)(∃t)(∃n)
[
wm = s &wm+1 = t& t ∈ IS(zn)& s ∈ IS(t)

]
.

Now IS(zn) is (uniformly) recursive in Hz∗n by the inductive hypothesis
for (A); and so (uniformly) recursive in Hzn+1 by the inductive hypothe-
sis for (B), since z∗n ≺

∼ zn+1; and so (uniformly) recursive in Hy . Similarly,
IS(t) is (uniformly) recursive in Ht∗ if t ∈ IS(zn), so that t ∈ S1; and so
(uniformly) recursive in Hy , by the same argument if t ∈ IS(zn). Also, the
relation wm = s is semirecursive and so uniformly recursive inHy , since |y |
is infinite. If we now combine these uniformities, we get a fixed number e
such that if b ∈ S1, then

a ∈ IS(b) ⇐⇒ (∀m)(∃s)(∃t)(∃n)
[
{e}0(b, a,m, s, t, n,Hy) = 0

]
;

and if we now contract like quantifiers and apply (32) and (33) (in the
Appendix), we get an e′ such that

a ∈ IS(b) ⇐⇒
{
e′

}0
(b, a,Hy∗∗) = 0 ⇐⇒

{
S(e′, b)

}0
(a,Hb∗) = 0

which is what we need.

Case 2A.5, otherwise. In this case a ∈ IS(b) is false.

(B) We define u(a, b) taking cases on the form of a, and show that it has
the required property when a ≺ b.

Case 2B.1, a = 1. NowHa = N, and it is trivially recursive in Hb .

Case 2B.2, a = x∗ for some x. Now a ≺
∼ b gives x

≺
∼ y, if a ∈ S1; the

induction hypothesis gives us a code of Hx from Hy ; and from this we can
construct a code of Ha = H

′
x from Hb = H

′
y .

Case 2B.3, a = 3 · 5w . In this case, if a ≺
∼ b, then a

≺
∼ y, since |a | is

a limit ordinal while |b| is a successor, and so they cannot be equal. The
induction hypothesis supplies us with a code ofHa fromHy , from which we
can compute a code of Ha from Hb = H

′
y .
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Case 2B.4, otherwise. In this case a /∈ S1 and we can define u(a, b)
arbitrarily, say set u(a, b) = 0.

This completes the definition of v(b) and u(a, b) and the proof of (A)
and (B) when b = y∗ for some y.

Case 3, b = 3 · 5z , for some z.

(A) In this case,

a ∈ IS(b) ⇐⇒ (∃n)
[
a ∈ IS(zn)

]
,

and the induction hypothesis for (A) supplies us with a code of IS(zn)
from Hz∗n ; and then the induction hypothesis for (B) supplies us with a
code of Hz∗n from Hzn+1 , and the definition of Hb gives us directly a code of
Hzn+1 from Hb. So finally we have an equivalence of the form

a ∈ IS(b) ⇐⇒ (∃n)
[
{e}(a, b, n,Hb) = 0

]

with some e; from which we can get a code of IS(b) from Hb∗ using (32).
(B) For this we need again to take cases on the form of a.

Subcases 3B.1, 3B.2, a = 1 or a = x∗ for some x. The first is trivial, and
in the second case we know that if a ∈ S1, then

a ≺
∼ b=⇒ a ≺ zn

for some n, since |a | is a successor ordinal. The induction hypothesis for (A)
supplies us (uniformly) a code of IS(zn) from Hz∗n , from which we can
compute a code of IS(zn) from Hzn+1 using the induction hypothesis for (A)
(since z∗n ≺

∼ zn+1), and then a code of the relation

R(a, b, n) ⇐⇒ a ∈ IS(zn)

fromHb; and so we can compute the least n such that a ∈ IS(zn) recursively
in Hb . We can now decide whether t ∈ Ha recursively from Hzn , for this n,
and so from Hb.

Subcase 3B.3, a = e · 5w for some w. The assumption that a ≺
∼ b means

that

(∀m)(∃n)[wm↓ &wm ∈ IS(zn)],

and the induction hypothesis supplies us with a code of the relation

R(a, b,m, n) ⇐⇒ wm ↓ &wm ∈ IS(zn)

from Hb , as in Case 3B.2. It follows that the function

f(m) = ìn
[
wm ∈ IS(zn)

]

is recursive inHb , and we can compute a code of it fromHb . Now, to reduce
Ha to Hb, it is enough to reduce (uniformly) every Hwm to Hb : and we do
this by reducing Hwm to Hzn with n = f(m), and then using the reduction
of this to Hb. ⊣
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Spector’s proof was a big thing and, in particular, impressed Kleene im-
mensely.22 I don’t think this was because of its technical difficulty—the
combinatorial messiness: the earlier Kleene [1955a, 1955b, 1955c] include
very intricate proofs by effective grounded recursion, and Kleene, most
likely, already had some of the truly hairy applications of the method (like
the ë-substitution theorem XXII) in Kleene [1959b] which was submitted
less than three years later. Moreover, Spector’s proof was considerably less
technical than the argument above, because he was working with the sub-
system O ( S1 for which part (A) of Theorem 9.1 can be pulled out, shown
separately, and then used as a lemma in the proof of (B). I think that the
radically new ingredient in Spector’s argument was the free-willing use of
relative recursion: as he needs to formulate it in order for the proof to go
through, Theorem 9.1 is about the relation A ≤Te B where all three of the
variables (A, e, B) vary, while (as far as I know) all arguments involving
relative recursion before then involved using A ≤Te B0 with a fixed B0. It
is a standard move (“vary the parameter”), but not always easy to make in
connection with new notions, as relative recursion still was in 1954.

9.2. Kleene’s Theorem: HYP = ∆11. Above all the arithmetical relations
in (35) and at the bottom of the analytical hierarchy sits ∆11, whose charac-
terization was an obvious challenge:

Theorem 9.2 (Kleene [1955a, 1955c]). A setA ⊆ N is ∆11 if and only if it is
hyperarithmetical. In fact:

(a) There is a recursive function u(e), such that if e is a HYP-code of A,
then u(e) is a ∆11-code of A, and
(b) there is a recursive function v(m), such that ifm is a ∆11-code of A, then
v(m) is a HYP-code of A.23

Theorem 9.2 is the most significant, foundational result in the sequence
of articles Kleene [1935, 1943, 1944, 1955a, 1955b, 1955c, 1959a] in which
Kleene developed the theory of arithmetical, hyperarithmetical and analyt-
ical relations on N, surely one of the most impressive bodies of work in the
theory of definability.24 Starting with the [1944] article, Kleene uses effective,

22One of Kleene’s favorite stories was how he “acted improperly” when Spector explained
to him his proof: “I accepted it as Part 2 of his Ph.D. Thesis, as his supervisor, I urged him
to write it up and submit it to me, as a JSL editor, and then I appointed myself to referee it
and accepted it immediately; very improper—but ultimately for the good of logic, I think!”
The story terrified his later students: how could our own, meager efforts measure up against
this historic past?
23Kleene does not claim this uniform version of (b), only that ∆11 ⊆ HYP, and Joe

Shoenfield once gave me a spirited argument that Kleene’s Theorem should properly refer to
this weaker, non-uniform version. But the uniformity is just under the surface in Kleene’s
argument, as will become clear in the outline of the proof we give below.
24Kleene was the first logician to receive in 1983 the Steele Prize for a seminal contribution

to research of the American Mathematical Society, specifically for the articles Kleene [1955a,
1955b, 1955c].
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grounded recursion in practically every argument: it is the key, indispensable
technical tool for this theory.
We will use (A) of Spector’s Theorem 9.1 to show Theorem 9.2, reversing
the historical order: Spector solved the uniqueness problem after Kleene
proved his basic result—and got a (much) simpler proof of his teacher’s
theorem at the same time. I will outline here a proof which lies somewhere
between Kleene’s and Spector’s, partly to be faithful to the spirit of Kleene’s
work but also because it illustrates more clearly the dependence of this
fundamental result on the Second Recursion Theorem.

