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CHAPTER 1

RECURSIVE EQUATIONS

Recursive de�nitions and arguments about them permeate pure and applied
mathematics, logic, and especially computer science, but the general theory
of recursion is not customarily viewed as a separate �eld of inquiry. We
will introduce it here with a few elementary examples, which illustrate some
of its basic notions and applications and hint at our approach to it. Along
the way, we will also review some useful, basic de�nitions and facts and set
notation and terminology for the sequel.1

Example 1. The Fibonacci numbers. These are de�ned recursively
by the equations

F0 = 0; F1 = 1; Fn+2 = Fn + Fn+1;(1-1)

so that F2 = 0 + 1 = 1, F3 = 1 + 1 = 2, etc. They have been studied
extensively, partly because of some applications (which do not concern us
here), but also because they provide a simple and elegant example of a
recursive de�nition which is not immediately equivalent to an explicit one.

1.1. Proposition. If � = 1
2 (1 +

√
5) is the positive root of the quadratic

equation x+ 1 = x2, then for all n ≥ 2, Fn ≥ �n−2.

Proof is by induction on n ≥ 2, the base cases n = 2; 3 being easily
veri�ed by direct computation. For the induction step,

Fn+2 = Fn + Fn+1(1-2)

≥ �n−2 + �n−1 by ind. hyp.(1-3)

= �n−2(1 + �)(1-4)

= �n−2�2 = �n because �+ 1 = �2:(1-5) a

1Most readers of these notes will know most of the results in this chapter, so they
should just skim through it on �rst reading and come back to it when they hit upon an
unfamiliar notation or idea.
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6 1. Recursive equations

This simple proposition is typical of many in mathematics: a function
f : N →W on the natural numbers

N = {0; 1; : : : }
is �rst de�ned by giving a general procedure for computing each value f(n)
from the sequence (f(i) | i < n) of preceding values, i.e.,

Fn = if n = 0 then 0(1-6)

else if n = 1 then 1
else Fn−2 + Fn−1

in the case of the Fibonacci sequence, or

f(n) = Φ((f(0); : : : ; f(n− 1)))(1-7)

in general. A recurrence equation of this form obviously determines a
value f(n) for each n, and so it serves as a recursive de�nition of the
function f ; and then we can establish that some proposition P (n) about f
holds of all n by induction, i.e., by showing the implication

(∀i < n)P (i)=⇒P (n);

using (1-7). The method is used to de�ne and establish the fundamental
properties of familiar number theoretic functions (addition, multiplication,
exponentiation, etc.), and it is the basic technique of elementary number
theory, where it often provides the basic architecture for deep and di�cult
arguments far removed from the simplicity of this example.

Example 2. The merge-sort algorithm. Suppose L is a set with a
�xed total ordering ≤ on it. A string (�nite sequence, word)2

v = v0v1 · · · vn−1 = (v0; : : : ; vn−1) ∈ L∗

is sorted (in non-decreasing order), if v0 ≤ v1 ≤ · · · ≤ vn−1, and for each
u ∈ L∗, sort(u) is the sorted \rearrangement" of u,

sort(u) =df the unique, sorted v ∈ L∗ such that for some(1-8)

bijection � : {0; : : : ; n− 1}�→{0; : : : ; n− 1};
v = (u�(0); u�(1); : : : ; u�(n−1)):

The e�cient computation of sort(u) is of paramount importance in many
computing applications, and the construction and analysis of sorting algo-
rithms is a small cottage industry. We will consider here just one of these

2Sometimes we denote strings by simply listing their elements

v0v1 · · · vn−1 = (v0; v1; : : : ; vn−1);

especially when we think of them as \words" from some alphabet L of \symbols"; and
in such cases, we often use \≡" to denote the equality relation on words, since \=" is
often one of the symbols in the alphabet.

Recursion, by Yiannis N. Moschovakis
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1. Recursive equations 7

algorithms, which is easily expressed by a system of two, simple, recursive
equations.

In dealing with strings, we use the following functions and notations:

|(u0; : : : ; um−1)| = m (with |∅| = 0);

tail((u0; : : : ; um−1)) = (u1; : : : ; um−1) (with tail(∅) = ∅);
(u0; : : : ; um−1) ∗ (v0; : : : ; vn−1) = (u0; : : : ; um−1; v0; : : : ; vn−1):

The merge-sort uses as a \subroutine" an algorithm for merging two
strings, which is de�ned as follows.

1.2. Proposition. The equation

merge(w; v) = if (|w| = 0) then v(1-9)

else if (|v| = 0) then w

else if (w0 ≤ v0) then (w0) ∗merge(tail(w); v)

else (v0) ∗merge(w; tail(v))

determines a value merge(w; v) for all strings w; v ∈ L∗, and if w and v
are both sorted, then

merge(w; v) = sort(w ∗ v):(1-10)

Moreover, the value merge(w; v) can be computed by successive applications

of (1-9), using no more than |w|+ |v| −· 1 comparisons.3

Proof. That (1-9) determines a function and that (1-10) holds are both
trivial, by induction on |w|+ |v|. For the comparison counting, notice �rst
that (1-9) computes merge(w; v) using no comparisons at all, if one of w or
v is the empty sequence; if both |w| > 0 and |v| > 0, we make one initial
comparison to decide whether w0 ≤ v0, and no more than |w| + |v| − 2
additional comparisons after that (by the induction hypothesis, in either
case), for a total of |w|+ |v| − 1. a
We did not de�ne precisely what it means to compute merge(w; v) by

successive applications of (1-9) (or from (1-9), as we will sometimes say),
but the procedure is obvious; for example, when L = N with the natural
ordering:

merge((3; 1); (2; 4)) = (2) ∗merge((3; 1); (4))
= (2; 3) ∗merge((1); (4))
= (2; 3; 1) ∗merge(( ); (4))
= (2; 3; 1; 4):

3Arithmetic subtraction is de�ned by k−· i = if k < i then 0 else k − i.

Recursion, by Yiannis N. Moschovakis
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8 1. Recursive equations

1.3. Exercise. Prove that if x > v0 > v1 > · · · > vn−1, then the com-
putation of merge((x); v) by (1-9) will require n comparisons.

For each sequence u with |u| = m > 1 and k = bm2 c the integer part of
1
2 |u|, let:

half1(u) =df (u0; : : : ; uk−1)

half2(u) =df (uk; : : : ; um−1);

and for |u| ≤ 1, set

half1(∅) =df ∅; half2(∅) =df ∅;
half1((x)) =df ∅; half2((x)) =df (x);

so that in any case

u = half1(u) ∗ half2(u)
and each of the two halves of u has length within 1 of 1

2 |u|. We will
(occasionally) need the (real) base-2 logarithm of a number m > 0,

ln2 m =df the unique real number y such that 2y = m;

and (more often) its integer version,

log2 m =df the least k such that m ≤ 2k:

It is clear that ln2 2k = log2 2k = k, and that in general,

ln2 m ≤ log2 m < ln2 m+ 1:(1-11)

1.4. Proposition. The sort function satis�es the equation

sort(u) = if |u| ≤ 1 then u(1-12)

else merge(sort(half1(u)); sort(half2(u)))

and it can be computed from (1-9) and (1-12) using no more than |u| log2 |u|
comparisons.

Proof. The validity of (1-12) is immediate, by induction on |u|. To
prove the bound on comparisons, also by induction, note that it is trivial
when |u| ≤ 1, and suppose that log2 |u| = k + 1, so that (easily) both
halves of u have length ≤ 2k. Thus, by the induction hypothesis and
Proposition 1.2, we can compute sort(u) using no more than

k2k + k2k + 2k + 2k − 1 ≤ (k + 1)2k+1

comparisons. a

1.5. Recursive equations and systems, (1). A recursive equation
is (generally) an identity

f(u) = Φ(u; f) (u ∈ U);(1-13)

Recursion, by Yiannis N. Moschovakis
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1. Recursive equations 9

where f : U → W is some function and Φ : U × (U → W ) → W is a
functional; and a system of recursive equations is a �nite set

f1(u1) = Φ1(u1; f1; : : : ; fn)
...

fn(un) = Φn(un; f1; : : : ; fn)

(1-14)

of identities with the obvious restrictions on the domains and ranges of the
functions fi and the functionals Φi, so that they make sense. We can use a
recursive equation (or a system) to de�ne a function, if we can prove that
it has exactly one solution, as is the case when it is a simple recurrence
like (1-7). In this example, however, we did not use the system (1-9)
and (1-12) as a de�nition, since the sorting function is de�ned directly and
explicitly by (1-8); we used instead the fact that the functions merge(u; v)
and sort(u) satisfy the system (1-9), (1-12) to extract an algorithm for
computing sort(u), and then to derive a fundamental complexity property

of that algorithm. This is another basic application of recursive equations.

Example 3. Dumb search. Suppose R ⊆ N is some set of natural
numbers, and consider the recursive equation

p(m) = if m ∈ R then m else p(m+ 1):(1-15)

It does not look much like a de�nition, since it de�nes p(m) in terms of
p(m+1), and it may have many solutions|for example, if R = ∅, then every
constant function p : N → N satis�es it. Still, we can extract a computation
procedure from it as in the preceding examples. If, for instance, the smallest
member of R is 4 and we use (1-15) to compute values of \the solution" as
above, we get

p(0) = p(1) = p(2) = p(3) = p(4) = 4;
and if the next member of R is 7, then, similarly, p(5) = p(6) = p(7) = 7.
In fact, when R is in�nite, then (easily) (1-15) has only one solution, the
function

p(m) = the least n ≥ m such that [m ∈ R]:(1-16)

Now, it is natural to read (1-15) as de�ning this \canonical" solution, ob-
tained by using it as a recipe for computations, even when R is not in�nite.
To make this precise and to characterize the preferred solution, we need to
introduce partial functions.

1.6. A partial function p : A * B is any (total, ordinary) function
p : A→ B⊥, where

B⊥ = B ∪ {⊥};
and ⊥ (read \bottom") is some �xed object not in B. The idea is that
⊥ is some kind of ideal element which stands for \the unde�ned," so that

Recursion, by Yiannis N. Moschovakis
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10 1. Recursive equations

p(x) = ⊥ simply means that no value has been assigned to p(x). We will
be using several common notations in connection with partial functions,
including:

p(x)↓ ⇐⇒df p(x) 6= ⊥ ⇐⇒ p(x) converges or is de�ned;

p(x)↑ ⇐⇒df p(x) = ⊥ ⇐⇒ p(x) diverges or is unde�ned:

Finally, we let

(A * B) = {p | p : A * B}
be the set of all partial functions on A to B, and on (A * B) we de�ne
the relation

p v q ⇐⇒ (∀x ∈ A)[p(x)↓ =⇒ p(x) = q(x)]

which suggests interpreting each p : A * B as giving \partial information"
about some total extension p : A → B, and that p(x) = ⊥ means that no
value p(x) is determined by the approximation p.4

A partial function p : A * B is �nite, if its domain of convergence
{x ∈ A | p(x)↓} is �nite, and when it is, we let

|p| =df |{x ∈ A | p(x)↓}|(1-17)

be the number of elements in its domain. In particular, if

∅(x) = ⊥ (x ∈ A)

is the partial function which never converges, then |∅| = 0.
Each partial function p : A * B has a natural extension to a function

p̃ : A⊥ → B⊥,

p̃(⊥) = ⊥; x ∈ A=⇒ p̃(x) = p(x) (p : A * B)(1-18)

which in turn determines p uniquely. Composition of partial functions is
de�ned using these so-called strict liftups: if p : A * B, q : B * C, then

(q ◦ p)(x) =df q̃(p(x)) (x ∈ A);

so that if p(x)↑, then q(p(x))↑. We think of p and p̃ as \two aspects" of the
same object and will tend to blur the distinction between them, sometimes
using the same symbol for both of them and letting context decide which
is which.

4If f : A * B, we call A the input set and B the output set of f ; {x ∈ A | f(x)↓}
is the domain of convergence of f and {f(x) | f(x)↓} is the image of f . This avoids
confusion, especially between the input set and the domain of convergence of a partial
function. Notice that if f : A * B, A ⊆ A′ and B ⊆ B′, then f : A′ * B′, so that
the input and output sets of f are not determined by f (if we view functions as sets of
ordered pairs).

Recursion, by Yiannis N. Moschovakis
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1. Recursive equations 11

We will represent each relation R ⊆ A on a set A by its characteristic
function

�R(x) =

{
tt; if R(x);
�; otherwise;

(1-19)

where tt and � are some once-and-for-all �xed objects representing \truth"
and \falsity". By extension, a partial relation is any partial function
p : A * {tt;�}.

1.7. Exercise. Show that the relation v is a partial ordering of the
space (A * B), i.e., for all p; q; r ∈ (A * B),
(1) p v p.
(2) p v q & q v r=⇒ p v r.
(3) [p v q & q v p]=⇒ p = q.

1.8. Recursive equations and systems, (2). It is now natural to
consider recursive equations and systems as in 1.5 but on partial functions:

p(u) = Φ(u; p) (p : U * W );(1-20)

and

p1(u1) = Φ1(u1; p1; : : : ; pn) (p1 : U1 *W1)
...

pn(un) = Φn(un; p1; : : : ; pn) (pn : Un *Wn)
(1-21)

And with these de�nitions, we can prove that (1-16) (correctly understood)
de�nes the least (partial) solution of the recursive equation (1-15).

1.9. Proposition. For each set R ⊆ N, the partial function

p(m) = (�n ≥ m)[n ∈ R]

=

{
(the least n ≥ m)[n ∈ R]; if (∃n ≥ m)[n ∈ R];
⊥; otherwise

satis�es the recursive equation (1-15), and it is the least solution of (1-15)
in the following sense: if q : N * N and for all m,

q(m) = if m ∈ R then m else q(m+ 1);(1-22)

then p v q.

Proof. That p satis�es (1-15) is immediate, and it is a bit easier to see
that it is the least solution by taking cases on whether R is �nite or in�nite.
Case 1. R is in�nite. Now p is a total function, and it is the only solution

of (1-15); because if q satis�es (1-22) and p(m) = m, then m ∈ R and so
q(m) = m; while if p(m) = m + k for some k > 0, then by k applications
of (1-22), q(m) = q(m+ 1) = · · · = q(m+ k) = m+ k = p(m).

Recursion, by Yiannis N. Moschovakis
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12 1. Recursive equations

Case 2. R is �nite. Let M be the least number greater than all the
members of R, so that

p(x)↓ ⇐⇒ x < M;

and every q which satis�es (1-22) must agree with p belowM , as in Case 1;
this means that p v q, by the de�nition of the partial ordering v on the
function space (N * N). a
In this example, the recursive equation (1-15) may have many solutions,

when R is �nite, but p stands out as the most natural one, and we will
call it the canonical solution of (1-15). It is characterized by being the
least solution, and it arises by reading (1-15) as determining a recipe for
computations (an algorithm), rather than just a condition which a partial
function may or may not satisfy.

Example 4. Recursion on the powerset. Quite often in mathemat-
ics we need the least set with certain properties, and we justify the existence
of such a set by appealing to the following, simple result. Here

P(Ω) = {X | X ⊆ Ω}
is the powerset operation, and a mapping (function) Φ : P(Ω) → P(Ω) is
monotone if it respects the inclusion relation,

X ⊆ Y =⇒Φ(X) ⊆ Φ(Y ):

1.10. Theorem. If Φ : P(Ω) → P(Ω) is a monotone mapping on the

powerset of a set Ω, then the intersection

I = �x(Φ) =
⋂
{X ⊆ Ω | Φ(X) ⊆ X}(1-23)

of all sets which are \pressed down" by Φ is the least (under ⊆) solution of

the recursive equation

X = Φ(X);(1-24)

i.e., it is a �xed point of Φ, and it is a subset of every �xed point of Φ. We
say that I is de�ned by the recursive equivalence

x ∈ I ⇐⇒ x ∈ Φ(I):(1-25)

Proof. If Φ(X) ⊆ X, then I ⊆ X, by the de�nition of I, and hence
Φ(I) ⊆ Φ(X), since Φ is monotone; thus Φ(I) ⊆ X for every X which is
pressed down, and, by the de�nition of I,

Φ(I) ⊆ I:

Now, by monotonicity again, we get from this that Φ(Φ(I)) ⊆ Φ(I), which
means that Φ(I) is pressed down, and hence I ⊆ Φ(I), which together
with the last displayed inclusion gives the required Φ(I) = I. That I is
a subset of every other solution of (1-24) is immediate from its de�nition,
since every �xed point of Φ is pressed down. a

Recursion, by Yiannis N. Moschovakis
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1. Recursive equations 13

1.11. Recursive equations and systems, (3). We called (1-24) a
recursive equation, although it is not, strictly speaking in the \functional
form" (1-20), for the simple reason that it relates sets rather than functions.
More generally, we will call any �xed point equation

x = Φ(x) (x ∈ X;Φ : X → X)(1-26)

a recursive equation, no matter what the set X or the function Φ; and we
will also talk of recursive systems

x1 = Φ1(x1; : : : ; xn)
...

xn = Φn(x1; : : : ; xn);

(1-27)

where xi ∈ Xi and Φi : X1 × · · · × Xn → Xi for i = 1; : : : n. Notice
that (1-20) can also be written in this general form using the �-operator,

p = �(u)Φ(u; p) (p : U * W );

and the same can be done for the system in (1-21). Whether such equations
and systems have solutions (or canonical solutions) depends on the circum-
stances, of course, and we will need to prove it for interesting equations
and classes of equations which come up in applications; Theorem 1.10 is
one such result.

1.12. Exercise (Function closure). Suppose A is a set, f1; : : : ; fk are
functions on A of various arities, fi : Ani → A, A0 ⊆ A is a subset of A,
and de�ne � : P(A) → P(A) by

�(X) =df A0

⋃
{fi(x1; : : : ; xni) | x1; : : : ; xni ∈ X; i = 1; : : : ; k}:

Show that � is monotone on P(A), and its least �xed point A0 = �x(�) is
the closure of A0 under f1; : : : ; fk, i.e., the least set I ⊆ A such that

A0 ⊆ I & (∀i; x1; : : : ; xni)[x1; : : : ; xni ∈ I =⇒ fi(x1; : : : ; xni) ∈ I]:

Show also that for every x ∈ A0, either x ∈ A0, or there is some fi and
x1; : : : ; xni ∈ A0 such that x = fi(x1; : : : ; xni).

The syntactic categories (terms, formulas, programs, proofs, theorems
etc.) of formal and programming languages are typically introduced by
simple recursive de�nitions, which (when not entirely trivial) are justi�ed
by appealing to Exercise 1.12. Primarily to set up notation, we review here
and in the problems some examples of this procedure.

1.13. The Propositional Calculus. In the succinct notation preferred
by computer scientists, the formulas of the propositional calculus are de-
�ned by the scheme

A :≡ p | ¬(A1) | (A1 & A2) | (A1 ∨A2) | (A1 → A2)

Recursion, by Yiannis N. Moschovakis
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14 1. Recursive equations

where p is chosen from a speci�ed list {vi | i = 0; 1; : : : } of formal vari-
ables, A, A1 and A2 stand for formulas, and it is tacitly assumed that
the remaining reserved symbols are all distinct, from each other and from
the variables. The interpretation here is that the set Prop of propositional
formulas is the least �xed point of the monotone mapping

�(X) = {vi | i = 0; 1; : : : } ∪ {¬(A) | A ∈ X} ∪ {(A1 & A2) | A1; A2 ∈ X}
∪{(A1 ∨A2) | A1; A2 ∈ X} ∪ {(A1 → A2) | A1; A2 ∈ X};

in the powerset of the set Σ∗ of strings from the propositional alphabet

Σ = {vi | i = 0; 1; : : : } ∪ {¬; (; );&;∨;→};

in the notation of (1-25), Prop is the solution of the recursive equivalence

A ∈ Prop ⇐⇒ A ∈ �(Prop):(1-28)

Recursive de�nitions of syntax like this can be quite complex, and must
often be accompanied by the proof of various properties of the syntactic
objects, not always trivial. A key, �rst result is often a Parsing Lemma,
see Problems x1.22 and x1.23.

Partly to use in the next example, but also because of its intrinsic interest,
we introduce here a natural and useful extension of the notion of \string".

1.14. Streams. For any two disjoint setsM and A, anM -stream from
A is a �nite or in�nite sequence from A, or a sequence of the form

u = (a0; : : : ; an; w) (n ≥ 0);(1-29)

where w ∈M . The �nite or in�nite sequences from A are called divergent
or non-terminating streams, while u in (1-29) is a convergent or ter-
minating stream which returns the value w ∈ M . In applications, A
typically represents \acts" of some sort, and a stream stands for a sequence
of executions of these acts, ending (perhaps) with the \return" of a value
from M . We let

Streams(A)M =df {u | u is an M -stream from A}:(1-30)

In this chapter we will be concerned only with the simplest case, where
M = {t} is a singleton and

Streams(A) = Streams(A){t}(1-31)

is a kind of completion of the set A∗ of �nite strings from A, Exercise 1.16.
The (divergent) empty stream is the same as the empty string, i.e., ∅; it is
distinct from the \empty" convergent stream (t).
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1. Recursive equations 15

Streams carry the following, natural operations, some of them extending
the corresponding operations on strings:

|u| =
{

the length of u; if u is �nite;
∞; if u is in�nite;

tail(u) = if (|u| ≤ 1) then ∅ else �(i)ui+1;

bau = prepend(b; u) = �(i)[if (i = 0) then b else ui−1]
head(u) = if (|u| > 0) then u0 else ⊥;

Notice that convergent streams have length > 0, and that

head : Streams(A)M → (A ∪M)⊥;

We also set

Symbol(u) ⇐⇒ lh(u) = 2 & (u)1 = t (u ∈ Streams(A);

so that each a ∈ A is represented by the stream (a; t).
Finally, streams are partially ordered by the \initial segment" relation,

u v v ⇐⇒df (∀i < |u|)[ui = vi]:(1-32)

1.15. Exercise. Show that the binary relation v is a partial ordering of
Streams(A)M , as in 1.7 whose maximal points are the convergent streams.

1.16. Exercise. Show that every non-decreasing sequence of streams

u0 v u1 v : : :

has a least upper bound u, i.e., there is a unique stream

u =limn un

such that

(1) For every n, un v u.
(2) If v is any stream such that for all n, un v v, then u v v.

1.17. Exercise. Show that the operations tail(u), prepend(b; u) and the
partial operation head(u) are monotone, with respect to the initial segment
partial ordering v, i.e.,

u v v=⇒ tail(u) v tail(v);

and similarly with prepend.

1.18. Exercise. Show that the recursive equation

u ; v = if head(u) = t then v

else prepend(head(u); tail(u) ; v)

on Streams(A) has a unique solution, the operation of sequential execu-
tion. Show also that

if u is divergent, then u ; v = u;
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16 1. Recursive equations

and that ; is associative, i.e.,

u ; (v ;w) = (u ; v) ;w:

Example 5. Deterministic, imperative programming languages.
Consider the following program, in a toy \command language" which we
will soon make precise:

Program A:

0. Read(X) 5. goto 2

1. Y:=1 6. Print(Y)

2. if (X=0) goto 6 7. Ring

3. X:=X-1 8. end

4. Y:=Y+Y

In the obvious reading of the notation, X and Y are number variables which
can hold a (natural) number, and the assignment command Y:= n stores
the number n in Y; Read(X) requests input and stores the received number
in X; Ring rings some bell; Print(Y) prints (in some standard format)
the value stored in Y; end terminates execution; and the basic conditional
and goto commands are self-explanatory. The algorithm expressed by the
program A receives the input x, initializes Y to 1, and then successively
decrements X and doubles Y until (the value stored in) X becomes 0, at
which time it prints the value of Y (which is now 2x), rings the bell and
quits. Ultimately the program A de�nes a function which assigns to each
input x a stream of \observable" acts,

den(A)(x) = (Print(2x); Ring; t);(1-33)

typically called the denotation of A; the sequence of \internal" (not ob-
servable) acts which in the end produce this result is the computation of
A on the input x, and it can be made precise in many ways.
This task of interpretation is trivial for this simple program A, but we

can use arithmetical operations, assignments, conditionals and \goto" com-
mands to write much more complex programs, whose behavior is by no
means obvious. The task of \program semantics" is to give general rules
of interpretation for all programs of a given programming language, which
make precise the \meanings" of programs and also help us to reason ef-
�ciently and rigorously about them. Our limited aim here is to see how
recursive de�nitions come up naturally when we try to do this.

1.19. Syntax of the programming language L1. The (arithmetical)
expressions of L1 are de�ned by the scheme

E :≡ X | 0 | 1 | (E1 + E2) | (E1 − E2) | (E1 × E2)

where X is any member of some speci�ed, in�nite set V of variables, e.g.,
the set of all strings of English letters.
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1. Recursive equations 17

The commands (or statements) of L1 are similarly de�ned by the
scheme

C :≡ X := E | if (E1 = E2) then goto j | if EOF then goto j

| Ring | Read(X) | Print(E) | end

where X is any variable, E, E1, E2 are expressions, and j is any number, in
decimal notation.
Finally, a program of L1 is a �nite sequence of commands

P = (C0; C1; : : : ; Cn)

of length n + 1 > 0, in which all the numbers which occur (in the con-
ditional commands) are between 0 and n. Typically we name programs
and we number the commands, as we did in Program A, for easy reading
and reference, but none of this is necessary. We will also introduce some
obvious abbreviations, e.g.,

goto j stands for if (0 = 0) then goto j;

for \unconditional" jumps.
EOF stands for \end-of-�le", and the following program illustrates the

meaning of the command if EOF then goto which did not occur in Pro-
gram A.

Program B:

0. Read(X) 3. goto 0

1. if EOF goto 4 4. end

2. Print(X)

Program B repeatedly requests input, which it simply prints out, and it
could go on forever; to stop it, whatever agent is producing input (per-
haps George, on the keyboard) signals that no more is coming (typically
by hitting <Control>-Z, if it is George), which satis�es the EOF test and
execution jumps to command 4 and ends.

1.20. Exercise. Write a program in L1 which requests two inputs, m
and n and prints out a 1 or a 0 accordingly as m ≥ n or m < n.

1.21. Exercise. Write a program in L1 which requests two inputs, m
and n; prints out a 0 and quits if m < n or n = 0; and if m ≥ n ≥ 1, then
prints out a q and an r such that 0 ≤ r < n and m = nq + r.

We need to interpret|i.e., assign mathematical objects to|the expres-
sions and the programs of L1, in agreement, of course, with our intuitive,
computational understanding of L1, so that, for example, we can prove
rigorously that the programs in Exercises 1.20 and 1.21 actually do what
we designed them for. For the expressions, the job is easy: each of them
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18 1. Recursive equations

denotes a number, which depends, however, on some given interpretation
of the variables.

1.22. Semantics of the expressions of L1. A store (or valuation)
is any function

� : V → N
which assigns a natural number to each variable, and each expression E

de�nes a function

den(E) : Stores→ N
as follows:

den(X)(�) = �(X); den(0)(�) = 0; den(1)(�) = 1

den((E1 + E2))(�) = den(E1)(�) + den(E2)(�)

den((E1 − E2))(�) = den(E1)(�)−· den(E2)(�)

den((E1 × E2))(�) = den(E1)(�) · den(E2)(�)

1.23. States and computations. A state for a program

P = (C0; : : : ; Cn)

is a triple

s = (i; �; u);

where i is the number of a command (\to be executed next"), and so i ≤ n;
� is a store; and u is a stream of natural numbers (\the part of the input
not yet used up"). A state is terminal if program execution ends with it,

Terminal(s) ⇐⇒ Ci ≡ end:

Execution of command Ci may change the state and may also produce an
observable act, as described in Table 1, where i+ is the label of \the next
command in the program", i.e.,

i+ = if (i < n) then i+ 1 else n;

and �{X := n} is the update of the store � which changes it only on the
variable X:

�{X := n}(Y) =

{
n; if Y ≡ X;

�(Y) otherwise:
(1-34)

The Table de�nes two natural functions associated with the program P:

next(s) = the next state

= the Next State entry for s in the Table;

act(s) = the Action entry for s in the Table;
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1. Recursive equations 19

Command Action Next State

X:=E skip (i+; �{X := den(E)(�)}; u)

if (E1=E2) then goto j skip if (den(E1)(�) = den(E2))(�))

then (j; �; u) else (i+; �; u)

if EOF then goto j skip if u = (t)

then (j; �; u) else (i+; �; u)

Read(X) skip (i+; �{X := head(u)}; tail(u))

Ring ring (i+; �; u)

Print(E) print(den(E)(�)) (i+; �; u)

end skip (i; �; u)

Table 1. Transition and action of program P at state (i; �; u).

where act(s) is skip, ring or print(n) for some number n. Finally, the
computation of P starting from a state s is the unique stream of states

comp(P)(s) = (s0; s1; : : : )(1-35)

of length at least 2, such that:

(1) s0 = s.
(1) If sn is terminal, then sn+1 = t.
(3) If sn is not terminal, then sn+1 = next(sn).

Note that

comp(P) : States(P) → Streams(States(P));

where States(P) is the set of states of P. In using all these functions and
relations, we will normally skip the explicit reference to P, when it is clear
from the context which program we are talking about.

1.24. Exercise. Prove that comp(P)(s) is always a convergent or in-
�nite, divergent stream, and give examples of convergent and divergent
computations of Program B.

Recall the standard notation for the iterates of a function � : X → X:

�0(s) = s;

�n+1(s) = �(�n(s)):

1.25. Lemma. For each state s of a program P,

comp(P)(s) = if Terminal(s) then (s; t) else sa comp(P)(next(s)):
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20 1. Recursive equations

Proof. Fix the program P. Directly from the de�nition,

Terminal(s)=⇒ comp(s) = (s; t);

and if s is not terminal, then

comp(s) = (s; next1(s); next2(s); : : : );

and comp(s) converges and has length

| comp(s)| = (�n)Terminal(nextn(s)) + 2

exactly if some nextn(s) is terminal. Applying this to next(s), we get

comp(next(s)) = (next1(s); next2(s); next3(s); : : : );

from which it follows that

¬Terminal(s)=⇒ comp(s) = sa comp(next(s))

and completes the proof of the Lemma. a

1.26. Theorem. For each program P, the function comp(P) is the unique
solution of the recursive equation

f(s) = if Terminal(s) then (s; t) else sa f(next(s)):(1-36)

Proof. It su�ces, by the Lemma, to prove that (1-36) has at most one
solution.
First we observe that it f is any solution of (1-36), then

¬Terminal(s)=⇒|f(s)| = |f(next(s))|+ 1:(1-37)

Suppose now that f1 and f2 both satisfy (1-36): we will complete the proof
by showing by induction on n that

(∀s)[n < |f1(s)|=⇒ f1(s)n = f2(s)n]:

This is immediate at the basis, since

f1(s)0 = s = f2(s)0;

and it is also true for all n when s is terminal, since then

f1(s) = (s; t) = f2(s):

Finally, if s is not terminal and n+ 1 < |f1(s)|, then
f1(s)n+1 = f1(next(s))n by (1-36) for f1

= f2(next(s))n by ind. hyp.

= f2(s)n+1 by (1-36) for f2;

where the induction hypothesis applies in the crucial step because either
next(s) is terminal, in which case f1(next(s)) = f2(next(s)), outright, or it
is not, and then by (1-37)

n+ 1 < |f1(s)|=⇒n < |f1(next(s))|:(1-38) a
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1. Recursive equations 21

1.27. Denotational semantics for L1. The denotation of a program
P is the (possibly divergent, perhaps empty) stream of observable acts which
it produces, as a function of an arbitrary input stream of integers u, so

den(P) : Streams(N) → Streams(A);

where A is the set of ring and print(n) acts. Execution starts on the initial
state

sin(u) = (0; �in ; u);(1-39)

where �in(X) = 0 for every variable X. Thus, the only relevant computation
is the one which starts on sin(u), but it is useful to associate a denotation
den(P)(s) with every state, and �nally set

den(P)(u) = den(P)(sin(u)):(1-40)

Finally, den(P)(s) is just the stream of ring and print(n) acts \executed"
by the computation comp(P)(s), i.e.,

den(P)(s) = h(s0) ∗ h(s1) ∗ · · ·
where ∗ is the operation of concatenation on strings and

h(s) =


(t) if s is terminal;

( ) otherwise, if act(s) = skip;

(act(s)) otherwise:

(1-41)

Together with Lemma 1.25, this implies that

¬Terminal(s)=⇒den(P)(s) = h(s) ∗ den(P)(next(s));(1-42)

which leads us to the fundamental recursive equation for the denotation
function den(P).

