
Algorithms and implementations

Yiannis N. Moschovakis
UCLA and University of Athens

Tarski Lecture 1, March 3, 2008

What is an algorithm?

I Basic aim: to “define” (or represent) algorithms in set theory,
in the same way that we represent real numbers (Cantor,
Dedekind) and random variables (Kolmogorov) by
set-theoretic objects

I What set-theoretic objects represent algorithms?

I When do two two set-theoretic objects represent the same
algorithm? (The algorithm identity problem)

I In what way are algorithms effective?

I . . . and do it so that the basic results about algorithms can be
established rigorously (and naturally)

I . . . and there should be some applications!

Yiannis N. Moschovakis: Algorithms and implementations 1/25

Plan for the lectures

Lecture 1. Algorithms and implementations
Discuss the problem and some ideas for solving it

Lecture 2. English as a programming language
Applications to Philosophy of language (and linguistics?)
synonymy and faithful translation ∼ algorithm identity

Lecture 3. The axiomatic derivation of absolute lower bounds
Applications to complexity (joint work with Lou van den Dries)
Do not depend on pinning down algorithm identity

Lectures 2 and 3 are independent of each other and mostly
independent of Lecture 1

I will oversimplify, but: All lies are white (John Steel)

Yiannis N. Moschovakis: Algorithms and implementations 2/25

Outline of Lecture 1

Slogan: The theory of algorithms is the theory of recursive equations

(1) Three examples
(2) Machines vs. recursive definitions
(3) Recursors
(4) Elementary algorithms
(5) Implementations

Notation:

N = {0, 1, 2, . . .}
a ≥ b ≥ 1, a = bq + r , 0 ≤ r < b

=⇒ q = iq(a, b), r = rem(a, b)

gcd(a, b) = the greatest common divisor of a and b

a⊥⊥b ⇐⇒ rem(a, b) = 1 (a and b are coprime)

Yiannis N. Moschovakis: Algorithms and implementations 3/25

The Euclidean algorithm ε

For a, b ∈ N, a ≥ b ≥ 1,

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

cε(a, b) = the number of divisions needed to compute gcd(a, b) using ε

Complexity of the Euclidean

If a ≥ b ≥ 2, then cε(a, b) ≤ 2 log2(a)

Proofs of the correctness and the upper bound are by induction on
max(a, b)

Yiannis N. Moschovakis: Algorithms and implementations 4/25

What is the Euclidean algorithm?

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

I It is an algorithm on N, from (relative to) the remainder
function rem and it computes gcd : N2 → N

I It is needed to make precise the optimality of the Euclidean:

Basic Conjecture

For every algorithm α which computes on N from rem the greatest
common divisor function, there is a constant r > 0 such that for
infinitely many pairs a ≥ b ≥ 1,

cα(a, b) ≥ r log2(a)

Yiannis N. Moschovakis: Algorithms and implementations 5/25

Sorting (alphabetizing)

Given an ordering ≤ on a set A and any u = 〈u0, . . . , un−1〉 ∈ An

sort(u) = the unique, sorted (non-decreasing) rearrangement

v = 〈uπ(0), uπ(1), . . . , uπ(n−1)〉

where π : {0, . . . , n − 1}�→ {0, . . . , n − 1} is a permutation

head(〈u0, . . . , un−1〉) = u0

tail(〈u0, . . . , un−1〉) = 〈u1, . . . , un−1〉
〈x〉 ∗ 〈u0, . . . , un−1〉 = 〈x , u0, . . . , un−1〉 (prepend)

|〈u0, . . . , un−1〉| = n (the length of u)

h1(u) = the first half of u (the first half)

h2(u) = the second half of u (the second half)

Yiannis N. Moschovakis: Algorithms and implementations 6/25

The mergesort algorithm σm

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =


w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

(1) If v ,w are sorted, then merge(v ,w) = sort(w ∗ v)

(2) The sorting and merging function satisfy these equations

(3) merge(v ,w) can be computed using no more than
|v |+ |w | −· 1 comparisons

(4) sort(u) can be computed by σm using no more than
|u| log2(|u|) comparisons (|u| > 1)

Yiannis N. Moschovakis: Algorithms and implementations 7/25

What is the mergesort algorithm?