Outline of proof of Theorem 9.2. The argument depends heavily on the
(uniform) closure properties of the classes ofΠ11, ∆

1
1 andHYP relationswhich

we have not presented in any detail here, and it involves some considerable
computation.

Proof of (a). We need the following uniform closure properties of ∆11,
which are not hard to verify:

(i) There is a recursive function u1(e), such that if e is a ∆
1
1-code of a set A,

then u1(e) is a ∆
1
1-code of the jump A

′.

(ii) There is a recursive function u2(e) such that if for each n, {e}(n)↓ and
{e}(n) is a ∆11-code of a set An, then u1(e) is a ∆

1
1-code of the set

Be =
{
t : (t)0 ∈ A(t)1

}
.

(iii) There is a recursive function u3(e,m), such that if m is a ∆
1
1-code of A

and B is recursive in A with code e, then u3(e,m) is a ∆
1
1-code of B .

Let e0 be a fixed ∆
1
1-code of N, fix e1 so that

{e1}(z, e, n) = ϕz
(
{e}(nO)

)
,

and choose z̃ by SRT such that

ϕz̃(a) =







e0, if a = 1,

u1(ϕz̃(y)), if x = 2y for some y,

u2(S(e1, z̃, e)), if a = 3 · 5
e for some e,

0, otherwise.

To complete the proof, check first by induction on |a | that if a ∈ S1, then
ϕz̃(a) is a ∆

1
1-code of Ha ; and then set u(〈e, a〉) = u3(e, ϕz̃(a)).

Proof of (b). We need two basic lemmas about ordinal notations.

Lemma 1. The notation system S1 isΠ
1
1.

Proof. As in (18), let

x ≤e y ⇐⇒ ϕ2e (x, y) = 0,

and set

e ∈ LO ⇐⇒ ϕ2e is total and ≤e is a linear ordering.
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The set LO is obviously arithmetical, and its subsetW of codes of wellorder-
ings is Π11. Let also

Zα =
{
t : α(t) = 0

}

be the 0-set of each α ∈ N . Put

P(α, â) ⇐⇒ (∀x ∈ Zα)
[
â(x) ∈ LO

]

&1 ∈ Zα & ≤â(1) is the empty relation

& (∀x)
[
x ∈ Zα =⇒x∗ ∈ Zα & ≤â(x∗)≃ Succ(≤â(x))

]

&(∀z)
(

(∀n)
[
zn ↓ & zn ∈ Zα &P1(z, n)

]

=⇒ 3 · 5z ∈ Zα &P2
(
â(3 · 5z), z)

)

where ≃ indicates similarity (order isomorphism) of linear orderings and

(i) Succ(≤e) is the linear ordering constructed by putting one new point
at the top of ≤e;
(ii) P1(z, n) ⇐⇒ ≤zn+1 is not similar with any initial segment of ≤zn ;
and

P2(e, z) ⇐⇒ e ∈ LO& (∀n)
[
zn ∈ LO

]

& (∀n)
[
≤zn is similar with a proper initial segment of ≤e

& every proper initial segment of ≤e

is similar with an initial segment of some ≤zn
]
. (iii)

(a) The relation P(α, â) is Σ11. This is because a similarity between two
linear orderings on subsets of N can be witnessed by some ã ∈ N which
satisfies some arithmetical properties.
(b) If Zα = S1 and â chooses some wellordering ≤â(a) of order type |a |

for each a ∈ S1, then P(α, â).
(c) If P(α, â), then for every a ∈ S1, a ∈ Zα and ≤â(a) is a wellordering
of order type |a |.

These are all quite simple (the last by induction on |a |), and together they
imply that

a ∈ S1 ⇐⇒ (∀α)(∀â)
[
P(α, â)=⇒α(a) = 0

]
,

which gives the required Π11 definition of S1. ⊣Lemma 1

Lemma 2. S1 is Π
1
1-complete: i.e., for every Π

1
1 set A, there is a total

recursive function g(x) such that

x ∈ A ⇐⇒ g(x) ∈ S1. (21)
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Proof. Directly from the definition, everyΠ11 setB satisfies an equivalence
of the form

x ∈ B ⇐⇒ (∀α)(∃t)R(x, α(t)),

where R ⊆ Nn+1 is recursive and
[
u ⊑ v&R(~x, u)

]
=⇒R(~x, v). Let

Q(x, u) ⇐⇒ (∀α)
[
u ⊑ α=⇒ (∃t)R(x, α(t))

]

so that

x ∈ B ⇐⇒ Q(x, 1),

and for any x, u, let

Tx,u =
{

v :
[
v ⊑ u ∨ u ⊑ v

]
&¬R(x, v)

}

.

Thinking of Tx,u as a set of sequences (rather than sequence codes), it is
clearly closed under initial segments (it is a tree) because of themonotonicity
condition on R, and easily

Q(x, u) ⇐⇒ Tx,u is well founded.

Fix ĥ such that

{ĥ}(e, x, u, s) = {e}(x, u ∗ 〈s〉)

and choose by SRT a function {z̃}(x, u) such that

{z̃}(x, u) =

{

1, if R(x, u),

ub(S(ĥ, z̃, x, u)), otherwise,

where ub(e) is the upper bound function of Theorem 7.2. It follows that
if {z̃}(x, u ∗ 〈s〉) ∈ S1 for every s , then {z̃}(x, u) ∈ S1 and for every s ,
|{z̃}(x, u ∗ 〈s〉)| < |{z̃}(x, u)|. The claim (21) now holds with g(x) =
{z̃}(x, 1), because

Q(x, u) ⇐⇒ {z̃}(x, u) ∈ S1;

this is easy to check, by induction on the rank of the wellfounded tree
Tx,u in the direction (=⇒ ) and by induction on |z̃(x, u)| in the converse
direction (⇐=). ⊣Lemma 2

To finish the proof, we will need a consequence of (A) in the Uniqueness
Theorem 9.1 and Part (a) above: there is a Σ11 relation R

Σ(a, b) such that

b ∈ S1=⇒ (∀a)
[

a ≺ b ⇐⇒ RΣ(a, b)
]

;

because IS(b) is uniformly recursive in Hb∗ and hence uniformly ∆
1
1—in

particular, Σ11.
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LetG(e, t) be a universal Π11 relation for unary relations onN (for example
G = P1,1,1,0 in the awful notation set in A5), and choose a recursive g(t) by
Lemma 2 such that

G(t, t) ⇐⇒ g(t) ∈ S1.

Suppose A is ∆11, and by Lemma 2 again, choose a recursive f(x) such that

x ∈ A ⇐⇒ f(x) ∈ S1.

The relation

Q(t) ⇐⇒ (∃x)
[

x ∈ A&RΣ(g(t), f(x))
]

is evidently Σ11, and so (by the universality of G) there is a number ē such
that

Q(t) ⇐⇒ ¬G(ē, t).