1.28. Theorem. For each program P, den(P) is the least solution of the

recursive equation

g(s) =


(t) if Terminal(s);
g(next(s)) otherwise, if act(s) = skip;

act(s)a g(next(s)) otherwise, if

act(s) = ring or act(s) = print(n):

(1-43)

Proof. That den(P) satis�es (1-43) is immediate from its de�nition
when s is terminal and from (1-42) when it is not. To prove its minimality,
notice that if g satis�es (1-43), then for every s,

g(s) = h(s) ∗ g(next(s));(1-44)

if we apply this n times, for any n < | comp(s)|: we get
g(s) = h(s0) ∗ h(s1) ∗ : : : h(sn−1) ∗ g(sn);
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22 1. Recursive equations

which implies h(s0) ∗ h(s1) ∗ : : : h(sn−1) v g(s), and, in the limit yields the
required den(P)(s) v g(s). a

1.29. Exercise. Give an example of a program P for which equation (1-43)
has many solutions.

The language L1 is very simple, and so it might appear that the fussy
distinction between computations and denotations and the recursive char-
acterizations of the functions comp(P) and den(P) do not contribute much
to our understanding of it. On the other hand, such characterization of
comp(P) and den(P) as, respectively, the unique and least solutions of two
related recursive equations is part of the basic methodology in the
theory of deterministic programming languages.
Next we look (very brie
y) at one, simple example of non-deterministic

languages, where the method is severely tested.

Example 6. Do this or that; non-deterministic recursion. The
language L2 is obtained by adding the non-deterministic \autonomous
choice" construct or, so that its expressions are those of L1 and its com-
mands are de�ned by

C :≡ X := E | if (E1 = E2) then goto j | if EOF then goto j | goto i or j

| Ring | Read(X) | Print(E) | end

For example:

Program C:

0. goto 1 or 3

1. Print(0) 3. Print(1)

2. goto 0 4. goto 0

In the most natural understanding of these commands, the execution of C
starts with a choice, after which it prints a 0 or a 1 and returns to the initial
instruction 0, to make another choice, and so on, inde�nitely: the execution
never terminates, and produces some arbitrary in�nite, binary sequence,
depending on the choices made at each execution of the choice command
0. There are many \computations"|in�nite streams in this case|which
produce many outputs, and so it is natural to identify the denotation of C
with the set of all in�nite, binary sequences,

den(C) = (N → {0; 1}):(1-45)

To give precise semantics for L2, we add to Table 1 the additional line

goto j or j skip (i; �; u) or (j; �; u)

which describes the (trivial) action and two, possible transitions for the
new command. It is no longer the case that for each program P, each state
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1. Recursive equations 23

s has a unique next state s′, but there is an obvious relation between states

next(P)(s; s′) ⇐⇒ s′ is a possible next state to s;

and for each state s, we have an associated set of computations of P,

comp(P)(s) = {(s0; s1; : : : ) | s0 = s & (∀i)[next(P)(si; si+1)]}:
Finally, the denotations of programs are also sets of streams:

den(P)(s) = {h(s0) ∗ h(s1) ∗ · · · | (s0; s1; · · · ) ∈ comp(P)(s)};
where h is de�ned by (1-41) above. Notice that both comp(P)(s) and
den(P)(s) are non-empty sets of streams, although there are obvious cases
where the denotation is the singleton of the empty stream

den(P)(s) = {∅};
for example in the program with the single instruction

0: goto 0(D)

If we try to get recursive, �xed-point characterizations of these set-valued
functions comp(P) and den(P)(s), however, we encounter problems. For the
simple program C (and skipping the state s, since the executions of P do
not depend on the state), we are naturally led to the equation

x = (0 ax) ∪ (1 ax) (∅ 6= x ⊆ Streams({0; 1}));(1-46)

where the prepend operation on sets of streams is de�ned in the obvious
way, by distribution,

bax = {bau | u ∈ x}:
Now the correct denotation (1-45) of C satis�es this equation, but it is not
\the least solution" of (1-46) under any plausible de�nition of least because
of the following:

1.30. Exercise. Show that for i = 0; 1, the set of binary streams

xi = {u ∈ Streams({0; 1}) | for all su�ciently large n; un = i}
satis�es (1-46), while

x0 ∩ x1 = ∅:

At this point, one might observe that den(C) is the largest (under ⊆)
solution of (1-46), so perhaps the denotations of L2 can be characterized
using largest �xed points|which sounds initially plausible, since these (at
least) exist in P(Streams(acts)) \ {∅} by Example 4. But Program D above
eliminates this possibility, since the recursive equation that one would nat-
urally associate with its denotation is the trivial

x = x;(1-47)
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24 1. Recursive equations

whose largest solution is (N → {0; 1}), while the implementations give
den(D) = {∅}, which is actually the least solution of equation (1-47) in
P(Streams(acts)) \ {∅}.
It is actually possible|and useful|to characterize the denotations of L2

by canonical solutions of the natural recursive equations associated with its
programs, but this requires some non-trivial foundational analysis of non-
deterministic recursion, and the development of some interesting mathe-
matics. We consider some of the relevant facts in Problems x1.31 { ∗x1.32.

Problems for Chapter 1

x1.1. Prove that if � = 1
2 (1 +

√
5) and � = 1

2 (1 −
√

5) are the roots of
the quadratic x+ 1 = x2, then

Fn = 1√
5
(�n − �n) (n ∈ N):

x1.2. Addition on the natural numbers may be de�ned by the recursion

m+ 0 = m;

m+ Sn = S(m+ n);
(1-48)

where Sn = n+ 1 is the successor operation. Prove that it is associative,

k + (m+ n) = (k +m) + n

and commutative,
m+ n = n+m:

Hint: The idea is to use only the equations (1-48) in these proofs. To
show commutativity you will need to prove the proposition

(∀m)(∀n)[m+ n = n+m]

by induction on m; and both the basis : (∀n)[0 + n = n + 0] and the
induction step : (∀n)[Sm+n = n+Sm] of this proof are shown by induction
on n. (Note that to show Sm+Sn = Sn+Sm in the induction step of the
induction on n, within the induction step of the \master induction" on m,
you have two induction hypotheses available: you may use (∀k)[m + k =
k+m], and also Sm+n = n+Sm. This is a typical example of \proof by
double induction.")

Recall the de�nition of the greatest common divisor of two natural num-
bers:

gcd(m;n) = the largest d such that d |m and d |n (m ≥ n ≥ 1)(1-49)

where

rm(m;n) = the unique r < n such that, for some q;m = nq + r;

n |m ⇐⇒ rm(m;n) = 0:
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1. Recursive equations 25

The Euclidean algorithm for computing gcd(m;n), �rst described in Book
VII of the Elements, is (perhaps) the most ancient and still one of the
most important algorithms in mathematics. Here we consider the \iterated
division" rather than the \iterated subtraction" version of the algorithm.

x1.3 (The Euclidean algorithm). Prove that the function gcd(m;n)
satis�es the recursive equation

gcd(m;n) = if n |m then n (m ≥ n ≥ 1)(1-50)

else gcd(n; rm(m;n));

and use (1-50) to compute gcd(231; 165) by repeated division.
Hint: Show that the pairs {m;n} and {n; rm(m;n)} have exactly the

same common divisors.

x1.4 (Bezout 's Lemma). Prove that there exist functions

�; � : N× N → Z = {: : : ;−2;−1; 0; 1; 2; : : : }
which satisfy the following system of recursive equations, for m ≥ n ≥ 1:

�(m;n) = if (n |m) then 0 else �(n; rm(m;n));
�(m;n) = if (n |m) then 1

else �(n; rm(m;n))− quot(m;n)�(n; rm(m;n));

where, for m ≥ n ≥ 1,

quot(m;n) = the unique q such that for some r < n;m = nq + r

is the (natural number) quotient of m by n. Show also that if � and �
satisfy this system, then

gcd(m;n) = �(m;n)m+ �(m;n)n;

and use this to express gcd(231; 165) as an integer, linear combination of
231 and 165.

x1.5. Prove that for all m ≥ n ≥ 1, there are in�nitely many choices of
rational integers � and � such that

gcd(m;n) = �m+ �n;

and give an algorithm which �nds the pair with least � ≥ 0.

To measure the (most natural) complexity of the computation of gcd(m;n)
by the Euclidean algorithm, let

c(m;n) = the number of divisions required to compute(1-51)

gcd(m;n) from (1-50) (m ≥ n ≥ 1);

so that, directly from (1-50),

c(m;n) = if (n |m) then 1 else 1 + c(n; rm(m;n)):(1-52)
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26 1. Recursive equations

x1.6. Prove that for the Fibonacci sequence (Fk | k ∈ N) de�ned in (1-1)
and all k ≥ 2, gcd(Fk+1; Fk) = 1 (i.e., Fk and Fk+1 are relatively prime)
and c(Fk+1; Fk) = k − 1.

∗x1.7 (Lam�e's Lemma). Prove that if n ≤ Fk (the kth Fibonacci
number) with k ≥ 2, then, for every m ≥ n, c(m;n) ≤ k − 1.
Hint: Use induction on k ≥ 2, checking separately the two basis cases

k = 2; 3; the analysis required for k = 3 suggests the induction argument
for all k + 2, with k ≥ 2.

∗x1.8. Prove that if m ≥ n ≥ 2, then

c(m;n) ≤ 2 ln2(n);

where � is the positive root of x + 1 = x2. (This says that the number of
divisions required to compute gcd(m;n) by the Euclidean algorithm grows
only logarithmically with n.)

In the next two problems we de�ne and analyze a simple algorithm for
sorting, which is much less e�cient than the merge-sort.

x1.9. Prove that the equation

insert(x; u) = if (|u| = 0) then (x)(1-53)

else if x ≤ u0 then (x) ∗ u
else (u0) ∗ insert(x; tail(u))

determines a value insert(x; u) ∈ L∗ for any x ∈ L and u ∈ L∗, and if u is
sorted, then

insert(x; u) = sort((x) ∗ u):(1-54)

Moreover, insert(x; u) can be computed from (1-53) using no more than |u|
comparisons.

x1.10 (The insert-sort algorithm). Prove that the sort function sat-
is�es the equation

sort(u) = if |u| ≤ 1 then u(1-55)

else insert(u0; sort(tail(u)));

and can be computed from (1-55) and (1-53) using no more than 1
2 |u|(|u|−1)

comparisons. Illustrate the computation with some examples, and show
also that if u is inversely ordered, then this computation of sort(u) requires
exactly 1

2 |u|(|u| − 1) comparisons.

To see the di�erence between the merge-sort and the insert-sort, note
that when |u| = 64 = 26, then the insert-sort may need as many as 2016
comparisons, while the merge-sort will need no more than 384. On the
other hand, as the next two problems show, there is nothing wrong with
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1. Recursive equations 27

the idea of sorting by repeated inserting|it is only that (1-53) expresses a
very ine�cient algorithm for insertion.

∗x1.11 (Binary insertion). Prove that the equation

binsert(x; u) = if (|u| = 0) then (x)(1-56)

else if (x ≤ half2(u)0)
then binsert(x;half1(u)) ∗ half2(u)

else half1(u) ∗ half2(u)0 abinsert(x; tail(half2(u)))

determines a value binsert(x; u) ∈ L∗ for any x ∈ L and u ∈ L∗, and if u is
sorted, then

binsert(x; u) = insert(x; u) = sort((x) ∗ u):

Moreover, binsert(x; u) can be computed from (1-56) using (for |u| > 0) no
more than b(|u|) comparisons, where

b(m) =

{
log2 m+ 1; if m is a power of 2;
log2 m; otherwise:

∗x1.12 (Binary-insert-sort). Prove that the sort function satis�es the
equation

sort(u) = if |u| ≤ 1 then u(1-57)

else binsert(u0; sort(tail(u)));

and can be computed from (1-57) and (1-56) using no more than s(|u|)
comparisons, where for m > 0,

s(m) = ln2((m− 1)!) + (m− 1) ≤ log2((m− 1)!) + (m− 1):(1-58)

∗x1.13. For the function s(m) de�ned in (1-58), prove that

limm→∞
s(m)

log2(m!)
= 1:

By Stirling's formula,

limm→∞
m log2 m

log2(m!)
= 1;

and so the merge-sort and the binary-insert-sort algorithms are asymptot-
ically equally e�cient, from the point of view of the required number of
comparisons. In fact, they are asymptotically best possible, but without
a general de�nition of \algorithm" we can only prove this fact for speci�c
models of computation, e.g., Turing machines:
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28 1. Recursive equations

∗x1.14 (Lower bound for sorting). A Turing machineM with an or-
acle is a Turing sorter for sequences of length n ≥ 2, if for every ordering
≤ on the set Nn = {0; 1; : : : ; n − 1}, if the oracle answers every question
\is i ≤ j?" during the computation of M truthfully for the given order-
ing, then the computation terminates and the numbers 0; 1; : : : ; n − 1 are
printed on the tape as ordered by ≤. Prove that every such Turing sorter
will call the oracle for at least log2(|n|!) times, for at least one ordering of
Nn.
Hint: The computation of M proceeds deterministically until the �rst

question to the oracle, after which it may split depending on whether the
answer is \yes" or \no"|and then it may split again on the second ques-
tion, along each of these paths, etc. Consider the tree of computations
which is constructed in this way, and argue that it must have exactly |n|!
terminating branches, one for each ordering of Nn; now use the fact that
if the largest number of oracle calls along a single branch is k, then the
number of distinct, terminating branches cannot be larger than 2k.

∗x1.15. For any partial function g : Nn+1 * N, consider the recursive
equation

p(y; ~x) = (if (g(y; ~x) = 0) then y else p(y + 1; ~x):(1-59)

(1) Prove that the least solution of (1-59) is the partial function

f(y; ~x) = (�t ≥ y)[g(t; ~x) = 0](1-60)

= the least t ≥ y such that [g(t; ~x) = 0
& (∀s)[y ≤ s < t=⇒ g(s; ~x)↓ 6= 0]:

(2) Show that for di�erent choices of g, (1-59) may have one or in�nitely
many solutions.

(3) Show that there is no choice of g for which (1-59) has �nitely many
but more than one solutions.

x1.16. Consider the recursive equation

p(x; y) = if (x = 0) then 1 else p(Pd(x); p(x; y))(1-61)

on N
(1) Solve (1-61)|i.e., prove that there is a least partial function which

satis�es it and give an explicit description of this partial function.

(2) Give an explicit description of the unique total function which satis-
�es (1-61).

∗x1.17. Prove that (1-61) is satis�ed by uncountably many distinct par-
tial functions.
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1. Recursive equations 29

x1.18. Suppose F ⊆ P(Ω) is a family of sets such that ∅ ∈ F and F is
closed under arbitrary unions, i.e.,

X ⊆ F =⇒
⋃
X ∈ F :

Let Φ : F → F be a monotone operator. Prove that the set

J = JΦ =
⋃
{X ∈ F | X ⊆ Φ(X)}

is the largest �xed point of Φ, i.e., Φ(J) = J , and for every X ∈ F , if
Φ(X) = X, then X ⊆ J .
In particular, every monotone operator Φ : P(Ω) → P(Ω) has a largest

�xed point.

x1.19. Fix a closed set C of real numbers, de�ne Φ : P(C) → P(C) by

Φ(X) = {x ∈ X | x is a limit point of X};
and let JC be the largest �xed point of Φ. Prove that JC is the kernel of
C, i.e., the unique perfect subset F of C such that C \ F is countable.

x1.20. Suppose ≤ is a wellordering of a set A. A subset I ⊆ A is an
initial segment (of A) if

[x ∈ I & y < x]=⇒ y ∈ I;

and for each x ∈ A, Ix = {y ∈ A | y < x} is the initial segment \with top"
x. It is easy to check that every initial segment is either A or Ix for some
(unique) x.
Suppose F : (A * B) → (A * B) is an operation de�ned on all the

partial functions on A to B, let

F = {p : A * B | Domain(p) is an initial segment

and for all x ∈ Domain(p); p(x) = F (p � Ix)};
and de�ne Φ : F → F by

Φ(p) =

{
p; if Domain(p) = A;

p ∪ {(x; F (p))}; if Domain(p) = Ix:

Prove that (as a subset of P(A×B)) F is closed under arbitrary unions,
Φ : F → F , Φ is monotone, and the largest �xed point f of Φ guaranteed
by Problem x1.18 is the unique f : A→ B such that

f(x) = F (f � Ix) (x ∈ A):

Infer that f is also the least �xed point of Φ.
Note. This is the basic theorem of set theory which justi�es de�nition

by recursion on a wellordering, and the point of the problem is to show
that it is a special case of the existence of largest �xed points of monotone
operators on classes of sets. (In Chapter 4 we will derive a much simpler
reduction of trans�nite recursion to least-�xed-point recursion.)

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 29



30 1. Recursive equations

x1.21. For each G ⊆ P(Ω), de�ne a monotone operator

ΦG : P(P(Ω)) → P(P(Ω))

such that B(G) = �x(ΦG) is the �-�eld generated by G, i.e., the least
collection of subsets of Ω which contains all the sets in G and is closed
under complementation, countable unions and countable intersections. (If
G is the set of all open subsets of some topological space Ω, then B(G) is
the set of all Borel subsets of Ω.)

x1.22. For each string A of symbols from the alphabet of propositional
formulas de�ned in 1.13, let

left(A) = the number of left parentheses \(" occurring in A;

right(A) = the number of right parentheses \)" occurring in A;

and show that:
(a) If A is a formula, then left(A) = right(A), and if X is an initial

segment of some formula A, then left(X) ≥ right(X). (The parentheses
balance.)
(b) No proper initial segment of a formula is a formula.
(c) The Parsing Lemma. For each propositional formula A, exactly

one of the following cases applies:

1. A ≡ vi, with a uniquely determined vi.
2. A ≡ ¬(A1), with a uniquely determined formula A1.
3. A ≡ (A1 & A2), with uniquely determined formulas A1 and A2.
4. A ≡ (A1 ∨A2), with uniquely determined formulas A1 and A2.
5. A ≡ (A1 → A2), with uniquely determined formulas A1 and A2.

Hint: Use the �xed-point characterization (1-28) of the set Prop =
�x(�) of formulas of the propositional calculus, and induction on the length
of formulas.

x1.23. The terms and formulas of predicate logic (with identity) relative
to a �xed vocabulary

� = (C;F;R)

are de�ned by the following two recursions:

A :≡ v | c | f(A1; : : : ; Anf
)

� :≡ A1 = A2 | R(A1; : : : ; AnR) | ¬(�1) | (�1 & �2) | (∃v)�1 | (∀v)�1

Here v is from a speci�ed (in�nite) set of variables; c is from the speci�ed
set C of constant symbols given by � ; f is from the speci�ed set F of function
symbols with associated arity nf , as given by � ; R is from the speci�ed set
R of relation symbols determined by � , each with a speci�ed integer arity
nR; A, Ai stand for terms; and �, �i stand for formulas.
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1. Recursive equations 31

(a) As in 1.13 and x1.22 for the propositional calculus, make this precise
and formulate and prove a Parsing Lemma for the terms and the formulas.
(b) Show that the Parsing Lemma does not hold if we omit the paren-

theses in the conjunction clause (�1 & �2).
(c) Show that the Parsing Lemma holds if we omit the parentheses in

the negation clause ¬�1 and also allow n-ary conjunctions, for any n, i.e.,
the formation clause (A1 & : : : & An).

x1.24. Solve the following recursive equation on the set Streams(A) from
an arbitrary set A:

f(u) = if (|u| ≤ 2) then u else f(tail(u)) ; (head(u); t):

(The problem asks for an explicit description of the least solution of this
equation, with a proof that it is the least solution.)

1.31. De�nition. A partial function f : Nn * N is L1-computable if
there is a program P such that for every n-tuple of integers ~x = (x1; : : : ; xn),
(1) f(~x)↓ ⇐⇒ den(P)((~x; t))↓ .
(2) f(~x)↓ =⇒den(P)(((~x; t)) = (print(f(~x)); t).

In the problems which follow we outline a proof that the L1-computable
functions on the integers are exactly the Turing computable partial func-
tions, using the classical identi�cation of Turing computability with �-
recursion. The problems are simple (and somewhat boring) if you know
a lot about programming and recursive functions; they can be made more
challenging if you strive to give very simple proofs, using as much as pos-
sible the recursive characterization of denotations.

x1.25. Prove that the class of L1-computable partial functions includes
the successor S(x) = x+1, every constant Cq(~x) = q, and every projection

Pn
i (~x) = xi (1 ≤ i ≤ n):

x1.26. Prove that the class of L1-computable partial functions is closed
under de�nition by substitution,

f(~x) = g(h1(~x); : : : ; hk(~x)):

x1.27. Prove that the class of L1-computable partial functions is closed
under de�nition by primitive recursion,

f(0; ~x) = g(~x)
f(y + 1; ~x) = h(f(y; ~x); y; ~x):

x1.28. Prove that the class of L1-computable partial functions is closed
under minimalization,

f(~x) = (�t)[g(t; ~x) = 0]
= (�t)[(∀s < t)(∃w)[g(t; ~x) = w + 1] & g(t; ~x) = 0]:
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32 1. Recursive equations

Infer that every Turing computable (�-recursive) partial function is L1-
computable.

x1.29. Prove that every L1-computable partial function on the integers
is Turing computable.

∗x1.30. Show that equation (1-46) has 2ℵ0 solutions in the set of non-
empty sets of in�nite, binary sequences.

1.32. It is sometimes convenient to imbed Streams(A) into the set of
in�nite sequences (N → A ∪ {t;∞}) where (just like t), ∞ is some object
not in A and not the same as t. The embedding is the identity on all
in�nite streams, and (quite trivially), for the �nite ones,

�((u0; : : : ; un−1)) = (u0; : : : ; un−1;∞;∞; · · ·);
i.e., we simply extend them by adding an in�nite sequence of ∞'s at the
end. Now the image �[Streams(A)] under this embedding is a closed subset

of the metric space (N → A ∪ {t;∞}), by the following de�nitions.

x1.31. (1) Show that for any set B 6= ∅, the function

d(�; �) =

{
0; if � = �;

1
1 + the least n such that �(n) 6= �(n) ; otherwise

is a metric on the set of in�nite sequences (N → B), i.e.,

d(�; �) = d(�; �); d(�; �) = 0 ⇐⇒ � = �; d(�; 
) ≤ d(�; �) + d(�; 
):

(2) Show that for every non-empty B, the metric space (N → B) is com-

plete, i.e., every sequence {�n}n which has the Cauchy property converges.

x1.32. For the metric space (N → B) with non-empty B:
(1) Show that a set F ⊆ (N → B) is closed, if and only if there is a tree

T ⊆ B∗ such that

F = [T ] = {� | (∀n)[� � n ∈ T ]}:
(A tree is a set of �nite sequences closed under initial segments, and [T ] is
called the body of the tree T .)
(2) Show that a set F ⊆ (N → B) is compact if and only if F = [T ] for

a �nitely splitting tree, i.e., a tree T such that for each u ∈ B∗, the set
u ∗ {t} ∩ T of one-point extensions of u in T is �nite.

∗x1.33. Show that for each program P of L2 and each state s, the set
�[den(P(s)] is a compact subset of (N → A∪{t;∞}), where � is the imbed-
ding of Streams(A) de�ned in 1.32. Hint: Show that the set of computa-
tions comp(P)(s) is compact (in this sense), and appeal to the topological
fact that continuous images of compact sets are compact.
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CHAPTER 2

FIST-ORDER RECURSION AND COMPUTATION

Consider a �rst order structure

M = (M; c1; : : : ; cN ; R1; : : : ; RL; f1; : : : ; fL)(2-1)

as we study these in logic, with universe some non-empty set M and
given distinguished members of M and relations and functions on M .
A function f : Mn → M is explicit if it is de�ned by a term of the
associated language of �rst-order logic; in this chapter we will introduce the
recursive functions of M, which are (roughly) the \canonical solutions"
of systems of recursive term equations. This approach to recursion on �rst-
order structures generalizes the work of McCarthy [1963], who established
a very elegant and mathematically simple characterization of the usual
(Turing)-computable functions on the natural numbers.

2A. Recursion in partial algebras

To apply model-theoretic methods to recursion theory, we need to make
two adjustments, and the �rst of these is to allow partial functions and
relations of all arities among the givens of a structure. In fact, it is conve-
nient to adopt a somewhat eccentric notion of \n-ary partial function on
M" which combines both of these, as follows.

2A.1. De�nition. For each setM , we �x three, distinct objects tt (truth),
� (falsity) and ⊥ (bottom, divergence) not in M , we set

MB = M ∪ {tt;�};

and we de�ne the partial function space (Mn * MB) by the following
recursion on n:

(M0 *MB) = MB ∪ {⊥} = M ∪ {tt;�;⊥};
(Mn+1 *M) = (M → (Mn *MB))

33



34 2. Fist-order recursion and computation

We refer to the objects in (Mn * MB) as \n-ary partial functions on M"
(even when n = 0, in which case p is nullary), and we write interchangeably

p ∈ (Mn *MB) ⇐⇒ p : Mn *MB;

p(x; y) = p(x)(y) (p : M2 *MB);

and similarly for partial functions of arity greater than 2. We compose
these partial function \strictly", treating values in {tt;�} as it they were
⊥, e.g.,
f(g(x)) = w ⇐⇒ (∃u ∈M)[g(x) = u & f(u) = w] (x ∈M;w ∈MB):

Thus (Mn *MB) includes the usual partial functions p : Mn →M∪{⊥}
and partial relations p : Mn → {tt;�;⊥} of arity n, but also some weird
(but harmless) partial functions which take some values in M and some in
{tt;�}.5

2A.2. De�nition. A partial algebra is any structure

M = (M;f1; : : : ; fL);(2-2)

where M is a set, and for i = 1; : : : ; L,

fi : Mni *MB

is a partial function of arity ni. The characteristic (or signature) of M
is the sequence of numbers

�(M) = (n1; : : : ; nL)(2-3)

which codes the arities of the givens of M.
A partial algebra is total if the givens f1; : : : ; fL are total functions.

Examples of partial algebras include the standard structure of (Peano)
arithmetic

N = (N; 0; 1;+; ·;=);(2-4)

the simpler, basic structure of arithmetic

N0 = (N; 0; S;Pd ;=0)(2-5)

with S(x) = x+ 1, Pd(x) = if (x = 0) then 0 else (x− 1), and

=0 (x) = if (x = 0) then tt else �

is the characteristic function of equality with 0; and the algebras

Z = (Z; 0; 1;+;−; ·;=); Q = (Q; 0; 1;+;−; ·;÷;=)

where Z = {0; 1;−1; 2;−2; : : : } is the set of positive and negative \whole"
numbers, Q is the set of fractions, the operation a ÷ b of division in Q is

5G�odel used the term \notion" to refer inde�nitely to a function or a relation, and
we can think of these objects as still more general, indeterminate mixtures of the two.
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2A. Recursion in partial algebras 35

set = 0 when b = 0 and = is represented by its characteristic function �=

per (1-19). Another example is the structure

R = (R; 0; 1;+; ·;≤)

of the real numbers viewed as an ordered �eld, where the ordering relation
is again represented by its characteristic (total) function �≤. Similarly,
graphs and groups are (total) algebras

H = (H;→); G = (G; e; ·;−1;=)(2-6)

where x → y is the edge relation on H (i.e., its characteristic function),
and for groups we take as givens the unit, multiplication, inversion and the
equality relation.

2A.3. Expansions. If g : Mm *MB, then the partial algebra

(M; g) = (M;f1; : : : ; fL; g)

is the expansion of M by g, and it has characteristic

�(M; g) = � ∗ (m) = (n1; : : : ; nL;m):

We do not, in general, assume that the characteristic function �= of the
identity relation onM is among the givens, and so we often need to expand
a structure to insure that it is in:

(M;=) = (M;f1; : : : ; fL; �=):

We will also consider expansions (M; g1; : : : ; gk) of M by any number of
partial functions on the same universe.

2A.4. A many-sorted partial algebra is a structure

M = (M1; : : : ;Mn; f1; : : : ; fL);(2-7)

whereM1; : : : ;Mn are pairwise disjoint sets and each fi is a partial function
with input set some �nite product of the universes and output set someMj .
An obvious example is a vector space

V = (K;V; 0K ; 1K ;+K ;−K ; ·K ;÷K ; 0V ;+V ;−V ; ·K;V )

where K is the scalar �eld, the subscripted symbols denote the usual opera-
tions on K and V , and ·K;V : K×V → V is the multiplication of vectors by
scalars. We will represent each such M as a single-universe partial algebra

M′ = (M1 ∪ · · · ∪Mn; f
′
1; : : : ; f

′
L; �1; : : : ; �n);(2-8)

whose universe is the union of the given n parts, each f ′i is de�ned on M ′

by setting its value equal to ⊥ when one of its arguments is not in the
proper part, and each �i is the characteristic function of Mi as a subset of
M ′. An important example of this form is second order arithmetic

N2 = (N;N ; 0; 1;+; ·; ap);(2-9)
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36 2. Fist-order recursion and computation

where N = (N → N) is Baire space, the set of all unary functions on N,
and ap : N × N → N is function application,

ap(�; x) = �(x):

2A.5. The formal language R(�): syntax. A vocabulary is any
sequence of distinct symbols

� = (f1; : : : ; fL) (arity(fi) = ni)

with attached arities which determine its characteristic,

�(�) = (n1; : : : ; nL);

and for each vocabulary we specify a formal language R(�) with the follow-
ing symbols:

individual variables: v0; v1; : : : ;

individual constants: tt;�

function constants: f1; : : : ; fL (arity(fi) = ni)

symbols for branching : if then else

punctuation symbols: ; ( )

equality : =

The second deviation from model theory that we need is to include con-
ditional de�nitions in the terms of R.
The set T (�) of explicit terms of R(�) is the smallest set of words (�nite

sequences of symbols) with the following properties:

(T1) The individual constants tt;� and all individual variables vi are terms.
(T2) If A1, : : : ,Ani are terms, then so is the word fi(A1; : : : ; Ani).
(T3) If A1; A2; A3 are terms, then so is (if A1 then A2 else A3).
In the summary way of describing such recursive de�nitions of syntactic
objects,

(2-10) A :≡ tt | � | vi | fi(A1; : : : ; Ani) | (if A1 then A2 else A3)

A term is closed if no individual or function variable occurs in it.
Each term is uniquely in one of the forms of (2-10), and then with

uniquely determined subterms which have smaller length; this justi�es
proofs by structural induction for properties of terms and de�nition by
structural recursion of operations on terms.
As usual, we will rarely write out \grammatically correct" terms. In

practice we will use the familiar mathematical symbols instead of their
formal versions, e.g., x; y; : : : rather than v1; v2; : : : for individual variables,
f; g;+; ·; : : : instead of f1; f2; : : : for function constants, etc. We will also
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2A. Recursion in partial algebras 37

skip parentheses or replace them with braces and blank space when this
helps readability, and write (for example)

(x+ y) · z instead of · (+(v1; v2); v3)

2A.6. The formal language R(�): denotational semantics. A � -
algebra is a partial algebra M as in (2-2) with �(M) = �(�), so that the
terms of R(�) can be naturally interpreted in M.
A valuation6 in a � -algebra M is any function

� : {v0; v1; : : : } →M

which assigns a member of M ∪ {tt;�} to each individual variable vi. The
value (or denotation)

den(A; �) = den(M; A; �)

of a term A of R(�) in M is determined by the following recursion on
terms:

den(tt; �) = tt; den(�; �) = �; den(vi; �) = �(vi)
den(fi(A1; : : : ; Ani); �) = fi(den(A1; �); : : : ; den(Ani ; �))

den(if A1 then A2 else A3; �)

=


den(A2; �); if den(A1; �) = tt;

den(A3; �); if den(A1; �)↓ &6= tt;

⊥; otherwise, i.e., if den(A1; �)↑:
It is clear that den(A; �) need not always converge, as we have allowed

partial functions among the givens of M. We write

M; � |= A = B ⇐⇒ den(M; A; �) = den(M; B; �);
M |= A = B ⇐⇒ for all valuations �;M; � |= A = B:

If M |= A = B, we say that the term equation A = B is valid in M.