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =


w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

cσm(u) = the number of comparisons needed to compute sort(u)

using σm ≤ |u| log2(|u|) (|u| > 0)

I It is an algorithm from the ordering ≤ and the functions
head(u), tail(u), |u|, . . .

I It is needed to make precise the optimality of σm:
For every sorting algorithm σ from ≤, head, tail, . . ., there is
an r > 0 and infinitely many sequences u such that
cσ(u) ≥ r |u| log2(|u|) (well known)

Yiannis N. Moschovakis: Algorithms and implementations 8/25

The Gentzen Cut Elimination algorithm

Every proof d of the Gentzen system for Predicate Logic can be
transformed into a cut-free proof γ(d) with the same conclusion

γ(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ(τ(d)))

else f3(γ(σ1(d)), γ(σ2(d)))

I It is a recursive algorithm from natural syntactic primitives,
very similar in logical structure to the mergesort

I Main Fact: |γ(d)| ≤ e(ρ(d), |d |), where |d | is the length of
the proof d , ρ(d) is its cut-rank, and

e(0, k) = k, e(n + 1, k) = 2e(n,k)

Yiannis N. Moschovakis: Algorithms and implementations 9/25

The infinitary Gentzen algorithm

If we add the ω-rule to the Gentzen system for Peano arithmetic,
then cuts can again be eliminated by an extension of the finitary
Gentzen algorithm

γ∗(d) = if T1(d) then f1(d)

else if T2(d) then f2(γ
∗(τ(d)))

else if T3(d) then f3(γ
∗(σ1(d)), γ∗(σ2(d)))

else f4(λ(n)γ∗(ρ(n, d))),

where f4 is a functional embodying the ω-rule

I Again |γ∗(d)| ≤ e(ρ(d), |d |), where cut-ranks and lengths of
infinite proofs are ordinals, e(α, β) is defined by ordinal
recursion, and so every provable sentence has a cut-free proof
of length less than
ε0 = the least ordinal > 0 and closed under α 7→ ωα

Yiannis N. Moschovakis: Algorithms and implementations 10/25

Abstract machines (computation models)

�
σ

X

S

- -x

s
T

s0 f(x)

�

?
input

· · ·� z output W

A machine m : X Y is a tuple (S , input, σ, T , output) such that

1. S is a non-empty set (of states)

2. input : X → S is the input function

3. σ : S → S is the transition function

4. T is the set of terminal states, T ⊆ S

5. output : T → Y is the output function

m(x) = output(σn(input(x)))

where n = least such that σn(input(x)) ∈ T

Yiannis N. Moschovakis: Algorithms and implementations 11/25

Infinitary algorithms are not machines

I It is useful to think of the infinitary Gentzen “effective
procedure” as an algorithm

I There are applications of infinitary algorithms (in Lecture 2)

I Machines are special algorithms which implement finitary
algorithms

I The relation between an (implementable) algorithm and its
implementations is interesting

Yiannis N. Moschovakis: Algorithms and implementations 12/25

Which machine is the Euclidean?

ε : gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

I Must specify a set of states, an input function, a transition
function, etc.

I This can be done, in many ways, generally called
implementations of the Euclidean

I The choice of a “natural” (abstract) implementation is
irrelevant for the correctness and the log upper bound of the
Euclidean, which are derived directly from the recursive
equation above and apply to all implementations

I Claim: ε is completely specified by the equation above

Yiannis N. Moschovakis: Algorithms and implementations 13/25

Which machine is the mergesort algorithm?

sort(u) = if (|u| ≤ 1) then u else merge(sort(h1(u)), sort(h2(u)))

merge(v ,w) =


w if |v | = 0,
v else, if |w | = 0,
〈v0〉 ∗merge(tail(v),w) else, if v0 ≤ w0,
〈w0〉 ∗merge(v , tail(w)) otherwise.