Notice that G(ē, ē); because if ¬G(ē, ē), then Q(ē) holds, and so there is
some x such that x ∈ A and RΣ(g(ē), f(x)), which means that f(x) ∈ S1
and g(ē) ≺ f(x); which in turn implies that g(ē) ∈ S1, and soG(ē, ē). Now
this implies that ¬Q(ē), which gives

sup
{
|f(x)| : x ∈ A

}
< |g(ē)|,

and so

x ∈ A ⇐⇒ f(~x) ≺ g(ē)

and A is recursive inHg(ē)∗ by (A) of Theorem 9.1. The required uniformity

v(m) which computes a HYP-code of A from a given ∆11-code m of it can be
extracted from this argument. ⊣

9.3. HYP is the smallest effective ó-field. We formulate here a somewhat
different, structural characterization of HYP, which clarifies its place in
effective descriptive set theory, to which we will turn next.
An effective ó-field on N is a pair (F , c) where F is a class of subsets
of N; c : C →→F is a number coding of F , a map from some C ⊆ N onto F ;
and the following conditions hold with suitable recursive partial functions
us , uc , u∪, where, for simplicity, we write

Fa = c(a) (a ∈ C ).

(i) F contains uniformly all singletons: i.e., us(n) ∈ C for every n and
Fus (n) = {{n}}.

(ii) F is uniformly closed under complementation: i.e.,

a ∈ C =⇒
[
uc(a)↓ & uc(a) ∈ C &Fuc (a) = F

c
a = N \ Fa

]
.

(iii) F is uniformly closed under recursive unions: i.e.,

(∀t)
[
ϕm(t) ∈ C

]
=⇒

[
u∪(m)↓ & u∪(m) ∈ C &Fu∪(m) =

⋃

t Fϕm(t)
]
.
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Theorem 9.3. The set of HYP subsets of N is the smallest effective ó-field ;
i.e., it is an effective ó-field (with its natural coding), and if (F , c) is any
effective ó-field, then there is a recursive function é(x) such that for every HYP

set A with code 〈e, a〉, é(〈e, a〉) ∈ C and A = Fé(〈e,a〉).

Outline of Proof. From the functions us , uc , u∪ that are needed to show
that HYP is an effective ó-field, us and uc are trivial. To define u∪(m), fix
recursive functions e(m) and a(m) such that

{
e(m)

}
(t) =

(
{m}(t)

)

0
,

{
a(m)

}
(t) =

(
{m}(t)

)

1
,

so that if {m}(t) = 〈{e(m)}(t), {a(m)}(t)〉 is a HYP code of some set At ,
then {a(m)}(t) ∈ S1 and {e(m)}(t) is a code of At from H{a(m)}(t). By (b)

of Theorem 7.2 then, m = ub(a(m)) ∈ S1 and {a(m)}(t) ≺ m for every t,
if ϕ1

a(m)
is total with values in S1, so that by (B) of the Uniqueness Theorem

(and standard properties of relative recursiveness), At is recursive in Hm
with code v(t, m), with a recursive function v. From this and (32), we easily
get a recursive w(m) such that

x ∈
⋃

t At ⇐⇒ (∃t)
[{
v(t, m)

}(
x,Hm

)
= 0

]

⇐⇒
{
w(m)

}(
x,H ′

m

)
= 0 ⇐⇒

{
w(m)

}(
x,Hm∗

)
= 0,

and then u∪(m) = 〈w(m), m∗〉 is a HYP-code of
⋃

t At , as required.
To prove the converse, suppose first that (F , c) is an effective ó-field which
is uniformly closed under recursive preimages: i.e., there is a recursive function
u(a,m), such that if a ∈ C and ϕ1m is total, then u(a,m) ∈ C and

Fu(a,m) = ϕ
−1
m [Fa].

A relation R ⊆ Nn is in F with code 〈n, a〉 if a ∈ C and

R(x1, . . . , xn) ⇐⇒ 〈x1, . . . , xn〉 ∈ Fa = c(a).

Using the additional hypothesis on (F , c), it is now routine to show:

(i) The (coded) collection F r of relations in F contains uniformly every Σ01
relation and is uniformly closed under recursive substitutions, &,∨,¬, (∃t ∈ N)
and (∀t ∈ N).

For example, this means that for some recursive function v∃(n, a),

(∃t)
[
〈x1, . . . , xn, t〉 ∈ Fa

]
⇐⇒ 〈x1, . . . , xn〉 ∈ Fv∃(n,a),

and this v∃(n, a) can be easily constructed using the uniform closure of F
under recursive substitutions and recursive unions.
One of the consequences of (i) is that F is uniformly closed under the
jump operation. Moreover:

(ii) F r is uniformly closed under diagonalization: i.e., for some recursive
ud (n,m), if ϕ

1
m is total and for every t, ϕm(t) codes in F

r an n-ary relation
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Rt , then the relation

R(t, ~x) ⇐⇒ Rt(~x)

is also in F r with code ud (n,m). This is because

R(t, ~x) ⇐⇒ 〈t, ~x〉 ∈
{
〈t, ~x〉 : ~x ∈ Rt

}
⇐⇒ 〈t, ~x〉 ∈

⋃

s

{
〈s, ~x〉 : ~x ∈ Rs

}
,

the relation {〈t, ~x〉 : ~x ∈ Rt} is inF
r uniformly in t, because F r is uniformly

closed under recursive substitutions, and then F r is uniformly closed under
recursive unions, because F is.
Using (i) and (ii) now, we can define the required function é which imbeds

HYP in F by a routine effective grounded recursion.
To prove25 the result for an arbitrary effective ó-field (F , c), let F∗ be the
set of all A ∈ F such that for every total ϕe , the inverse image ϕ

−1[A] ∈ F ,
uniformly: i.e., there is a v̂ such that

if ϕe is total, then {v̂}(e)↓ & {v̂}(e) ∈ C &ϕ−1[A] = c({v̂}(e));

any v̂ with this property is an F∗-code of A—and it determines an F-code
of A, namely {v̂}(i0) where i0 is any code of the identity function. It is
quite easy to check that F∗ is an effective ó-field with this coding, and it is
uniformly closed under recursive preimages: so the proof of the special case
gives us an imbedding é ofHYP intoF∗ whose compositionwith v̂ 7→ {v̂}(i0)
finally embeds HYP into (F , c). ⊣

§10. Effective Descriptive Set Theory. Kleene was primarily interested in
relations on N, and he was more-or-less dragged into introducing quantifi-
cation over N and the analytical hierarchy in order to find explicit forms
for the hyperarithmetical relations. Once they were defined, however, the
analytical relations on Baire space naturally posed new problems: is there,
for example, a construction principle for the ∆11 subsets of N—a useful and
interesting generalization of Theorem 9.2?
In fact, these were very old problems, initially posed (and sometimes
solved, in different form) by Borel, Lebesgue, Lusin, Suslin and many oth-
ers, primarily analysts and topologists who were working in Descriptive Set
Theory in the first third of the 20th century. The similarity between what they
had been doing andKleene’swork was first noticed byMostowski [1946] and
(especially) Addison [1954, 1959], and later work by many people created a
common generalization of the classical and the new results now known as
Effective Descriptive Set Theory, cf. Moschovakis [2009a].
After introducing the necessary definitions in this preamble, I will discuss
just three results from effective descriptive set theory, which are proved by
effective, grounded recursion and witness the power of the method and the
breadth of its applicability.