2A.7. Term replacement. For each term A, each individual variable x
and each term B, we put

A{x :≡ B} ≡ the result of replacing x by B in Á;

and, more generally, for ~x = x1; : : : ; xm, ~B = B1; : : : ; Bm,

A{~x :≡ ~B} ≡ A{x1 :≡ B1} · · · {xm :≡ Bm}:(2-11)

6These are called assignments in logic, but we will call them valuations here to avoid
confusion with the assignment commands of programming languages. Updates of val-
uations are de�ned in the obvious way: if t ∈M , then

�{x := t}(vi) =

{
t; if vi ≡ x;

�(vi); otherwise:
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38 2. Fist-order recursion and computation

For example,

f1(v5; v1){v1 :≡ B} ≡ f1(v5; B); f2(v5; v1){v1 :≡ B; v5 :≡ C} ≡ f2(C;B)

2A.8. Lemma. For each partial algebraM, all terms A;B, each variable
x, and all valuations in M :

if den(B; �) = w ∈M; then den(A{x :≡ B}; �) = den(A; �{x := w});
if den(B; �) = tt, then den(A{x :≡ B}; �) = den(A{x ≡ tt}; �); and if

den(B; �) = �, then den(A{x :≡ B}; �) = den(A{x ≡ �}; �).
It follows that for any terms A;B;C,

(2-12) if M |= A = C and den(B; �)↓ ;
then den(A{x :≡ B}; �) = den(C{x :≡ B}; �):

Proof. The �rst claim is easy, by induction on the term A, Prob-
lem x2A.1, and the second follows from it: for example, if den(B; �) =
w ∈M , then

den(A{x :≡ B}; �) = den(A; �{x := w})
= den(C; �{x := w}) = den(C{x :≡ B}; �): a

The hypothesis den(B; �)↓ is necessary for the second claim, which may
fail if den(B; �)↑, Problem x2A.2. The most substantial applications of this
Lemma are when B is a closed, convergent term, which then determines a
speci�c member of M , independent of any valuation.

2A.9. The programming language R(�); terms. To use R(�) as a
programming language, �rst we enrich it with (partial) function variables

æn0 ; æ
n
1 ; : : : (n = 0; 1; : : : ; arity(æni ) = n);

in�nitely many for each arity n ≥ 0. From the point of view of syntax,
function variables are treated exactly like the function constants f1; : : : ; fL:
the terms are now de�ned by the recursion

(2-13) A :≡ tt | � | vi | fi(A1; : : : ; Ani) | æ
n
i (A1; : : : ; An)

| (if A1 then A2 else A3)

and they have all the usual properties|unique readability, etc. If all the
function variables that occur in a term A are in the list æ1; : : : ; æn, then A
is a term in the expanded language

R(�; æ1; : : : ; æn) = R(f1; : : : ; fL; æ1; : : : ; æn);

and it is naturally interpreted in expansions

(M; p1; : : : ; pn) = (M;f1; : : : ; fL; p1; : : : ; pn)

of � -algebrasM, by considering each æi as a function constant denoting the
partial function pi.
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2A. Recursion in partial algebras 39

2A.10. Recursive equations and programs. As a programming lan-
guage, R(�) has two more categories of syntactic objects other than terms:
recursive equations and programs.
A recursive equation of R(�) is a term equation of the form

æ(x1; : : : ; xn) = A;(e)

where æ is a function variable; x1; : : : ; xn are distinct individual variables;
and A is a term in which the only individual variables which (may) occur
are in the list x1; : : : ; xn. The equation is explicit if no function variables
occur in A. If M is a � -algebra, then we also refer to an R(�)-equation as
a recursive equation of M.
For example (and with simpli�ed notation)

æ(x) = if R(x) then � else tt

is an explicit equation in every vocabulary with the relation symbol R;

æ(x) = if (x = 0) then 0 else S(æ(Pd(x)))

is a recursive, not explicit equation of N0 (with (x = 0) viewed as an
abbreviation of =0 (x)); and

æ(x) = S(y)

is not a recursive equation because y occurs on the right but not on the
left.
Finally a recursive program of R(�) (or of any � -algebra M) is any

system of recursive equations

(e0) æ0(~x0) = Å0

...
(ek) æk(~xk) = Åk

(E)

where the function variables æ0; : : : ; æk are distinct and they are the only
function variables which occur in the terms E0; : : : ; Ek. The equations
of E are called (mutual, recursive) de�nitions of the function variables
æ0; : : : ; æk, and æ0 is the principal function variable of E.

2A.11. Computational semantics of R(�) (1). Fix again a � -algebra
M. We will show how to assign to each function variable æi with arity(æi) =
ki of a program E as above a partial function

æi : Mki *MB (arity(æi) = ki);

so that the partial functions æ1; : : : ; æk satisfy E, i.e.,

(M; æ0; : : : ; æk) |= æi(~xi) = Åi (i = 0; : : : ; k; ~xi ∈Mki):

Before we give the precise de�nition of this correspondence

(M; E) 7→ (æ0; : : : ; æk);
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40 2. Fist-order recursion and computation

we consider a few examples.

The de�nition

æ(x; y) = S(y)(E1)

is (by itself) a program ofN0, which de�nes (explicitly) the binary function
variable æ. The semantics should give us

æ(x; y) = den(N0; S(y)) = y + 1:

The equation

æ(y; ~x) = if (g(y; ~x) = 0) then y else æ(S(y); x)(E2)

is a program of (N0; g) for any g : Nn+1 * N, and there are examples of
g for which (E2) may have many solutions, but for each g, there is a least
solution of (E2) by Problem ∗x1.14, namely

æ(y; ~x) = (�i ≥ y)[g(i; ~x) = 0]:

This should be the solution æ which the computational semantics of R(�; g)
will assign to the function variable æ in (N0; g).
Finally, consider the following trivial program, with the single equation

æ(x) = æ(x);(E3)

on any partial algebraM. Equation (E3) is satis�ed by all partial functions;
the computational semantics will yield

æ(x) = ∅(x) = ⊥;
i.e., again the least solution of (E3), as in the previous example (E2).
The basic idea of the computational semantics of R(�) is to associate

with each � -algebra M, each program E, and each function variable æi of
E a machine

M = M(M; E; æi)

which computes a partial function

æi : Mki *MB;

we will then show that the partial functions

(æ0; : : : ; æk)

satisfy the equations of E in M|and, indeed, they are the least solutions
of E in M.

2A.12. De�nition. A transition system is any triple

T = (S;→; T );

where:

(a) S is a non-empty set, the states of T .
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2A. Recursion in partial algebras 41

(b) → is a binary transition relation on S.
(c) T ⊆ S is the set of terminal states, and it is such that

s ∈ T =⇒ (∀s′)[s 6→ s′]:(2-14)

A state which satis�es (2-14) but is not terminal is stuck (or inactive),
and a state which is neither terminal nor stuck is active: thus s is active
if there is at least one s′ such that s→ s′.
A system T is deterministic if each state has at most one next state,

i.e.,

[s→ s′ & s→ s′′]=⇒ s′ = s′′:(2-15)

For example, let

m→1 n ⇐⇒ m > n; m→2 n ⇐⇒ m = n+ 1;(2-16)

the system (N;→1; {0}) is non-deterministic, while (N;→2; {0}) is deter-
ministic.

2A.13. Computations. A partial computation of a transition system
T is any �nite path

Y = (s0 → s1 → · · · → sn)(2-17)

in the graph (S;→); Y is convergent if the last state sn is terminal and
stuck if sn is stuck. An in�nite divergent computation is any in�nite
path

Y = (s0 → s1 → · · · )

of the graph (S;→). The length |Y | of a �nite, partial computation as
in (2-17) is n+ 1.
A transition system T computes a partial function � : S * T if for all

s ∈ S and t ∈ T ,

�(s) = t ⇐⇒ (∃(s0; : : : ; sn) ∈ C(T ))[s0 = s & sn = t];(2-18)

where

C(T ) = the set of all convergent coputations of T :(2-19)

It follows that

�(s)↓ ⇐⇒ (∃(s0; : : : ; sn) ∈ C(T ))[s0 = s]:

Every deterministic transition system computes exactly one partial func-
tion � : S * T which is de�ned by (2-18). In addition, if T is deterministic,
then for each state s there is exactly one convergent, stuck or in�nite com-

plete computation

comp(s) = compT (s) = (s→ s1 → s2; : : : )(2-20)
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42 2. Fist-order recursion and computation

which cannot be extended, and which is de�ned by the recursion

s0 = s;

sn+1 =

{
the unique s′ such that sn → s′; if one exists;

⊥; otherwise:

To compute a partial function f : A * B with some transition system
T , we must enrich T with some method of introducing arguments from A
and extracting values in B.
Next we want to associate a transition system with each program E of

R(�) and each � -algebraM, and to do this we will need to enrich R(�) with
names for the members of M .

2A.14. M-terms. For each � -algebra M, the M -terms are de�ned by
the recursion

(2-21) A :≡ tt | � | x | vi | fi(A1; : : : ; Ani) | æ
n
i (A1; : : : ; An)

| (if A1 then A2 else A3)

where x ∈M ; thus we use the members of M as names of themselves, and
we will also refer to them as individual constants.7

An M -term is closed if no individual variable occurs in it.

2A.15. Recursive machines. For each � -algebra M and each program
E of R(�), we de�ne a transition system

T (E) = T (E;M)

as follows.

(a) The states of T (E) are all words s of the form

�0 : : : �m−1 : �0 : : : �n−1

where the \symbols" �0; : : : ; �m1 ; �0; : : : ; �n−1 of s satisfy the following
conditions:

• Each �i is a (constant or variable) function symbol, or a closed M -
term, or the special symbol ?, and

• each �j is an individual constant, i.e., a member of MB.

The states of T (E;M) are the same for all programs of M, and so we can
call them the M-states.
For example, the word

æ21 3 S(3) 1 if ? : 3 0 1

is a state of N0, as are the words

Pd 1 3 æ21(S(2)) : : 0 23

7Assuming the obvious|that no symbol of R(�) is a member of M .
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2A. Recursion in partial algebras 43

or the simplest

:

(b) The terminal states of T (E) are all states of the form

: w

i.e., those with no symbols to the left of : and just one w ∈MB on the The
recursive machines which will be associated with programs of M will all
have the same output function,

output(: w) = w:

(c) The transition function of T (E) is de�ned by seven cases in the
Transition Table 2: i.e., s → s′ if it is a special case of one of the lines in
the Table. Notice that the external calls (e-call) are the only transitions
which depend onM (they \call" the givens), while the internal calls (i-call)
are the only transitions which depend on the program E.
It is clear that T (E) is a deterministic transition system.
For each n-ary function variable æi of E, the recursive machine T (E; æi)

is derived from T (E) by adding the input function

input(~x) ≡ æi : ~x

and it computes the partial function æi : Mn *MB, where

æi(~x) = w ⇐⇒ æi : ~x→ s1 → · · · →: w:(2-22)

Another useful notation is

M; E ` æi(~x) = w ⇐⇒ æi(~x) = w (~x ∈Mn; w ∈MB);(2-23)

as it reveals the dependence of æ on the � -algebra M and the program E.
In practice, we will simply refer to the partial function æi, when the speci�c
partial algebra M and program E are clear from the context.
The main symbol of a program E is the function variable æ0 in its �rst

equation, and E computes in M the partial function æ0.

For example, if one of the equations of E in N0 is

æ(x) = S(S(x));

then the computation

æ : x → S(S(x)) : → S S(x) : → S S x :
→ S S : x→ S : x+ 1 →: x+ 2

veri�es that for every x, æ(x) = x+ 2.
For a more interesting example, we notice that addition is de�ned recur-

sively in N0 by the single equation

æ(i; x) = if (i = 0) then x else S(æ(Pd(i); x)):
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44 2. Fist-order recursion and computation

(pass) � x : � → � : x � (x ∈M)

(e-call) � fi : ~x � → � : fi(~x) �

(i-call) � æi : ~x � → � Ei{~xi :≡ ~x} : �

(comp) � h(A1; : : : ; An) : � → � h A1 · · · An : �
(br) � (if A then B else C) : � → � B C ? A : �
(br0) � B C ? : tt � → � B : �
(br1) � B C ? : y 6= tt � → � C : �

• The underlined words are those which change in each transition.
• ~x = x1; : : : ; xn is an n-tuple of individual constants.
• In the external call (e-call), fi is one of the given partial functions of
M, with arity(fi) = ni = n.

• In the internal call (i-call), æi is an n-ary function variable of the
program E which is de�ned by the equation æi(~x) = Ei, and ~x ∈Mki .

• In the composition transition (comp), h is a (constant or variable)
function symbol with arity(h) = n.

Table 2. Transitions of the system T (E;M).

In Figure 1 we show the computation of æ(2; 3) = 5 by this program.

2A.16. De�nition (M-recursion). A partial function f : Ìn * Ì is
recursive in the partial algebra M (or M-recursive), if f = æ for some
program E of M and some function variable æ of E, i.e., if

f(~x) = w ⇐⇒ M; E ` æ(~x) = w

with the notation in (2-23). Since the order in which the equations of a
program are listed does not a�ect the de�nition of the partial functions æ,
a partial function f : Mn *M is M-recursive if and only if it is computed

by some program of M. We set

rec0(M) = {f : Mn *M | f is M-recursive}:(2-24)
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2A. Recursion in partial algebras 45

æ : 2 3 (i-call)

if (2 = 0) then 3 else S(æ(Pd(2); 3)) : (br)

3 S(æ(Pd(2); 3)) ? =0 (2) : (comp)

3 S(æ(Pd(2); 3)) ? =0 2 : (pass)

3 S(æ(Pd(2); 3)) ? =0 : 2 (e-call)

3 S(æ(Pd(2); 3)) ? : � (br1)

S(æ(Pd(2); 3)) : (comp)

S æ(Pd(2); 3) : (comp)

S æ Pd(2) 3 : (pass)

S æ Pd(2) : 3 (comp)

S æ Pd 2 : 3 (pass)

S æ Pd : 2 3 (e-call)

S æ : 1 3 (i-call)

S if (1 = 0) then 3 else S(æ(Pd(1); 3)) : (br), (comp), (pass), (e-call)

S 3 S(æ(Pd(1); 3)) ? : � (br1)

S S(æ(Pd(1); 3)) : (comp)

S S æ(Pd(1); 3) : (comp)

S S æ Pd(1) 3 : (pass)

S S æ Pd(1) : 3 (comp)

S S æ Pd 1 : 3 (pass)

S S æ Pd : 1 3 (e-call)

S S æ : 0 3 (i-call)

S S if (0 = 0) then 3 else S(æ(Pd(0); 3)) : (br), (comp), (pass), (e-call)

S S 3 S(æ(Pd(0); 3)) ? : tt (br0)

S S 3 : (pass)

S S : 3 (e-call)

S : 4 (e-call)

: 5

Figure 1. The computation of 2 + 3 by the program
æ(i; x) = if (i = 0) then x else S(æ(Pd(i); x)).

A relation P (~x) onM isM-recursive if its characteristic function (1-19) is
M-recursive, and a set A ⊆M isM-recursive if the associated membership
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46 2. Fist-order recursion and computation

relation

RA(x) ⇐⇒ x ∈ A

is M-recursive. For obscure, historical reasons, the class of M-recursive
relations is called the (recursive) section of M,

sec(M) = {R ⊆Mn | R is M-recursive}:(2-25)

Finally, a relation P (~x) on M is M-semirecursive if it is the domain of
convergence of some M-recursive partial function,

P (~x) ⇐⇒ f(~x)↓ (f ∈ rec0(M);

and a set A ⊆M is M-semirecursive if

x ∈ A ⇐⇒ f(x)↓

for some M-recursive partial function. The class of these relations is the
envelope of M,

env(M) = {P ⊆Mn | P is M-semirecursive}:(2-26)

Many of the simple properties of M-recursion can be established easily
by using the following, natural extensions of the familiar notions of model
theory to partial structures.

2A.17. Homomorphisms and imbeddings. Suppose M and M′ are
partial algebras of the same characteristic. A homomorphism

� : M→M′

is any (total) function � : MB →M ′
B such that �(tt) = tt; �(�) = �, and for

i = 1; : : : ;K,

fi(x1; : : : ; xni) = w=⇒ f ′i(�(x1); : : : ; �(xni)) = �(w);(2-27)

we call � an imbedding if it is an injection (one-to-one), and an iso-
morphism if it is a bijection and the inverse �−1 : M ′ → M is also an
imbedding.
Notice that we do not demand of homomorphisms and imbeddings the

converse of (2-27), which is equivalent to the more usual identity

�(fi(x1; : : : ; xni)) = f ′i(�(x1); : : : ; �(xni));

when that holds, we call � a strong homomorphism or strong imbed-
ding.
If M ⊆ M ′ and the identity x 7→ x is an imbedding of M into M′, we

say that M is a (partial) subalgebra of M′, in symbols,

M ⊆p M
′ ⇐⇒ M is a partial subalgebra of M′:

This clearly holds if for i = 1; : : : ;K, fi v f ′i .
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2A. Recursion in partial algebras 47

2A.18. Lemma. (1) If � : M1 → M2 is a homomorphism from one � -
algebra into another and E is a program of R(�), then for every function

variable æ of E and all ~x ∈M1; w ∈M1 ∪ {tt;�},
if M1; E ` æi(~x) = w; then M2; E ` æi(�(~x)) = �w;

with �(x1; : : : ; xn) = (�(x1); : : : ; �(xn)). In particular, if M ⊆p M
′, then

if M; E ` æi(~x) = w; then M′; E ` æi(~x) = w:

(2) If � : M→M is a homomorphism of a partial algebra into itself and

f : Mn *MB is M-recursive, then for all ~x ∈Mn; w ∈MB,

if f(~x) = w; then f(�(~x)) = �(w):

Proof. (1) We extend � to all M1-terms by the obvious recursion on
their de�nition,

�vi ≡ vi

�x ≡ �(x) (x ∈M1);
�fi(A1; : : : ; Ani) ≡ fi(�A1; : : : ; �Ani)
�æni (A1; : : : ; An) ≡ æi(�A1; : : : ; �An)

�(if A then B else C) ≡ (if �A then �B else �C)

and then to the states of M1 by setting

�? ≡? �fi ≡ fi; �æ
n
i ≡ æni

�(�0 · · ·�n−1 : �0 · · ·�m−1) = ��0 · · · ��n−1 : ��0 · · · ��m−1

Now �s is a state of M2 for each state s of M2, and for the relevant
transition systems, by inspection,

if s→ s′ in M1, then �s→ �s′ in M2;

which gives the required result.

(2) follows immediately. a
Several of the problems that follow (including x2A.8) can be solved easily

using this simple Lemma.

Problems for Section 2A

x2A.1. Prove the �rst claim of Lemma 2A.8.

x2A.2. Prove that the second claim of Lemma 2A.8 is not true if we
omit the hypothesis den(B; �)↓ .

x2A.3. What are the partial computations of the transition systems (2-16),
and which partial functions they compute?
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48 2. Fist-order recursion and computation

x2A.4. For the following three recursive programs in N0:

æ(x) = S(æ(x))(E1)

æ(x) = æ(�(x))(E2)

�(x) = x;

æ(x; y) = æ1(æ(x; y); y):(E3)

æ1(x; y) = x;

(1) Which partial functions satisfy them?
(2) Which partial functions do they compute, and in what way do their

computations di�er?

∗x2A.5. (1) Show that for every program E in a total algebra M, and
every n-ary function variable æ which is de�ned in E, there is no stuck
computation of the form

æ : x1; : : : ; xn → s1 → · · · → sm:(*)

(Stuck computations are de�ned in 2A.13.)
(2) Show that if M is a partial algebra, æ is an n-ary function variable

of a program E, and the �nite computation (*) is stuck, then its last state
is of the form

� fi : y1; : : : ; yni �

where fi is one of the given partial functions of M and fi(y1; : : : ; yni)↑.

x2A.6. Prove or give a counterexample: or each partial algebra M and
each x0 ∈M , the constant, unary function f(x) = x0 is M-recursive.

2A.19. De�nition. (a) A set X ⊆M is closed for the givens of a partial
algebra M, or M-closed, if

[x1; : : : ; xni ∈ X and fi(x1; : : : ; xni) = w]=⇒w ∈ X; (i = 1; : : : ; L):

(b) For each A ⊆M , de�ne recursively

G0(A) = A;

Gm+1(A) = Gm(A)
∪{fi(x1; : : : ; xni) ∈M | x1; : : : ; xni ∈ Gm(A); i = 1; : : : ; L}:

The set Gm(A) is the subset of M generated in m steps by A in M, and
the union

AM =
⋃∞

m=0Gm(A)

is the subset of M which is generated by A in M.
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2B. Computational soundness and least solutions 49

x2A.7. Prove that for each partial algebra M and each A ⊆M , the set
A is the least M-closed subset of M which contains A.

x2A.8. Prove that if A ⊆ M and the partial function f : Mn * M is
M-recursive, then the M-closure A of A is closed for f , i.e.,

[x1; : : : ; xn ∈ A; f(x1; : : : ; xn) = w]=⇒w ∈ A:

x2A.9. SupposeM = (M;R1; : : : ; RL) is a partial algebra whose givens
are all (possibly partial) relations. Prove that the only recursive function
f : M →M is the identity id(x) = x.

x2A.10. Suppose G = (G; e; ·;−1;=) is a group and f : G → G is a
recursive, unary function; what are the possible values of f(x)?

x2A.11. Suppose G = (G; e; ·;−1;=) is a group and for each x ∈ G, let
[x] be the subgroup generated by x. Prove that the relation

R(t; x) ⇐⇒ t ∈ [x]

is G-semirecursive.

x2A.12. Suppose G is a group as in (2-6), and let

f(x; y) = xn; where n is the least m ∈ N such that ym = e:

Prove that the (partial) function f(x; y) is G-recursive.

2B. Computational soundness and least solutions

In this section, we will establish two simple but fundamental results,
which yield a \structural" (computation-independent) characterization of
the tuple of partial functions (æ0; : : : ; æk) computed by a program E in a
partial algebraM and imply easily the basic properties ofM-recursion. The
keys to these theorems are the following two, basically trivial observations.

2B.1. Lemma (Function variable relabelling). Suppose æ0; : : : ; æk
are the function variables de�ned in a program E of R(�) and æ′0; : : : ; æ

′
k

are fresh, distinct function variables such that arity(æi) = arity(æ′i), and
let E′ be the system of equations obtained by replacing each æi by æ′i in

the equations of E. It follows that E′ is also a program, and that for any

� -algebra M and all ~x ∈M;w ∈MB,

M; E ` æi(~x) = w ⇐⇒ M; E′ ` æ′i(~x) = w:

Proof is immediate, by verifying that for each computation

�0 : �0 → · · · → �n : �n
of T (E;M), the sequence

�′0 : �′0 → · · · → �′n : �′n
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50 2. Fist-order recursion and computation

produced by replacing each æi by æ
′
i is a computation of T (E;M). a

This lemma allows \alphabetic changes" in the function variables, and
makes it possible to assume (in e�ect) that any two programs E1 and E2

with which we need to deal have no common function variables.

2B.2. Lemma (Transition locality). For every partial computation

�0 : �0 → �1 : �1 → · · · → �m : �m

of the transition system T (E;M) and any words �∗, �∗ such that the se-

quence

�∗ �0 : �0 �∗

is a state, the sequence of states

�∗ �0 : �0 �∗ → �∗ �1 : �1 �∗;→ · · · → �∗ �m : �m �∗

is also a partial computation of T (E;M).

It follows that if

�0 : �0 → �1 : �1 → · · ·

is a divergent computation and �∗ �0 : �0 �
∗ is a state, then the computa-

tion

�∗ �0 : �0 �∗ → �∗ �1 : �1 �∗ → · · ·

is also divergent.

Proof. By induction on m ≥ 0, with the basis given by the hypothesis.
In the induction step, we assume that the sequence

�∗ �0 : �0 �
∗ → �∗ �1 : �1 �

∗ → · · · → �∗ �m : �m �∗

is a partial computation, we consider separately the seven cases which
justify the transition

�m : �m → �m+1 : �m+1

and it is obvious in each of them that the same line of Table 2 justi�es also
the transition

�∗ �m : �m �∗ → �∗ �m+1 : �m+1 �
∗

The second claim follows by applying the �rst to the (initial) partial
computations

�0 : �0 → �1 : �1 → · · · → �m : �m (m ∈ N) a
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2B. Computational soundness and least solutions 51

To formulate the next theorem simply, we extend to all closed M -terms
the \logical" notation for computations of 2-23: for each � -algebraM, each
program E, each closed M -term A of R(�; æ0; : : : ; æk), and each w ∈ MB,
set

M; E ` A = w ⇐⇒ A→ s1 → · · · →: w;(2-28)

M; E ` A↑ ⇐⇒ compT (A :) is divergent:(2-29)

(Recall that a computation diverges if it is in�nite or stuck.)

2B.3. Theorem (Computational soundness of R(�)). Fix a program
E in R(�) with function variables æ0; : : : ; æk and a � -algebra M, and let

M = (M; æ0; : : : ; æk) = (M;f1; : : : ; fL; æ0; : : : ; æk):

Suppose A is any closed M -term of R(�; æ0; : : : ; æk).

(a) If den(M; A)↑, then the computation compT (A :) of T (E;M) with

initial state A : is in�nite or stuck (and hence divergent), and

(b) if den(M; A) = w, then the computation compT (A :) of T (E;M)
with initial state A : converges with terminal state : w.
Hence for every closed M -term A and w ∈ BM ,

(M; æ0; : : : ; æk) |= A↑ ⇐⇒ M; E ` A↑;(2-30)

(M; æ0; : : : ; æk) |= A = w ⇐⇒ M; E ` A = w;(2-31)

and the partial functions æ0; : : : ; æk satisfy the program E in M, i.e.,

(M; æ0; : : : ; æk) |= æi(~x) = Ei; (i = 1; : : : ;K):(2-32)

Proof. We prove (a) and (b) together by induction on the given, closed
M -term A, and we consider cases.

(1) If A ≡ x ∈MB, then den(M; A) = x, and the computation

x : (pass)

: x

computes the correct value.

(2) If A ≡ fi(A1; : : : ; Ani) for a given partial function fi of M, then the
computation comp(A :) starts with the transition

fi(A1; : : : ; Ani) : (comp)

fi A1 : : : Ani :

We consider three cases:

(2a) For some j, den(M; Aj)↑, so that den(M; A)↑. If j is largest (≤ ni)
with this property, then (by the induction hypothesis) the computation
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52 2. Fist-order recursion and computation

comp(A :) starts with the steps

fi(A1; : : : ; Ani) : (comp)

fi A1 : : : Ani : (hyp.)

...

fi A1 : : : Ani−1 : wni (ind. hyp.)

...

fi A1 : : : Aj : wj+1 · · · wni

By the induction hypothesis again, the computation

comp(Aj :) = Aj :→ �1 : �1 → · · ·

diverges, since den(M; Aj)↑, and by Lemma 2B.2, the computation

fi A1 : : : Aj−1 Aj :→ fi A1 : : : Aj−1 �1 : �1 → · · ·

must also diverge|so that comp(A :) diverges.

(2b) There are points w1; : : : ; wni in MB such that den(M; Aj) = wj
for j = 1; : : : ; ni, but fi(w1; : : : ; wni)↑. In this case, by the induction
hypothesis and another appeal of Lemma 2B.2, the computation comp(A :)
starts with the steps

fi(A1; : : : ; Ani) : (comp)

fi A1 : : : Ani : (ind. hyp.)

...

fi A1 : : : Ani−1 : wni (ind. hyp.)

...

fi : w1 w2 · · · wni

and it gets stuck at this point because fi(w1; : : : ; wni)↑.

(2c) den(M; fi(A1; : : : ; Ani)) = w, so that there are points w1; : : : ; wni
in MB with den(M; Aj) = wj for j = 1; : : : ; ni and fi(w1; : : : ; wni) = w.
By the induction hypothesis and Lemma 2B.2, the computation comp(A :)
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2B. Computational soundness and least solutions 53

now looks as follows:

fi(A1; : : : ; Ani) : (comp)

fi A1 : : : Ani : (ind. hyp.)

...

fi A1 : : : Ani−1 : wni (ind. hyp.)

...

fi : w1 w2 · · · wni
: fi(w1; : : : ; wni)

which is what we needed to prove.

(3) If A ≡ æi(A1; : : : ; An) for some n-ary function variable æi of E, then
the computation comp(A :) starts with the transition

æi(A1; : : : ; An) : (comp)

æi A1 : : : An :

We consider three cases, as in case (2):

(3a) For some j, den(M; Aj)↑, in which case den(M; A)↑.
(3b) There are w1; : : : ; wn in M such that den(M; Aj) = wj for j =

1; : : : ; n, but æi(w1; : : : ; wn)↑.
(3c) den(M; æi(A1; : : : ; An)) = w,which means that there are w1; : : : ; wn

in M such that den(M; Aj) = wj for j = 1; : : : ; n and æi(w1; : : : ; wn) = w.

For case (3a), the argument is exactly the same as in the corresponding
case (2a), and for (3b) and (3c), the proofs are small variations of the
arguments in (2b) and (2c) which use the de�nition of æi. For (3c), for
example, the induction hypothesis and Lemma 2B.2 guarantee the existence
of w1; : : : ; wni in M such that the computation looks like this:

æi(A1; : : : ; An) : (comp)

æi A1 : : : An : (ind. hyp.)

...

æi A1 : : : An−1 : wn (ind. hyp.)

...

æi : w1 w2 · · · wn (def. of æi)
...

: æi(w1; : : : ; wn)

which is what we needed to prove.
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54 2. Fist-order recursion and computation

To verify (2-30), we need to show the converse of (a), i.e., that

if compT (A :) is divergent, then M |= A↑;

this holds because if M |= A = w for some w ∈ M , then M; E ` A = w
by (b), which contradicts the hypothesis. Similarly, for the converse of (b)
which is needed to complete the proof of (2-31): if M; E ` A = w and
M 6|= A = w, then either M |= A↑, in which case, by (a), M; E ` A↑,
contradicting the hypothesis; or M |= A = v for some v 6= w, in which
case, by (b), M; E ` A = v which contradicts the fact that the transition
system T (E;M) is deterministic.

Finally, for the last claim (2-32), we compute, for any ~x;w ∈MB:

(M; æ0; : : : ; æk) |= æi(~x) = w ⇐⇒ M; E ` æi(~x) = w

⇐⇒ M; E ` Ei{~x :≡ ~x} = w

⇐⇒ (M; æ0; : : : ; æk) |= Ei{~x :≡ ~x} = w;

where the �rst and last of these equivalences follow from (2-31) and the
middle one is immediate from the transition table of T (E;M). a

2B.4. Corollary (Closure properties of rec0(M)). The set ofM-re-

cursive partial functions contains the givens f1; : : : ; fL of M, the projec-

tions

Pn
i (x1; : : : ; xn) = xi (i = 1; : : : ; n);

the constants C0(~x) = tt and C1(~x) = �, and it is closed for composition

and branching, i.e.,:

(a) If h; g1; : : : ; gm are M-recursive and

f(~x) = h(g1(~x); : : : ; gm(~x));(2-33)

then f is M-recursive.

(b) If c; g and h are M-recursive and

f(~x) = if c(~x) then g(~x) else h(~x);(2-34)

then f is M-recursive.

Proof. Each given fi is computed by the program

æ(x1; : : : ; xni) = fi(x1; : : : ; xni)(Efi)

for which, obviously, æ(~xi) = f(~xi), and the constants tt, � and the projec-
tions are also computed by trivial programs.
For branching, the hypothesis gives us programs Ec; Eg, Eh and speci�c

function variables c; g and h in these programs, and we must construct a
new program E which de�nes some \fresh" function variable æ so that

æE(~x) = if cEc(~x) then gEg (~x) else hEh(~x);
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2B. Computational soundness and least solutions 55

where the subscripts indicate the programs which compute cEc ; gEg and

hEh . We may assume by Lemma 2B.1 that there are no common function
variables in the given programs Ec; Eg; Eh. Set

E = Ec + Eg + Eh + {æ(~x) = if c(~x) then g(~x) else h(~x)};
where by \+" we simply mean the \union" of programs, conceived as sets
of recursive de�nitions. Now E is a program, since each function variable
in it is de�ned exactly once. Also

cE(~x) = cEc(~x);

simply because each computation

compEc(c : ~x) = c : ~x→ �1 : �1 → · · ·
of Ec is also a computation of E and hence the only computation of E
which starts with c : ~x (because the recursive machines are deterministic),
in other words

compEc(c : ~x) = compE(c : ~x);

thus cE = cEc , and the same holds for the function variables g; h. Finally,
Theorem 2B.3 implies that æE satis�es the equation which de�nes it, i.e.,

æ(~x) = if cE(~x) then gE(~x) else hE(~x)

= if cEc(~x) then gEg (~x) else hEh(~x):

The proof for closure under composition is the same, Problem x2B.1. a

2B.5. Corollary. (a) (Closure properties of sec(M)). The set of

M-recursive relations is closed under negation (¬), conjunction (&), dis-
junction (∨) and total M-recursive substitutions, i.e., if P (y1; : : : ; ym) is

M-recursive, g1(~x); : : : ; gm(~x) are total, M-recursive functions and

R(~x) ⇐⇒ P (g1(~x); : : : ; gm(~x));(2-35)

then R(~x) is M-recursive.

