Algorithms and implementations

Yiannis N. Moschovakis
UCLA and University of Athens

Tarski Lecture 1, March 3, 2008

What is an algorithm?

» Basic aim: to “define” (or represent) algorithms in set theory,
in the same way that we represent real numbers (Cantor,
Dedekind) and random variables (Kolmogorov) by
set-theoretic objects

» What set-theoretic objects represent algorithms?

» When do two two set-theoretic objects represent the same
algorithm? (The algorithm identity problem)

» In what way are algorithms effective?

» ...and do it so that the basic results about algorithms can be
established rigorously (and naturally)

» ...and there should be some applications!

Yiannis N. Moschovakis: Algorithms and implementations 1/25

Plan for the lectures

Lecture 1. Algorithms and implementations
Discuss the problem and some ideas for solving it

Lecture 2. English as a programming language
Applications to Philosophy of language (and linguistics?)
synonymy and faithful translation ~ algorithm identity

Lecture 3. The axiomatic derivation of absolute lower bounds
Applications to complexity (joint work with Lou van den Dries)
Do not depend on pinning down algorithm identity

Lectures 2 and 3 are independent of each other and mostly
independent of Lecture 1

| will oversimplify, but: All lies are white (John Steel)

Yiannis N. Moschovakis: Algorithms and implementations 2/25

Outline of Lecture 1

Slogan: The theory of algorithms is the theory of recursive equations

(1) Three examples

(2) Machines vs. recursive definitions
(3) Recursors

(4) Elementary algorithms

(5) Implementations

Notation:
N=1{0,1,2,...}
a>b>1, a=bg+r, 0<r<b
= g =iq(a, b), r =rem(a, b)
gcd(a, b) = the greatest common divisor of a and b

alb <= rem(a,b) =1 (aand b are coprime)

Yiannis N. Moschovakis: Algorithms and implementations

3/25

The Euclidean algorithm ¢

Fora,beN,a>b>1,

£ ‘gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))‘

c-(a, b) = the number of divisions needed to compute gecd(a, b) using €

Complexity of the Euclidean
Ifa>b>2, then c.(a,b) < 2log,(a)

Proofs of the correctness and the upper bound are by induction on
max(a, b)

Yiannis N. Moschovakis: Algorithms and implementations 4/25

What is the Euclidean algorithm?

£ ‘gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))‘

» It is an algorithm on N, from (relative to) the remainder
function rem and it computes ged : N> — N

> It is needed to make precise the optimality of the Euclidean:

Basic Conjecture

For every algorithm o« which computes on N from rem the greatest
common divisor function, there is a constant r > 0 such that for
infinitely many pairsa > b > 1,

ca(a, b) > rlogy(a)

Yiannis N. Moschovakis: Algorithms and implementations 5/25

Sorting (alphabetizing)

Given an ordering < on a set A and any u = (up,...,up—1) € A”

sort(u) = the unique, sorted (non-decreasing) rearrangement

V = (Ur(0)> Un(1), - - - » Un(n—1))
where 7 :{0,...,n—1} = {0,...,n— 1} is a permutation
head({uo, ..., un—1)) = up
tail({uo, ..., un—1)) = (U1, ..., Up—1)
(x) = (uo,.. up—1) = (x, uo,...,u,,_1> (prepend)
|{ug,...,un—1)| = n (the length of u)
h1(u) = the first half of u (the first half)
ha(u) = the second half of u (the second half)

Yiannis N. Moschovakis: Algorithms and implementations

6/25

The mergesort algorithm o,

sort(u) = if (Ju| < 1) then u else merge(sort(hy(u)),sort(h2(u)))

w if [v| =0,
merge(v, w) v else, if [w| =0,
SRV W= (vo) + merge(tail(v), w) else, if vo < wo,

{
(wp) * merge(v, tail(w)) otherwise.

(1) If v, w are sorted, then merge(v, w) = sort(w * v)
(2) The sorting and merging function satisfy these equations
(3) merge(v, w) can be computed using no more than
|v| + |w| = 1 comparisons
(4) sort(u) can be computed by o, using no more than
|u| logy(|u]) comparisons (|u] > 1)

Yiannis N. Moschovakis: Algorithms and implementations 7/25

What is the mergesort algorithm?

sort(u) = if (Ju| < 1) then u else merge(sort(hy(u)),sort(h2(u)))

w if [v| =0,
v else, if |w| =0,
(vo) * merge(tail(v), w) else, if vo < wp,
(wo) * merge(v, tail(w)) otherwise.

merge(v, w) =

Co,,(u) = the number of comparisons needed to compute sort(u)
using o < [ullogy(Jul) (Ju] > 0)

» It is an algorithm from the ordering < and the functions
head(u), tail(u), |ul, . ..