I Many (essentially) different implementations
sequential (with specified orders of evaluation), parallel, . . .

I The correctness and n log2(n) upper bound are derived
directly from a (specific reading) of these recursive equations

• They should apply to all implementations of the mergesort

I Claim: σm is completely specified by the system above

I Task: Define σm, define implementations, prove •

Yiannis N. Moschovakis: Algorithms and implementations 14/25

Slogans and questions

I Algorithms compute functions from specific primitives

I They are specified by systems of recursive equations

I An algorithm is (faithfully modeled by) the semantic content
of a system of recursive equations

I Machines are algorithms, but not all algorithms are machines

I Some algorithms have machine implementations

I An algorithm codes all its implementation-independent
properties

I What is the relation between an algorithm and its implementations?
. . . or between two implementations of the same algorithm?

Main slogan

The theory of algorithms is the theory of recursive equations

(Skip non-deterministic algorithms and fairness)

Yiannis N. Moschovakis: Algorithms and implementations 15/25

Monotone recursive equations

I A complete poset is a partial ordered set D = (Field(D),≤D)
in which every directed set has a least upper bound

I Standard example:
(X ⇀ Y) = the set of all partial functions f : X ⇀ Y

I A function f : D → E is monotone if x ≤D y =⇒ f (x) ≤E f (y)
(f : X ⇀ Y is a monotone function on X to Y ∪ {⊥})

I For every monotone f : D → D on a complete D, the

equation x = f (x) has a least solution

I Complete posets (domains) are the basic objects studied in
Scott’s Denotational Semantics for programming languages

I Much of this work can be viewed as a refinement of
Denotational Semantics (which interprets programs by algorithms)

Yiannis N. Moschovakis: Algorithms and implementations 16/25

Recursors

X

N
*

τα

α0

Dα

-
�

W

A recursor α : X W is a tuple α = (α0, α1, . . . , αk) such that

1. X is a poset, W is a complete poset

2. D1, . . . ,Dk are complete posets, Dα = D1 × · · · × Dk ,
the solution space of α

3. αi : X × Dα → Di is monotone (i = 1, . . . , k)

4. τα(x , ~d) = (α1(x , ~d), . . . , αk(x , ~d)) is the transition function,
τα : X × Dα → Dα

5. α0 : X × D1 × · · · × Dk → W is monotone, the output map

α(x) = α0(x , d1, . . . , dk) for the least solution of ~d = τα(x , ~d)

We write α(x) = α0(x , ~d) where {~d = τα(x , ~d)}
Yiannis N. Moschovakis: Algorithms and implementations 17/25

Recursor isomorphism

Two recursors

α = (α0, α1, . . . , αk), α′ = (α′
0, α

′
1, . . . , α

′
m) : X W

are isomorphic (α ' α′) if

(1) k = m (same number of parts)

(2) There is a permutation π : {1, . . . , k} and poset isomorphisms
ρi : Di → D ′

π(i) (i = 1, . . . , k) such that . . .

(the order of the equations in the system ~d = τα(x , ~d) does
not matter)

Isomorphic recursors α, α′ : X W compute the same function
α = α′ : X → W

Yiannis N. Moschovakis: Algorithms and implementations 18/25

Machines or recursors?

With each machine m = (S , input, σ, T , output) : X Y we
associate the tail recursor

rm(x) = p(input(x)) where

{p = λ(s)[if (s ∈ T) then output(s) else p(σ(s))]}

I m and rm compute the same partial function rm = m : X ⇀ Y

I Theorem (with V. Paschalis) The map m 7→ rm respects
isomorphisms, m ' m′ ⇐⇒ rm ' rm′

I The question is one of choice of terminology
(because the mergesort system is also needed)

I Yuri Gurevich has argued that algorithms are machines
(and of a very specific kind)

