
English as a programming language

Yiannis N. Moschovakis
UCLA and University of Athens

Tarski Lecture 2, March 5, 2008

Frege on sense

“[the sense of a sign] may be the common property of many
people” Meanings are public (abstract?) objects

“The sense of a proper name is grasped by everyone who is
sufficiently familiar with the language . . . Comprehensive knowledge
of the thing denoted . . . we never attain”

Speakers of the language know the meanings of terms

“The same sense has different expressions in different languages or
even in the same language”

“The difference between a translation and the original text should
properly not overstep the [level of the idea]”

Faithful translation should preserve meaning

Yiannis N. Moschovakis: English as a programming language 1/21

Outline of Lecture 2

Slogan:

The meaning of a term is the algorithm which computes its denotation

(1) Formal Fregean semantics in Lλ
r (K)

(2) Meaning and synonymy in Lλ
r (K)

(3) What are the objects of belief? (Local synonymy)

(4) The decision problem for synonymy

Sense and denotation as algorithm and value (1994)
A logical calculus of meaning and synonymy (2006)
Two aspects of situated meaning (with E. Kalyvianaki, to appear)
Posted in www.math.ucla.edu/∼ynm

Yiannis N. Moschovakis: English as a programming language 2/21

The methodology of formal Fregean semantics

I An interpreted formal language L is selected

I The rendering operation on a fragment of English:

English expression + informal context
render−−−→ formal expression + state

I Semantic values (denotations, meanings, etc.) are defined
rigorously for the formal expressions of L and assigned to
English expressions via the rendering operation

I Montague: L should be a higher type language
(to interpret co-ordination, co-indexing, . . .)

I Claim: L should be a programming language
(to interpret self-reference and to define meanings properly)

Yiannis N. Moschovakis: English as a programming language 3/21

The typed λ-calculus with recursion Lλ
r (K) - types

An extension of the typed λ-calculus, into which Montague’s
Language of Intensional Logic LIL can be easily interpreted (Gallin)

Basic types b ≡ e | t | s (entities, truth values, states)

Types: σ :≡ b | (σ1 → σ2)

Abbreviation: σ1 × σ2 → τ ≡ (σ1 → (σ2 → τ))

Every non-basic type is uniquely of the form

σ ≡ σ1 × · · · × σn → b

level(b) = 0
level(σ1 × · · · × σn → b) = max{level(σ1), . . . , level(σn)}+ 1

Yiannis N. Moschovakis: English as a programming language 4/21

The typed λ-calculus with recursion Lλ
r (K) - syntax

Pure variables: vσ
0 , vσ

1 , . . . , for each type σ (v : σ)
Pure parameters: ū for each state u (for convenience only)
Recursive variables: pσ

0 , pσ
1 , . . . , for each type σ (p : σ)

Constants: A finite set K of typed constants (run, cow, he, the, every)

Terms – with assumed type restrictions and assigned types (A : σ)

A :≡ v | ū | p | c | B(C) | λ(v)(B)

| A0 where {p1 = A1, . . . , pn = An}

C : σ,B : (σ → τ) =⇒ B(C) : τ

v : σ,B : τ =⇒ λ(v)(B) : (σ → τ)

A0 : σ =⇒ A0 where {p1 = A1, . . . , pn = An} : σ

Abbreviation: A(B,C ,D) ≡ A(B)(C)(D)

Yiannis N. Moschovakis: English as a programming language 5/21

Lλ
r (K) - denotational semantics

• We are given basic sets Ts , Te and Tt ⊆ Te for the basic types

Tσ→τ = the set of all functions f : Tσ → Tτ

Pb = Tb ∪ {⊥} = the “flat poset” of Tb

Pσ→τ = the set of all functions f : Tσ → Pτ

Tσ ⊆ Pσ and Pσ is a complete poset (with the pointwise ordering)

• We are given an object c : Pσ for each constant c : σ

I Pure variables of type σ vary over Tσ; recursive ones over Pσ

I If A : σ and π is a type-respecting assignment to the variables,
then den(A)(π) ∈ Pσ

I Recursive terms are interpreted by the taking of
least-fixed-points

Yiannis N. Moschovakis: English as a programming language 6/21

Rendering natural language in Lλ
r (K)

t̃ ≡ (s → t) (type of Carnap intensions)

ẽ ≡ (s → e) (type of individual concepts)

Abelard loves Eloise
render−−−→ loves(Abelard,Eloise) : t̃

Bush is the president
render−−−→ eq(Bush,the(president)) : t̃

liar
render−−−→ p where {p = ¬p} : t

truthteller
render−−−→ p where {p = p} : t

Abelard,Eloise,Bush : ẽ

president : ẽ → t̃, eq : ẽ × ẽ → t̃

¬ : t → t, the : (ẽ → t̃) → ẽ

den(liar) = den(truthteller) = ⊥

Yiannis N. Moschovakis: English as a programming language 7/21

Co-ordination and co-indexing in Lλ
r (K)

John stumbled and fell vs. John stumbled and he fell

John stumbled and fell
render−−−→ λ(x)

(
stumbled(x) & fell(x)

)
(John)

(predication after co-ordination)

This is in Montague’s LIL (as it is interpreted in Lλ
r (K))

John stumbled and he fell
render−−−→ stumbled(j) & fell(j) where {j = John}

(conjunction after co-indexing)

The logical form of this sentence cannot be captured faithfully in
LIL — recursion models co-indexing preserving logical form

Yiannis N. Moschovakis: English as a programming language 8/21

Can we say nonsense in Lλ
r (K)?