(b) (Closure properties of env(M)). The class of M-semirecursive

relations is closed under conjunction (&) and M-recursive partial substi-

tutions, i.e., the scheme of de�nition (2-35) where g1; : : : ; gm are (not
necessarily total) M-recursive partial functions.

Proof is easy, Problem x2B.2. a

The envelope of M is not in general closed under disjunction by Prob-
lem ∗x2B.3, whose proof, however, is not entirely trivial, and which does
not answer all that we would like to know about the question, see Prob-
lem ∗x2B.4. The closure of env(M) under disjunction when M is a total
algebra is a basic result of the subject which we will postpone until Chap-
ter 5, see Problem ∗x2B.5.
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56 2. Fist-order recursion and computation

2B.6. Corollary (Transitivity property). For each partial algebraM
and any g : Mn *MB, f : Mm *MB,

if g ∈ rec0(M) and f ∈ rec0(M; g); then f ∈ rec0(M);

where (M; g) = (M;f1; : : : ; fL; g) is the expansion of M by g.

This is easy to prove, just like Corollary 2B.4, and so we will leave it
for Problem x2B.7, but it is an extremely useful result: it says, in e�ect,
that in proofs of recursiveness we may assume that every recursive partial
function is among the givens, and we will appeal to it constantly (and
without explicit mention).
The next result characterizes the canonical solutions of a program E,

those computed by the recursive machine.

2B.7. Theorem (Least Fixed Points). For any program E of R(�)
with function variables æ0; : : : ; æk and any � -algebra M, the partial func-

tions æ0; : : : ; æk computed by T (E;M) are the v-least partial functions

which satisfy in M the equations of E.

Proof. The partial functions æ0; : : : ; æk satisfy E by Theorem 2B.3, so
it is enough to show that if æ′0; : : : ; æ

′
k satisfy the equations of E, in M,

then

æi(~x) = w=⇒ æ′i(~x) = w (i = 0; : : : ; k):

Suppose then that æ′0; : : : ; æ
′
k satisfy E and consider the partial algebras

M = (M; æ0; : : : ; æk); M′ = (M; æ′0; : : : ; æ
′
k):

By Theorem 2B.3, for every closed M -term A of R(�; æ0; : : : ; æk),

if M |= A = w; then M; E ` A = w:

We will show by induction on m, that for each closed M -term A and every
w ∈MB,

(2-36) if A :→ �1 : �1 → · · ·�m−1 : �m−1 →: w;

then den(M′; A) = w:

In the special case A ≡ æi(x1; : : : ; xn), this gives

æi(~x) = w=⇒den(M′; æi(~x)) = w=⇒ æ′i(~x) = w;

which is what we needed to show.
For the proof of (2-36) we consider the form of A, and the argument is

trivial (as in the proof of 2B.3) in all cases except when

A ≡ æi(A1; : : : ; An);
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2B. Computational soundness and least solutions 57

for which the computation takes the form

æi(A1; : : : ; An) :
æi A1 · · · An :

...

æi A1 · · · An−1 : wn
...

æi : w1 · · · wn
Ei{~x :≡ ~w} :

...

: w

Now the induction hypothesis guarantees that

den(M′; A1) = w1; : : : ; den(A′; An) = wn; den(M′; Ei{~x :≡ ~w}) = w

because the computations which produce these values are shorter. Hence

den(M′; æi(A1; : : : ; An)) = æ′i(den(M′; A1); : : : ; den(M′; An))
= æ′i(w1; : : : ; wn)

= den(M′; Ei{ ~x) :≡ ~w} = w;

and the last equation expresses exactly the required conclusion

M′ |= æi(~x) = Ei: a

This characterization makes it possible to prove that many partial func-
tions are recursive, especially when the partial algebra M is rich, e.g., if it
contains a copy of the natural numbers in the following sense:

2B.8. De�nition. A copy of N0 is any partial algebra

N′
0 = (N′; 0′; S′;Pd ′;=′

0)

which is isomorphic with the basic structure of arithmetic N0. A partial
algebra M contains N0 (N0 ⊆M) if there is a copy of N0 with N′ ⊆M ,
and imbeds N0 (N0 ,→M) if, in addition, the following conditions hold:

(a) N′ is an M-semirecursive subset of M .
(b) The constant (nullary) function 0′ and the unary partial functions

S′;Pd ′;=0′;M: M *M are M-recursive with (common) domain of conver-
gence N′.

Typically we will skip the primes in the notation, in e�ect \identifying" N0

with any copy of it contained or imbedded in a partial algebra M.
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58 2. Fist-order recursion and computation

In the simplest examples of this, N0 ,→ N0, but also N0 ,→ N2, Prob-
lem x2B.9, and in general, we can always add a copy of N0 to M in the
extended (two-sorted) partial algebra

M ]N0 = (M;N; f1; : : : ; fL; 0N0 ; �0N0
; S;Pd ;=0):(2-37)

Notice that in this structure, N is a recursive (not just semirecursive) set.

Problems for Section 2B

x2B.1. Prove that the composition (2-33) of M-recursive partial func-
tions is M-recursive.

x2B.2. Prove the closure properties of sec(M) and env(M) listed in
Corollary 2B.5.

∗x2B.3. Give an example of an expansion M = (N0; f; g) of N0 in
which some set A ⊆ N is M-semirecursive and and has M-semirecursive
complement, but A is not M-recursive.

∗x2B.4. Give an example of a partial algebraM in which the disjuntion
of two M-semirecursive relations is not M-semirecursive.

∗x2B.5 (Open). Is there an expansion (M = N0; f1; : : : ; fm) of N0 in
which the disjuntion of two M-semirecursive relations is not always M-
semirecursive?

∗x2B.6 (Open). Suppose M is a total algebra; prove that the disjunc-
tion of twoM-semirecursive relations isM-semirecursive, and if both R(~x)
and ¬R(~x) are both M-semirecursive, then R(~x) is M-recursive.
Remark. These claims are true, Corollary ??, but the proof we will

give for them is quite di�cult and depends on notions that we have not yet
introduced; so the challenge is to �nd a fairly simple, or at least elementary
proof of these basic facts.

x2B.7. Prove Theorem 2B.6: for each partial algebraM and any partial
function g : Mn *M , f : Mm *M ,

[g ∈ rec0(M) & f ∈ rec0(M; g)]=⇒ f ∈ rec0(M);

where (M; g) = (M;f1; : : : ; fL; g) is the expansion of M by g.

x2B.8. Show that if g; h : M * MB are M-recursive partial functions,
then so is the partial function

f(x) = gm(x) where m = (�n ≥ 1)[hn(x) = tt]:

(This is trivial if N0 ,→ M, so the challenge is to prove it without this
assumption.)
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2B. Computational soundness and least solutions 59

x2B.9. Prove that N0 ,→ N2.

x2B.10. Suppose N0 ,→M.

(a) Show that if g(~x) and h(w; y; ~x) are M-recursive, and f(y; ~x) is de-
�ned from them by the primitive recursion

f(0; ~x) = g(~x); f(Sy; ~x) = h(f(y; ~x); y; ~x);

then f is M-recursive.

(b) Show that if g(t; ~x) is M-recursive and

f(~x) = (�t)[g(t; ~x) = 0]

is the minimalization of g de�ned in (1-60), then f is also M-recursive.

(c) (McCarthy). Show that the N0-recursive partial functions on N are
exactly the Turing-computable partial functions.

Note. For (c) you can use the classical identi�cation of Turing com-
putability with �-recursiveness. For (a) and (b), however, it is not neces-
sary that the domains of convergence of g and h or their range be N, and
the result is often useful for partial functions which take values outside N.
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CHAPTER 3

RECURSIVE FUNCTIONALS

In the �rst two sections of this chapter, we will extend the results of Chap-
ter 2 to M -functionals, which may take partial functions (in addition to
points in M) as arguments, and in Section 3C we will establish suitable
(very strong) versions of the Enumeration and Smn Theorems of classical
recursion for all partial algebras which imbed N0.

3A. Explicit functionals and simple �xed points

For some purposes, it is useful to derive a direct, \mathematical" char-
acterization of theM-recursive partial functions which bypasses the formal
language R(�). We will start with this here, and then we will establish a
representation of the M-recursive partial functions in terms of the simple
�xed points of M, an interesting and not well understood subclass of
rec0(M). These results are mostly technical, but they help considerably
the exposition of the more basic theorems in the next two sections.

3A.1. De�nition. A functional on a set M is any partial function

� : Mn × (Mk1 *MB)× · · · × (Mkm *MB) *MB(3-1)

with arguments in M and in the partial function spaces over M . The tuple

arity(�) = (n; k1; : : : ; km);

codes the input set of �, but we will often refer to \�(~x; ~p)" or \�(~x; p1; : : : ; pm)"
when arity(�) is clear from the context or irrelevant.
Every partial function � : Mn * MB is a functional, since we allow

m = 0 in (3-1), and if the nullary functions a, b are among the givens, then

�(p; q) = p(a; q(b))

is also a functional, with n = 0;m = 2; k1 = 2; k2 = 1. The most basic
\real" functionals are the evaluations, one for each n,

evn(~x; p) = p(~x) (~x ∈Mn; p : Mn *MB):(3-2)
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62 3. Recursive functionals

A functional as in (3-1) is explicitly de�ned in a � -algebra M (or
just M-explicit), if there is a term A of R(�; æ1; : : : ; æm) whose individual
variables are all in the list~x ≡ (x1; : : : ; xn) such that for all ~x;w; p1; : : : ; pm,

�(~x; p1; : : : ; pm) = w ⇐⇒ (M; p1; : : : ; pm) |= A{~x :≡ ~x} = w:(3-3)

We set

exp(M) = the set of all M-explicit functionals:

Since the explicit functionals of a � -algebraM are exactly those de�nable
by terms of R(�), we have immediately the following

3A.2. Proposition. Suppose M is a partial algebra.

(1) If �1; : : : ; �k is a tuple of M-explicit functionals with arities such

that the system of equations

p1(~x1) = �1(~x1; p1; : : : ; pk)
...(3-4)

pk(~xk) = �k(~xk; p1; : : : ; pk)

makes sense, then it has least v-solutions p1; : : : ; pk.

(2) A partial function f : Mn *M is M-recursive, if and only if f = pi
for a system of recursive equations with M-explicit functionals as in (1)
and some i. a

The next de�nition and result gives a language-independent characteri-
zation of exp(M).

3A.3. De�nition. A set F of functionals on the universe M of a par-
tial algebra M is explicitly closed (over M) if it satis�es the following
conditions.

(1) F contains the givens f1; : : : ; fL of M, the (nullary) constant func-
tions tt;�, the projection functions ~x 7→ xi, for every n and every i,
1 ≤ i ≤ n, and the evaluation functionals in (3-2), for every n.

(2) F is closed under substitution (or composition)

�(~x; ~y; ~p; ~q) = �(
(~x; ~p); ~y; ~q)(3-5)

(3) F is closed under branching,

�(~x; ~p) = if c(~x; ~p) then �(~x; ~p) else 
(~x; ~p):(3-6)

(4) F is closed under addition, identi�cation and permutation of vari-
ables,

(3-7) �(x1; : : : ; xn; p1; : : : ; pl)

= �(x�(1); : : : ; x�(m); p�(1); p�(2); : : : ; p�(s));
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3A. Explicit functionals and simple fixed points 63

where � : {1; : : : ;m} → {1; : : : ; n} and � : {1; : : : ; s} → {1; : : : ; l}.
In the sequel, we will refer collectively to addition, identi�cation and

permutation of variables as variable shu�ing, a useful construct which
justi�es explicit de�nitions of the form

�(x; y; p1; p2; p3) = �(x; y; x; x; p1; p3; p1; p1);

and (in combination with (2)) very general substitution operations.8

3A.4. Exercise. Prove that if

�(~x; ~p) = 
(�(~x; ~p); ~x; ~p);
�(~x; ~p) = 
(�1(~x; ~p); �2(~x; ~p); ~x; ~p)

and 
; �; �1; �2 ∈ exp(M), then �; � ∈ exp(M).

It is also useful to introduce notation for a special (degenerate) case of
branching which gives us a \negation" of sorts:

¬̇�(~x; ~p) = if �(~x; ~p) then � else tt;(3-8)

¬̈�(~x; ~p) = ¬̇¬̇�(~x; ~p):(3-9)

This allows us to de�ne explicitly the restriction of a functional to the
domain of convergence of another:

3A.5. Exercise. Prove that for all functionals �(~x; ~p),

�(~x; ~p)↓ ⇐⇒ ¬̈�(~x; ~p) = tt;

and hence

if �(~x; ~p)↓ then �(~x; ~p) else ⊥ = if ¬̈�(~x; ~p) then �(~x; ~p) else �(~x; ~p):

3A.6. Proposition. For each partial algebra M, the set of M-explicit

functionals is the smallest set of functionals on M which is explicitly closed

over M.

Proof. We need to show that

(a) the set exp(M) is explicitly closed, and

(b) if F is explicitly closed, then exp(M) ⊆ F .

8 We allow m = 0 in (3-7), in which case (by notational convention) {1; : : : ;m} = ∅
and there is exactly one � : ∅ → {1; : : : ; n}, the empty function; now (3-7) justi�es the
introduction of individual variables,

�(x1; : : : ; xn; p1; : : : ; pl) = �(p�(1); p�(2); : : : ; p�(s)):

The same remark applies to the case l = 0, which justi�es the introduction of function
variables to a partial function.
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64 3. Recursive functionals

For (a), we simply produce the terms which verify each of the required
properties: for example, for substitution, if

�(s; ~y; ~q) = w ⇐⇒ (M; ~q) |= A�{s :≡ s;~y :≡ ~y} = w;


(~x; ~p) = u ⇐⇒ (M; ~p) |= A
{~x :≡ ~x} = u;

then

�(
(~x; ~p); ~y; ~q) = w

⇐⇒ (M; ~p; ~q) |= A�{s :≡ A
{~x :≡ ~x};~y :≡ ~y} = w

⇐⇒ (M; ~p; ~q) |=
(
A�{s :≡ A
}

)
{~x :≡ ~x;~y :≡ ~y} = w:

The rest is (unfortunately) just as messy, but equally routine.

For (b), we show by induction on the construction of terms, that if F is
explicitly closed and (3-3) holds, then � ∈ F . For example, if

A ≡ r(B;C);

the free variables of B and C are in the lists ~x; r; ~p, and

�(~x; r; ~p) = s ⇐⇒ (M; r; ~p) |= B{~x :≡ ~x} = s;


(~x; r; ~p) = t ⇐⇒ (M; r; ~p) |= C{~x :≡ ~x} = t

for suitable functionals �; 
 ∈ F , we set

�(~x; r; ~p) = r(�(~x; r; ~p); 
(~x; r; ~p));

and verify easily (using shu�ing) that � ∈ F and

�(~x; r; ~p) = w ⇐⇒ (M; r; ~p) |= A{~x :≡ ~x} = w:

We will omit the details. a
On some occasions, we will also need the following simple characteriza-

tion of explicit functionals with at most one partial function argument:

3A.7. Proposition. The class of all M-explicit functionals �(~x; p) with
at most one m-ary partial function variable p is the smallest class F of

such functionals satisfying the following:

(1) F contains the givens f1; : : : ; fL of M, the (nullary) constant func-
tions tt;�, the projection functions ~x 7→ xi, for every n and every i,
1 ≤ i ≤ n, and the evaluation functional evm(~y; p) = p(~y).
(2) F is closed under the following scheme of composition:

�(~x; ~y; p) = �(
(~x; p); ~y; p)(3-10)

(3) F is closed under branching,

�(~x; p) = if c(~x; p) then �(~x; p) else 
(~x; p):
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3A. Explicit functionals and simple fixed points 65

(4) F is closed under addition, identi�cation and permutation of indi-

vidual variables,

�(x1; : : : ; xn; p) = �(x�(1); : : : ; x�(m); p);

where � : {1; : : : ;m} → {1; : : : ; n}. a

We will leave the proof for Problem x3A.1.
These simple characterizations makes it possible to replace \syntactical"

proofs by induction on terms by set theoretic arguments which, in some
cases, are easier. Consider the following two properties of functionals, where
for two tuples

~p = (p1; : : : ; pm); ~q = (q1; : : : ; qm)

of partial functions of the same length and such that arity(pj) = arity(qj)
(j = 1; : : : ;m), we set

~p v ~q ⇐⇒ p1 v q1 & · · · & pm v qm:

3A.8. De�nition. Let �(~x; ~p) be a functional on M .
(1) � is monotone, if for all ~x, ~p, ~q and w:

if �(~x; ~p) = w & ~p v ~q; then �(~x; ~q) = w:(3-11)

(2) � is continuous, if for all ~x, ~p and w:

(3-12) if �(~x; ~p) = w; then there exists a tuple ~q

such that ~q is �nite & ~q v ~p & �(~x; ~q) = w;

where ~q = (q1; : : : ; qm) is �nite if each qj has �nite domain of convergence.

An example of a monotone, discontinuous functional is the natural rep-
resentation of the existential quanti�er on M :

E#
M (p) =


tt; if (∃x)[¬̈p(x) = tt];
�; if (∀x)[¬̈p(x) = �];
⊥; otherwise:

(3-13)

If �R is the characteristic function of a unary relation R ⊆M , then

E#
M (�R)↓ & E#

M (�R) = tt ⇐⇒ (∃x)R(x):

3A.9. Exercise. Prove that E#
M (p) is monotone, and that it is discon-

tinuous when M is in�nite.

3A.10. Proposition. For each partial algebraM, everyM-explicit func-

tional on M is monotone and continuous.
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66 3. Recursive functionals

Proof. For the monotonicity �rst, it is enough to show that the set Fm
of all monotone functionals on M satis�es (1) { (4) in De�nition 3A.3.

(1) Since every partial function is automatically monotone (as a func-
tional), we only need check the monotonicity of the evaluation functionals,
which is trivial.

(2) Substitution. Suppose that

�(~x; ~y; ~p; ~q) = �(
(~x; ~p); ~y; ~q) = w;(3-14)

where �(u; ~y; ~q) and 
(~x; ~p) are given monotone functionals, so that there
is a u ∈M such that


(~x; ~p) = u and �(u; ~y; ~q) = w:(3-15)

If ~p v ~p′; ~q v ~q′, then 
(~x; ~p′) = u and �(u; ~y; ~q′) = w by the hypothesis, so
�(~x; ~y; ~p′; ~q′) = w as required.

The argument is similar for closure under branching (3) and trivial for
closure variable shu�ing.

To complete the proof of the Proposition, it su�ces to show that the
set F of all functionals on M which are both monotone and continuous is
explicitly closed.

For (1) of De�nition 3A.3, it is again enough to check that the evaluation
functionals are continuous, and this is obvious: because if p(~x) = w and
q = p�{~x}, then q is de�ned on just one tuple and q(~x) = p(~x) = w.

For substitution, suppose again that (3-14) and (3-15) hold, with monotone
and continuous � and 
 this time. So there are �nite ~p0 v ~p, ~q0 v ~q such
that 
(~x; ~p0) = u and �(u; ~y; ~q0) = w; from which we derive again the re-
quired �(~x; ~y; ~p0; ~q0) = w.

The argument is similar for branching and variable shu�ing. a
The next result illustrates a somewhat more complex application of this

method of proof.

3A.11. Proposition. The set exp(M) is closed under the following scheme

of �-substitution:

�(~x; ~y; ~p; ~q) = �(~x; �(~t)
(~t; ~y; ~p); ~q):(3-16)

Proof. Fix an M-explicitly closed set of functionals F , and let

F ′ = {� ∈ F | if � is de�ned from � and any 
 ∈ F by (3-16),

then � ∈ F}:

It will be enough to show that F ′ isM-explicitly closed, because the appli-
cation of this to exp(M) will give exp(M)′ = exp(M), so that exp(M) is
closed under (3-16). This argument is quite routine, if a bit messy.
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3A. Explicit functionals and simple fixed points 67

First, F ′ contains all the partial functions in F , which have no function
arguments so that (3-16) cannot be applied, and it contains the evaluation
functionals (the crucial case), since

evn(~x; �(~t)
(~t; ~y; ~p)) = 
(~x; ~y; ~p):

To show closure of F ′ under substitution, suppose

�(~x; r; ~q) = �1(�2(~x1; r; ~q1); ~x2; ~q2)

with ~x = ~x1; ~x2; ~q = ~q1; ~q2 and �1; �2 ∈ F ′, and set

�∗(~x1; ~y; ~p; ~q1) = �2(~x1; �(~t)
(~t; ~y; ~p); ~q1);

now �∗ ∈ F ′ by the induction hypothesis,

�(~x; ~y; ~p; ~q) = �(~x; �(~t)
(~t; ~y; ~p); ~q) = �1(�∗(~x1; ~y; ~p; ~q1); ~x2; ~q2);

and then � ∈ F ′ by the closure of F ′ under substitution (and shu�ing).
The closure of F ′ under branching is a bit simpler than this, and its

closure under variable shu�ing is trivial. a
The operation of �-substitution is usually applied in the simpler form of

the next Exercise, which is easily reduced to (3-16) using shu�ing:

3A.12. Exercise. Prove that if � and 
 are M-explicit, then so is

�(~x; ~p) = �(~x; �(~t)
(~t; ~x; ~p); ~p):

It is not yet clear why we de�ned theM-recursive partial functions using
systems rather than single recursive equations. Actually, the least �xed
points of systems with just one recursive equation are important, but, as we
will see, they do not (as a rule) exhaust the M-recursive partial functions.

3A.13. De�nition. A functional �(~x; p) of one partial function is op-
erative if its arity is (n; n), so that the recursive equation

p(~x) = �(~x; p)(3-17)

makes sense; and a partial function g : Mn *MB is a simple �xed point
of the partial algebra M, if it is the least �xed point of an M-explicit,
operative functional, i.e., g = p in (3-17) with an M-explicit �. We set

�x(M) = {g : Mn *MB | g is a simple �xed point of M}:(3-18)

The M-recursive partial functions can be \reduced" to the �xed points
of M if M has two \distinguished points", as follows.

3A.14. De�nition. A point a ∈ M is distinguished in a partial alge-
bra M if the nullary constant a and the characteristic function

�a(t) = �{a}(t) = if (t = a) then tt else �

of the singleton {a} are both M-recursive.
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68 3. Recursive functionals

For example, every number n is distinguished in the algebras N0 and
N2, and the identity e is distinguished in every group (G; e; ·;−1;=).

3A.15. Proposition. If M has two distinguished points 0; 1, then a par-

tial function f : Mn * M is M-recursive if and only if there is a simple

�xed point g : Mk+n *M of M such that for all ~x,

f(~x) = g(~0k; ~x) (~0k = 0; : : : ; 0︸ ︷︷ ︸
k

):(3-19)

Proof. It is enough to show that everyM-recursive f(~x) satis�es (3-19)
with a simple �xed point g(~u; ~x). To keep the notation simple, suppose that
f = p3 for the system of three equations

p1(~x) = �1(~x; p1; p2; p3);
p2(~y) = �2(~y; p1; p2; p3);(3-20)

p3(~z) = �3(~z; p1; p2; p3)

with explicit functionals �1; �2; �3, and

~x = (x1; : : : ; xn); ~y = (y1; : : : ; ym); ~z = (z1; : : : ; zl):

Put

�(s; t; ~x; ~y; ~z; r) =



�1(~x; �(~x′)r(0; 1; ~x′;~0m;~0l); �(~y′)r(1; 0;~0n; ~y′;~0l);
�(~z′)r(0; 0;~0n;~0m; ~z′)) if s = 0 & t 6= 0;

�2(~y; �(~x′)r(0; 1; ~x′;~0m;~0l); �(~y′)r(1; 0;~0n; ~y′;~0l);
�(~z′)r(0; 0;~0n;~0m; ~z′)) if s 6= 0 & t = 0;

�3(~z; �(~x′)r(0; 1; ~x′;~0m;~0l); �(~y′)r(1; 0;~0n; ~y′;~0l);
�(~z′)r(0; 0;~0n;~0m; ~z′)) otherwise;

where r : M2+n+m+l *M and ~0n;~0m;~0l are de�ned as above, so that the
expressions make sense. Let r be the least solution of the equation

r(s; t; ~x; ~y; ~z) = �(s; t; ~x; ~y; ~z; r);(3-21)

it then su�ces to prove that for all ~z,

f(~z) = p3(~z) = r(0; 0;~0n;~0m; ~z):(3-22)

Let �rst

p′1(~x) = r(0; 1; ~x;~0m;~0l);

p′2(~y) = r(1; 0;~0n; ~y;~0l);

p′3(~z) = r(0; 0;~0n;~0m; ~z);

it is quite easy to verify (by just plugging in) that (p′1; p
′
2; p

′
3) satisfy the

system (3-20), and hence

p1 v p′1; p2 v p′2; p3 v p′3:(3-23)
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3A. Explicit functionals and simple fixed points 69

Next let

r′(s; t; ~x; ~y; ~z) =


p1(~x); if s = 0 & t 6= 0;
p2(~y); if s 6= 0 & t = 0;
p3(~z); otherwise;

by straight computation again, it is clear that r′ satis�es (3-21), so that

r v r′:(3-24)

Now (3-23) and (3-24) imply together that

r(s; t; ~x; ~y; ~z) =


r1(~x); if s = 0 & t 6= 0;
r2(~y); if s 6= 0 & t = 0;
r3(~z); otherwise;

which gives the required (3-22). a
Thus this simple reduction of mutual to single recursion works for N0

and N2|but in e�ect it works for all partial algebras, because of the next
de�nition and result.

3A.16. De�nition. SupposeM1 andM2 are partial algebras of possibly
di�erent characteristics, but such that M1 ⊆ M2. We say that M2 is an
inessential extension of M1, if for every f : M1 *MB,

f ∈ rec0(M1) ⇐⇒ f = g�Mn
1 for some g ∈ rec0(M2):

3A.17. Proposition. Each partial algebra M has an inessential exten-

sion with two distinguished points.

Proof. We choose some a; b =∈M and set

M[a; b] = (M ∪ {a; b}; f1; : : : ; fL; a; b; �a; �b);

where f1; : : : ; fL are the givens of M, extended to M ∪ {a; b} so that if
xi ∈ {a; b} for some i, then fi(x1; : : : ; xni) = ⊥.
IfM is a � -algebra with � = {f1; : : : ; fL}, thenM[a; b] is a � [a; b]-algebra

with the extended vocabulary

� [a; b] = � ∪ {a; �a; b; �b};

and every term or program of R(�) is also a term or program of R(� [a; b]).
Moreover, if E is any R(�)-program with principal symbol æ and ~x ∈ Mn,
then every computation

æ : ~x→ : : :→: w

of T (E;M) is also (easily) a computation of T (E;M[a; b])|and hence the
only computation of T (E;M[a; b]) which starts with æ : ~x, since T (E;M[a; b])

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 69



70 3. Recursive functionals

is a deterministic transition system. In other words, for ~x ∈ Mn and
w ∈M [a; b]B,

M; E ` æ(~x) = w ⇐⇒ M[a; b]; E ` æ(~x) = w;

so that the partial function æ : Mn * MB computed by E in M is also
computed by E in M[a; b]. Thus every M-recursive partial function is also
M[a; b]-recursive.
The converse requires a little more work since M[a; b] has a larger uni-

verse than M (in addition to the four, new givens) and \provides more
room" for its recursive de�nitions. The idea is to code each partial func-
tion p : M [a; b]n *M [a; b]B using 2 · 3n partial functions on M , as follows.
For each n, let (for this proof)

Fn = ({1; : : : ; n} → {0; 1; 2})

and for each � ∈ Fn and each ~x ∈Mn, set

x�i =


xi; if �(i) = 0;
a; if �(i) = 1;
b; if �(i) = 2;

so that, for example, if �0(i) = 0, �1(i) = 1 and �2(i) = 2 for all i, then

~x�0 = (x1; : : : ; xn); ~x�1 = (a; : : : ; a); ~x�2 = (b; : : : ; b):

It is clear that for each n, the operation (~x; �) 7→ ~x� codes M [a; b]n, al-
though some tuples (like (a; a; a)) have many codes.

For each p : M [a; b]n *M [a; b]B and each � ∈ Fn, let

m = m(�) = |{i | �(i) = 0}|;

let �∗(1); : : : ; �∗(m) enumerate in increasing order the set {i | �(i) = 0}
(which may be empty), and de�ne p� : Mm *MB and p�� : Mm * {tt;�}
by

p�(x�∗(1); : : : ; x�∗(m)) =


p(~x�); if p(~x�) ∈MB;

tt; if p(~x�) = a;

�; if p(~x�) = b;

⊥; otherwise;

p�� (x�∗(1); : : : ; x�∗(m)) =


tt; if p(~x�) ∈MB;

�; if p(~x�) ∈ {a; b};
⊥; otherwise;

with the convention that p� and p�� are nullary if m(�) = 0. For example, if
�a(t) is the (unary) characteristic function of the singleton {a}, then there
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3A. Explicit functionals and simple fixed points 71

are just three functions on {1} to {0; 1; 2},

�0(1) = 0; �1(1) = 1; and �2(1) = 2;(3-25)

and

(�a)�0(t) = �a(t) = �; (�a)
�0
� (t) = tt;

(�a)�1 = �a(a) = tt; (�a)
�1
� = tt;

(�a)�2 = �a(b) = �; (�a)
�2
� = tt:

where the last four of these coding functions on M are nullary.
It is clear that every p : M [a; b]n *M [a; b]B is coded (determined) by the

3n pairs of partial functions p�; p�� as � varies over Fn, cf. Problem x3A.2.
To simplify (somewhat) the notation, let us associate with each k-ary

function variable p and each � : {1; : : : ; k} → {0; 1; 2}, two variables

p�; p��

which denote p� and p�� when p := p, and let

~p = p�1 ; : : : ; p�l ; p�1
� ; : : : ; p�l�

be some �xed enumeration of the l = 3k such pairs of variables.
Lemma. For each M[a; b]-explicit functional �(~x; p) of n individual vari-

ables and one k-ary function variable, and for each � ∈ Fn, there are two

M-explicit functionals

��(~x;~p); ��� (~x;~p)

in the indicated variables with the following property : for any partial func-

tion p : M [a; b]k * M [a; b]B, if q(~x) = �(~x; p) and ~p are the partial func-

tions on M to MB which code p, then for every � ∈ Fn,

q�(x�∗(1); : : : ; x�∗(m)) = ��(~x; ~p); q�� (x�∗(1); : : : ; x�∗(m)) = ��� (~x; ~p):

Proof . It is enough to show that the class G of functionals on M [a; b]
with at most one partial function variable which satisfy the Lemma satis�es
the four conditions listed in Proposition 3A.7.