25This wrinkle is needed because I do not know if every effective ó-field is uniformly closed
under recursive preimages; I suspect it is not.
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A topological space X is Polish if it is homeomorphic with a separable,
complete metric space. Standard examples are the real numbers R and
the Baire space N , but N (with the discrete topology) is also Polish, albeit
trivial, and the category of Polish spaces is closed under finite and countable
products as well as many other natural operations.
Basic to the study of Polish spaces is the family B = B↾X of Borel subsets
of each X , the smallest ó-field of subsets of X which contains all the open
sets. A function

f: X → Y

is Borel (measurable) if the inverse image f−1[G ] of any open set in Y is
a Borel subset of X , and it can be shown that any two uncountable Polish
spaces are Borel isomorphic; so for most of the intersting results, it is enough
to prove them for R or N .
The effective theory of Polish spaces starts with the definition of a presen-
tation of X : this is any triple ({r0, r1, . . . , }, P,Q) such that for some distance
function d : X → R which generates the topology of X :

(i) {r0, r1, . . . , } is dense in X ,
(ii) P(i, j,m, k) ⇐⇒ d (ri , rj) ≤

m
k+1 , and

(ii) Q(i, j,m, k) ⇐⇒ d (ri , rj) <
m
k+1 .

Every presentation of X determines a compatible metric structure up to
isometry and, in particular, it determines X up to homeomorphism. A
presentation is recursive (in ε ∈ N ) if P and Q are recursive (in ε), and
one typically gives proofs for recursively presented (r.p.) Polish spaces whose
(trivial) relativizations apply then to all Polish spaces.
Fix a r.p. Polish space X and for each s ∈ N, let

Bs = B
X
s =

{

x ∈ X : d (r(s)0 , x) <
(s)1
(s)2 + 1

}

,

so that the sequence of open balls B0, B1, . . . generates the topology of X .
A set G ⊆ X is recursively open or Σ01 if for some r.e. setWe ⊆ N,

x ∈ G ⇐⇒ (∃s)
[
x ∈ Bs & s ∈We

]
, (22)

which means that G is a recursive union of open balls (or empty).
A function f: X → Y on one r.p. Polish space to another is recursive, if
its neighborhood diagram

Gf(x, s) ⇐⇒ f(x) ∈ BY
s (x ∈ X , s ∈ N)

is semirecursive. The class of these functions has all the natural closure
properties one would expect, and they coincide with those defined in A2
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and A6 whenX is a “simple product space” and Y isN orN . One may think
of recursiveness in this context as a “computable refinement” of continuity.26

Starting with Σ01, we define the arithmetical pointclasses
27 in r.p. Polish

spaces by the obvious extension of the definitions in A5: Π0l is the pointclass

of complements of sets in Σ0l ; Σ
0
l+1 comprises all sets P ⊆ X such that for

some Π0l set Q ⊆ X × N

P(x) ⇐⇒ (∃t)Q(x, t);

and ∆0l = Σ
0
l ∩Π

0
l . For the analytical pointclasses, again: a set P ⊆ X is Σ11

if

P(x) ⇐⇒ (∃α)Q(x, α) (23)

with some Π01 set Q ⊆ X × N ; it is Π1s if it is the complement of a Σ
1
s set;

it is Σ1s+1 if it satisfies (23) with a Π
1
s set Q ⊆ X × N ; and ∆1s = Σ

1
s ∩Π

1
s .

The definitions agree with those in A5 when X is a simple product space,
and the extended pointclasses have all the standard closure properties of the
arithmetical and analytical pointclasses on N an N . In particular, they are
all closed under recursive substitutions, i.e., if Γ is any one of them, Q ⊆ Y is
in Γ, f: X → Y is recursive and

P(x) ⇐⇒ Q(f(x)) (x ∈ X ),

then P(x) is also in Γ.
The boldface associate Γ

e

of a pointclass Γ comprises all subsets P ⊆ X of
a r.p. Polish space such that for some R ⊆ N ×X , R ∈ Γ and some ä0 ∈ N ,

P(x) ⇐⇒ R(ä0, x).

The pointclasses Σ
e

1
s ,Π

e

1
s are constructed in this way from Σ

1
s ,Π

1
s , and then

we set ∆
e

1
s = Σ

e

1
s ∩ Π

e

1
s . It turns out that these pointclasses are exactly the

projective pointclasses which had been introduced by Luzin and Sierpinski
in topological terms in the 1920s, one of the “similarities” between classical
descriptive set theory and the “hierarchy theory” of Kleene (as it was then
called) which caught the attention of Mostowski [1946] and Addison [1954,
1959]; the other was the following, central result of the classical theory:

Theorem (Suslin [1917]). On every Polish space X , ∆
e

1
1 = B.

Once Suslin’s Theorem is expressed in this notation,28 it is not possible to
miss the similarity between it and Kleene’s Theorem 9.2.

26One can also define recursive partial functions f: X ⇀ Y on one r.p. Polish space to
another, cf. Section 7A of Moschovakis [2009a]. It is a bit tricky, however, and we only need
here the special case in A6, when X is a simple product space and Y is N or N .
27A pointclass is a collection of subsets of sets in some family which is typically closed

under Cartesian products—the family of all r.p. Polish spaces in this case.
28The Σ,Π,Σ

e

,Π
e

notations were introduced by Addison, who employed them precisely
to bring out the analogies between the work of Kleene and classical descriptive set theory.
(Shoenfield added later the ∆,∆

e

symbols).



KLEENE’S AMAZING SECOND RECURSION THEOREM 223

10.1. TheSuslin–KleeneTheorem. Suslin’sTheorem says nothing aboutN,
since everyA ⊆ N is Borel, andKleene’s Theorem says nothing about subsets
ofR. The first substantial achievement of effective descriptive set theory was
the derivation of a simple, general result which implies both of them. To state
it precisely, we need to code the∆

e

1
1 and the Borel subsets of r.p. Polish spaces,

and we might as well do this in a natural way that will also be useful later on.
Suppose Γ is a pointclass of subsets of r.p. Polish spaces. A good parametri-
zation of Γ (in N ) is an assignment of a Γ-relation GX ⊆ N × X to every
r.p. Polish space, so that the following hold with

GX
ε (x) ⇐⇒ GX (ε, x) (ε ∈ N , x ∈ X ).

(i) A set P ⊆ X is in Γ
e

if and only if P = GX
ε for some ε ∈ N ; and P is

in Γ if and only if P = GX
ε with a recursive ε.

(ii) For every k and every r.p. space X , there is a recursive function
SkX = S : N

1+k → N such that

GN k×X (ε, ~α, x) ⇐⇒ GX (S(ε, ~α), x).

Lemma. The pointclasses Σ0l , Π
0
l ,Σ
1
s , Π

1
s are all well parametrized.

Proof is very easy, by induction on l and then s , starting with a good
parametrization of Σ01 which can be read-off the definition (22). ⊣

We now fix a good parametrization of Π11 and we use it to code the ∆
e

1
1

sets: ε is a Π
e

1
1-code of G

X
ε , and if A = G

X
ε1
= X \ GX

ε2
, then 〈ε1, ε2〉 is a

∆
e

1
1 code of A (with the tupling function 〈ε1, ε2〉 defined in A6).
To code the Borel sets, we first let BC be the least subset of N which
contains {α : α(0) = 0} and satisfies the following implication, for every
α ∈ N , with the notations in A6, A7:

(

α(0) 6= 0& (∀t)
[{
α∗

}1
(t) ∈ BC

])

=⇒α ∈ BC.

This is the set of Borel codes. For each r.p. Polish space X then, we assign to
each α ∈ BC a set Bα = B

X
α such that

α(0) = 0 =⇒ Bα = Bα(1) (the open ball),

α ∈ BC&α(0) 6= 0 =⇒ Bα =
⋃

t

(
X \ B{α∗}1(t)

)
.

One needs to verify that the definitions make sense and that the family
{BX
α : α ∈ BC} comprises precisely the Borel subsets of X , but nothing

difficult is involved in this.