Yes!
In particular, we have parameters over states—so we can explicitly
refer to the state (even to two states in one term); LIL does not
allow this, because we cannot do this in English

Consider the terms

A ≡ rapidly(tall)(John), B ≡ rapidly(sleeping)(John) : t̃

A and B are terms of LIL,
not the renderings of correct English sentences

I The target formal language is a tool for defining rigorously the
desired semantic values and it needs to be richer than a direct
formalization of the relevant fragment of English

—to insure compositionality, if for no other reason

Yiannis N. Moschovakis: English as a programming language 9/21

Meaning and synonymy in Lλ
r (K)

I For a sentence A : t̃, the Montague sense of A is
den(A) : Ts → Tt , so that

there are infinitely many primes

is Montague-synonymous with 1 + 1 = 2

I In Lλ
r (K): The meaning of a term A is modeled by an

algorithm int(A) which computes den(A)(π) for every π

I The referential intension int(A) is compositionally determined
from A

I int(A) is an abstract (not necessarily implementable) recursive
algorithm of Lλ

r (K)

I Referential synonymy: A ≈ B ⇐⇒ int(A) ∼ int(A)

Yiannis N. Moschovakis: English as a programming language 10/21

Reduction, Canonical Forms and the Synonymy Theorem

I A reduction relation A ⇒ B is defined on terms of Lλ
r (K)

I Each term A is reducible to a unique (up to congruence)
irreducible recursive term, its canonical form

A ⇒ cf(A) ≡ A0 where {p1 = A1, . . . , pn = An}

I int(A) = (den(A0), den(A1), . . . , den(An))

I The parts A0, . . . ,An of A are irreducible, explicit terms

I cf(A) models the logical form of A

I Synonymy Theorem. A ≈ B if and only if

B ⇒ cf(B) ≡ B0 where {p1 = B1, . . . , pm = Bm}

so that n = m and for i ≤ n, den(Ai) = den(Bi)

Yiannis N. Moschovakis: English as a programming language 11/21

Is this notion of meaning Fregean?

Evans (in a discussion of Dummett’s similar, computational
interpretations of Frege’s sense):

“This leads [Dummett] to think generally that the sense
of an expression is (not a way of thinking about its
[denotation], but) a method or procedure for determining
its denotation. So someone who grasps the sense of a
sentence will be possessed of some method for
determining the sentence’s truth value
. . . ideal verificationism
. . . there is scant evidence for attributing it to Frege”

Converse question: For a sentence A, if you possess the method
determined by A for determining its truth value, do you then
“grasp” the sense of A?

(Sounds more like Davidson rather than Frege)

Yiannis N. Moschovakis: English as a programming language 12/21

The reduction calculus

Bush is the president
render−−−→ eq(Bush)(the(president))

⇒ eq(Bush)(L) where {L = the(president)}
⇒ eq(Bush)(L) where {L = the(p) where {p = president}}

⇒ eq(Bush)(L) where {L = the(p), p = president}

⇒
(
eq(b) where {b = Bush}

)
(L) where {L = the(p),

p = president}

⇒
(
eq(b)(L) where {b = Bush}

)
where {L = the(p),

p = president}
⇒cf eq(b)(L) where {b = Bush, L = the(p), p = president}

He is the president
render−−−→ eq(He)(the(president))

⇒cf eq(b)(L) where {b = He, L = the(p), p = president}

Yiannis N. Moschovakis: English as a programming language 13/21

The reduction calculus

John loves and honors his father
render−−−→

(
λ(x)(loves(j , x) & honors(j , x))

)
(father(j)) where {j = John}

⇒
[(

λ(x)(loves(j , x) & honors(j , x))
)
(f) where {f = father(j)}

]
where {j = John}

⇒
(
λ(x)(loves(j , x) & honors(j , x))

)
(f)

where {f = father(j), j = John}
⇒

(
λ(x)

[
(l & h) where {l = loves(j , x), h = honors(j , x)}

])
(f)

where {f = father(j), j = John}
⇒

(
λ(x)(l(x) & h(x))

where {l = λ(x)loves(j , x), h = λ(x)honors(j , x)}
)
(f)

where {f = father(j), j = John}
⇒ λ(x)(l(x) & h(x))(f)
where {l = loves(j , ·), h = honors(j , ·), f = father(j), j = John}