(1) is basically trivial for the given partial functions of M[a; b]: for each
fi and each � we set

f�i (x�∗(1); : : : ; x�∗(m)) =

{
fi(~x); if �(i) = 0 for all i = 1; : : : ; ni;
⊥; otherwise;

f�i;�(x�∗(1); : : : ; x�∗(m)) =

{
tt; if �(i) = 0 & for all i = 1; : : : ; ni & fi(~x)↓ ;
⊥; otherwise;

and for the nullary, new givens a, b,

a∅ = tt; a∅� = �; b∅ = �; b∅� = �:
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72 3. Recursive functionals

For the other, unary new given �a we de�ned the required function(al)s
above, and the de�nitions are similar for �b.
For the evaluation functional

�(~x; p) = p(~x)

with ~x = (x1; : : : ; xk),

��(~x; ~p) = p�(~x); ��� (~x; ~p) = p�� (~x):

(2) To show the closure of the class G under the composition in a nota-
tionally simple case (skipping the ~y), suppose

q(~x) = �(~x; p) = �(
(~x; p); p);

for a �xed p, and set

q
(~x) = 
(~x; p); q�(u) = �(u; p);

so that

q(~x) = �(q
(~x); p) = q�(q
(~x));

and for any � ∈ Fn,

q�(x�∗(1); : : : ; x�∗(m)) = q(~x�) = q�(q
(~x�)) = q�(
�(~x; p)):

We now use ��i for the three � ∈ F1 de�ned in (3-25) to compute

��(x�∗(1); : : : ; x�∗(m); p) = q�(x�∗(1); : : : ; x�∗(m))

=



��0(
�(x�∗(1); : : : ; x�∗(m); p); p);
if 
�� (x�∗(1); : : : ; x�∗(m)) = tt;

��1(p)
if 
�� (x�∗(1); : : : ; x�∗(m)) = � & 
�(x�∗(1); : : : ; x�∗(m)) = tt;

��2(p)
if 
�� (x�∗(1); : : : ; x�∗(m)) = � & 
�(x�∗(1); : : : ; x�∗(m)) = �;

⊥; otherwise

The de�nition of ��� (x�∗(1); : : : ; x�∗(m); p) is equally simple in concept
and messy in execution, and the arguments for branching and individual
variable shu�ing are a bit easier. a (Lemma)

To prove the Proposition now, we associate with each recursive equation

p(~x) = �(~x; p)(3-26)
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3A. Explicit functionals and simple fixed points 73

in M[a; b] the system of 2l = 2 · 3n equations

p�1(x�∗1 (1); : : : ; x�∗1 (m1)) = ��1(x�∗1 (1); : : : ; x�∗1 (m1); ~p)

p�1
� (x�∗1 (1); : : : ; x�∗1 (m1)) = ��1

� (x�∗1 (1); : : : ; x�∗1 (m1); ~p)

...(3-27)

p�l(x�∗
l
(1); : : : ; x�∗

l
(ml)) = ��l(x�∗

l
(1); : : : ; x�∗

l
(ml); ~p)

p�l� (x�∗
l
(1); : : : ; x�∗

l
(ml)) = ��l� (x�∗

l
(1); : : : ; x�∗

l
(ml); ~p)

in M.
If p : M [a; b] * BM [a; b] is the least solution of (3-26) in M[a; b] and

p̃�; p̃�� (with p : {1; : : : ; n} → {0; 1; 2}) are the least solutions of (3-27) in
M, then (by a simple �xed point argument),

p� = p̃�; p�� = p̃��

for every � : {1; : : : ; } → {0; 1; 2}, so that p� and p�� are M-recursive, for

every simple �xed point p of M[a; b].
Finally, if g : M [a; b] * M [a; b]B is M[a; b]-recursive, then (by 3A.15)

there is a simple �xed point

p : M [a; b]k+n *M [a; b]B

and a sequence ~ak of a'a such that

g(~x) = p(~ak; ~x);

and if we let �(1) = · · · = �(k) = 1, �(k + 1) = · · · = �(k + n) = 0, then

g�(~x) = p(~ak; ~x) (~x ∈Mn);

and

g�M(~x) =

{
g�(~x); if g�� (~x) = tt;

⊥; otherwise;

so that g � M is M-recursive, which completes the proof. a
Thus, for any M, the M-recursive partial functions are (essentially) just

the \distinguished sections" of M-simple �xed points, a very useful fact
which simpli�es many arguments. It also suggests that perhaps all M-
recursive partial functions are M-�xed points, which, however, is far from
the truth, cf. Problems x3A.3 { ∗x3A.8. The structure and extent of �x(M)
is not well understood even for the most familiar algebras, like N0 or N,
and we will return to the question in the sequel.
One of the nice features of simple �xed points is that they can be de-

�ned very simply from the functionals which de�ne them, by the following
familiar construction.
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74 3. Recursive functionals

3A.18. Theorem (Continuous Least Fixed Points). For each mo-

notone and continuous, operative functional �(~x; p), de�ne its iterates by
the recursion

p0(~x) = �(~x; ∅); pm+1(~x) = �(~x; pm):(3-28)

(1) For all m, pm v pm+1, so that p =
⋃

mp
m : Mn *M .

(2) For all ~x, p(~x) = �(~x; p).
(3) For every partial function q : Mn *M ,

if (∀~x;w)[�(~x; q) = w=⇒ q(~x) = w]; then p v q:(3-29)

Proof. (1) is proved by induction on m, the basis being trivial by the
monotonicity hypothesis since ∅ v p0. In the induction step:

pm+1(~x) = w =⇒ �(~x; pm) = w

=⇒ �(~x; pm+1) = w (ind. hyp. and mon.)

=⇒ pm+2(~x) = w:

(2) In one direction,

p(~x) = w =⇒ pm+1(~x) = w (for some m)
=⇒ �(~x; pm) = w

=⇒ �(~x; p) = w (mon.);

and so p(~x) = w=⇒�(~x; p) = w. For the converse, suppose that

�(~x; p) = w:

By the continuity of �, there is a �nite partial function q v p such that
�(~x); q) = w. Thus for each ~x such that q(~x)↓ , there is some m = m(~x)
such that pm(~x) = q(~x); and if

m = max{m(~x) | q(~x)↓};

then q v pm, so that by monotonicity again, pm+1(~x) = �(~x; pm) = w,
which is what we needed to show.

(3) Assume that \� presses q down", i.e.,

(∀~x;w)[�(~x; q) = w=⇒ q(~x) = w]:

To infer p v q from this, we check by induction that pm v q, the basis
∅ v q being trivial. Finally, in the induction step:

pm+1(~x) = w =⇒ �(~x; pm) = w

=⇒ �(~x; q) = w (ind. hyp. and mon.)
=⇒ q(~x) = w (hyp.): a
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3A. Explicit functionals and simple fixed points 75

3A.19. De�nition (Stages). Suppose �(~x; p) is a monotone, continu-
ous and operative functional on M with least �xed point p. We set:

|~x|� =

{
the least m such that pm(~x)↓ ; if p(~x)↓ ;
∞; otherwise:

(3-30)

This natural assignment of a stage to each point of convergence of p is
characteristic of recursive de�nitions, and the most important tool for their
study. We will study it in detail later in these notes, but it is already very
useful for some of the problems of this section.

Problems for Section 3A

x3A.1. Prove Proposition 3A.7.

x3A.2. With the notation of the proof of Proposition 3A.17, suppose p :
M∪{a; b}*M∪{a; b; tt;�}. Derive formulas which compute p(x; y); p(x; a)
and p(b; y) from the associated coding partial functions p�; p�� for suitable
�'s.

3A.20. De�nition. The iterates �k of a (total) function � : M → M
are de�ned by the recursion,

�0(s) = s; �k+1(s) = �(�k(s)):(3-31)

A (total) function � : N → N is increasing if

s < t=⇒�(s) < �(t);

in which case all its iterates �k are (easily) also increasing.
We use increasing functions to measure the growth rates of partial func-

tions and functionals on N: set

||~x|| = max{x1; : : : ; xn};

and call p : Nn * N is �k-bounded with k > 0, if

(∀~x)[p(~x)↓ =⇒ p(~x) ≤ �k(||~x||)]:

A functional �(~x; ~p) is �l-bounded with l > 0, if, for all k,

if p1; : : : ; pm are all �k-bounded;

then (∀~x)[�(~x; ~p)↓ =⇒�(~x; ~p) ≤ �lk(||~x||):

This simply means that if, for any ~p, we set

f(~x) = �(~x; ~p)

and p1; : : : ; pm are all �k-bounded, then f is �lk-bounded.
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76 3. Recursive functionals

x3A.3. Prove that if � : N → N is increasing, then for all k;m,

k < m=⇒ (∀s)[�k(s) ≤ �l(s)]:

Infer that if p is �k-bounded and 0 < k < m, then p is also �m-bounded,
and the same for functionals.

x3A.4. Suppose M = (N; f1; : : : ; fL) is a partial algebra with universe
N, � is an increasing function on N, and every given fi is �-bounded. Show
that every M-explicit functional �(~x; ~p) is �l-bounded for some l.

x3A.5. Suppose �(~x; p) is a monotone and continuous operative func-
tional on M and |~x|� = m. Prove that for each i < m, there is some tuple
~xi such that |~xi|� = i.

∗x3A.6. Suppose �(~x; p) is a monotone and continuous, operative func-
tional on N, with ~x = (x1; : : : ; xn) ranging over n-tuples. Let p : Nn * N
be its least �xed point and |~x| = |~x|� the stage of each ~x, and suppose that
the domain of convergence of p is in�nite. Prove that

for in�nitely many ~x; |~x| ≤ (||~x||+ 1)n:(3-32)

Hint: : Do the problem �rst for n = 1, where it is easier to see what goes
on; the precise (somewhat better) result in that case is that

for in�nitely many x; |x| ≤ x:(3-33)

∗x3A.7. (1) Suppose M = (N; f1; : : : ; fL) is a total algebra with uni-
verse N, and suppose that � : N → N is a (total) function with the following
properties:

(a) � is strictly increasing, i.e., s < t=⇒�(s) < �(t).
(b) Each of the givens of M is bounded by �, i.e.,

(∀~x)[fi(~x) ≤ �(||~x||)]:(3-34)

Prove that for every unary simple �xed point of M there is some l such
that

for in�nitely many x; p(x) ≤ �l
x+1

(x):

(2) Infer that there is no tuple f1; : : : ; fL of total, recursive functions on
N such that every recursive, total unary function on N is a simple �xed
point of (N; f1; : : : ; fL).

∗x3A.8 (Open). Prove that for every tuple f1; : : : ; fL of total, recursive
functions on N, there is a recursive total function f : Nn → {0; 1} which is
not a simple �xed point of the expansion (N0; f1; : : : ; fL).

∗x3A.9 (McColm). (1) Show that for eachN0-explicit functional �(~x; p)
with one partial function variable, there is some l such that for all p and k,

if for all ~y; p(~y) ≤ ||~y||+ k; then for all ~x; �(~x; p) ≤ ||~x||+ k + l;
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3B. Recursive functionals 77

(where we assume that ⊥ < 0 to cover the instances of non-convergence).
(2) Prove that if p(~x) is a simple, n-ary �xed point of N0 with in�nite

domain of convergence, then for some K and in�nitely many ~x,

p(~x) ≤ K(||~x||+ 1)n:

In particular, all unary simple �xed points of N0 are bounded by K(x+1)
for some K and in�nitely many x's, and so x2 is not a simple �xed point
of N0.

McColm has also shown that multiplication x · y is not a simple �xed
point of N0, and he has produced examples of bounded, total, recursive
functions which are not simple points of N0.

3B. Recursive functionals

A global n-ary (partial) function f on a class F of � -algebras is an
operation

M 7→ fM : Mn *MB

which assigns to each M ∈ F an n-ary partial function on the universe of
M; f is uniformly recursive on F , if there is a single program E of R(�)
and a function variable æ of E such that

fM(~x) = w ⇐⇒ M; E ` æ(~x) = w (M ∈ F ; ~x ∈Mn):(3-35)

These are sometimes called n-ary queries by computer scientists, at least
when fM : Mn → M . A Boolean query is a global, nullary partial
function

M 7→ fM ∈ {tt;�;⊥}

such that for each M ∈ F , fM ∈ {tt;�;⊥}, for example the function

Conn(H;→) = tt ⇐⇒ (H;→) is a connected graph(3-36)

on the class of all graphs (or just the �nite ones).
For each term E of R(�) with free variables in the list ~v, the explicitly

de�ned partial function

fM(~x) = den(M; E; {~x := ~x})

is uniformly recursive on all � -algebras, because it is de�ned in all of them
by the trivial program

æ(~v) = E:

In the same way, the less trivial

fM(x) = gm(x) where m = (�n ≥ 1)[hn(x) = tt]
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78 3. Recursive functionals

is uniformly recursive in the class of all (g; h)-algebras by Problem x2B.8|
the only point being that in solving this problem, we produced a single
program E which computes fM in all (g; h)-algebras. Here we will consider
only the following, special but very useful case of this notion.

3B.1. De�nition. A functional �(~x; p1; : : : ; pm) is M-recursive if it is
uniformly recursive in the class of all expansions (M; p1; : : : ; pm) of M by
partial functions of the appropriate arities, i.e., if there is a program E of
R(�; p1; : : : ; pm) and a function variable æ of E such that for all ~x ∈ Mn

and all p1; : : : ; pm,

�(~x; p1; : : : ; pm) = w ⇐⇒ (M; p1; : : : ; pm); E ` æ(~x) = w:(3-37)

An obvious move here is to use function variables î1; : : : ; îm to name
p1; : : : ; pm in E, so that we can think of E as a program of R(�) in which
the function variables î1; : : : ; îm are free|not de�ned by the program but
given externally, and � is de�ned by (3-37) with the function valuation
~î := ~p. We let

rec1(M) = the class of all M-recursive functionals:(3-38)

Since (basically) all the results about the M-recursive partial functions
were proved \uniformly", the same proofs establish the basic closure prop-
erties of M-recursive functionals, which we list here without additional
arguments.

3B.2. Theorem. For each partial algebra M:

(1) The class rec1(M) ofM-recursive functionals includes all M-recursive

partial functions g : Mn *MB and all M-explicit functionals on M .

(2) rec1(M) is explicitly closed overM, and in particular, it is closed un-

der functional composition (3-5), branching (3-6) and variable shu�ing (3-7).

(3) rec1(M) is closed under �-substitution (3-16).

(4) If M has two distinguished points 0; 1, then a functional �(~x; ~p) is

M-recursive if and only if there is an M-explicit functional �1(~t; ~x; ~p; r),
such that

�(~x; ~p) = r~p(~0k; ~x);(3-39)

where for each ~p, r~p is the least �xed point of the recursive equation

r(~t; ~x) = �1(~t; ~x; ~p; r): a

To help (a little) with the notation, let us write, for any monotone func-
tional � and any partial function q,

(3-40) {q(~x) = �(~x; q)}
⇐⇒ q is the least partial function such that (∀~x)[q(~x) = �(~x; q)];
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3B. Recursive functionals 79

now for all q; q′,

(3-41)
[
{q(~x) = �(~x; q)} & (∀~x;w)[�(~x; q′) = w]=⇒ q′(~x) = w]

]
=⇒ q v q′;

and (4) above can be written in the relatively simple form

�(~x; ~p) = r~0;~p(~x) where {r~p(~t; ~x) = �1(~t; ~x; ~p; r~p)}:(3-42)

A functional �(~x; ~p) is a simple �xed point of M if (3-42) holds with
no 0's, i.e.,

�(~x; ~p) = r~p(~x) where {r~p(~x) = �1(~x; ~p; r~p)}(3-43)

with an M-explicit �1.

3B.3. Proposition. EveryM-recursive functional is monotone and con-

tinuous.

Proof. For monotonicity �rst, suppose that

�(~x; ~p) = r~p(~x) where {r~p(~x) = �1(~x; ~p; r~p)}

and ~p v ~q. Now

�1(~x; ~p; r~q) = w =⇒ �1(~x; ~q; r~q) = w (mon. of �1)
=⇒ r~q(~x) = w (def. of r~q);

and so by (3-41), r~p v r~q, which means that

�(~x; ~p) = r~p(~x) = w=⇒�(~x; ~q) = r~q(~x) = w:

Thus the functionals which are simple �xed points ofM are monotone, and
so all M-recursive functionals are monotone by (4) of Theorem 3B.2.
For the continuity, with �(~x; ~p) de�ned as above again, set

�n(~x; ~p) = rn~p (~x)

where r~p =
⋃
n r

n
~p by the construction in Theorem 3A.18. By an easy

induction on n (using the continuity of �1), each �n is continuous. But,

if �(~x; ~p) = r~p(~x) = w; then w = rn~p (~x) = �n(~x; ~p) = w

for some n, and so �n(~x; ~p′) = w for some �nite ~p′ v ~p, which implies that
�(~x; ~p′) = w. a
Recursive functionals have another interesting property:

3B.4. De�nition. A monotone functional �(~x; ~p) on M is determin-
istic if for all ~x; ~p and w ∈M ,

if �(~x; ~p) = w; then there is a v-least ~q v ~p such that �(~x; ~q) = w:
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80 3. Recursive functionals

Perhaps the simplest example of a non-deterministic (monotone and con-
tinuous) functional is (full, symmetric) disjunction

p ∨ q =

{
tt; if p = tt or q = tt;

⊥; otherwise;
(3-44)

where p and q range over nullary partial functions; this is because tt∨tt = tt,
but there is no least pair (p; q) of nullary partial functions below (tt; tt)
such that p∨ q = tt, since the only pairs below (tt; tt) on which ∨ converges
are (tt;�) and (�; tt), and these are v-incomparable. Additional examples

include the existential quanti�er E#
M (p) de�ned in (3-13), and the search

functional (or half existential quanti�er)

E
1
2
M (p) =

{
tt; if (∃t ∈M)[p(t) = tt];
⊥; otherwise;

(3-45)

these are non-deterministic (if M has at least two points) by the same
argument.

3B.5. Proposition. For each partial algebraM, everyM-recursive func-

tional is deterministic.

Proof. Every partial function f : Mn *MB is (trivially) deterministic,
and the evaluation functionals also are, since if p(~x) = w, then q(~x) = w
with q = p � {~x}.
If � is de�ned by substitution (3-5) from deterministic functionals, then

it is also deterministic: because if

�(~x; ~y; ~p; ~q) = �(
(~x; ~p); ~y; ~q) = w

with deterministic �; 
, then there is some u such that


(~x; ~p) = u and �(u; ~y; ~q) = w;

so by the hypothesis, there exist least ~p1 v ~p, ~q1 v ~q such that 
(~x; ~p1) = u,
�(u; ~y; ~q1) = w; and then (easily), ~p1; ~q1 is the v-least tuple of partial
functions below ~p; ~q such that �(~x; ~y; ~p1; ~q1)↓ .
Similar, simple arguments show that the class of deterministic functionals

is closed under branching and variable shu�ing, so that every M-explicit

functional is deterministic.
Suppose now that �(~x; ~p) is a simple �xed point of M, so that

�(~x; ~p) = r~p(~x) where {r~p(~x) = �1(~x; ~p; r)}
with �1 explicit, and hence deterministic. If �(~x; ~p) = w, then

r~p(~x) = �1(~x; ~p; r~p) = w;

and so there exist a v-least pair (~q; r∗) such that

~q v ~p; r∗ v r~p and �1(~x; ~q; r∗) = w:
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3B. Recursive functionals 81

We claim that ~q is least below ~p such that �(~x; ~q) = w. To see this, notice
�rst that

~q′ v ~p=⇒ r~q′ v r~p;

by the monotonicity of �:

r~q′(~x) = w=⇒�(~x; ~q′) = w=⇒�(~x; ~p) = w=⇒ r~p(~x) = w:

Thus, for any ~q′,

�(~x; ~q′) = w=⇒ r~q′(~x) = w=⇒�1(~x; ~q′; r~q′) = w

and the minimality of (~q; r∗) implies that ~q v ~q′.

Finally, every M-recursive functional is deterministic by (3-39). a

3B.6. Corollary. For any M, the non-deterministic functional p ∨ q
de�ned in (3-44) and the half-quanti�er (3-45) are not M-recursive.

3B.7. Theorem (The First Recursion Theorem). If �(~x; p) is M-

recursive, and operative, then its least-�xed-point p is M-recursive.

Proof. By (4) of Theorem 3B.2,

�(~x; p) = rp(~0; ~x) where {rp(~t; ~x) = �1(~t; ~x; p; rp)}(3-46)

with an M-explicit �1(~t; ~x; p; r), and, in this notation,

{p(~x) = �(~x; p)};(3-47)

where p exists because � is monotone and continuous. Consider the system
of recursive equations

r(~t; ~x) = �1(~t; ~x; p; r);

p(~x) = r(~0; ~x)

with (mutual) least �xed points r̃; p̃. In the obvious extension of (3-40) to
systems of two equations, we can express this simply by{

r̃(~t; ~x) = �1(~t; ~x; p̃; r̃)
p̃(~x) = r̃(~0; ~x)

}
:(3-48)

and the indicated mutual least �xed points are M recursive.

(1) rp̃ v r̃. This holds because for all ~t; ~x,

�1(~t; ~x; p̃; r̃) = r̃(~t; ~x)

by (3-48), and so rp̃ v r̃ by (3-41) applied to the system in (3-46).
(2) p v p̃. This holds because for any ~x,

�(~x; p̃) = w =⇒ rp̃(~0; ~x) = w

=⇒ r̃(~0; ~x) = w (by (1))
=⇒ p̃(~x) = w (by (3-48)
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82 3. Recursive functionals

(3) The pair (rp; p) satis�es the system (3-48). This is because

�1(~t; ~x; p; rp) = rp(~t; ~x)

by (3-46), and rp(~0; ~x) = �(~x; p) = p(~x); directly from the de�nitions. It
follows that

r̃ v rp; p̃ v p;

which together with (2) gives p̃ = p, which is M-recursive. a

Problems for Section 3B

x3B.1. Prove that (as a Boolean query de�ned on the class of all �nite
graphs, (3-36)), connectedness is not recursive.

x3B.2. Prove (3) and (4) of Theorem 3B.2.

x3B.3. Prove that the class of deterministic functionals on M is closed
under variable shu�ing.

x3B.4. Prove that every system of equations as in (3-4) withM-recursive
functionals �1; : : : ; �k has a v-least tuple of solutions p1; : : : ; pk, and these
are M-recursive.

3C. Computation theories and Kleene master recursions

We will establish in this section a very strong version of the Enumeration

Theorem of classical recursion for partial algebras M such that N0 ,→M.
The proof we will give is based on Kleene's notion of a master recursion,
which Kleene used in ?[?] to de�ne his recursive functionals of higher type,
but which (as he noted) also provides a new characterization of the (Turing)
computable partial functions on N. It also provides a novel approach to
recursion on partial algebras, which is the way that we will present this
work here.

3C.1. De�nition. Suppose M is set and N0 = (N; 0; S;Pd ;=0) is an
isomorphic copy of the basic structure of arithmetic with N ⊆ M . A
computation theory over (M;N0) is a pair K = (K; | |) where

K : N×M∗ *MB

is a partial function with domain a set of non-empty tuples from M with
�rst member in N;

| | : Domain(K) → Ordinals
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3C. Computation theories and Kleene master recursions 83

is a function which assigns an ordinal number |e; ~x| to each tuple such that
K(e; ~x)↓ ; and Axioms (KL1) { (KL7) below are satis�ed.

We use the traditional Kleene notation

{z}(~x) = {z}K(~x) = K(z; ~x)

for the basic operation of a computation theory, and we interpret the stage
|z; ~x| as \the length" of some (unspeci�ed) computation of {z}(~x). These
stages will be �nite in the constructions of this Chapter, but it will cause
no problems to allow in�nite ordinals as stages, and we will �nd use for
those later on.
A partial function f : Mn * M is K-recursive if there exists a z ∈ N

(a K-code of f) such that

f(~x) = {z}(~x) (~x ∈Mn):

To simplify the formulation of the axioms, we also set

|e; ~x| >∗ |m;~y|
⇐⇒ either {e}(~x)↑ or [{e}(~x)↓ & {m}(~y)↓ & |e; ~x| > |m;~y|]:

(KL1): Basic functions. The identity id(t) = t (t ∈ M), the nullary
functions 0; tt;�, and the unary successor and predecessor functions S and
Pd (which converge only on N) are all K-computable. The (characteristic
function of) equality with 0 is also K-computable,

=0 (t) =

{
tt; if t = 0;
�; otherwise;

(t ∈M):

(KL2): Substitution. There is a ternary primitive recursive function
subst : N3 → N, such that for all e;m; n ∈ N and ~x ∈Mn, ~y ∈M∗,

{subst(e;m; n)}(~x; ~y) = {e}({m}(~x); ~y);

|subst(e;m; n); ~x; ~y| >∗ |m;~x|; |subst(e;m; n); ~x; ~y| >∗ |{m}(~x); ~y|:

In particular, the class of K-computable partial functions on M is closed
under the substitution scheme

f(~x; ~y) = g(h(~x); ~y):

(KL3): Branching. There is a ternary primitive recursive function
br : N3 → N, such that for all e;m1;m2 ∈ N; ~x ∈M∗, if z = br(e;m1;m2),
then

{z}(~x) = if {e}(~x) then {m1}(~x) else {m2}(~x);

if {e}(~x) = tt; then |z; t; ~x| >∗ |e; ~x|; |z; t; ~x| >∗ |m1; ~x|;
if {e}(~x) = w 6= tt; then |z; t; ~x| >∗ |e; ~x|; |z; t; ~x| >∗ |m2; ~x|:

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 83



84 3. Recursive functionals

In particular, the class of K-computable partial functions on M is closed
under branching.

(KL4): Primitive recursion. There is a binary primitive recursive
function pr : N2 → N, such that for all e;m; y ∈ N; ~x ∈M∗,

{pr(e;m)}(0; ~x) = {e}(~x); |pr(e;m); 0; ~x| >∗ |e; ~x|;
{pr(e;m)}(y + 1; ~x) = {m}({pr(e;m)}(y; ~x); y; ~x);

|pr(e;m); y + 1; ~x| >∗ |pr(e;m); y; ~x|;
|pr(e;m); y + 1; ~x| >∗ |m; {pr(e;m)}(y; ~x); y; ~x|:

In particular, the class of K-computable partial functions on M is closed
under primitive recursion.

(KL5): Variable shu�ing. There is a ternary primitive recursive
function sh : N3 → N, such that for all e; f;m ∈ N and ~x ∈ Mn, if
1 ≤ (f)i ≤ n for i = 1; : : : ;m, then

{sh(e; f;m)}(x1; : : : ; xn) = {e}(x(f)1 ; : : : ; x(f)m)

|sh(e; f;m); x1; : : : ; xn| >∗ |e; x(f)1 ; : : : ; x(f)m |:
In particular, the class of K-computable partial functions is closed under
the variable shu�ing scheme9

f(x1; : : : ; xn) = g(x�(1); : : : ; x�(m)) (� : {1; : : : ;m} → {1; : : : ; n}):
The conditions so far on {z}(~x) and |z; ~x| are natural, and they can be

read almost as de�nitions: it appears that we have been simply assuming a
natural assignment of number codes and a measure of computational com-
plexity to all the partial functions de�ned from the (trivial) basics by prim-
itive recursion, shu�ing, composition and branching. In particular, they
imply that every primitive recursive function f : Nn → N is K-computable.
The next axiom is a bit surprising, as it appears to \postulate" the

Enumeration Theorem:

(KL6): Enumeration. There is a number S9 such that for all e ∈ N,
~x ∈M∗,

{S9}(e; ~x) = {e}(~x); |S9; e; ~x| >∗ |e; ~x|:
This is the characteristic scheme in Kleene's approach, and we have given
it the traditional name S9, which is what he happened to call it in ?[?].

In the �nal axiom we also postulate the so-called Smn -Theorem, but (for
convenience) uniformly in n:

9The axiom applies to the case m = 0 and yields

{sh(e; f; 0)}(x1; : : : ; xn) = {e}(); |sh(e; f; 0); x1; : : : ; xn| >∗ |e|:

See Footnote 8.
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3C. Computation theories and Kleene master recursions 85

(KL7): The Sm-Theorem. For each m ∈ N, there is a primitive
recursive function Sm : Nm+1 → N such that if ~y = (y1; : : : ; ym) ∈ Nm and
~x ∈M∗, then

{Sm(e; ~y)}(~x) = {e}(~y; ~x) |Sm(e; ~y); ~x| >∗ |e; ~y; ~x|:

The condition ~y ∈ Nm is important here, because {z}(~w) is assumed de�ned
only when z ∈ N.

3C.2. Exercise. Every primitive recursive function f : Nn → N is K-
computable, for any computation theory K.

The �rst, basic result about computation theories provides a powerful
tool for de�ning K-computable functions:

3C.3. The Second Recursion Theorem. If K is a computation the-

ory and

f(e; ~x) = {f̃}(e; ~x) (e ∈M;~x ∈Mn)

is K-computable with code f̃ , then there exists some ẽ ∈ N such that for all

~x ∈Mn,

{ẽ}(~x) = {f̃}(ẽ; ~x)(3-49)

if {ẽ}(~x)↓ ; then |ẽ; ~x| > |f̃ ; ẽ; ~x|:(3-50)

Proof. Following the usual (mystical) proof of the Second Recursion
Theorem in ordinary recursion theory, we set

g(m;~x) = f(S1(m;m); ~x) (m ∈ N; ~x ∈Mn);

we observe that this is K-computable, and we choose a code g̃ of it; it
follows that for all m;~x,

f(S1(m;m); ~x) = {g̃}(m;~x) = {S1(g̃;m)}(~x);

and if we set m := g̃ and ẽ = S1(g̃; g̃) in this equation, we get the required

{ẽ}(~x) = f(ẽ; ~x):

To derive the crucial stage-increasing property (3-50), we need to com-
pute the code g̃ using the axioms for K, so that we can appeal to their
stage-increasing assumptions. So choose �rst some a ∈ N such that

{a}(m) = S1(m;m);

and infer from (KL2) that if g̃ = subst(f̃ ; a; 1), then

{g̃}(m;~x) = {f̃}(S1(m;m); ~x); |g̃;m; ~x| >∗ |f̃ ; S1(m;m); ~x|:

By (KL7) now,

{S1(g̃;m)}(~x) = {g̃}(m;~x); |S1(g̃;m); ~x| >∗ |g̃;m; ~x|;
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86 3. Recursive functionals

which gives us the required stage-increasing property when we apply this
to m = g̃ and set ẽ := S1(g̃; g̃). a

3C.4. Corollary (Minimalization). If g(t; ~x) is K-computable and

f(~x) = (�t ∈ N)[g(t; ~x) = 0];

then f(~x) is also K-computable.

Proof. By the closure properties of theK-computable partial functions
and Theorem 3C.3, there is a K-computable partial function h(t; ~x) such
that

h(t; ~x) = if (g(t; ~x) = 0) then 0 else S(h(S(t); ~x)); (t ∈ N; ~x ∈Mn):

It is enough to show that

h(t; ~x) = (�s ∈ N)[g(t+ s; ~x) = 0];(3-51)

from which the Corollary follows by setting

f(~x) = h(0; ~x):

Note that since the successor function S(t) converges only if t ∈ N,

if h(t; ~x)↓ ; then h(t; ~x) ∈ N:

We will use this in the veri�cation of (3-51), for which we consider three
cases.

Case 1. For all s ∈ N, g(t + s; ~x)↓ & g(t + s; ~x) 6= 0. In this case, the
de�ning equation of h(t; ~x) gives

h(t; ~x) = s+ h(t+ s; ~x) (s ∈ N);

and this is impossible, unless h(t; ~x)↑.
Case 2. There exists some s ∈ N such that

(∀i < s)[g(t+ i; ~x)↓ & g(t+ i; ~x) 6= 0] & g(t+ s; ~x)↑:
Now the right-hand-side of (3-51) diverges, and also

h(t; ~x) = 1 + h(t+ 1; ~x) = · · · = s+ h(t+ s; ~x)

= s+ if (g(t+ s; ~x) = 0) then 0 else S(h(S(t+ s); ~x)) = ⊥:
Case 3. There exists some s ∈ N such that

(∀i < s)[g(t+ i; ~x)↓ & g(t+ i; ~x) 6= 0] & g(t+ s; ~x) = 0:

The same computation as in Case 2 now gives

h(t; ~x) = 1 + h(t+ 1; ~x) = · · · = s+ h(t+ s; ~x)

= s+ if (g(t+ s; ~x) = 0) then 0 else S(h(S(t+ s); ~x)) = s;

as required. a
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3C. Computation theories and Kleene master recursions 87

3C.5. Corollary. Every recursive partial function f : Nn * N is K-

computable, for any computation theory K.

Proof. This follows immediately from the identi�cation of (general)
recursion with �-recursion on N. a
The next result is one of those whose proof is more important than its

statement|i.e., we will later use and establish additional properties of the
speci�c computation theory constructed in it.

3C.6. Theorem (The Master Recursion). SupposeM = (f1; : : : ; fL)
is a partial algebra and N0 = (N; 0; S;Pd ;=0) is a copy of the natural num-

bers with N ⊆M .

There is a monotone and continuous functional

Φ : N×M∗ × (N×M∗ *M) *MB;(3-52)

such that if p is the least solution of the recursive equation

p(z; ~x) = Φ(z; ~x; p) (z ∈ N; ~x ∈M∗)

and we set

K(z; ~x) = {z}(~x) = p(z; ~x);(3-53)

|z; ~x| = |z; ~x|Φ; ({z}(~x)↓);(3-54)

then the pair

K[M;N0] = (K; | |)(3-55)

is a computation theory over (M;N0) such that f1; : : : ; fL areK-computable.