Theorem 10.1 (The Suslin–Kleene Theorem, see Moschovakis [2009a]).
For each r.p. Polish space X , there are recursive functions u, v : N → N such
that if α is a Borel code of a set A ⊆ X , then u(α) is a ∆

e

1
1-code of A, and if â

is a ∆
e

1
1-code of A, then v(â) is a Borel code of A.

In particular, the ∆11 subsets of X are exactly the Borel subsets of X which
have recursive codes.
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The Suslin–Kleene Theorem implies immediately Suslin’s Theorem and
also Kleene’s Theorem 9.2 as follows: if we set

C =
{

e : ϕ1e : N⇀ N is total and ϕ1e ∈ BC
}

,

then Theorem 10.1 for X = N implies that every ∆11 subset of N is

Be = B
N

ϕ1e
for some e ∈ C ;

and a routine effective grounded recursion imbeds then {Be : e ∈ C} into
every effective ó-field, including HYP, as required.29

Beyond its foundational significance, the Suslin–KleeneTheoremhasmany
applications, as did the classical theorem of Suslin. For example: if

f: X ֌ Y

is one-to-one and Borel measurable, then the image f[X ] is a Borel subset
of Y and f has a Borel measurable inverse. This is the famous theorem that
Lebesgue thought he had proved in his [1905], until Suslin discovered the
error ten years later and proved his result, which is a key ingredient of a
correct proof of Lebesgue’s claim. There is a natural effective version of
this claim which, understandably, needs the Suslin–Kleene Theorem for its
proof.
The Suslin–KleeneTheorem is proved inMoschovakis [2009a] by adapting
one of the classical proofs of Suslin’s Theorem and a version of effective
grounded recursion justified by the Second Recursion Theorem for simple
product spaces in A7.30 A somewhat novel slant on this proof (which also
uses SRT) is discussed in Moschovakis [2010].31

10.2. The Normed Induction Theorem. Inductive definitions are preva-
lent in many parts of definability theory, including (emphatically) effective
descriptive set theory. We will prove here a very easy result—it is called a
“remark” inMoschovakis [2009a]—which provides explicit definitions of in-
ductively defined sets in a great variety of circumstances. It is an immediate
consequence of the following

29By adjusting the proof of Theorem 9.3 and with the proper definitions, it is easy to show
that for every r.p. Polish space X , the family of ∆11 subsets of X is the smallest effective ó-field
which contains uniformly all the open balls Bs .
30The Suslin–Kleene Theorem is only claimed in Moschovakis [2009a] for products of

discrete and perfect r.p. Polish spaces, as are all the effective results in that book; but the
proof works for all r.c. Polish spaces, as do most but not all proofs of effective versions of
basic, classical theorems. For example, every perfect r.p. space is ∆11-isomorphic with N , but
not every uncountable r.p. space has this property; cf. Gregoriades [2009], which identifies
the main results of the effective theory that do not hold for all r.p. Polish spaces.
31It is not clear who (if anyone) deserves credit for noticing that the proof

in Kuratowski [1966] can be “effectivized” by using SRT; the idea was certainly in the air in
the early seventies.
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Second Recursion Theorem for relations. Suppose Γ is a well para-
metrized pointclass of r.p. Polish spaces which is closed under recursive substi-
tutions, G ⊆ N × X is the universal set for X , and P ⊆ N × X is in Γ; then
there exists a recursive ε̃ ∈ N , such that

G(ε̃, x) ⇐⇒ P(ε̃, x).

Proof is the same as always. ⊣

Although easy to prove, the Normed Induction Theorem is unfortunately
not elementary. We will illustrate the background we need to state it using
the following effective version of the Cantor–Bendixson theorem, which is a
trivial consequence of it.32

Theorem (Kreisel [1959]). Suppose F is a Σ11 subset of the r.p. space X
which is closed, and

F = k(F ) ∪ s(F )

is the canonical (unique) decomposition of F into a perfect kernel k(F ) and a
countable scattered part s(F ); then k(F ) is Σ11.

Recall that an operator Φ: P(X ) → P(X ) on the subsets of a space X is
monotone if

A ⊆ B =⇒Φ(A) ⊆ Φ(B) (A,B ⊆ X ).

Every monotone operator onP(X ) has a least fixed pointΦ(∞) and a largest
fixed point Φ(∞), defined by

Φ(∞) =
⋃

î Φ
(î), Φ(∞) =

⋂

î Φ(î),

where for each ordinal î, we set recursively

Φ(î) = Φ
(

⋃

ç<î Φ
(ç)

)

and Φ(î) = Φ
(

⋂

ç<î Φ
(ç)

)

(with the usual conventions that
⋃

∅ = ∅ and
⋂

∅ = X ). These are related
via the dual operator

Φ̆(A) = (Φ(Ac))c

which is also monotone and such that

Φ̆(∞) =
(

Φ(∞)

)c
, Φ̆(∞) =

(

Φ(∞)
)c
;

this identity holds in fact locally, i.e., for every î, not just∞.
For the Cantor–Bendixson decomposition, the relevant operator is the
Cantor derivative

DF (A) =
{
x : (∀s)

[
x ∈ Bs =⇒ (∃z)

[
z ∈ Bs & z 6= x& z ∈ F ∩ A

]]}
(24)

32Kreisel actually provedmuchmore, including the fact that this estimate of the complexity
of k(F ) is best possible: there are, in fact, Π01 sets of reals whose kernel is not ∆

1
1.
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which assigns to each A ⊆ X the set of limit points of F ∩ A. By one of the
standard proofs of the Cantor–Bendixson Theorem, the kernel of F is the
largest fixed point of DF ,

DF (∞) = k(F );

and so what we need to prove is that DF (∞) is Σ
1
1, presumably because of

some properties of DF and Σ
1
1.

We take up first the pertinent properties of DF .
Suppose Γ is a pointclass on r.p. Polish spaces, for example one of the
arithmetical or analytical pointclasses we have been studying, and Φ is a
monotone operator on P(X ) for some space X . For any Y and any set
P ⊆ Y × X , we put

PΦ(y, x) ⇐⇒ x ∈ Φ
({
x′ : P(y, x′)

})
,

and we say that Φ is Γ on Γ if for any such P,

if P ∈ Γ, then PΦ ∈ Γ.

By (24),

PDF (y, x) ⇐⇒ (∀s)
[
x ∈ Bs =⇒ (∃z)

[
z ∈ Bs & z 6= x& z ∈ F &P(y, z)

]]
,

and so the Cantor Derivative DF (A) is evidently Σ
1
1 on Σ

1
1; which implies

that the dual operator

Φ(A) = D̆F (A) = DF (A
c)c

is Π11 on Π
1
1. Thus, what we need to show for the Kreisel result is that

Π11 on Π
1
1 monotone operators have Π

1
1 least fixed points.

The prewellordering property of Π11 which insures this fact is very basic and
widely applicable.
A norm on a set P ⊆ X is any function

ñ : P → Ordinals,

which we view as an abstract (ordinal valued) “complexity measure”; and it
is a Γ-norm if the following two binary relations on X associated with ñ are
in Γ:

x ≤∗
ñ y ⇐⇒ x ∈ P&

[
y /∈ P ∨ ñ(x) ≤ ñ(y)

]
,

x <∗
ñ y ⇐⇒ x ∈ P&

[
y /∈ P ∨ ñ(x) < ñ(y)

]
.

A pointclass Γ is normed on X if every P ⊆ X which is in Γ carries a
Γ-norm; Γ is normed (or has the prewellordering property) if it is normed on
every X .
The simplest, classical example is Σ01: whenX is a simple product space (as
these are defined in the Appendix), then the norms ñ : P → ù come directly
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from the appropriate Kleene Normal Form Theorem—i.e., ñ(x) is “the code
of the computation which verifies that x ∈ P”.33

More significantly, for the applications we are pursuing here, Π11 and Σ
1
2

are normed on every r.p. space X : these are classical results which are proved
in one form or another at the very beginning of an exposition of effective (or
classical, for that matter) descriptive set theory.