Yiannis N. Moschovakis: English as a programming language 14/21

Utterances, local meanings, local synonymy

An utterance is a pair (A, u), where A is a sentence, A : t̃ and u is
a state; it is expressed in Lλ

r (K) by the term A(ū)

The local meaning of A at the state u is int(A(ū))

A ≈u B ⇐⇒ A(ū) ≈ B(ū)

Bush is the president(ū)

⇒cf eq(b)(L)(ū) where {b = Bush, L = the(p), p = president}

He is the president(ū)

⇒cf eq(b)(L)(ū) where {b = He, L = the(p), p = president}

Bush is the president 6≈u He is the president

even if at the state ū, He(ū) = Bush(ū)

Yiannis N. Moschovakis: English as a programming language 15/21

Three aspects of meaning for a sentence A : t̃

Referential intension int(A) Referential synonymy ≈
Local meaning at u int(A(ū)) Local synonymy ≈u

Factual content at u FC(A, u) Factual synonymy ≈f ,u

The factual content of a sentence at a state u gives a
representation of the world at u (Eleni Kalyvianaki’s Ph.D. Thesis)

Bush is the president 6≈u He is the president

Bush is the president ≈f ,u He is the president

Claim: The objects of belief are local meanings

The distinction between local meaning and factual content are
related to David Kaplan’s distinction between the character and
content of a sentence at a state

Yiannis N. Moschovakis: English as a programming language 16/21

Some referential (global) synonymies and non-synonymies

I There are infinitely many primes 6≈ 1 + 1 = 2

I A & B ≈ B & A

I The morning star is the evening star
≈The evening star is the morning star

(This fails with Montague’s renderings)

I Abelard loves Eloise ≈ Eloise is loved by Abelard (Frege)

I 2 + 3 = 6 ≈ 3 + 2 = 6 (with + and the numbers primitive)

I liar 6≈ truthteller

I John stumbled and he fell
render−−−→

A ≡ stumbled(j) & fell(j) where {j = John}
A is not ≈ with any explicit term (including any term from LIL)

Yiannis N. Moschovakis: English as a programming language 17/21

Is referential synonymy decidable?

Synonymy Theorem. A ≈ B if and only if

A ⇒ cf(A) ≡ A0 where {p1 = A1, . . . , pn = An}
B ⇒ cf(B) ≡ B0 where {p1 = B1, . . . , pn = Bn}

so that for i = 0, . . . , n and all π, den(Ai)(π) = den(Bi)(π).

I Synonymy is reduced to denotational equality for
explicit, irreducible terms (the truth facts of A)

I Denotational equality for arbitrary terms is undecidable
(there are constants, with fixed interpretations)

I The explicit, irreducible terms are very special
— but by no means trivial!

Yiannis N. Moschovakis: English as a programming language 18/21

The synonymy problem for Lλ
r (K) (with finite K)

I The decision problem for Lλ
r (K)-synonymy is open

Theorem If the set of constants K is finite, then synonymy is
decidable for terms of adjusted level ≤ 2

These include terms constructed “simply” from

Names of “pure” objects 0, 1, 2, ∅, . . . : e
Names, demonstratives John, I, he, him : ẽ
Common nouns man, unicorn, temperature : ẽ → t̃
Adjectives tall, young : (ẽ → t̃) → (ẽ → t̃)
Propositions it rains : t̃
Intransitive verbs stand, run, rise : ẽ → t̃
Transitive verbs find, loves, be : ẽ × ẽ → t̃
Adverbs rapidly : (ẽ → t̃) → (ẽ → t̃)

Proof is by reducing this claim to the Main Theorem in the 1994
paper (for a corrected version see www.math.ucla.edu/∼ynm)

Yiannis N. Moschovakis: English as a programming language 19/21

Explicit, irreducible identities that must be known

I Los Angeles = LA (Athens = ÁèÞíá)

I x & y = y & x

I between(x , y , z) = between(x , z , y)

I love(x , y) = be loved(y , x)

A dictionary is needed—but what kind and how large?

ev2(λ(u1, u2)r(u1, u2,~a), b, z) = ev1(λ(v)r(v , z ,~a), b)

Evaluation functions: both sides are equal to r(b, z ,~a)

The dictionary line which determines this is (essentially)

λ(s)x(s, z) = λ(s)y(s) =⇒ ev2(x , b, z) = ev1(y , b)

Yiannis N. Moschovakis: English as a programming language 20/21

The form of the decision algorithm

I A finite list of true dictionary lines is constructed, which
codifies the relationships between the constants

I Given two explicit, irreducible terms A,B of adjusted level
≤ 2, we construct (effectively) a finite set L(A,B) of lines
such that

|= A = B

⇐⇒ every line in L(A,B) is congruent to one in the dictionary

I It is a lookup algorithm, justified by a finite basis theorem

I Complexity: NP; the graph isomorphism problem is reducible
to the synonymy problem for very simple (propositional)
recursive terms

Yiannis N. Moschovakis: English as a programming language 21/21