Proof. We let ~w = (w1; : : : ; wl) vary over sequences from M of (arbi-
trary) length l = l(~w) and set

Φ(z; ~w; p) = if (z ∈ N) then Ψ(z; ~w; p) else ⊥;
so that Φ(z; ~w; p)↑ unless z ∈ N. The functional Ψ(z; ~w; p) is de�ned by
seven cases which correspond to the axioms (KL1) { (KL7) coded in the
�rst component (z)0 of z, i.e.,

Ψ(z; ~w; p) = if ((z)0 = 1) then Φ1(z; ~w; p)
else if ((z)0 = 2) then Φ2(z; ~w; p)

...

else if ((z)0 = 7) then Φ7(z; ~w; p)
else ⊥:

Finally, the functionals Φi(z; ~w; p) are also de�ned by cases on the form of
the code z and the sequence ~w (especially its length l = l(~w)), so that, in
the end, the �xed point p(z; ~w) and the stage assignment | |Φ satisfy the
axioms of a computation theory.
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88 3. Recursive functionals

In the construction to follow, we will depend heavily on the classical,
primitive recursive coding of tuples of natural numbers, using the following
(standard) notations, where pi is the i'th prime number and the values of
the indicated primitive recursive functions on arguments other than those
indicated are irrelevant:

〈x0; : : : ; xn−1〉 = 2x0+1 · · · pxn−1+1
n−1 ; (with 〈 〉 = 1);

(〈x0; : : : ; xn−1〉)i = xi; (i = 0; : : : ; n− 1);
lh(〈x0; : : : ; xn−1〉) = n;

last(〈x0; : : : ; xn−1〉) = xn−1:

The relation

Seq(u) ⇐⇒ (∃x0; : : : ; xn−1)[u = 〈x0; : : : ; xn−1〉]

is also primitive recursive.
We will incorporate the main steps of the proof of the theorem in the

de�nition of Φ.
Case (KL1), the basic functions and the givens f1; : : : ; fL. We set:

Φ1(z; ~w; p) =



w1; if (z)1 = 0 & l = 1;
0; if (z)1 = 1 & l = 0;
tt; if (z)1 = 2 & l = 0;
�; if (z)1 = 3 & l = 0;
S(w1); if (z)1 = 4 & l = 1 & w1 ∈ N;
Pd(w1); if (z)1 = 5 & l = 1 & w1 ∈ N;
=0 (w1); if (z)1 = 6 & l = 1;
f1(w1; : : : ; wn1) if (z)1 = 7 & (z)2 = 1 & l = n1;
...

fL(w1; : : : ; wnL) if (z)1 = 7 & (z)2 = L & l = nL;

⊥; otherwise:

It is clear from this clause that the partial function {z}(~x) de�ned by (3-53),
will satisfy (KL1), and all the givens will be K-computable, e.g.,

{〈1; 0〉}(t) = t; {〈1; 7; i〉}(x1; : : : ; xni) = fi(x1 : : : ; xni):

Notice also that if (z)0 = 1 and {z}(~x)↓ , then |z; ~x| = |z; ~x|Φ = 0.
Case (KL2), substitution. If (z)0 = 2, we let n = (z)3 and we set

Φ2(z; ~w; p) =

{
p((z)1; p((z)2; w1; : : : ; wn); wn+1; : : : ; wl); if n ≤ l;

⊥; otherwise;

subst(e;m; n) = 〈2; e;m; n〉:
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3C. Computation theories and Kleene master recursions 89

Now de�nitions (3-53), (3-54) give

{subst(e;m; n)}(~x; ~y) = p(e; p(m;~x); ~y) = {e}({m}(~x); ~y)

with ~x = (x1; : : : ; xn), and

|subst(e;m; n); ~x; ~y|Φ = max{|m;~x|Φ; |e; {m}(~x); ~y|Φ}+ 1;

so that the required stage-increasing property also holds.

Case (KL3), branching. If (z)0 = 3, we set

Φ3(z; ~w; p) = if p((z)1; ~w) then p((z)2; ~w) else p((z)3; ~w);
br(e;m1;m2) = 〈3; e;m1;m2〉:

The argument that (KL3) holds with these de�nitions is similar to that in
Case (KL2).
Case (KL4), primitive recursion. If (z)0 = 4, we set

Φ4(z; ~w; p) =


p((z)1; w2; : : : ; wl); if l > 0 & w1 = 0;
p((z)2; p(z;Pd(w1); w2; : : : ; wl); w2; : : : ; wl);

if l > 0 & w1 > 0;
⊥; otherwise:

pr(e;m) = 〈4; e;m〉:
Case (KL5), variable shu�ing. If (z)0 = 5, we let

e = (z)1; f = (z)2; m = (z)3;

and we set

Φ5(z; ~w; p) =

{
p(e; w(f)1 ; : : : ; w(f)m); if 1 ≤ (f)i ≤ l for i = 1; : : : ;m;
⊥; otherwise:

sh(e; f;m) = 〈5; e; f;m〉:
Case (KL6), enumeration. If (z)0 = 6, we simply set

Φ6(z; ~w; p) =

{
p(~w) if z = 〈6〉 & l > 0;
⊥; otherwise:

S9 = 〈6〉:
With the de�nitions (3-53), (3-54), we now have

{S9}(e; ~x) = p(〈6〉; e; ~x) = Φ6(〈6〉; e; ~x; p) = p(e; ~x) = {e}(~x);

and |S9; e; ~x|Φ = |e; ~x|Φ + 1, which implies the required stage-increasing
property.

Case (KL7), the Sm-theorem. If (z)0 = 7, we let m = (z)3 and we set

Φ7(z; ~w; p) = p((z)1; (z)2;1; : : : ; (z)2;m; ~w);
Sm(e; y1; : : : ; ym) = 〈7; e; 〈y1; : : : ; ym〉;m〉:
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90 3. Recursive functionals

It follows that

{Sm(e; y1; : : : ; ym)}(~x) = p(〈7; e; 〈y1; : : : ; ym〉;m〉; ~x)

= Φ7(〈7; e; 〈y1; : : : ; ym〉;m〉; ~x; p) = p(e; y1; : : : ; ym; ~x)

= {e}(y1; : : : ; ym; ~x);

as required. And for the stages, clearly,

|Sm(e; y1; : : : ; ym); ~x|Φ = |e; y1; : : : ; ym; ~x|Φ + 1: a

This canonical computation theory K[M;N0] constructed from M (and
N0) is called the (Kleene) master recursion over (M;N0).
Next we show that ifN0 ,→M, thenM-recursion coincides withK[M;N0]-

computability. Key to the proof of one direction is the following, carefully
formulated notion.

3C.7. De�nition. Suppose K is a computation theory over (M;N). A
monotone functional �(~x; p; q) on M with p unary and q binary is K-
e�ective, if the partial function

f(e;m; ~x; ~y; ~z) = �(~x; �(s){e}(s; ~y); �(u; v){m}(u; v; ~z))

is K-computable; it is strongly K-e�ective if, in addition, there exists a
code f̃ of f such that for all e;m; ~x; ~y; ~z,

(3-56) �(~x; �(s){e}(s; ~y); �(u; v){m}(u; v; ~z)) = w

=⇒{f̃}(e;m; ~x; ~y; ~z) = w

& (∃p; q)[p v �(s){e}(s; ~y) & q v �(u; v){m}(u; v; ~z)

& (∀s)[p(s)↓ =⇒|e; s; ~y| < |f̃ ; e;m; ~x; ~y; ~z|]

& (∀u; v)[q(u; v)↓ =⇒|m;u; v; ~z| < |f̃ ; e;m; ~x; ~y; ~z|]:

These notions have obvious extensions to functionals with any number of
partial function arguments, of any arity.

Notice that the condition (3-56) depends only on the values of �(~x; p; q)
on partial functions p and q which are K-computable from parameters in

M , namely

p(s) = {e}(s; ~y); q(u; v) = {m}(u; v; ~z)

in the speci�c example treated, where ~y; ~z are arbitrary tuples of members
ofM . It is important here that the values of � on arbitrary partial functions
are irrelevant, but also that we need to allow parameters from M in the
partial functions we must consider; this is, of course, because (in general),
not every constant in M is K-computable.
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3C.8. Lemma. If M is a partial algebra and N0 ,→M, then every M-

explicit functional is strongly K-e�ective, for every computation theory K
over (M;N).

Proof. It su�ces to show that the set of strongly e�ective functionals
is explicitly closed over M, and this is very easy: the stage-increasing
properties of the master recursion have been postulated precisely for this
reason. a

3C.9. Lemma. If N0 ,→M, then every M-recursive partial function is

K-computable, for every computation theory K over (M;N).

Proof. It is enough to show that every simple �xed point of M is K-
computable, since the class of partial functions which are K-computable is
closed under composition with the constant 0.
Suppose then that p is the least solution of the equation

p(~x) = �(~x; p)

with M-explicit �, and choose f̃ such that �(~x; {e}) = {f̃}(e; ~x) and

�(~x; {e}) = w=⇒{f̃}(e; ~x) = w

& (∃q)[�(~x; q) = w & (∀~t)[q(~t)↓ =⇒|e; ~x| < |f̃ ; e; ~x|]]:

By the Second Recursion Theorem 3C.3, choose ẽ such that

(∀~x)[{ẽ}(~x) = {f̃}(ẽ; ~x)] & (∀~x)[{ẽ}(~x)↓ =⇒|f̃ ; ẽ; ~x| < |ẽ; ~x|]:

The �rst of these facts implies that, for all ~x,

�(~x; {ẽ}) = {f̃}(ẽ; ~x) = {ẽ}(~x);

so that {ẽ} is a �xed point of � and hence p v {ẽ}. To show that p = {ẽ}
(and hence K-computable), we show by (complete) induction on k, that

if {ẽ}(~x) = w & |ẽ; ~x| = k; then p(~x) = w:

Computing:

{ẽ}(~x) = w =⇒ {f̃}(ẽ; ~x) = w & |ẽ; ~x| > |f̃ ; ẽ; ~x|
=⇒ (∃q v {ẽ})[�(~x; q) = w & (∀~s)[q(~s)↓ =⇒|f̃ ; ẽ; ~x| > |ẽ; ~s|]]
=⇒ (∃q v {ẽ})[�(~x; q) = w & (∀~s)[q(~s)↓ =⇒|ẽ; ~s| < |ẽ; ~x|]]
=⇒ (∃q v {ẽ})[�(~x; q) = w & (∀~s)[q(~s)↓ =⇒ p(~s) = q(~s)]]
=⇒ p(~x) = �(~x; p) = w;

where the induction hypothesis was used in the next-to-the-last inference,
and the last one follows by the monotonicity of � a
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92 3. Recursive functionals

In particular, everyM-recursive partial function isK[M;N0]-computable.
The �rst idea for proving the converse is to assume a coding of �nite

sequences

c : M∗ � M

which is recursive in M, and using it to replace the functional Φ in (3-52)
by some

Φ′ : N×M × (N×M *M) *M

which will be M-recursive, so that its least �xed point (and hence pΦ) will
also beM-recursive. This is easy to do, if we assume anM-recursive coding
of M∗, which is not an unreasonable assumption but is not necessary for
the result and it does not always hold, cf. Problem ∗x3C.2. What we do
instead is to use the fact that for any z; ~x, the computation of {z}(~x) in the
master recursion takes place in the subset [~x] of M generated from N∪{~x}
by the givens of M; this set can be e�ectively coded in N, and so we can
use the classical coding of tuples in N in the argument suggested.
As in Problem x2A.8 (but including N this time), we let

[~x]0 = N ∪ {x1; : : : ; xn};
[~x]m+1 = [~x]m(3-57) ⋃K

i=1{fi(t1; : : : ; tni) | t1; : : : tni ∈ [~x]m; fi(t1; : : : ; tni)↓};
[~x] =

⋃
m[~x]m:

3C.10. Lemma. For any ~x ∈Mn and z ∈ N; s1; : : : ; sk; w ∈M ,

if s1; : : : ; sk ∈ [~x] & {z}(~s) = w; then w ∈ [~x] ∪ {tt;�};
where {z}(~s) is the basic operation of the master recursion K[M;N0].

Proof is by a routine induction on |z;~s|Φ. a

For each n, let Cn be the closure in N of the set

{x1; : : : ; xn} ∪ {j | j ∈ N}
under the L functions

fi(t1; : : : ; tni) = 〈i; t1; : : : ; tni〉; i = 1; : : : ; i = L;

where

xi = 〈1; i〉 (i = 1; : : : ; n) and j = 〈2; j〉 (j ∈ N):

It is clear that Cn is a recursively enumerable set of natural numbers,
and so M-semirecursive. We use Cn to code the members of [~x], and the
speci�c values of these codes are irrelevant. What matters is the next
simple Lemma, where d(t; ~x) is interpreted as the member of [~x] coded by
t, when we assume that xi codes xi for i = 1; : : : ; n.
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3C. Computation theories and Kleene master recursions 93

3C.11. Lemma. If N0 ,→M, then there is anM-recursive partial func-

tion d(t; ~x) of n+ 1 arguments with the following properties:

(1) d(j; ~x) = j; d(xi; ~x) = xi;

d(fi(t1; : : : ; tni); ~x) = fi(d(t1; ~x); : : : ; d(tni ; ~x)).
(2) For each w ∈ [~x], there is (at least) one t ∈ Cn such that d(t; ~x) = w.

(3) If {z}(~x) is the basic operation of K[M;N0], then the partial func-

tion

'(z; u; ~x) =

{
{z}(d((u)0; ~x); : : : ; d((u)last(u); ~x)); if Seq(u);
⊥; otherwise

(3-58)

is M-recursive.

Proof. (1) is proved easily by interpreting the conditions it sets on
d(t; ~x) as a recursive de�nition of it in M, and (2) is proved by induction
on the de�nition of [~x].
The heart of the Lemma is (3), which is proved by identifying ' as the

least solution p of a recursive equation

p(z; u; ~x) = Φ′(z; u; ~x; p)

where the functional Φ′(z; u; ~x; p) isM-recursive. This functional is a coded
version of the basic functional Φ of Theorem 3C.6, and it is de�ned by
copying (and coding) the de�nition of that Φ in the proof of Theorem 3C.6.
We give only the structure of the argument and some of the cases.

First we set

Φ′(z; u; ~x; p) = if (z ∈ N & Seq(u) & (∀i < lh(u))(u)i ∈ Cn)

then Ψ′(z; u; ~x; p) else ⊥:
Next Ψ′(z; u; ~x; p) is de�ned by seven cases (and an \otherwise") from func-
tionals Φ′

i(z; u; ~x; p), i = 1; : : : ; 7 which are coded versions of the functionals
Φi(z; ~w; p). For example, with l = lh(u):

Φ′
1(z; u; ~x; p) =



d((u)0; ~x); if (z)1 = 0 & l = 1;
0; if (z)1 = 1 & l = 0;
tt; if (z)1 = 2 & l = 0;
�; if (z)1 = 3 & l = 0;
S(d((u)0; ~x); if (z)1 = 4 & l = 1 & w1 ∈ N;
Pd(d((u)0; ~x); if (z)1 = 5 & l = 1 & w1 ∈ N;
=0 (d((u)0; ~x); if (z)1 = 6 & l = 1;
f1(d((u)0; ~x); : : : ; d((u)n1−1; ~x) if (z)1 = 7 & (z)2 = 1 & l = n1;
...

fL(d((u)0; ~x); : : : ; d((u)nL−1; ~x) if (z)1 = 7 & (z)2 = 1 & l = nL;

⊥; otherwise:
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94 3. Recursive functionals

This clause will insure in the end that if z = 〈1; ni; i〉, then

p(z; u; ~x) = fi(d((u)0; ~x); : : : ; d((u)ni−1; ~x));

the relevant case of (3-58).

(KL3), Substitution (z = 〈sub; lh(u); e; e1; : : : ; em〉):

Φ′
4(z; u; ~x; p) = p((z)2; p((z)3; u; ~x); p((z)4; u; ~x); : : : ; p((z)lh(z)−· 1; u; ~x)):

This will insure in the end that for such z,

Φ′(z; u; ~x) = Φ′((z)2;Φ′((z)3; u; ~x);Φ′((z)4; u; ~x); : : : ;Φ′((z)lh(z)−· 1; u; ~x)

= {(z)2}({(z)3}(d((u)0; ~x); : : : ; d((u)n1−1; ~x));

: : : ; {(z)lh(z)−· 1}(d((u)0; ~x); : : : ; d((u)n1−1; ~x)))

= {z}(d((u)0; ~x); : : : ; d((u)n1−1; ~x)));

the relevant case of (3-58).

The de�nitions and the arguments are similar in all the cases and they
are easy (in principle) to put down. It is important to keep in mind that
~x is here carried along as a parameter, and it does not enter the recursive
de�nition which takes place on the level of the codes; ~x is only used at end
of the recursion, so to speak (the basis cases), to apply the givens. a

Problems for Section 3C

x3C.1. SupposeK is a computation theory and g(t; ~x) isK-computable.

Prove that there is some h̃ ∈ N such that

{h̃}(t; ~x) = if g(t; ~x) = 0 then t else {h̃}(S(t); ~x);

if {h̃}(t; ~x)↓ & {h̃}(t; ~x) 6= 0; then |h̃; t; ~x| > |h̃; t+ 1; ~x|:

Show also that for this h̃,

{h̃}(t; ~x) = (�s ≥ t)[g(s; ~x) = 0]:

x3C.2. Prove Lemma 3C.8.

∗x3C.3. Give an example of a total algebra M which imbeds N0 but
for which there is no M-recursive injection � : M2 � M . Hint: Take
M]N0 as in (2-37), whereM = (M;=) with an uncountable M . (Or, you
may think up a more natural example!)

The next result is about Kleene's approach to abstract computability
and does not require the assumption that M imbeds N0:
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3C. Computation theories and Kleene master recursions 95

∗x3C.4 (Characterization of the master recursion). Let K = K[M;N0]
be the master recursion over a partial algebra M (with N ⊆M) de�ned in
Theorem 3C.6, and supposeK′ is any computation theory overM;N0 such
that f1; : : : ; fL are K′-recursive. Prove that there is a recursive function
u : N → N such that for all z ∈ N and ~x ∈M∗,

{z}K(~x) = {u(z)}K′(~x); {z}K(~x)↓ =⇒|z; ~x|K ≤ |u(z); ~x|K′ :(3-59)

In particular, every K-computable partial function is K′-recursive. Hint:
Use the Second Recursion Theorem on (classical) recursion on N.
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CHAPTER 4

LEAST FIXED POINTS

In this Chapter we will establish the basic facts about least-�xed-point
recursion on complete partially ordered sets, the most general, simplest,
and most widely applicable part of recursion theory. For easy reference
(and to make this Chapter essentially self-contained), we have included in
Section 4A a brief review of the basic de�nitions and facts about partially
ordered sets and we have repeated in Section 4B some of the de�nitions in
Chapters 2 and 3.

4A. Posets

4A.1. A partially ordered set or poset is a pair (D;≤) of a set10

D and a binary relation ≤ on D which is a partial ordering, i.e., for all
x; y ∈ D,

x ≤ x; x ≤ y & y ≤ z=⇒x ≤ z; x ≤ y & y ≤ x=⇒x = y:

We will typically refer to a poset D with points x; y; : : : ∈ D when the
relation ≤ is clear from the context, and we will abbreviate

x < y ⇐⇒df x ≤ y & x 6= y:

Two points x; y ∈ D are comparable if either x ≤ y or y ≤ x, and compatible

if x ≤ z; y ≤ z for some z ∈ D.
Most often we will be studying posets with a least element which we will

denote by the same symbol ⊥ (read \bottom") for all D,

⊥ = ⊥D =df inf {x | x ∈ D}:

10We work in the theory ZFDC, which is the classical Zermelo-Fraenkel set theory
weakened by omitting the Axiom of Foundation and replacing the full Axiom of Choice
by the weaker Axiom of Depended Choices. Results whose proofs appeal to the full
Axiom of Choice are marked by the symbol (AC), and if we ever need the Axiom of
Foundation we will assume it explicitly.
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98 4. Least fixed points

Every subset E ⊆ D of a poset is also a poset with the induced partial
ordering,

x ≤E y ⇐⇒df x; y ∈ E & x ≤D y;

we call E a subposet of D if in addition ⊥D ∈ E, or ⊥D does not exist.
This is only a convention, but a useful one.

4A.2. Mappings. A mapping (function) f : D → E from one poset to
another is monotone if it preserves the ordering,

x ≤D y=⇒ f(x) ≤E f(y);

strict if it preserves ⊥ (when it exists),

f(⊥D) = ⊥E ;

and a poset homomorphism if it respects the ordering (in both direc-
tions),

x ≤D y ⇐⇒ f(x) ≤E f(y):

A bijective homomorphism is called an isomorphism or similarity of D
with E, and it is automatically strict. We will denote the classes of these
mappings by embellishing the standard notation (D → E) for the most
general function space in obvious ways,

Mon(D → E); Strict(D → E);

etc. These classes of mappings are all closed under composition.
Two posets are isomorphic (or similar) if there is an isomorphism from

one onto the other, in symbols

D ∼= E ⇐⇒df (∃� : D�→E)[� is an isomorphism]:

Isomorphic posets have the same order-theoretic properties.

4A.3. Every set A can be viewed as a (trivial) discrete poset, partially
ordered by the equality relation,

x ≤d;A y ⇐⇒df x = y (x; y ∈ A):

With each poset D we associate its bottom lifting D⊥, where ⊥ is a
new point put below every point of D:

D⊥ =df {⊥} ∪D;
x ≤D⊥ y ⇐⇒df x = ⊥ ∨ x ≤D y:

If A is a discrete poset|a set|then A⊥ is the 
at poset associated with
A: its members are all the (mutually incomparable) members of A, and ⊥
put below all of them.
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4A. Posets 99

4A.4. Especially useful is the three-member 
at Boolean poset

B⊥ =df {⊥;�; tt};

where B = {�; tt} is the standard Boolean set. It is quite common to
identify a relation R ⊆ A with its characteristic function �R : A→ B,

�R(x) =
{

tt; if R(x);
�; if ¬R(x):

A partial relation on a poset D is a monotone function R : D → B⊥.
Quite often we will give de�nitions using conditional expressions of the
form

f(x) = if R1(x) then g1(x)
else if R2(x) then g2(x)
else g3(x);

whereR1; R2 are partial relations onD and g1; g2; g3 : D → E are monotone.
This form of de�nition abbreviates the obvious:

f(x) =


g1(x); if R1(x) = tt;
g2(x); if R1(x) = � & R2(x) = tt;
g3(x); if R1(x) = R2(x) = �;
⊥E ; otherwise;

so that e.g., f(x) = ⊥ if R1(x) = ⊥. Notice that such de�nitions yield
monotone functions.

4A.5. Sequences and streams. The set Seqs(A) of all (�nite and
in�nite) sequences from a set A is naturally partially ordered by the initial
segment partial ordering,

u v v ⇐⇒ |u| ≤ |v| & (∀i < |u|)[ui = vi];

the set of strings (�nite sequences) A∗ is a subposet of it and Streams(A)
(de�ned in 1.14) is a subposet of Seqs(A ∪ {t}).

4A.6. Direct products. Suppose {Di | i ∈ I} is a family of (non-
empty) posets indexed by the set I. The (direct) product of {Di | i ∈ I}
is the Cartesian product∏

i∈I Di =df {u : I →
⋃

i∈IDi | (∀i ∈ I)[u(i) ∈ Di]}

partially ordered pointwise by the relation

u ≤ v ⇐⇒df (∀i ∈ I)[ui ≤i vi]:

We often deal with �nite families of posets, in which case we can take
I = {0; : : : ; n− 1}, we write D0×D1×· · ·×Dn−1 for the product, and the
functions u : {i ∈ N | i < n} →

⋃
i<nDi are just the sequences of length n.
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100 4. Least fixed points

Still more special is the case I = ∅, which yields the empty product

I =df

∏
i∈∅ Di = {∅};(4-1)

clearly independent of any Di. Here ∅ is the (unique) function with empty
domain by the usual set-theoretic conventions. A function p : I → W is
determined by its single value p(∅), and we will think of such functions as
nullary|of no arguments|and write synonymously

p(∅) = p( ) = p (p : I→W ):(4-2)

In accordance with this convention, we will also write

�( )w =df �(i ∈ I)w : I→W (w ∈W ):

With each function

f : A→
∏

i∈I Di

into a product poset, we associate its component functions

fi : A→ Di; fi(x) = f(x)i;

one for each index i ∈ I. We can recover the function f from these by the
�-operator,

f(x) = �(i ∈ I)fi(x):

This is only notation, but very useful notation.

4A.7. Exercise. Show that if D and each Ei are posets, then a mapping
f : D →

∏
i∈I Ei is monotone if and only if each component function

fi : D → Ei is monotone.

4A.8. Exercise. Show that if I is the singleton poset (4-1), then I×D
and D × I are both isomorphic with D.

Sometimes we formulate results about arbitrary products D × E, with
the simpler case about D following by taking E = I.

4A.9. Function posets. Another important special case of the direct
product is when all the Di are the same, in which case the product is the
function poset ∏

i∈I D = (I → D) = {u | u : I → D}:

If I is itself a poset, then the function posets Mon(I → D) and Strict(I →
D) of monotone and strict mappings are subposets of (I → D).

4A.10. Exercise. Show that for all posets D, E and W ,

(I→ D) ∼= D;

(D → (E →W )) ∼= (D × E →W ):
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4A. Posets 101

4A.11. Partial functions. Still more special is the case D = B⊥ of the

at poset over the set B, when

(I → B⊥) = (I * B)

is the poset of partial functions already de�ned in 1.6. It is easy to verify
that the partial ordering on (I * B) de�ned in 1.6 is exactly the pointwise
partial ordering on (I → B⊥).

4A.12. The disjoint sum of an indexed family of posets {Di | i ∈ I} is
the set

⊕i∈I Di =df {(i; d) | i ∈ I; d ∈ Di}
partially ordered by the relation

(i; d) ≤ (j; e) ⇐⇒df i = j & d ≤i e;

and the coalesced sum of an indexed family of posets {Di | i ∈ I} is the
poset ∑

i∈I Di =df (⊕i∈I (Di \ {⊥i})⊥ = {⊥}
⋃
⊕i∈I (Di \ {⊥i});

where each ⊥i is the least element of Di. We use in�x notation for the dis-
joint or coalesced sums of �nite families, D⊕E or D+E. In the more useful
coalesced sum construction, we place the non-⊥ parts of the given posets
side-by-side and add a common bottom below them; or (alternatively) we
take their disjoint sums and then identify all the bottom elements into one.

4A.13. A point w in a set X ⊆ D is minimum (least) in X if for every
x ∈ X, w ≤ x; it is minimal in X if there is no x ∈ X such that x < w.
Maximum (greatest) and maximal are de�ned in the same way.
A point w ∈ D is an upper bound of a set X ⊆ D if for every x ∈ X,

x ≤ w, and a least upper bound or supremum of X if it is least among
such. It is clear that X can have at most one supremum which we will
denote by sup X when it exists,

sup X =df inf {x ∈ D | (∀y ∈ X)[y ≤ x]};
and if sup X ∈ X, then sup X is the maximum of X. If x0 ≤ x1 ≤ : : :
is a non-decreasing sequence with a supremum, we will also use a limit
notation,

limn xn =dfsup {x0; x1; : : : }:

4A.14. Exercise. (1) Consider the powerset

P(A) =df {B | B ⊆ A}
of a set A, partially ordered by the subset relation,

X ≤P(A) Y ⇐⇒df X ⊆ Y (X;Y ⊆ A):

Verify that this is a poset in which every set X ⊆ P(A) has a supremum,
namely its union ∪X.
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102 4. Least fixed points

(2) Show that in a 
at poset A⊥, the only sets which have suprema are
subsets of doubletons {⊥; a}.

The situation in Part (2) of the Exercise is more typical, i.e., most sets in
an arbitrary poset do not have suprema. The next, basic de�nition singles
out a condition on a set X ⊆ D which makes possible|and in many cases
insures|the existence of sup X.

4A.15. A subset X ⊆ D of a poset is a chain if every two members of
X are comparable, i.e., if for all x; y ∈ X, either x ≤ y or y ≤ x; and it is
directed, if every two members of X have an upper bound in X, i.e.,

x; y ∈ X =⇒ (∃z ∈ X)[x ≤ z & y ≤ z]:

Every chain is directed, since max{x; y} is an upper bound of x and y,
when x and y are comparable.

4A.16. Exercise. Show that if X is a directed set, then every �nite set
x1; : : : ; xn of members of X has an upper bound x ∈ X. (Note that this
fails for in�nite sets, e.g., N has no upper bound as a subset of itself.)

4A.17. Exercise. If f : D → E is monotone and X ⊆ D is directed,
then the image

f [X] = {f(x) | x ∈ X}
is directed in E.

4A.18. Completeness. A poset D is complete (inductive, directed
complete, a dcpo) if every directed set in D has a least upper bound.
Every complete poset has a minimum, because ∅ is a chain, and every

non-decreasing sequence x0 ≤ x1 ≤ · · · in a complete poset has a limit,
because {xn | n ∈ N} is a chain.

For most of the applications, we only need the seemingly weaker assump-
tion of chain completeness, that every chain in D has a supremum. In
fact chain complete posets are directed complete, see Problem ∗x4A.6. We
will work from the start with the seemingly stronger hypothesis, because
some important results depend on it; because in practice, it is just as easy
to establish full completeness as chain completeness; and because the proof
of the equivalence of the two notions is a non-trivial exercise in set theory
which invokes the Axiom of Choice and has little to do with recursion.

4A.19. Exercise. Show that each 
at poset B⊥ is complete, and that if
W is complete, then so is its bottom lifting W⊥.

4A.20. Exercise. Show that the posets Seqs(A) and Streams(A)M of
sequences and streams are complete.

4A.21. Exercise. Show that if each Di is complete, then so is the coa-
lesced sum

∑
i∈I Di.
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4A. Posets 103

4A.22. Proposition. If each Di is a complete poset, then the product∏
i∈I Di is also complete. In particular, if W is complete, then so is the

function poset (I →W ), for any I.

Proof. Suppose X ⊆
∏

i∈I Di is a directed set, and for each i ∈ I let

Xi = {ui ∈ Di | u ∈ X}
be the projection of X to Di. Each Xi is directed in Di: because if x =
ui; y = vi ∈ Xi, then there is some z ∈ X such that u; v ≤ z, and so
vi; ui ≤ zi ∈ Xi. If we set wi =dfsup (Xi); then w ∈

∏
i∈I Di and easily,

w =sup X. a

4A.23. Continuity. A mapping f : D → E of one poset into another is
continuous if for every directed X ⊆ D and every w ∈ D,

[∅ 6= X & w =sup X]=⇒ f(w) =sup f [X];(4-3)

i.e., if f preserves the suprema of non-empty directed sets whenever these
suprema exist.

Continuous mappings are monotone, since if x ≤ y, then sup {x; y} = y,
so (4-3) gives f(y) =sup {f(x); f(y)} ≥ f(x). If D and E are complete,
then (4-3) takes the simpler form

∅ 6= X =⇒ f(sup [X]) =sup f [X];

and in particular, for every x0 ≤ x1 ≤ · · · ,
f(limn xn) =limn f(xn):

4A.24. Exercise. Show that every isomorphism f : D�→E is continu-
ous.

4A.25. Exercise. Show that if g : D → E and f : E → W are both
continuous, then so is their composition f ◦ g : D →W .

An example of a discontinuous mapping is

f(x) =
{

a; if x = an 6= a!;
a! if x = a!;

on Seqs({a}).

4A.26. Exercise. Show that ifD is a discrete poset, then every mapping
f : D → E is continuous, and if D = A⊥ is 
at, then a mapping f : D → E
is continuous if and only if f is monotone.

4A.27. Proposition. A mapping f : D →
∏

i∈I Ei is continuous if and

only if each of its component mappings fi(x) = (f(x))i; (i ∈ I) is continu-
ous; in particular, f : D → (I → E) is continuous, if and only if, for each

i ∈ I, the mapping

fi(x) = f(x)(i)
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is continuous.

Proof. The continuity of each component follows trivially from the con-
tinuity of f . For the converse, suppose all components are continuous,
∅ 6= X ⊆ D is directed and w =sup X. By hypothesis then,

fi(w) =sup {fi(x) | x ∈ X} =sup {f(x)i | x ∈ X} (i ∈ I);

which means exactly that f(w) =sup {f(x) | x ∈ X}. a
After these basic de�nitions, we now establish three simple but funda-

mental theorems about monotone and continuous mappings.