Theorem 10.2 (Moschovakis [1974] and (7C.8) in [2009a]). Suppose Γ is
a pointclass on r.p. Polish spaces which is well parametrized, closed under
recursive substitutions and normed onN×X , and suppose thatΦ is amonotone
operator on P(X ) which is Γ on Γ; then Φ(∞) is in Γ, and so Φ̆(∞) is in the
dual pointclass ¬Γ of complements of Γ-sets.

Proof. Let ñ be a Γ-norm on the set G ⊆ N × X which is universal for
the Γ-subsets of X . The relation

P(ε, x) ⇐⇒ x ∈ Φ
({
y : (ε, y) <∗

ñ (ε, x)
})

is (easily) in Γ by the hypotheses, and so by SRT for relations above, there is
a recursive ε̃ ∈ N such that

G(ε̃, x) ⇐⇒ x ∈ Φ
({
y : (ε̃, y) <∗

ñ (ε̃, x)
})
. (25)

We complete the proof by showing that Gε̃ = Φ
(∞).

(a) For all x ∈ X , G(ε̃, x)=⇒ x ∈ Φ(∞). By induction on ñ(ε̃, x):

G(ε̃, x)=⇒ x ∈ Φ
({
y : (ε̃, y) <∗

ñ (ε̃, x)
})

(by (25))

=⇒ x ∈ Φ
({
y : y ∈ Φ(∞)

})
(ind. hyp. and monotonicity of Φ)

=⇒ x ∈ Φ(∞). (because Φ(∞) is a fixed point of Φ)

(b) For all î and x, x ∈ Φ(î)=⇒G(ε̃, x). By induction on î: suppose the
claim holds for all ç < î but for some x ∈ Φ(î), ¬G(ε̃, x). By the definition
of <∗

ñ, this means that
[

y ∈ Φ(ç)& ç < î
]

=⇒ (ε̃, y) <∗
ñ (ε̃, x),

and by the monotonicity of Φ,

x ∈ Φ(î)=⇒ x ∈ Φ
(

⋃

ç Φ
(ç)

)

=⇒ x ∈ Φ
({
y : (ε̃, y) <∗

ñ (ε̃, x)
})

=⇒G(ε̃, x),

which is a contradiction. ⊣

The Normed Induction Theorem yields structural characterizations for
various pointclasses which are foundationally interesting, e.g., Π11 is the least
pointclass on r.p. Polish spaces which includes the basic relations x ∈ Bs ,
is closed under recursive substitutions, &,∨, (∃t ∈ N), (∀t ∈ N) and is well

33A Σ01 set of real numbers which carries a Σ
0
1 norm is (easily) either empty or the whole

space, and so Σ01 is not (fully) normed—the only interesting example of this kind.
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parametrized and normed; this was the immediate motivation for proving it.
More recently it has also been used in applications of the effective theory to
analysis, cf. Debs [1987, 2009].
There is an interesting connection between Theorem 10.2 and the infa-
mous error in Kleene [1944], where it was claimed that O is Π02, while, in
fact, O (like S1) is Π

1
1-complete and hence not even Σ

1
1, let alone arithmeti-

cal: this correct placement of O in the Kleene hierarchy is the main result
of Kleene [1955b].
In the first ordinal paper, Kleene introduced a method for finding an
explicit form for an inductively defined relation which is not unlike the
way that differential equations are often solved: one guesses a form of the
solution (for example as a power series) and then computes, by plugging in,
a specific function of this form which satisfies the equation. Without doing
too much violence to the facts,34 we can paraphrase Kleene’s application of
this method as follows.
The ordinal notation system O is the least fixed point of a specific mono-
tone operator ΦO onP(N). Using our terminology, Kleene proved (in effect)
that ΦO is Π

0
2 on Π

0
2, so that ifH ⊆ N ×N is the universal Π02 set relative to

a good parametrization of Π02, then SRT yields a recursive ε̃ such that

H (ε̃, a) ⇐⇒ a ∈ ΦO(Hε̃), (26)

i.e., a Π02 fixed point of ΦO; and so—he said—Hε̃ = O and O is Π
0
2. But

there is no reason for Hε̃ to be the least fixed point of ΦO—and in fact it
cannot be, since O is not Π02. This is the false step in the argument. (It
is a little like assuming that a formal, power series solution of a differential
equation is the solutionwewant without checking that it satisfies the relevant
initial and boundary conditions.)
In fact, it is the largest fixed point of ΦO which is Π

0
2, by Theorem 10.2:

because (by Kleene’s computation), the dual operator Φ̆O is Σ
0
2 on Σ

0
2 and Σ

0
2

is normed—which Π02 is not. Moreover, Theorem 10.2 also implies that O
is Π11, because ΦO is (easily) Π

1
1 on Π

1
1. The argument

35 suggests that

34Kleene did not explicitly use SRT in the first ordinal paper, for reasons that I do not
quite understand: it simplifies the argument without interfering with any of its sensitive parts,
including the error.
35The proof inKleene [1955b] thatO isΠ11 is so complicated as to be practically unreadable,

but the appeal to Theorem 10.2 is also not needed: the result can be easily read off the
equivalence

a ∈ O ⇐⇒ (∀A ⊆ N)
ˆ

(ΦO(a) = A)=⇒ a ∈ A
˜

more-or-less as we did for S1 in the proof of Theorem 9.2, cf. Wang [1958]. The Normed
Induction Theorem is useful in deriving tight explicit forms for relations which are defined
inductively overN , where this simple computation is not useful because it requires quantifi-
cation over P(N ).
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the equivalence we should use to “solve” a recursive definition is not (26)
but (25) which, to make sense, requires Γ to be normed on N ×X .
From this point of view, one may view Theorem 10.2 as one “correct
version” of what Kleene had in mind in the first ordinal paper.

10.3. The Coding Lemma. The last example is from the exotic world of
determinacy, about as far from recursion theory as one could go—or so it
seems at first.

Theorem 10.3 (The Coding Lemma, Moschovakis [1970, 2009a]). In the
theory ZFDC+AD: if there exists a surjectionf: R →→ κ of the continuum onto
a cardinal κ, then there exists a surjection g : R →→P(κ) of the continuum onto
the powerset of κ.

Here ZFDC stands for ZFC with the Axiom of (full) Choice AC replaced
by the weaker Axiom of Dependent Choices DC, and AD is the Axiom of
Determinacy, which is inconsistentwithAC. It has been shownbyMartin and
Steel [1988] andWoodin [1988] that (granting the appropriate large cardinal
axioms), AD holds in L(R), the smallest model of ZFDC which contains
all ordinals and all real numbers. Long before that great (and reassuring!)
result, however, AD was used systematically to uncover the structure of the
analytical and projective hierarchies, see Moschovakis [2009a].
It is not possible to give here a brief, meaningful explanation of all that
goes into the statement of Theorem 10.3 which, in any case, is only a corol-
lary of a substantially stronger result and a precursor of more general, later
theorems. Notice, however, that in a world where it holds, R is immense
in size, if we measure size by surjections: it can be mapped onto ℵ1 (clas-
sically), and so onto ℵ2, and inductively onto every ℵn and so onto ℵù,
etc., all the way onto every ℵî for î < ℵ1; and it can also be mapped
onto the powerset of each of these cardinals. This surjective size of R is
actually immense in the world of AD and the Coding Lemma is one of
the important tools in proving this, as well as many other consequences
of AD.
The Coding Lemma is also one of the basic tools used in Jackson’s Theo-
rem 11.2 in the next section, one of the most spectacular results connecting
two seemingly totally unrelated parts of logic.
The proof of the Coding Lemma is by effective transfinite recursion sup-
ported by a version of SRT which is a bit like that in A7, except that {ε}1(x)
is computed relative to some arbitrary A ⊆ N ; and it does not appear possi-
ble to prove the Coding Lemma without some version of SRT, which in this
way creeps into the study of cardinals, perhaps the most purely set-theoretic
part of set theory.
The hypothesis AD of full determinacy is explored in Section 7D, The
completely playful universe ofMoschovakis [2009a], part of Chapter 7 whose
title is The Recursion Theorem.
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§11. Recursion in higher types and Jackson’s Theorem. Starting with his
[1959b], Kleene developed a theory of recursive partial functions with argu-
ments objects of arbitrary (simple, finite) type over N, i.e., members of the
sets Tn defined by

T0 = N, Tn+1 = (Tn → N) =
{
αn+1 : αn+1 : Tn → N

}
.