» It is needed to make precise the optimality of op,:
For every sorting algorithm o from <, head, tail,..., there is
an r > 0 and infinitely many sequences u such that
¢o(u) > r|ullogs(|ul) (well known)

Yiannis N. Moschovakis: Algorithms and implementations 8/25

The Gentzen Cut Elimination algorithm

Every proof d of the Gentzen system for Predicate Logic can be
transformed into a cut-free proof v(d) with the same conclusion

v(d) = if T1(d) then f1(d)
else if To(d) then h(y(7(d)))
else f3(7(01(d)), v(02(d)))

» It is a recursive algorithm from natural syntactic primitives,
very similar in logical structure to the mergesort

» Main Fact: |y(d)| < e(p(d),|d|), where |d| is the length of
the proof d, p(d) is its cut-rank, and

e(0,k) =k, e(n+1,k) =250

Yiannis N. Moschovakis: Algorithms and implementations 9/25

The infinitary Gentzen algorithm

If we add the w-rule to the Gentzen system for Peano arithmetic,
then cuts can again be eliminated by an extension of the finitary
Gentzen algorithm

v*(d) = if T1(d) then fi(d)
else if To(d) then (7" (7(d)))
else if T3(d) then (7" (01(d)), v (02(d)))
else f2(A(n)7"(p(n, d))),

where f4 is a functional embodying the w-rule
» Again |v*(d)| < e(p(d), |d|), where cut-ranks and lengths of
infinite proofs are ordinals, e(a, 3) is defined by ordinal
recursion, and so every provable sentence has a cut-free proof
of length less than
€o = the least ordinal > 0 and closed under a — w®

Yiannis N. Moschovakis: Algorithms and implementations 10/25

Abstract machines (computation models)

S /\ T
input

X x > SO l . /l\\ output w f(x)
/A

A machine m : X ~» Y is a tuple (S, input, o, T, output) such that
. S is a non-empty set (of states)
. input : X — S is the input function

. T is the set of terminal states, T C S

1

2

3. 0: S5 — S is the transition function

4

5. output : T — Y is the output function

m(x) = output(c”(input(x)))
where n = least such that ¢"(input(x)) € T

Yiannis N. Moschovakis: Algorithms and implementations 11/25

Infinitary algorithms are not machines

> It is useful to think of the infinitary Gentzen “effective
procedure” as an algorithm

» There are applications of infinitary algorithms (in Lecture 2)

» Machines are special algorithms which implement finitary
algorithms

» The relation between an (implementable) algorithm and its
implementations is interesting

Yiannis N. Moschovakis: Algorithms and implementations 12/25

Which machine is the Euclidean?
€ ‘gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))‘
» Must specify a set of states, an input function, a transition
function, etc.
» This can be done, in many ways, generally called
implementations of the Euclidean
» The choice of a “natural” (abstract) implementation is
irrelevant for the correctness and the log upper bound of the
Euclidean, which are derived directly from the recursive
equation above and apply to all implementations
» Claim: ¢ is completely specified by the equation above
Yiannis N. Moschovakis: Algorithms and implementations 13/25

Which machine is the mergesort algorithm?

sort(u) = if (Ju| < 1) then u else merge(sort(hy(u)),sort(h2(u)))

w if [v| =0,
merge(v, w) v else, if [w| =0,
SRV W= (vo) * merge(tail(v), w) else, if vo < wo,

{
(wp) * merge(v, tail(w)) otherwise.

v

Many (essentially) different implementations
sequential (with specified orders of evaluation), parallel, ...

» The correctness and nlog,(n) upper bound are derived
directly from a (specific reading) of these recursive equations

e They should apply to all implementations of the mergesort

» Claim: o, is completely specified by the system above

v

Task: Define o,, define implementations, prove e

Yiannis N. Moschovakis: Algorithms and implementations 14/25

Slogans and questions

» Algorithms compute functions from specific primitives
» They are specified by systems of recursive equations
» An algorithm is (faithfully modeled by) the semantic content
of a system of recursive equations
» Machines are algorithms, but not all algorithms are machines
» Some algorithms have machine implementations
» An algorithm codes all its implementation-independent
properties
» What is the relation between an algorithm and its implementations?
...or between two implementations of the same algorithm?

Main slogan

‘ The theory of algorithms is the theory of recursive equations

(Skip non-deterministic algorithms and fairness)

Yiannis N. Moschovakis: Algorithms and implementations 15/25

Monotone recursive equations

» A complete poset is a partial ordered set D = (Field(D), <p)
in which every directed set has a least upper bound

» Standard example:
(X — Y) = the set of all partial functions f : X = Y

» A function f : D — E is monotone if x <py = f(x) <g f(y)
(f : X — Y is a monotone function on X to Y U{L})

» For every monotone f : D — D on a complete D, the

equation m has a least solution

» Complete posets (domains) are the basic objects studied in
Scott's Denotational Semantics for programming languages

» Much of this work can be viewed as a refinement of
Denotational Semantics (which interprets programs by algorithms)

Yiannis N. Moschovakis: Algorithms and implementations 16/25

Recursors

@0

A recursor a1 X ~» W is a tuple a = (ap, a1, . . .,) such that

1. X is a poset, W is a complete poset

2. Dq,..., Dy are complete posets, D, = Dy x - -+ X Dy,
the solution space of «

3. aj: X x Dy — D;j is monotone (i =1,...,k)