4A.28. Separate continuity. For each function f : D × E → W and
each d ∈ D, e ∈ E, let

fd(y) =df f(d; y) (y ∈ E; fd : E →W );

fe(x) =df f(x; e) (x ∈ D; fe : D →W ):

We say that f is monotone in the �rst variable if each fe is monotone,
and monotone in the second variable if each fd is monotone, and
similarly for continuous in the �rst or the second variable. Less formally,
we will also say that \f(x; y) is monotone in x", \g(x; y; z) is continuous in
z", etc., meaning that \�(x)f(x; y) is monotone for each y", \�(z)g(x; y; z)
is continuous for all x, y," etc.
Notice that with this terminology, if f(x; y) is continuous in x and

�(x) = �(y)f(x; y);

then � : D → (E → W ) is continuous, by 4A.27; this is the standard way
of introducing continuous mappings into function posets.

4A.29. Theorem. A function f : D × E →W is monotone (or contin-
uous) if and only if it is separately monotone (or continuous) in each of its

variables.

Proof. If f : D×E →W is monotone and e ∈ E, then for all x; y ∈ D,

x ≤ y=⇒ (x; e) ≤ (y; e)

=⇒ f(x; e) ≤ f(y; e) because f is monotone

=⇒ fe(x) ≤ fe(y);

so that each fe is monotone, and the same argument works for each fd.
Conversely, if all mappings fy and fx are monotone, then

(x1; y1) ≤ (x2; y2)=⇒x1 ≤ x2; y1 ≤ y2

=⇒ f(x1; y1) ≤ f(x2; y1); f(x2; y1) ≤ f(x2; y2)

=⇒ f(x1; y1) ≤ f(x2; y2):
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4A. Posets 105

For the more interesting direction of the part about continuity, suppose
that all fx, f

y are continuous, X ⊆ D × E is directed, non-empty, and
(a; b) =sup X. Now

sup {f(x; y) | (x; y) ∈ X} ≤ f(a; b);

immediately, using the monotonicity of f which follows from the �rst part
of the Theorem, so it is enough to show that

f(a; b) ≤sup {f(x; y) | (x; y) ∈ X}:(4-4)

It is easy to verify (as in the proof of 4A.22) that the sets

X1 = {x ∈ D | (∃y)(x; y) ∈ X}; X2 = {y ∈ E | (∃x)(x; y) ∈ X}

are both directed, and a =sup X1, b =sup X2. From the assumed continu-
ity of each fx, we have

sup {f(x; y) | y ∈ X2} = f(x; b) (x ∈ X1);

and from the continuity of f b and this, we then get

sup {sup {f(x; y) | y ∈ X2} | x ∈ X1} = f(a; b);(4-5)

or in somewhat di�erent notation,

supx∈X1
supy∈X2

f(x; y) = f(a; b):

Now, if x ∈ X1 and y ∈ X2, there are y′ and x′ such that (x; y′) ∈ X,
(x′; y) ∈ X; and then there is some (x′′; y′′) ∈ X which is above both these
pairs, since X is directed; and so, by the monotonicity of f , we have

x ∈ X1; y ∈ X2 =⇒ f(x; y) ≤ f(x′′; y′′) ≤sup {f(x; y) | (x; y) ∈ X};

from which, taking sups over y and x successively and using (4-5) we
get (4-4).
The other direction of the part about continuity is simpler and we skip

it. a
The second theorem gives a very simple characterization of continuity,

for a case which appears to be very special but actually covers a large class
of applications.

4A.30. Theorem. For all sets A, B, C, a mapping

f : (A * B) → C⊥

is continuous if and only if it is monotone, and for every partial function

p : A * B,

f(p) = w ∈ C =⇒ (∃p∗)[p∗ ≤ p & f(p∗) = w & p∗ is �nite]:(4-6)
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Proof. Recall from 1.6 that a partial function p is �nite if {x | p(x)↓}
is �nite, suppose �rst that f : (A * B) → C⊥ is continuous, f(p) = w,
and let

Xp = {p∗ ∈ (A * B) | p∗ ≤ p & p∗ is �nite}:
Lemma A. The set Xp is directed in (A * B), and sup Xp = p.

Proof. If p1 and p2 are both �nite partial functions below p, then

q(x) =

{
p(x) if p1(x)↓ or p2(x)↓ ;
⊥ otherwise

is also �nite, above p1 and p2 and below p, and so Xp is directed. It is also
clear that p is an upper bound of Xp. If q is another upper bound, then
for every x such that p(x)↓ , let

px(t) = if (t = x) then p(x) else ⊥;

now px ∈ Xp, and so px ≤ q, so that q(x) = p(x); and since x was arbitrary
such that p(x)↓ , this shows that p ≤ q. a (Lemma A)

Now the continuity of f implies that

f(p) = w ∈ C =⇒w =sup {f(p∗) | p∗ ∈ Xp};

which is exactly what (4-6) says.
For the other direction, suppose f satis�es (4-6), X ⊆ (A * B) is

directed, non-empty, p =sup X, and f(p) = w ∈ C. We need to show that
there exists some q ∈ X such that f(q) = w.
By (4-6), there is a �nite p∗ ≤ p such that f(p∗) = w. Let

A∗ = {x0; : : : ; xn−1} = {x ∈ A | p∗(x)↓};

and for each i < n, let

pi(t) = if (t = xi) then p(xi) else ⊥:

Lemma B. For each i < n, there is some qi ∈ X such that pi ≤ qi.

Proof. Suppose this fails for some i and let

q(t) = if (t 6= xi) then p(t) else ⊥:

Now if r ∈ X, then for every t 6= xi, r(t) ≤ p(t) = q(t), and it must be the
case that r(xi) = ⊥, otherwise pi ≤ r; so q is an upper bound of X and
p ≤ q, contradicting the fact that p(xi)↓ while q(xi)↑. a (Lemma B)

Since X is directed, we can �nd some q ∈ X above q0; : : : ; qn−1, and
then p∗ ≤ q, so that f(q) ≥ f(p∗) = w, by the monotonicity of f , which
completes the proof. a
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4A. Posets 107

The theorem makes it clear that in most of the examples and the prob-
lems of Chapter 1 we looked for �xed points of continuous mappings. In the
case of the Euclidean algorithm (Problem x1.3) for example, the relevant
mapping was

f(p) = �(m;n)
[
if n |m then n (m ≥ n ≥ 1)

else p(n; rm(m;n))
]
;

which is continuous by 4A.30 and 4A.27. As we will see in Chapter ??,
these \functionals" on partial function posets are the only mappings needed
in many parts of classical abstract recursion theory, and so their continuity
(when it holds) will always be trivial, veri�ed by direct inspection.
The third theorem in this group enriches substantially our stock of com-

plete posets.

4A.31. Theorem. Suppose D is a poset, E is a complete poset and F
is a non-empty, directed subset of the complete poset (D → E).
(1) If every mapping in F is monotone, then sup F : D → E is monotone.

(2) If every mapping in F is continuous, then sup F : D → E is contin-

uous.

It follows that the posets

Mon(D → E) =df {f : D → E | f is monotone}
Cont(D → E) =df {f : D → E | f is continuous}

of the monotone and continuous mappings on D to E are complete sub-

posets of (D → E).

Proof. Let f =sup F , so that, by de�nition,

f(x) =sup {f(x) | f ∈ F}:

If every f ∈ F is monotone, then

x ≤ y=⇒ f(x) ≤ f(y) (f ∈ F )

=⇒ f(x) ≤ f(y)

=⇒ f(x) ≤ f(y);

taking sups �rst on the right and then on the left. This proves (1).
For (2), suppose that each f ∈ F is continuous, that X ⊆ D is non-

empty, directed and that x =sup X; we must show that

f(x) =sup {f(x) | x ∈ X}:(4-7)

Notice �rst that for all x ∈ X and f ∈ F , f(x) ≤ f(x), because f is
monotone; and f(x) ≤ f(x) by the de�nition of f ; and hence

f(x) ≤ f(x) (x ∈ X; f ∈ F ):
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108 4. Least fixed points

Taking the supremum over f ∈ F on the left, we get

f(x) ≤ f(x) (x ∈ X);

so that
sup {f(x) | x ∈ X} ≤ f(x):

Suppose now that w is any upper bound of {f(x) | x ∈ X}, so that

f(x) ≤ w (x ∈ X):

Since f is the pointwise supremum of F , this gives

f(x) ≤ w (x ∈ X; f ∈ F );

and taking the supremum over X on the left, by the continuity of each
f ∈ F ,

f(x) ≤ w (f ∈ F );
by the de�nition of f , �nally, this gives

f(x) ≤ w;

so that f(x) is below every upper bound of {f(x) | x ∈ X}, which completes
the proof of (4-7). a

4A.32. Exercise. Suppose D is a poset, Y is a set and E is a complete
poset; show that

W = {p : D × Y → E | p is continuous in its �rst variable}
is a complete poset. (In detail, the membership condition for W is that
for every y ∈ Y and every directed, non-empty X ⊆ D, if w =sup X, then
p(w; y) =sup {p(x; y) | x ∈ X}.)

One might suspect from the terminology that posets can be viewed as
topological spaces and the continuous mappings are exactly those which are
topologically continuous. Indeed this is true, but we will not need these
facts and we have left them for the problems. We include here only the
basic de�nition.

4A.33. Theorem (The Scott topology). A set G ⊆ D is Scott open
in a complete poset D if it is upward closed, i.e.,

[x ∈ G & x ≤ y]=⇒ y ∈ G;

and for every directed X ⊆ D,

[X 6= ∅ &sup X ∈ G]=⇒ (∃x ∈ X)[x ∈ G]:

A set F ⊆ D is Scott closed if its complement D \ F is Scott open, i.e.,

F is downward closed and for every directed set X ⊆ D,

X 6= ∅ & X ⊆ F =⇒ sup X ∈ F:

Notice that if G is Scott open and ⊥ ∈ G, then G = D.
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4A. Posets 109

The Scott open subsets of a complete poset D form a topology, Prob-
lem x4A.9, but not a very nice one from the geometrical point of view|it is
not Hausdor�, since the only open set which contains ⊥ is the whole space
D. On the other hand and for the same trivial reason, the Scott topology
is compact : because if U is any family of open sets such that D ⊆

⋃
U (an

open cover), then D ∈ U since D is the only open set which contains ⊥, so
that the singleton {D} ⊆ U is a �nite subcover of U .

Problems for Section 4A

x4A.1. Show that a �nite poset is complete if and only if it has a least
element.

x4A.2. If {xn;m}n;m is a doubly-indexed sequence of points in a com-
plete poset D which is non-decreasing in each of its arguments, then the
supremum of its image sup {xn;m | n;m ∈ N} exists and

sup {xn;m | n;m ∈ N} =limnlimm xn;m =limmlimn xn;m:

x4A.3. Prove that the liftup p 7→ p̃ of a partial function to its strict
extension (1-18) is an isomorphism of (A * B) with Strict(A⊥ → B⊥).

∗x4A.4. A linearization of a poset (D;≤D) is any linearly ordered
poset (D;≤) on the same �eld which extends D, i.e.,

x ≤D y=⇒x ≤ y:

(a) Prove that every �nite poset admits a linearization, in fact

x ≤D y ⇐⇒ (∀ ≤⊆ D ×D)[≤ a linearization=⇒x ≤ y]:(4-8)

(b) (AC) Show that (4-8) holds for every poset D, so in particular, every
poset admits a linearization. Hint: Show the result �rst for a countable
D, without using any choice principles. For the general case, start with a
wellordering of D and use de�nition by trans�nite recursion to de�ne for
any two incomparable elements x; y in D a linearization ≤ in which x < y.

x4A.5. Prove that every countable, directed set X in a poset D contains
a co�nal chain, i.e., a chain C ⊆ X such that

x ∈ X =⇒ (∃z ∈ C)[x ≤ z]:

Infer that if every countable chain in D has a supremum, then every count-
able, directed set in D has a supremum; in particular, every countable,
chain-complete poset is complete.

The next problem gives a generalization of this fact to arbitrary posets,
which is the key to the proof that chain complete posets are complete.
Notice that by \chain" in a poset D we mean any subset C ⊆ D which
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110 4. Least fixed points

is linearly ordered by the poset partial ordering ≤D; C is a well ordered

chain if in addition, the restriction of ≤D to C is a wellordering. When we
say that \X is well orderable" for some X ⊆ D, we mean that X admits

some wellordering ≤, which may be (and typically is) totally unrelated to
the given partial ordering ≤D of D.

∗x4A.6. If every well ordered chain in a poset (D;≤D) has a least upper
bound, then for every well orderable, directed subset X of D there exists
a well ordered chain C with the following two properties.
(1) X is bounded by C, i.e., for each x ∈ X there exists some y ∈ C such

that x ≤D y.
(2) For each y ∈ C, there exists a directed subset Cy ⊆ X such that

|Cy| < |X| and y =supD Cy.
Notice that C may satisfy these conditions without being a subset of X.

Hint: (W. Allen.) Towards a contradiction, let X be a well orderable, di-
rected counterexample to the conclusion which is least in cardinality among
such, so that it is uncountable by x4A.5, and let ≤ be a best wellordering
of X, i.e., a wellordering with least length, the cardinality of X. De�ne a
function f : X×X → X so that x; y ∈ X =⇒x; y ≤D f(x; y), and for every
x ∈ X, let Cx be the least subset of X which contains {y ∈ X | y < x} and
is closed under f . Show that this is directed, that supD Cx exists for each
x ∈ X, and that

C =df {sup Cx | x ∈ X}
is a well ordered chain in X which has properties (1) and (2) for X.

∗x4A.7. (AC) The following three conditions are equivalent, for every
poset D:

1. Every directed set in D has a least upper bound.
2. Every chain in D has a least upper bound.
3. Every well ordered chain in D has a least upper bound.

In particular: (AC) A poset is complete if and only if it is chain complete.

∗x4A.8. (AC) Show that a monotone mapping � : D → E on one
complete poset to another satis�es the identity

�(sup X) =sup �[X](4-9)

for every non-empty chain X ⊆ D, if and only if it satis�es (4-9) for every
non-empty directed X ⊆ D.

x4A.9. Prove that the collection S(D) of all Scott open subsets of a
complete poset D is a topology on D, i.e., (1) ∅ and D are Scott open; (2)
if G;H are Scott open, then so is their intersection G ∩ H; and (3) if U is a
family of Scott open subsets of D, then their union ∪U is also Scott open.
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4A. Posets 111

Recall that a function f : S → T on one topological space to another
is topologically continuous if for every open set G ⊆ T , the inverse image
f−1[G] is open in S; equivalently, if for every closed F ⊆ T , f−1[F ] is closed
in S.

x4A.10. Prove that a mapping f : D → E on one complete poset to
another is topologically continuous relative to the Scott topologies if and
only if it is continuous in the sense of De�nition 4A.23. Hint: Show that
the inverse image of each closed set is closed.

∗x4A.11. (AC) Prove that a set F ⊆ D is Scott closed in a complete
poset D if and only if for every non-empty chain X ⊆ D, if X ⊆ F , then
sup X ∈ F .

The uses of posets and complete posets in theoretical computer science
have led to the development of a rich and elegant theory for these structures,
generally called domain theory. We will not go into domain theory here,
but it is worth including just one problem which gives something of its

avor, sometimes called \Scottery".

∗x4A.12. A posetW has the Scott property if every pair of compatible
points in W has a sup,

(∃z)[x ≤ z & y ≤ z]=⇒ sup {x; y} exists:
(For example, discrete and 
at posets have the Scott property.) Suppose
W is a complete poset with the Scott property and prove the following:

(a) For every set A, the function poset (A→W ) has the Scott property.
(b) For every poset D, there exists a monotone function

� : (D →W ) → Mon(D →W )

which is the identity on Mon(D →W ) (a projection)
(c) Mon(D →W ) has the Scott property.
(d) For every poset D, there exists a monotone function

� : (D →W ) → Cont(D →W )

which is the identity on Cont(D →W ).
(e) Cont(D →W ) has the Scott property.
Give an example where the projection � in (d) is not continuous.

Note. Several of the results in the problems are marked as depending on
the Axiom of Choice, typically because their easiest (most natural) proofs
appeal to Problem ∗x4A.6 and its Corollaries. I do not know whether these
results (including ∗x4A.6) can be proved without AC, or whether (more
likely) they are equivalent with some Choice Principles weaker than AC|
although I imagine that at least some of the relevant independence results
are easy or well-known.
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4B. The Fixed Point Theorem

Despite its simplicity, the next basic result provides the mathematical
foundation for the so-called �xed point theory of programs.

4B.1. Theorem (The Continuous Fixed point Theorem). (1) Sup-
pose f : D → D is a continuous mapping on a complete poset D and de�ne

by recursion on n the orbit of f ,

x0 = x0
f = f(⊥); xn+1 = xn+1

f = f(xn);

this is a non-decreasing sequence,

x0 ≤ x1 ≤ : : : xn ≤ xn+1 : : : ;

and its least upper bound x =limn x
n satis�es the conditions:

x = f(x);(4-10)

f(y) ≤ y =⇒ x ≤ y:(4-11)

In particular, every continuous mapping f : D → D on a complete poset

has a least �xed point x which is uniquely determined by (4-10), (4-11).
(2) If Y is a poset, D a complete poset and f : D×Y → D a continuous

mapping, then the function x : Y → D de�ned by

x(y) = (�x ∈ D)[x = f(x; y)]

is continuous.

Proof. (1) Skipping the subscripts and starting with the trivial ⊥ ≤ x0,
use the monotonicity of f to get immediately by induction that for all n,
xn ≤ xn+1; thus the limit x exists, and by the continuity of f ,

f(limn x
n) =limn f(xn) =limn x

n+1 =limn x
n;

so that x is a �xed point of f . If f(y) ≤ y, then by another easy induction,
for each n, xn ≤ y, so that x =limn xn ≤ y. Finally, if w also satis-
�es (4-10), (4-11), then x ≤ w taking y = w in (4-11) and w ≤ x taking
y = x in the version of (4-11) for w.
(2) By the construction in Part (1),

x(y) =limn x
n(y);

where x0(y) = f(x; y) and xn+1(y) = f(xn(y); y). Now each xn : Y → D is
continuous, by induction, since composition preserves continuity; and then
the limit function x =limn x

n is also continuous by Theorem 4A.31. a
We use several notations for the least �xed point of a function, including

xf = �x(f) = (�x ∈ D)[x = f(x)] =df lim xnf :(4-12)

In practice, we often apply this basic fact to mappings on function posets:
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4B. The Fixed Point Theorem 113

4B.2. Corollary. If f : A × (A → W ) × X → W is continuous, W is

complete, and x ∈ X, then the recursive equation

p(t) = f(t; p; x) (t ∈ A; p : A→W;x ∈ X)

has a least solution px : A→W characterized by the conditions

px(t) = f(t; px; x) (t ∈ A; x ∈ X);[
x ∈ X; q : A→W; (∀t ∈ A)[f(t; q; x) ≤ q(t)]

]
=⇒ px ≤ q:

In addition, the function p : A×X →W de�ned by

p(t; x) = px(t)

is continuous.

Proof. The mapping

�(p; x) = �(t ∈ A)f(t; p; x)

on Cont(A→W )×X to Cont(A→W ) is continuous by Proposition 4A.27,
the poset Cont(A → W ) is complete by 4A.31, and so 4B.1 gives us a
continuous

� : X → Cont(A→W )

such that

�(x) = (�p)[p = �(t)f(y; p; x)]:

If we set

p(t; x) = px(t) = �(x)(t);

then this mapping is separately continuous, and hence continuous by 4A.27,
and it (easily) has all the required properties. a

4B.3. Varying the parameter. To make precise the counting of com-
parisons needed by the mergesort and the insert-sort algorithms in Chap-
ter 1, we now introduce explicitly the dependence of sort(u) on the given
ordering ≤ of the basic set L, or, more precisely, on parts of it. Let
r : L × L → B⊥ vary over partial, binary relations on L, and consider
�rst the recursive equation (in Problem x1.9) which de�nes the function
insert(x; u), when r is the characteristic function of a total ordering of L:

insert(x; u) = if (|u| = 0) then 〈x〉(4-13)

else if (r(x; u0) = tt) then xau

else if (r(x; u0) = �) then u0 a insert(x; tail(u))
else ⊥
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The mapping

�(x; u; insert; r) = if (|u| = 0) then 〈x〉
else if (r(x; u0) = tt) then xau

else if (r(x; u0) = �) then u0 a insert(x; tail(u))
else ⊥

(with insert : L×L∗ * L∗ a variable|replace it by p if it looks confusing!)
is evidently continuous by 4A.30 and 4A.29, and so Corollary 4B.2 yields
a continuous mapping insert(x; u; r), such that for each r, the component

insertr(x; u) = insert(x; u; r)

is the least solution of (4-13). Next consider the equation which ex-
presses the insert-sort algorithm, with r again as a parameter and this
insert(x; u; r),

sort(u) = if (|u| ≤ 1) then u(4-14)

else insert(u0; sort(tail(u); r);

the mapping on the right is again continuous, and so we have a continuous
mapping isort(u; r), such that for each r, the component

isortr(u) = isort(u; r)

is the least solution of (4-14). We can now repeat the argument in Prob-
lem x1.9 (word-for-word) to establish the following property of isort(u; r):

4B.4. Proposition. (1) If r : L× L→ B⊥ is total and the relation

≤r=df {(x; y) | r(x; y) = tt}
is a total ordering of L, then isort(u; r) = sort(u), for this ordering ≤r.

(2) For each u ∈ L∗ and each partial relation r : L × L → B, if

isort(u; r) = v, then there exists some r∗ ≤ r, such that isort(u; r∗) = v
and |r∗| ≤ 1

2 |u|(|u| − 1), meaning that the domain of r∗ has no more than
1
2 |u|(|u| − 1) elements.

A similar analysis of the recursive equations which express the merge-sort
algorithm yields a continuous mapping msort(u; r), such that when r is the
characteristic function of a total ordering ≤r, then msort(u; r) = sort(u)
for that ordering ; and when msort(u; r) = v, then msort(u; r∗) = v, for
some r∗ ≤ r of size no more than |u| log2 |u|. We will leave the details of
this for Problem x4B.14.

4B.5. Algorithms as continuous mappings. The distinct, continu-
ous mappings isort(u; r) and msort(u; r) re�ne the function sort(u), and
di�erentiate between the insert-sort and the merge-sort algorithms by cap-
turing in their modulus of continuity the separate requirements of these
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4B. The Fixed Point Theorem 115

algorithms for \resources" (the ordering). We might suspect from the
example that algorithms can be \faithfully modeled" by such continuous
mappings in general, and indeed, the classical, denotational semantics of
programs assume (at least implicitly) a modeling of this kind. In the end
we will adopt a re�ned modeling of algorithms which captures a great deal
more than their continuous dependence on resources. Nevertheless, the
method of variation of the parameter is often very useful in distinguishing
between algorithms, by very simple arguments as in these examples.

The Continuous Fixed Point Theorem 4B.1 su�ces for most of the ap-
plications of recursion theory to computer science, but its extension to
monotone mappings is needed in some crucial places|and, in any case,
it is indispensable for the development and applications of abstract recur-
sion theory. Note that its proof is essentially that of 4B.1, with de�nition
by ordinal recursion and proof by induction on the ordinals replacing the
corresponding notions for the natural numbers.

4B.6. Theorem (The Fixed Point Theorem). (1) For each monotone

mapping f : D → D on a complete poset, there is a unique sequence

{x� | � < �} indexed by the ordinals below some �, so that the following

hold.

(a) � < � < �=⇒x� < x�.
(b) � < �=⇒x� = f(sup {x� | � < �}).
(c) The point x =sup {x� | � < �} is a �xed point of f , f(x) = x.
(d) For every y ∈ D, f(y) ≤ y=⇒x ≤ y.

In particular, every monotone mapping f : D → D on a complete poset

has a least �xed point �x(f) = x = (�x ∈ D)[x = f(x)] which is uniquely

determined by the conditions

x = f(x);
f(y) ≤ y =⇒ x ≤ y:

(2) If D is complete and f : D× Y → D is monotone, then the function

x(y) = (�x ∈ D)[x = f(x; y)]

is also monotone.

Proof. (1) By recursion on the ordinals, set �rst

x� =

{
f(sup {x� | � < �}); if the set {x� | � < �} is a chain;

⊥; otherwise;

and then prove by trans�nite recursion on � that

� < �=⇒x� ≤ x�;
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116 4. Least fixed points

so that, in particular, the second case in the de�nition never comes up and
for all ordinals �,

x� = f(sup {x� | � < �}):
Now, it cannot be the case that for all �,

sup {x� | � < �} < x�;

because then the operation � 7→ x� would map the (proper) class of ordinals
one-to-one into the set D, which is absurd. So there is a least

� =df ||f ||;(4-15)

for which

f(sup {x� | � < �}) = x� =sup {x� | � < �};(4-16)

which proves (a) { (c) of the theorem. The strong minimality of x is proved
exactly as in the continuous case, using trans�nite induction instead of
induction on the natural numbers, and the fact that (a) { (c) characterize
the sequence {x� | � < �} is also easy, by another trans�nite induction.
Proof of (2) is similar to the proof of (2) in 4B.1, replacing again the

ordinary induction on N by a simple trans�nite induction and appealing to
(the easier part) of 4A.31. a
The closure ordinal ||f || of f de�ned in (4-15) is an important in-

variant associated with the recursive equation x = f(x), a measure of its
complexity.
Sometimes we can establish properties of �x(f) directly from its charac-

terization as the least solution of x = f(x), as we did in the proof of 1.9,
while in other cases we must analyze the iterates of f which de�ne it, e.g.,
in the proof of Part (2) of 4B.1. Somewhere in-between these two methods
are proofs by the following principle.

4B.7. Proposition (Scott induction). A property P ⊆ D of points in

a complete poset D is continuous if for every chain X ⊆ D,

(∀x ∈ X)P (x)=⇒P (sup X);

so in particular P (⊥). If P is continuous and f : D → D is monotone,

then

(∀x)[P (x)=⇒P (f(x))]=⇒P (�x(f)):

Proof. In the notation of the Fixed Point Theorem 4B.6, check by
trans�nite induction that for each ordinal �, P (x�). (If f is continuous we
only need ordinary induction on N for this argument.) a

4B.8. Dumb search. In Example 3 of the Introduction, we showed
directly that for each A ⊆ N, the partial function

q(m) = (�n ≥ m)[n ∈ A](4-17)
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4B. The Fixed Point Theorem 117

is the least solution of the recursive equation

p(m) = if m ∈ A then m else p(m+ 1):(4-18)

For another proof of this, verify (easily) that the property

P (p) ⇐⇒df (∀m)[p(m)↓ =⇒ p(m) = (�n ≥ m)[n ∈ A]]

is continuous on (N * N), and

P (p)=⇒P (�(m)[if m ∈ A then m else p(m+ 1)]):

This gives immediately by Scott Induction that if p is the least solution
of (4-18), then

p(m)↓ =⇒ p(m) = (�n ≥ m)[n ∈ A];

and then we can �nish o� the proof by observing, as we did in 1.9, that
the q de�ned in (4-17) satis�es (1-15), and so p = q. Notice that this proof
is \backwards" from what we did in 1.9: here we know that (4-18) has a
least solution and we only need to identify it with q, while in 1.9 we started
with the obvious solution and then proved that it is least.

Proofs by Scott Induction are often very elegant, but it is a rare case when
the relevant continuous properties can be discovered without the kind of
detailed analysis of iterates or computations illustrated by the proofs of 1.9
or 4B.1.

Some of the problems of this section ask for the solution of a recursive
equation, not a precisely de�ned term. This should be understood as similar
demands to solve or to simplify are understood in High School algebra: one
is expected to describe the solution in explicit terms which give a better
understanding of it than its identi�cation as \the least solution of the given
equation." The correct answer to solve the recursive equation

p(n) = if (n = 0) then 0 else p(n− 1) + 1 (n ∈ N);

in (N * N) is p(n) = n.

Problems for Section 4B

x4B.1. A mapping f : D → D is expansive if for each x ∈ D, x ≤ f(x).
Give an example of a mapping f : D → D which is monotone but not
expansive and another one which is expansive but not monotone.

x4B.2. (The Fixed Point Theorem for expansive mappings.) Prove that
if f : D → D is expansive and D is complete, then the recursive equation
x = f(x) has a solution in D; give an example where there is no least
solution.
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118 4. Least fixed points

x4B.3. Suppose D is complete, f : D → D is monotone and let

E = {x ∈ D | x ≤ f(x) & (∀y)[f(y) ≤ y=⇒x ≤ y]}:
Show that E is complete, f [E] ⊆ E, f is expansive on E, and there is only
one solution x of x = f(x) on E, which is the least solution of x = f(x)
on D. (This gives an alternative proof of the Fixed Point Theorem 4B.6,
as a Corollary of the corresponding result for expansive mappings, Prob-
lem x4B.2.)

x4B.4. Show that for each monotone mapping f : D → D on a complete
poset D, (�x)[x = f(x)] = (�x)[x = f(f(x))].

x4B.5. Suppose f; g : D → D are continuous on the complete poset D,
f(⊥) = g(⊥) and f commutes with g, i.e., for all x, f(g(x)) = g(f(x)).
Prove that �x(f) = �x(g). Hint: Show by induction on n, that xnf = xng .

∗x4B.6. (G. Whitney.) Show that the hypothesis of continuity is neces-
sary in the preceding Problem x4B.5.

∗x4B.7. (Plotkin ?[?].) Suppose f; g : D → D are continuous on the
complete poset D and such that

f(⊥) = g(⊥); gf = f (2)g;

i.e., for all x, g(f(x)) = f(f(g(x))). Show that �x(f) = �x(g). Hint:

Set f(⊥) = g(⊥) = a and show that with a suitable, recursively de�ned
(exponential) function h : N → N and all n ≥ 1,

xng = f (h(n))(a) = x
h(n)+1
f :

(There is also a proof by Scott Induction, but it is not much simpler.)

∗x4B.8. (G. Whitney.) Show that the continuity hypothesis is necessary
in the preceding Problem ∗x4B.6.

x4B.9. Suppose p(t; k) = pk(t) where each pk is the least solution of the
recursive equation

p(t) = if t > k then 1
else if t =∈ A then 0
else p(2t+ 1) · p(2t+ 2);

t; k ∈ N, and A ⊆ N is a set of integers. Prove that p is a total function
with values in {0; 1}, and

p(0; k) = 1 ⇐⇒ (∀t ≤ k)[t ∈ A]:

x4B.10. Solve the recursive equation

p(i) = if (i = 0) then 1 else min (p(i− 1); r(i− 1));

where r : N * N; p : N * N.
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4B. The Fixed Point Theorem 119

x4B.11. Solve the recursive equation

p(m) = if (r(m) = tt) then m else p(m+ 1);

where r : N → B⊥, and if pr is the solution for each r, let p(m; r) = pr(m).
Prove that p(m; r) is continuous, and that

p(m; r)↓ =⇒ (∃r∗ ≤ r)[p(m; r∗)↓ & |r∗| = 1 + p(m; r)−m]:

x4B.12. Solve the recursive equation11

R(u) = if Symbol(u) then u

else R(tail(u)) ; 〈head(u); t〉 (u ∈ Streams(A))

and prove that the solution is continuous. For what pairs of streams does
the equation R(u ; v) = R(v) ;R(u) hold?

x4B.13. For each set L, de�ne a continuous mapping

stmax : L∗ × (L× L * B⊥) → L

with the following two properties, for each sequence u with |u| = n > 0:
1. If r is a total function and ≤r= {(x; y) | r(x; y) = tt} is a total ordering

of L, then

stmax(u; r) = max{u0; : : : ; un−1}:
2. If stmax(u; r)↓ , then there exists some �nite r∗ ≤ r, such that

stmax(u; r∗)↓ and |r∗| ≤ |u| − 1:

x4B.14. In the notation of 4B.3, prove that there is a continuous func-
tional msort(u; r), such that when r is the characteristic function of a to-
tal ordering ≤r, then msort(u; r) = sort(u) for that ordering; and when
msort(u; r) = v, then msort(u; r∗) = v, for some r∗ ≤ r of size no more
than |u| log2 2|u|.

x4B.15. Tail recursion. Suppose C ⊆ S and � : S → S, o : S → B
are functions, where S, B are arbitrary sets, and let p : S * B be the least
solution of the equation

p(s) = if s ∈ C then o(s) else p(�(s)):(4-19)

Prove that

p(s) = o(� (n(s))(s));
where

� (0)(s) = s; � (n+1)(s) = �(� (n)(s))

11Here, for any u ∈ Streams(A),

Symbol(u) ⇐⇒ lh(u) = 2 & (u)1 = t (u ∈ Streams(A);

so that Symbol(u) holds when u = (a; t) for some a ∈ A.
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120 4. Least fixed points

� : 1 0 1 1 0 0 0 · · ·
u : u0 u1 t
v : v0 v1 v2 · · ·

�[u; v] : v0 u0 v1 v2 u1 v2 v3 · · ·

Figure 1. Action of binary merger on streams.

denotes function iteration and

n(s) = (�n ∈ N)� (n)(s) ∈ C:

Equation (4-19) is called a tail recursion, because the \unknown" func-
tion p occurs just once on the right, at the tail end. Which of the recursive
equations in the Introduction were tail recursions?