Simple examples which illustrate how these objects can be “called” as argu-
ments include

f
(
α2, â1

)
= α2

(
â1

)
+ 1, g

(
α2, â1, s

)
= α2

(
ën

(
ìt

[
â1(sn + t) = 0

]))
,

wherewehave used superscripts to indicate the types of function arguments—
â1 ∈ T1, α

2 ∈ T2, etc. There was no obvious “machine model” which could
capture the notion of computability which seemed natural for these partial
functions, and so Kleene developed an entirely novel approach. Letting

a = a1, a2, . . . , an (type(a1) ≤ type(a2) ≤ · · · ≤ type(an))

vary over finite sequences of objects of any fixed, non-decreasing sequence
of types, he defines directly the basic relation

{z}(a) = w

⇐⇒ z codes a recursive partial function which on a gives output w

by an inductive definition much like that of S1 above. A partial function

f: Ta1 × · · ·Tan ⇀ N

is recursive, if there is some z such that for all awith type sequence a1, . . . , an
and all w ∈ N,

f(a) = w ⇐⇒ {z}(a) = w.

The set-theoretic interpretation of this inductive definition closes at the (rel-
atively) big cardinal iù, but the definition is effective enough so that results
about these partial functions can be established reasonably constructively—
by effective grounded recursion in almost every case, justified by the appro-
priate version of SRT which is (essentially) the first result in Kleene [1959b].
This is a beautiful theory with many applications to several areas of logic,
and there is no way that we can do it justice here, so I will confine myself to
the statements of just one of Kleene’s basic results and a much more recent
(and very different) theorem of Jackson.
For each k ≥ 1, let

k+1
E(αk) =

{

0, if (∃â ∈ Tk−1)
[
α(â) = 0

]
,

1, otherwise,
(27)

be the type-(k+1) object which “embodies” (in Kleene’s description) quan-
tification over type k − 1, so that 2E models quantification over N.
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Theorem 11.1 (Kleene [1959b]). A relation R ⊆ Nn is ∆11 if and only if it
is recursive in 2E.

The theorem expresses in a different way the basic foundational claim of
Theorem 9.2, that the ∆11 relations on N are “essentially” first-order: they
are the sets for which membership can be decided effectively, if we are allowed
to quantify over N.
Recursion in the higher-type quantifiers kE has also been the object of
intensive study, cf. Kechris and Moschovakis [1977] and Sacks [1990]. But
one more recent result about 3E deserves stating here. It is about the Kleene
ordinal associated with 3E,

o(3E) = sup
{
rank(≺) : ≺ is a well founded relation on N in sec(3E)

}
,

where sec(3E) is the boldface section of 3E, the class of all relations recursive
in 3E and some α ∈ N .

Theorem 11.2 (Jackson [1989]). In ZFDC+AD:

o(3E) = the least weakly inaccessible cardinal.

The proof of this amazing identity has not yet been published in full. It
is known to be very complex and to involve a great deal of set theory—and
the Coding Lemma.

§12. Realizability. In the early 1940s, Kleene initiated a program of con-
structing classical interpretations of intuitionistic mathematics by modelling
the “constructions” in the Brouwer–Kolmogorov explication of intuition-
istic truth with recursive partial functions. The initial number realizability
had little to do with the Second Recursion Theorem, which is not mentioned
at all in the first publications on the topic Kleene [1945], Nelson [1947]
and Kleene [1952]; but various forms of SRT are used essentially in the
later function realizability (Kleene and Vesley [1965]), especially to validate
definition by bar recursion, proof by bar induction and various continuity
principles. This connection between realizability theory and SRT is the main
topic of Moschovakis [2010], which is a companion article to this one, and
so I will not go into it here.

Appendix: preliminaries and notation.

We collect some elementary facts that we need about recursion in Baire
space and the arithmetical and analytical hierarchies, partly to explain those
notations that we use in the main article which are not entirely standard.
To formulate the relevant facts in easily applicable form, it is useful to
consider partial functions

f: X1 × · · · ×Xn ⇀ Xn+1, (28)
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where each Xi is N or N = (N → N). As usual,

α(t) = 〈α(0), . . . , α(t − 1)〉 (α ∈ N ),

and perhaps less usual,

s(t) = 〈

t
︷ ︸︸ ︷
s, . . . , s〉 (s ∈ N),

so that x(t) makes sense if x ∈ N or x ∈ N and it codes both t and the first
t values of x—which is all of x if x ∈ N. If

x = (x1, . . . , xn) ∈ X = X1 × · · · × Xn

as above, then for every t,

x(t) = (x1(t), . . . , xn(t)) ∈ Nn

is a tuple which codes n (in its length) and the first t values of each xi .
Here we will just call these products X = X1 × · · · × Xn simple product
spaces—they are the Polish spaces of type ≤ 1 in Moschovakis [2009a].

A1. Σ01. A relation P(x) on a simple product space X is semirecursive or Σ
0
1

if

P(x) ⇐⇒ (∃t)R(x(t)) (x ∈ X )

for some recursive R ⊆ Nn which is monotone, i.e.,
[
R(x(t))& t < s

]
=⇒R(x(s)). (29)

This pointclass36 extends the collection of semirecursive relations on N,
and it is (easily) closed under &,∨, existential quantification (∃t) overN and
(∃α) over N , bounded quantification of both kinds (∃t ≤ s), (∀t ≤ s), and
recursive substitutions of number-theoretic functions.

A2. Recursion with values in N. A partial function f: X ⇀ N is recursive if
its graph

Gf(x, w) ⇐⇒ f(x) = w

is Σ01. It is not difficult to extend to these partial functions the classical
Enumeration Theorem of Kleene:

Theorem. For every space X , there is a recursive partial function

ϕX (e, x) = ϕXe (x) = {e}0(x), (30)

with values in N, such that every recursive f: X ⇀ N is ϕXe for some e, and

for all X , m, there is a recursive function S = SmX : N
(1+m) → N such that

{
S(e, y)

}0
(x) = {e}0(y, x) (y ∈ Nm, x ∈ X ).

36A pointclass is a collection of subsets of sets in some family which is typically closed
under Cartesian products—the family of all simple product spaces in this Appendix.
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A3. Universal sets and uniform closure. As with relations on N, a relation on
a simple product space X is (quite trivially) Σ01 exactly when it is the domain
of convergence of a recursive partial function f: X ⇀ N. The universal Σ01
relations for each X are defined by

SX (e, x) ⇐⇒ SX
e (x) ⇐⇒ {e}0(x)↓, (31)

and the partial evaluation functions for the recursive partial functions clearly
work with them too,

SmX (e, y, x) ⇐⇒ SX (S(e, y), x) (y ∈ Nm, x ∈ X );

as usual, e is a Σ01-code of S
X
e .