4. 1o(x,d) = (a1(x,d), ..., ax(x, d)) is the transition function,
To : X X Dy — Dy,

5 ag: X X Dy X -+ X D), — W is monotone, the output map

a(x) = ao(x, di, . .., dy) for the least solution of | d = 7,(x, d)
We write a(x) = ag(x, d) where {d = 7,(x, d)}

Yiannis N. Moschovakis: Algorithms and implementations

17/25

Recursor isomorphism

Two recursors

a=(ag,a1,...,ak), o =(ag,al,...,ap): X~ W
are isomorphic (a ~ o) if
(1) k = m (same number of parts)

(2) There is a permutation 7 : {1,..., k} and poset isomorphisms
pi: Dj — D;r(,.) (i=1,...,k) such that ...
(the order of the equations in the system d = 7,(x, d) does
not matter)

Isomorphic recursors a, o : X ~ W compute the same function
a=a: X— W

Yiannis N. Moschovakis: Algorithms and implementations 18/25

Machines or recursors?

With each machine m = (S, input, o, T,output) : X ~ Y we
associate the tail recursor
tm(x) = p(input(x)) where
{p = A(s)[if (s € T) then output(s) else p(c(s))]}

» m and ty, compute the same partial functiont, =m: X —= Y

v

Theorem (with V. Paschalis) The map m — t,, respects
isomorphisms, m ~ m’ <= t, ~ ty

» The question is one of choice of terminology
(because the mergesort system is also needed)

v

Yuri Gurevich has argued that algorithms are machines
(and of a very specific kind)

v

Jean-Yves Girard has also given similar arguments

Yiannis N. Moschovakis: Algorithms and implementations 19/25

Elementary (first order) algorithms

Algorithms which compute partial functions from given partial functions

(Partial, pointed) algebra M = (M, 0,1, ®M)

where 0,1 € M, ® is a set of function symbols (the vocabulary)
and ®M = {¢M} o, with oM : M — M for each ¢ € ®

= (N, 0,1, rem), the Euclidean algebra
= (N,0,1,S,Pd), the unary numbers
Nb = (N 0,1, Parity, iq,, (x — 2x), (x — 2x + 1)), the binary numbers
= (A*,0,1, <, head, tail,...), the mergesort algebra, with 0,1 € A*
Standard model-theoretic notions must be mildly adapted, for
example for (partial) subalgebras:

UC,M < {0,1} C U C M and for all ¢,¢! C oM

Yiannis N. Moschovakis: Algorithms and implementations 20/25

Recursive (McCarthy) programs of M = (M, 0, 1, ®M)

Explicit ®-terms (with partial function variables and conditionals)

A=0]|1]vi|o(A1,...,An) | P/ (A1L,...,An)
| if (A=0) then B else C

Recursive program (only Xi, p1,. .., pk occur in each part A;):
Pa(*0) = Ao

PR B B A o+ the head. (Ar... . Ax) : the body)
Pk (Xk) - Ak

» What is the semantic content of the system A?

Yiannis N. Moschovakis: Algorithms and implementations 21/25

The recursor of a program in M

Pa(X0) = Ao

p1(X1) = A
A 1(X1) - A

Pk (Xk) = Ak

t(A, M)(X) = den(Ag, M)(X, B) where
{pl — A(%1)den(Ay, M)(Z1, B), - - ., px = A(Xk)den(Axk, M)()?K,ﬁ)}
t(A, M) is not exactly the algorithm expressed by A in M.
For example, if A : pa(X) = Ao(X) has empty body, then
t(A, M)(X) = den(Ag, M)(X) where { }

is just the function defined on M by Ay
(which may involve much explicit computation)

Yiannis N. Moschovakis: Algorithms and implementations 22/25

The problem of defining implementations

van Emde Boas:

Intuitively, a simulation of [one class of computation
models] M by [another] M’ is some construction which
shows that everything a machine M; € M can do on
inputs x can be performed by some machine M! € M’ on
the same inputs as well;

We will define a reducibility relation a <, 8 and call a machine m
an implementation of « if a <, ty,

(where ty, is the recursor representation of the machine m)

Yiannis N. Moschovakis: Algorithms and implementations 23/25

Recursor reducibility

Suppose a, 3 : X ~~ W, (e.g., B =t where m : X ~» W):
A reduction of o to (3 is any monotone mapping

m: X X Do — Dg

such that the following three conditions hold, for every x € X and
every d € Dg:

> a <, 3 if a reduction exists

» m implements « if a <, ty,

Yiannis N. Moschovakis: Algorithms and implementations 24/25

Implementations of elementary algorithms

Theorem (with Paschalis)

For any recursive program A in an algebra M, the standard
implementation of A is an implementation of t(A, M)

... Uniformly enough, so that (with the full definitions), the
standard implementation of A implements the elementary
algorithm expressed by A in M

... And this is true of all familiar implementations of recursive
programs

...so that the basic (complexity and resource use) upper and lower
bounds established from the program A hold of all
implementations of A

And for the applications to complexity theory, we work directly
with the recursive equations of A

Yiannis N. Moschovakis: Algorithms and implementations 25/25