I Jean-Yves Girard has also given similar arguments

Yiannis N. Moschovakis: Algorithms and implementations 19/25

Elementary (first order) algorithms

Algorithms which compute partial functions from given partial functions

(Partial, pointed) algebra M = (M, 0, 1,ΦM)

where 0, 1 ∈ M, Φ is a set of function symbols (the vocabulary)
and ΦM = {φM}φ∈Φ, with φM : Mnφ ⇀ M for each φ ∈ Φ

Nε = (N, 0, 1, rem), the Euclidean algebra
Nu = (N, 0, 1,S ,Pd), the unary numbers
Nb = (N, 0, 1,Parity, iq2, (x 7→ 2x), (x 7→ 2x + 1)), the binary numbers
A∗ = (A∗, 0, 1,≤, head, tail, . . .), the mergesort algebra, with 0, 1 ∈ A∗

Standard model-theoretic notions must be mildly adapted, for
example for (partial) subalgebras:

U ⊆p M ⇐⇒ {0, 1} ⊆ U ⊆ M and for all φ, φU ⊆ φM

Yiannis N. Moschovakis: Algorithms and implementations 20/25

Recursive (McCarthy) programs of M = (M , 0, 1, ΦM)

Explicit Φ-terms (with partial function variables and conditionals)

A :≡ 0 | 1 | vi | φ(A1, . . . ,An) | pn
i (A1, . . . ,An)

| if (A = 0) then B else C

Recursive program (only ~xi , p1, . . . , pK occur in each part Ai):

A :


pA(~x0) = A0

p1(~x1) = A1
...

pK (~xK) = AK

(A0 : the head, (A1, . . . ,AK) : the body)

I What is the semantic content of the system A?

Yiannis N. Moschovakis: Algorithms and implementations 21/25

The recursor of a program in M

A :


pA(~x0) = A0

p1(~x1) = A1
...

pK (~xK) = AK

r(A,M)(~x) = den(A0,M)(~x , ~p) where{
p1 = λ(~x1)den(A1,M)(~x1, ~p), . . . , pK = λ(~xK)den(AK ,M)(~xK , ~p)

}
r(A,M) is not exactly the algorithm expressed by A in M.

For example, if A : pA(~x) = A0(~x) has empty body, then

r(A,M)(~x) = den(A0,M)(~x) where { }

is just the function defined on M by A0

(which may involve much explicit computation)

Yiannis N. Moschovakis: Algorithms and implementations 22/25

The problem of defining implementations

van Emde Boas:

Intuitively, a simulation of [one class of computation
models] M by [another] M ′ is some construction which
shows that everything a machine Mi ∈ M can do on
inputs x can be performed by some machine M ′

i ∈ M ′ on
the same inputs as well;

We will define a reducibility relation α ≤r β and call a machine m

an implementation of α if α ≤r rm

(where rm is the recursor representation of the machine m)

Yiannis N. Moschovakis: Algorithms and implementations 23/25

Recursor reducibility

Suppose α, β : X W , (e.g., β = rm where m : X W):
A reduction of α to β is any monotone mapping

π : X × Dα → Dβ

such that the following three conditions hold, for every x ∈ X and
every d ∈ Dα:

(R1) τβ(x , π(x , d)) ≤ π(x , τα(x , d)).

(R2) β0(x , π(x , d)) ≤ α0(x , d).

(R3) α(x) = β(x).

I α ≤r β if a reduction exists

I m implements α if α ≤r rm

Yiannis N. Moschovakis: Algorithms and implementations 24/25

Implementations of elementary algorithms

Theorem (with Paschalis)

For any recursive program A in an algebra M, the standard
implementation of A is an implementation of r(A,M)

. . .Uniformly enough, so that (with the full definitions), the
standard implementation of A implements the elementary
algorithm expressed by A in M

. . . And this is true of all familiar implementations of recursive
programs

. . . so that the basic (complexity and resource use) upper and lower
bounds established from the program A hold of all
implementations of A

And for the applications to complexity theory, we work directly
with the recursive equations of A

Yiannis N. Moschovakis: Algorithms and implementations 25/25