The notation is pretty awful, but we will not ever need to refer to it
explicitly: it is used to prove uniform closure of Σ01 under various operations
as in this simple but typical example:

Lemma. The pointclass of Σ01 relations on simple product spaces is uniformly
closed under bounded number quantification; i.e., for eachX , there is a recursive
function u(e), such that if R(i, x) is Σ01 with code e, then the relation

P(s, x) ⇐⇒ (∀i ≤ s)R(i, x)

is also Σ01 with code u(e).

Proof. The relation37

Q(e, s, x) ⇐⇒ (∀i ≤ s)SN×X (e, i, x)

is evidently Σ01, and so for some fixed z̄,

(∀i ≤ s)SN×X (e, i, x) ⇐⇒ SN2×X (z̄ , e, s, x) ⇐⇒ SN×X (S(z̄ , e), s, x);

and so u(e) = S(z̄ , e) is the required uniformity. ⊣

In the article we often appeal to similar uniform closure results for var-
ious pointclasses (of relations or partial functions) without much ado and
sometimes silently, but it should be noted that they are often at the heart of
proofs in this area: in many cases, SRT just provides the glue that puts the
proofs together from such simple, uniform closure properties.

A4. Relative recursion. A function â ∈ N is recursive (Turing computable)
in α1, . . . , αm with code e if

â(t) = {e}0(t, α1, . . . , αm) (t ∈ N);

37By convention, if X = X1 × · · · × Xn and Y = Y1 × · · · × Ym , then

Y ×X = Y1 × · · · × Ym ×X1 × · · · × Xn.
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sometimes we say instead that e is a code of â from α1, . . . , αm. Most often
we use this notion for sets via their characteristic functions

÷
A
(t) =

{

1, if t ∈ A,

0, otherwise,

and we may even identify A with ÷
A
and write

{e}0(x, A) := {e}0(x, ÷
A
).

We set

A ≤Te B ⇐⇒ (∀t)
[
÷A(t) = {e}0(t, B)

]
,

A ≤T B ⇐⇒ (∃e)
[
A ≤Te B

]

A ≡T B ⇐⇒ A ≤T B &B ≤T A.

The equivalence classes of this last Turing equivalence relation are the much
studied (Turing) degrees of sets of natural numbers.
The jump of A is the set

A′ =
{
t : {t}0(t, A)↓

}
.

We use many standard, elementary properties of relative recursion and the
jump operation: for example,

A ≤Te B &B ≤Tm C =⇒A ≤Tu1(e,m) C,

A ≤Te0 A
′, A ≤Te B =⇒A′ ≤Tu2(e) B

′

with a fixed number e0 and fixed recursive functions u1(e,m), u2(e); and
(more importantly),

(∃t)
[
{e}0(x, t, A) = 0

]
⇐⇒

{
v1(e)

}0
(x, A′) = 0, (32)

(∀t)
[
{e}0(x, t, A) = 0

]
⇐⇒

{
v2(e)

}0
(x, A′) = 0, (33)

for fixed, recursive functions v1, v2 (which depend only on the length n of
the tuple x = (x1, . . . , xn)).

A5. The Kleene pointclasses. Starting with Σ01, recursively: a relation P(x)
on a simple product space X is Π0ℓ if its negation is Σ

0
ℓ , and it is Σ

0
ℓ+1 if

P(x) ⇐⇒ (∃s)R(x, s)

where R is Π0ℓ . A relation P(x) is Σ
1
1 if for some Π

0
1 relation R(x, α),

P(x) ⇐⇒ (∃α)R(x, α); (34)

it is Π1s if its negation is Σ
1
s , and it is Σ

1
s+1 if it satisfies (34) with a Π

1
s

relation R. Starting with the universal Σ01 relations in (31), we can define
inductively universal Σ0l ,Π

0
l ,Σ
1
s ,Π

1
s relations

S0,l,X (e, x), P0,l,X (e, x), S1,s,X (e, x), P1,s,X (e, x)
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so that (for example), a relation P(x) is Π13 exactly when it is P1,3,Xe for
some e; and then we say that e is a Π13-code of P. Moreover, there are
partial evaluation functions associated with these universal relations (which
can be easily constructed starting with those for Σ01), and so when one of
them is closed under some operation Φ, then it is uniformly closed under Φ,
as above.
A relation P(x) is ∆1s if it is both Σ

1
s and Π

1
s , and a ∆

1
s -code of P is any

pair 〈e,m〉 of a Σ1s and a Π
1
s code of it.

The arithmetical and analytical relations which occur in these pointclasses
were introduced inKleene [1943,1955a] which established their basic proper-
ties, including the fact that they fall into two hierarchies, i.e., for all ℓ, s ≥ 1,

Σ0ℓ ∪Π
0
ℓ ( ∆0ℓ+1 ( · · · ( ∆11 ( · · · ( Σ1s ∪Π

1
s ( ∆1s+1 ( · · · (35)

This is shown by using the universal relations S0,l,X , . . . above—and it is,
basically, the only result whose proof appeals to this rather overwhelming
notation.

A6. Recursion with values in N . A partial function f: X ⇀ N is recursive if
there is a recursive f∗: X × N⇀ N such that

f(x) = ëtf∗(x, t);

in particular, f(x)↓ ⇐⇒ (∀t)
[
f∗(x, t)↓

]
, and the domain of convergence

of f is not (in general) Σ01 (as one might expect) but Π
0
2,

f(x)↓ ⇐⇒ (∀t)(∃w)
[
f∗(x, t) = w

]
.

The pointclass PR1 of recursive partial functions with values in N is closed
under composition, primitive recursion, (suitably defined) minimalization,
etc., and it also “respects relative recursion”, for example,

if f(s, α, â) = ã, then ã is recursive in α, â. (36)

Mostly we use total recursive functions into N and, to set notation, it is
worth listing here the shift

α∗ = ëtα(t + 1),

and the tupling and projection functions:

〈α0, . . . , αk−1〉 = ët

{

αi(s), if t = 〈i, s〉 for some i < k and some s,

0, otherwise,

(â)i = ëtâ(〈i, t〉),

so that for i < k, (〈α0, . . . , αk−1〉)i = αi . These are all recursive.

A7. Continuous partial functions. A partial function f: X ⇀ N on a simple
product space is continuous, if

f(x) = g(ä0, x)
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with a recursive g : N ×X ⇀ N and some ä0 ∈ N .38

This pointclass of partial functions has a good uniformization in the sense
of Section 10.1, and so it satisfies an appropriate version of SRT as follows:

Second Recursion Theorem for simple product spaces. For every sim-
ple product space X , there is a recursive partial function

øX : N ×X ⇀ N ,

such that (a) and (b) hold with

{ε}1(x) = øX
ε (x) = ø

X (ε, x).

(a) Every continuous f: X ⇀ N is øX
ε for some ε, and every recursive

f: X ⇀ N is øX
ε for some recursive ε.

(b) For any two simple product spaces Y,X , there is a recursive function
S = SYX : N × Y → N such that

{
S(ε, y)

}1
(x) = {ε}1(y, x) (ε ∈ N , y ∈ Y, x ∈ X ).

(c) For every recursive f: N × X ⇀ N , there is a recursive ε∗ ∈ N such
that

{ε∗}1(x) = f(ε∗, x).

There is just computation to the proof of (a) and (b), and (c) follows as
before. (And it also holds with parameters, of course, but this version is the
most useful.)
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