In the next problem we consider a di�erent kind of merging of streams,
which does not depend on a given ordering but on a separately givenmerger.

x4B.16. A (binary, strict) merger is any in�nite sequence � of 0's and
1's, and it is fair if it contains in�nitely many 0's and in�nitely many 1's.
Figure 1 illustrates the action �[u; v] of a merger � on two streams u and
v, which is de�ned precisely by the recursion:

�[u; v] = if (head(�) = 0) then(4-20)

if Symbol(u) then head(u) a v

else head(u) a tail(�)[tail(u); v]
else if (head(�) = 1) then

if Symbol(v) then head(v)au

else head(v) a tail(�)[u; tail(v)]:

(1) Show that the map

(�; u; v) 7→ �[u; v] : Streams({0; 1})× Streams(A)2 → Streams(A)

de�ned by the recursion (4-20) is continuous.
(2) Show that if � is a fair merger and both u and v are in�nite, then

�[u; v] is a fair merge of u and v in the following precise sense: there
exist disjoint, in�nite sets N0, N1 such that N0 ∪ N1 = N and bijections
�0 : N0�→N, �1 : N1�→N such that

�[u; v](i) = if i ∈ N0 then u(�0(i)) else v(�1(i)):

(3) Formulate and prove a similar characterization of �[u; v] when � is a
fair merger and each of u and v is either convergent or in�nite.
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4C. Mutual recursion and the where construct 121

x4B.17. Solve the recursive equation

p(n; u; v) = if (head(u) = n) then na p(n+ 1; v; v)
else p(n; tail(u); v);

where n ∈ N and u; v vary over natural number streams, and in particular
compute p(0; u; u).

x4B.18. Fix a poset (A;≤) and solve the recursive equation

w(t) = if (∀s < t)[w(s) = tt] then tt else �:

(This is a discontinuous equation and a bit of set theory is required to solve
it.)

4C. Mutual recursion and the where construct

For each family {Di | i ∈ I} of complete posets and monotone mappings
fi :

∏
j∈I Dj → Di; the system of mutual recursive equations

xi = fi(x) (i ∈ I)(4-21)

has least solutions
xi = x�i ;

where the simultaneous iterates of the system are de�ned by the (mutual)
trans�nite recursion

x�i = fi(�(j ∈ I) sup�<� x
�
j ) (i ∈ I);

and � is least such that

x�i =sup {x�i | � < �}) (i ∈ I):

This is seen by applying the Fixed Point Theorem 4B.6 to f : D → D,
where D =

∏
i∈I Di and f has components fi, i.e., f(x) = �(i ∈ I)fi(x). If

the system is �nite and each fi is continuous, then we need only apply the
simpler 4B.1 and the iteration formulas take the form

x0
i =df fi(⊥; : : : ;⊥);

xn+1
i =df fi(xn1 ; : : : ; x

n
k )

xi =df limn x
n
i :

}

The next simple but fundamental result reduces mutual to iterated re-

cursion by justifying the solution of a system one equation at a time.

4C.1. Theorem (The Beki�c-Scott Lemma). Consider the system of

two recursive equations

x = f(x; y)
y = g(x; y)

}
(4-22)
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122 4. Least fixed points

where f : D × E → D, g : D × E → E are monotone and the posets D;E
are complete, and set

ŷ(x) = (�y ∈ E)[y = g(x; y)];(4-23)

x = (�x ∈ D)[x = f(x; ŷ(x))];(4-24)

= (�x ∈ D)[x = f(x; (�y ∈ E)[y = g(x; y)])];

y = ŷ(x);(4-25)

the points x; y then are the mutual, least solutions of the system (4-22).

Proof. First, x; y are solutions of the given system, since

f(x; y) = f(x; ŷ(x)) = x; g(x; y) = g(x; ŷ(x)) = ŷ(x);= y:

To prove that they are the least solutions, suppose that

f(u; v) ≤ u; g(u; v) ≤ v:

From the �rst of these and the minimality of ŷ in (4-23) we get ŷ(u) ≤ v, so
that f(u; ŷ(u)) ≤ f(u; v) ≤ u; and then the minimality of x by (4-24) gives
x ≤ u, the �rst of the inequalities we want to prove. The second follows
from it, the de�nition of y and ŷ(u) ≤ v again,

y = ŷ(x) ≤ ŷ(u) ≤ v: a

4C.2. Exercise. Suppose x1; : : : ; xn are the least, mutual solutions of
the system

xi = fi(x1; : : : ; xn) (i = 1; : : : ; n)

where each Di is complete and each fi : D1 × · · · ×Dn → Di is monotone,
let

x̂1 : D2 × · · · ×Dn → D1

be the solution of

x1 = f1(x1; : : : ; xn);

and let x̂2; : : : ; x̂n be the solutions of the system

xi = fi(x̂1(x2; : : : ; xn); x2; : : : ; xn) (i = 2; : : : ; n):

Prove that xi = x̂i for i = 2; : : : ; n and x1 = x̂1(x̂2; : : : ; x̂n).

In order to be able to express more easily and to use identities like (4-25),
we introduce now a simple notation for mutual recursion.

4C.3. De�nition (The where construct). For any posetX, complete
posets W;D1; : : : ; Dn and monotone mappings

h : X ×D1 × · · · ×Dn →W;

fi : X ×D1 × · · · ×Dn → Di (i = 1; : : : ; n);
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4C. Mutual recursion and the where construct 123

we set

(4-26) h(x; ~d) where {d1 = f1(x; ~d); : : : ; dk = fk(x; ~d)}
=df h(x; d1;x; : : : ; dk;x);

where, for each x ∈ X, d1;x; : : : ; dk;x are the mutual, least �xed points of
the system of equations

d1 = f1(x; d1; : : : ; dk)
d2 = f2(x; d1; : : : ; dk)

...

dn = fn(x; d1; : : : ; dk):

This is one of several notations for mutual recursion used in programming
languages. Two of the most popular variants of are

h(x; ~d) with {d1 = f1(x; ~d); : : : ; dk = fk(x; ~d)}

which simply uses \with" instead of \where", and

letrec {d1 = f1(x; ~d); : : : ; yk = fk(x; ~d)} in h(x; ~d)

which puts the head of the recursive de�nition at the end.

The Beki�c-Scott Lemma takes a simple, very general and useful form in
this notation:

4C.4. Theorem (The Beki�c-Scott Rule). If f0; : : : ; fk, g0; : : : ; gl are
all monotone on complete posets, then

f0(r; ~p) where {r = g0(r; ~p; ~q) where {q1 = g1(r; ~p; ~q); : : : ; ql = gl(r; ~p; ~q)}
p1 = f1(r; ~p); : : : ; pk = fk(r; ~p)}

= f0(r; ~p) where {r = g0(r; ~p; ~q); q1 = g1(r; ~p; ~q); : : : ; ql = gl(r; ~p; ~q)

p1 = f1(r; ~p); : : : ; pk = fk(r; ~p)}:

Proof. For l = 1, k = 0 and f0(r; ~p) = r the claimed identity becomes

r where {r = g0(r; q) where {q = g1(r; q)}}
= r where {r = g0(r; q); q = g1(r; q)};

which is exactly the Beki�c-Scott Lemma 4C.1 (with r; q; g0; g1 in place of
x; y; f; g). The proof of the general case is similar and we'll leave it for
Problem x4C.1. a
We used the letters p; q; r in this theorem to agree with the common

choice of variables over function posets, in which these results have their
most useful applications. For example, directly from the de�nitions:
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124 4. Least fixed points

4C.5. Exercise. Let M = (M;f1; : : : ; fL) be a partial algebra. Show
that a functional �(~x; p) on M is M-recursive if it can be de�ned in the
form

(4-27) �(~x; p) = �0(~x; p; ~q)

where {q1 = �(~u1)�1(~u1; ~x; p; ~q); : : : ; qk = �(~uk)�k(~u1; ~x; p; ~q)};

where �0; : : : ; �k are M-explicit functionals.

Next we collect some simple but useful identities satis�ed by the where
operator.

4C.6. Theorem (Identities for where). With all functions monotone

from posets into complete posets:

(1) The head rule:(
f0(~p; ~q) where {p1 = f1(~p; ~q); : : : ; pk = fk(~p; ~q)}

)
where {q1 = g1(~q); : : : ; ql = gl(~q)}

= f0(~p; ~q)

where {p1 = f1(~p; ~q); : : : ; pk = fk(~p; ~q); q1 = g1(~q); : : : ; ql = gl(~q)}

(2) The recap rules (reducing application to recursion):

f(g(x)) = f(y) where {y = g(x)};
f(g(x) where {x = h(x)}) = f(g(x)) where {x = h(x)}

= f(y) where {y = g(x); x = h(x)}:

(3) The �-rule (permuting the � and the where operators): If x varies

over a poset X and for i = 0; : : : ; k, pi varies over a complete poset Di,

then

�(x)
[
f0(x; ~p) where {p1 = f1(x; ~p); : : : ; pk = fk(x; ~p)}

]
= f ′0(x;~r) where {r1 = f ′1(x;~r); : : : ; rk = f ′k(x;~r)};

where each ri varies over the poset Mon(X → Di) and

f ′i(x;~r) = �(x)fi(x; r1(x); : : : ; rk(x)) (i = 0; : : : ; k):

Proof. We show only (3), and leave the similar arguments for (1) and
(2) for the problems.

For each x, let p1;x; : : : ; pk;x be the solutions of the system LHS within
the braces {: : : } on the left-hand-side of the identity to be shown, and
let r1; : : : ; rk be the solutions of the corresponding system RHS on the
right-hand-side.
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4C. Mutual recursion and the where construct 125

(a) For i = 1; : : : ; k, �(x)pi;x v ri. It is enough to show that for each x,
the tuple

r1(x); : : : ; rk(x)

satis�es the equations of the system LHS, because then pi;x v ri(x), for
each x, and hence �(x)pi;x v ri; and for this, we compute:

ri(x) = f ′i(x; r1; : : : ; rk)(x)

=
(
�(x)fi(x; r1(x); : : : ; rk(x))

)
(x) = fi(x; r1(x); : : : ; rk(x)):

(b) For i = 1; : : : ; k, ri v �(x)pi;x. It is enough to show that the tuple

�(x)p1;x; : : : ; �(x)pk;x

satis�es the equations of the system RHS, because then ri v �(x)pi;x; and
for this we compute,

�(x)pi;x = �(x)fi(x; p1;x; : : : ; pk;x)

= �(x)fi(x;
(
�(x)p1;x

)
(x); : : : ;

(
�(x)pk;x

)
(x))

= f ′i(x;
(
�(x)p1;x

)
(x); : : : ;

(
�(x)pk;x

)
(x)):

Now (a) and (b) imply that ri(x) = pi;x for all x and i = 1; : : : ; k, and
hence

value of LHS = �(x)f0(x; p1;x; : : : ; pk;x)

= �(x)f0(x; r1(x); : : : ; rk(x))

= f ′0(x; r1; : : : ; rk) = value of RHS;

which completes the proof. a
As an example of how these rules can be used, we give a direct proof of

the First Recursion Theorem 3B.7 for partial algebras.

4C.7. Proposition. (1) Suppose that X is a poset, W is a complete

poset, � : X ×Mon(X →W ) →W; and

�(x; p) = �0(x; p; ~q) where {q1 = �1(x; p; ~q); : : : ; qk = �k(x; p; ~q)};

where �0; : : : ; �k are all monotone and take values in complete posets; then,

abbreviating ~r(x) = (r1(x); : : : ; rk(x)),

p(x) where {p = �(x)�(x; p)}
= p(x) where {p = �(x)�0(x; p; ~r(x));

r1 = �(x)�1(x; p; ~r(x)); : : : ; rk = �(x)�k(x; p; ~r(x))}:

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 125



126 4. Least fixed points

(2) (The First Recursion Theorem for a partial algebra M.) If �(~x; p) is
M-recursive and operative, then its least �xed point

p(~x) = p(~x) where {p(~x) = �(~x; p)}
is M-recursive.

Proof. (1) By the �-rule (3) of Theorem 4C.6,

�(x)�(x; p)

= �(x)�0(x; p; ~r(x))

where {r1 = �(x)�1(x; p; ~r(x)); : : : ; rk = �(x)�k(x; p; ~r(x))};
and so,

p(x) where {p = �(x)�(x; p)}
= p(x) where {p = �(x)�0(x; p; ~r(x));

where {r1 = �(x)�1(x; p; ~r(x)); : : : ; rk = �(x)�k(x; p; ~r(x))}};
from which the claimed equation follows by the Beki�c-Scott rule, Theo-
rem 4C.4.

(2) follows immediately from (1) and Exercise 4C.5, taking X = Mn and
W = MB. a

Problems for Section 4C

In the problems, all functions are assumed to be monotone, with ar-
guments on various posets and values in complete posets, so that the
exhibited equations make sense. We also use \vector notation" for n-
part mutual recursion, i.e., ~x = (x1: : : : ; xn) stands for an n-tuple and
~f(~x) =

(
f1(~x); : : : ; fn(~x

)
:

h(~x) where {~x = ~f(~x)} =df h(~x) where {x1 = f1(~x); : : : ; xn = fn(~x)}:
x4C.1. Prove the Beki�c-Scott Rule, Theorem 4C.4.

x4C.2. Prove the head rule, (1) of Theorem 4C.6.

x4C.3. Prove the recap rules, (2) of Theorem 4C.6.

x4C.4. Show that

h(y; ~x) where {y = y; ~x = ~f(y; ~x)} = h(⊥; ~x) where {~x = ~f(⊥; ~x)}:
x4C.5. Show that

h(y; z; ~x) where {z = y; y = g(y; z; ~x); ~x = ~f(y; z; ~x)}

= h(y; y; ~x) where {y = g(y; y; ~x); ~x = ~f(y; y; ~x)}:
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4C. Mutual recursion and the where construct 127

x4C.6. Show that

h(x; y) where {x = f(x; y); y = f(x; y)} = h(x; x) where {x = f(x; x)}:

x4C.7. Show the following general formula which reduces mutual recur-
sion with n+ 1 parts to n-part recursion:

h(y; ~x) where
{
y = g(y; ~x); ~x = ~f(y; ~x)

}
=

(
h(y; ~x) where

{
~x = ~f(y; ~x)

})
where

{
y = g(y; ~x) where

{
~x = ~f(y; ~x)

}}
:

The classical de�nition of addition on the natural numbers is by recursion
on the second argument, i.e., x+ y = add(x; y) where add : N× N * N is
the least solution of

add(x; y) = if (y = 0) then x else add(x; y − 1) + 1:(4-28)

It is easy to show by induction on y that every solution of (4-28) is total.
Next one wants to know that add is commutative,

add(x; y) = add(y; x);

but this is not quite so simple as it requires a proof by \double induction."
This problem gives a di�erent proof of the commutativity of addition, which
illustrates the Beki�c-Scott Theorem and the method of proving properties
of mutual recursive solutions by analyzing the mutual iterates.

∗x4C.8. Let id, sum be the mutual solutions of the system.

id(x) = if (x = 0) then 0 else id(x− 1) + 1;
sum(x; y) = if (y = 0) then id(x) else sum(x; y − 1) + 1:

}
(4-29)

(1) Prove that sum(x; y) = add(x; y), using only the recursive de�ni-
tion (4-28) of add(x; y).
(2) If idn; sumn are the simultaneous iterates of the system (4-29), show

that each sumn is commutative, i.e., sumn(x; y) = sumn(y; x). Infer that
sum(x; y) = sum(y; x).
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CHAPTER 5

FUNCTIONAL RECURSION

In this chapter we will develop the general theory of recursion on func-
tional algebras, i.e., partial algebras of the form

M = (M;f1; : : : ; fK);(5-1)

where, however, the givens f1; : : : ; fK are monotone functionals on M ,
i.e., in general,

fi : Mni × (Mki;1 *M)× · · · × (Mki;mi *M) *M:(5-2)

As in Chapter 2, we set

arity(fi) = (ni; ki;1; : : : ; ki;mi
);

and the characteristic of the functional algebra encodes all of these,

�(M) = (arity(f1); : : : ; arity(fK)):

Fortunately, we will never need to actually put down these complex codes,
but will be content to indicate informally (or let the context indicate) the
arities of the various functionals involved and the algebra characteristic.
Since the givens of a functional structure are functionals, we will pay special
attention to the class rec1(M) of recursive functionals of M, which
includes all the M-recursive partial functions.
Functional recursion is a generalization of �rst-order recursion, and all

the basic results of Chapter 2 extend quite easily to functional structures.
More interesting here are the examples and the applications, and so we
will start with a brief description of the most important of them in Sec-
tion 5A and then use these examples to illustrate the general results in the
remaining of this Chapter.
The main result of the Chapter is the Stage Comparison Theorem 5C.4

which, among other things, implies that the disjunction of two M-semire-
cursive relations is M-semirecursive, provided that M is normal ; total
(�rst-order) algebras are normal, and so this theorem will �nally resolve
some of the basic questions we left open in Chapter 2.
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130 5. Functional recursion

5A. The basic examples

These are expansions of (�rst-order) partial algebras by some speci�c,
simple, monotone functionals which represent (in various ways) quanti�ca-
tion. Some of them are \total functionals", in the most natural extension
of the notion of \total function" to functionals:

5A.1. De�nition. A Kleene object on M is a functional f(~x; ~p) such
that

f(~x; p1; : : : ; pm)↓ ⇐⇒ p1; : : : ; pm are total functions:

Notice that a partial function f : Mn * MB is a Kleene object exactly
when it is totally de�ned, and that for every functional f(~x; ~p), its restric-
tion to total arguments is a Kleene object. Kleene objects are, obviously,
monotone, deterministic, and if M is in�nite, they are not continuous.

5A.2. The Kleene quanti�ers. The simplest (non-trivial) Kleene ob-
ject is the Kleene representation of the existential quanti�er on M ,

EM (p) =

{
tt; if p is total and (∃t ∈M)[¬̈p(t) = tt];
�; if (∀t ∈M)[¬̈p(t) = �];

(5-3)

where the partial function ¬̈(s) is de�ned in (3-9) and associates with every
total function p : Mn →M the characteristic function of the relation

p(~x) ⇐⇒ p(~x) = tt:

5A.3. The search functional. This was de�ned in (3-45), which we
repeat here for easy reference:

E
1
2
M (p) =

{
tt; if (∃t ∈M)[p(t) = tt];
⊥; otherwise:

(5-4)

It is called the search functional or half existential quanti�er over
M , and it is evidently continuous but not deterministic. Recursion in the

expansion (M; E
1
2
M ) of a partial algebraM is generally referred-to as search

recursion or search computability on M, depending on whether M is
arbitrary or admits a recursive pair, as we will make this precise.
Search computability is essentially a �rst-order kind of computability,

and it has many of the properties of Turing computability on N which do
not hold in general for prime recursion. It was introduced and studied in the
period 1950 - 1975 in many di�erent ways by various logicians (including
Fraisse, Lacombe, Moschovakis and Friedman) and the most basic results
about it concern the (basic) equivalence of these diverse de�nitions.
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5A. The basic examples 131

5A.4. The non-deterministic connectives. With p; q varying over
M⊥, i.e., the nullary partial functions on M , we set

p ∨ q =

{
tt; if ¬̈p = tt or ¬̈q = tt;

�; if ¬̈p = � and ¬̈q = �;
(5-5)

p & q = ¬̇(¬̇p ∨ ¬̇q) =

{
tt; if ¬̈p = tt and ¬̈q = tt;

�; if ¬̈p = � or ¬̈q = �:
(5-6)

5A.5. Quanti�ers. An n-ary, monotone quanti�er on a set M is
any non-trivial, monotone collection of subsets of Mn,

∅ ( Q ( P(Mn); [X ∈ Q & X ⊆ Y ]=⇒Y ∈ Q:

For any relation R(~x; ~y) on M we write

(Q~x)R(~x; ~y) ⇐⇒ {~x | R(~x; ~y)} ∈ Q;

and we de�ne the dual quanti�er of Q by

^

Q = {X ⊆Mn |Mn \X =∈ Q}

so that
^

Q(~x; ~y) ⇐⇒ ¬(Q~x)¬R(~x; ~y):

The dual of a monotone quanti�er is (easily) also monotone, Problem x5A.2.
The standard examples from logic are the unary

∃ = {X ⊆M | X 6= ∅}; ∀ =
^

∃ = {M};

and the cardinality quanti�ers, one for each cardinal �,

(Q�x)R(x; ~y) ⇐⇒ |{x | R(x; ~y)}| ≥ �:

Many more quanti�ers arise naturally in de�nability theory, e.g., the binary
well-foundedness quanti�er,

(WFx; y)R(x; y) ⇐⇒ (∀f : N →M)(∃n)R(f(n); f(n+ 1))(5-7)

⇐⇒ the negation ¬R is well founded;

and its dual

(
^

WFx; y)R(x; y) ⇐⇒ (∃f : N →M)(∀n)R(f(n); f(n+ 1))(5-8)

⇐⇒ there is an in�nite descending chain in R:

With each n-ary quanti�er we will associate three monotone functionals
which represent it in various ways.

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 131



132 5. Functional recursion

First, there is the half -Q functional, which we have already introduced
for Q = ∃:

Q
1
2 (p) =

{
tt; if (Q~x)[¬̈p(~x) = tt];
⊥; otherwise:

(5-9)

The half-
^

Q functional for the dual quanti�er is de�ned in the same way,
and then we put these two together in the sharp functional for Q:

Q#(p) =


tt; if (Q~x)[¬̈p(~x) = tt];

�; if (
^

Q~x)[¬̈p(~x) = �];
⊥; otherwise:

(5-10)

For the existential quanti�er then, the sharp functional representing it is

E#
M (p), de�ned in (3-13).
The Kleene object associated with a quanti�er Q is the restriction of Q#

to total functions:

Q(p) =

{
Q#(p); if p : Mn →M is total;

⊥; otherwise:
(5-11)

This is de�ned in (5-3) for the existential quanti�er.
Notice that for total p with values in {�; tt},

(Q~x)[p(~x) = tt] ⇐⇒ Q#(p) = tt ⇐⇒ Q(p) = tt;

(
^

Q~x)[p(~x) = tt] ⇐⇒ Q#(¬̇p) = � ⇐⇒ Q(¬̇p) = �;

where we have used the natural abbreviation

¬̇p = �(~x)[¬̇p(~x)];

skipping the obvious �-abstraction operation.12

The main di�erence between the two main functionals associated with
Q is that Q# is typically non-deterministic while the Kleene object Q is
always deterministic, and this makes, in general, recursion in the �rst very
di�erent from recursion in the second.

Problems for Section 5A

x5A.1. Prove the identity of the two expressions for p & q given in (5-6).

x5A.2. Show that the dual
^

Q of a monotone quanti�er is a monotone
quanti�er.

12Much as we write f + g for the function �(x)[f(x) + g(x)].

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 132



5B. Explicit and recursive functionals 133

x5A.3. Compute (
^

QNx)R(x) for Q = Q! on N.

x5A.4. Prove that for every monotone quanti�er Q, if p : Mn → M is
a total function, then Q#(p)↓ .

x5A.5. Find all the n-ary quanti�ers Q on a set M such that Q#(p) is
a deterministic functional.

x5A.6. Prove that for all p; q ∈M⊥,

p ∨ q = E#(�(s)[if (s = 0) then ¬̈p else ¬̈q]):

5B. Explicit and recursive functionals

Recall from Section 2A that (recursively)

(Mn+1 *MB) = (M * (Mn *MB));

so that if p : Mn+1 * MB and x ∈ M , then p(x) : Mn * MB. This
convention works especially well with the operation of �-abstraction: if,
e.g., p : M3 *MB, then for any z,

�(x)�(y)p(y; z; x) = �(x; y)p(y; z; x) : M2 *MB

and �(x)�(y)p(y; z; x)
(
a; b

)
= p(b; z; a):

5B.1. The formal language R(�) for functional structures. To
avoid cumbersome notations, we will assume for the basic de�nitions that
the given vocabulary is of the form

� = 〈f1; : : : ; fK ;F〉;

where f1; : : : ; fK are constants denoting partial functions and F names a
functional F (x; p) with one individual and one binary partial function ar-
gument. The terms of R(�) for such a vocabulary are then de�ned by

(5-12) A :≡ � | tt | vi | æni (A1; : : : ; An) | fi(A1; : : : ; Ani)

| F(A1; �(vi)�(vj)B) | (if A1 then A2 else A3)

where the individual variables vi; vj are distinct in the new case which
applies F. All the basic facts about terms (e.g., unique readability) are
established as usual, and there is only one additional complication: some
of the occurrences of individual variables in terms are now bound by the
�-operator. These are speci�ed by a simple recursion on the terms.
A valuation of the variables into a setM is any (total) function � which

assigns to each vi some �(vi) ∈ M , and to each n-ary æni some partial
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134 5. Functional recursion

function �(æni ) : Mn * MB. The denotation den(A; �) of each term in a
functional algebra

M = (M;f1; : : : ; fK ; F )

is de�ned by adding just one clause for F to the de�nition for partial
algebras, which we repeat for easy reference:

den(�; �) = �; den(tt; �) = tt; den(vi; �) = �(vi)
den(fi(A1; : : : ; Ani); �) = fi(den(A1; �); : : : ; den(Ani ; �))
den(æni (A1; : : : ; An); �) = �(æni )(den(A; �); : : : ; den(An; �))

den(F(A1; �(vi)�(vj)B); �)

= F (den(A1; �); �(x)�(y)den(B; �{vi := x; vj := y}))

den(if A1 then A2 else A3; �)

=


den(A2; �); if den(A1; �) = tt;

den(A3; �); if den(A1; �)↓ &6= tt;

⊥; otherwise, i.e., if den(A1; �)↑:

A functional f(~x; ~p) on M is M-explicit if there is a term A whose free

variables are all in a �xed list ~x;~æ, such that for all ~x ∈ Mn and partial
functions ~p of matching arities,

f(~x; ~p) = den(A; {~v := ~x;~æ := ~p}):

The class of M-explicit functionals can be characterized exactly as for
the case of partial algebras in Proposition 3A.6, with the addition of closure
under �-substitution into the givens:

5B.2. De�nition. A set F of functionals on the universe M of a func-
tional algebra M is explicitly closed (over M) if it satis�es conditions
(1) { (4) of De�nition 3A.3 and also

(5) F is closed under �-substitution into the givens, i.e., the de�nition
scheme

f(y; ~x; ~p) = F (y; �(s)�(t)h(s; t; ~x; ~p));(5-13)

if F (x; p) is the only given, with p binary.

5B.3. Proposition. Let M be a functional algebra.

(1) The set exp1(M) of M-explicit functionals is the smallest set of

functionals on M which is explicitly closed over M.

(2) Every M-explicit functional is monotone.

(3) If every given of M is deterministic, then everyM-explicit functional

is deterministic.
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5B. Explicit and recursive functionals 135

Proof of (1) is exactly like that of Proposition 3A.6, with an additional,
simple argument to handle (5). (2) and (3) follow easily, by checking that
the sets of monotone and monotone deterministic functionals onM satis�es
(1) { (5). We outline brie
y the proof of (3) for monotone deterministic
functionals, in a notationally simple case.

Lemma. If g(~x; r; q) and h(t; ~y; p) are monotone and deterministic func-

tionals and

f(~x; ~y; p; q) = g(~x; �(t)h(t; ~y; p); q);

then f(~x; ~y; p; q) is deterministic.

Fix ~x; ~y; p; q and suppose that

f(~x; ~y; p; q) = g(~x; �(t)h(t; ~y; p); q) = w:

By the determinism of g, there are v-least partial functions r; q̂ such that

r v �(t)h(t; ~y; p); q̂ v q; and g(~x; r; q̂) = w;

and by the determinism of h, for each t for which r(t)↓ , there is a least pt
such that

pt v p and r(t) = h(t; ~y; pt);

it follows that

p̂ =
⋃
{pt | r(t)↓} v p:

Claim 1. f(~x; ~y; p̂; q̂) = w. This is because

if r(t)↓ ; then r(t) = h(t; ~y; pt) = h(t; ~y; p̂)

by monotonicity, which means that

r v �(t)h(t; ~y; p̂);

and since also g(~x; r; q̂) = w, by monotonicity again,

w = g(~x; r; q̂) = g(~x; �(t)h(t; ~y; p̂); q̂):

Claim 2. If p′ v p, q′ v q and f(~x; ~y; p′; q′) = w, then p̂ v p′ and
q̂ v q′. This is because (with the notation set above), the hypothesis
g(~x; �(t)h(t; ~y; p′); q′) = w gives

r v �(t)h(t; ~x; p′); q̂ v q′;

and the second of these inequalities is one of the facts we needed to verify.
For the other we appeal to the �rst inequality: for each t, if r(t)↓ , then
h(t; ~x; p′) = r(t), and so pt v p′, and so

p̂ =
⋃
{pt | r(t)↓} v p′;

as required. a
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136 5. Functional recursion

Finally, the closure of exp(M) under full �-substitution is also proved
like the corresponding Proposition 3A.11, with just one additional, simple
case to handle �-substitution into the givens:

5B.4. Proposition. The set exp(M) is closed under the following scheme

of �-substitution:

f(~x; ~y; ~p; ~q) = h(~x; �(~t)h(~t; ~y; ~p); ~q):(5-14)

We leave the proof for Problem x5B.1.

5B.5. De�nition. A (monotone) operator onM is any monotone map-
ping

� : (Mki;1 *M)× · · · × (Mki;mi *M) → (Mn *M);(5-15)

and the associated functional of � is de�ned by evaluation,

�∗(~x; ~p) = �(~p)(~x):(5-16)

Conversely, for each functional f(~x; ~p), we can de�ne by �-abstraction the
associated operator

�f (~p) = �(~x)f(~x; ~p);(5-17)

so that �∗f = f . It is useful to view operators of this form as just an-
other way of considering M -functionals, which in some cases simpli�es the
notation.
The target space of � is (Mn * M) in (5-15), including the case

(M0 *M) = M ∪ {⊥} when n = 0.

The M-recursive partial functions are the least solutions of systems of
recursive equations with M-explicit parts, and we can de�ne them exactly
as we did for partial algebras in Proposition 3A.2. We will, however, take
advantage of the where construct introduced in Section 4C, which makes
it possible to de�ne directly the M-recursive functionals and to establish
very easily their basic properties.

5B.6. De�nition (M-recursion). A functional f(~x; ~p) is recursive in
a functional algebra M, if

(5-18) f(~x; ~p) = �0(~x; ~p; q1; : : : ; qm)

where {q1 = �1(~x; ~p; q1; : : : ; qm); : : : ; qm = �m(~x; ~p; q1; : : : ; qm)}
where �0 is anM-explicit functional, �1; : : : ; �m areM-explicit operators,
and each function variable qi varies over the target space of �i (so that
the de�nition makes sense). Unless the detail is needed, we will typically
write (5-18) in vector form,

f(~x; ~p) = �0(~x; ~p; ~q) where {~q = ~�(~x; ~p; ~q)}:(5-19)
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5B. Explicit and recursive functionals 137

As with partial algebras, rec1(M) is the collection of M-recursive func-
tionals.
A functional �(~x; ~p) is a simple �xed point of M if it is the least

(uniform in ~p) �xed point of an M-explicit operator, i.e.,

f(~x; ~p) = q(~x) where {q = �1(~p; q)};(5-20)

for partial functions this means simply that f(~x) is the least solution of the
recursive equation

q(~x) = �∗1(~x; q);

with an M-explicit functional �∗1|the functional associated with the op-
erator �1.
We say that f is recursive in g1; : : : ; gm over M if f is recursive in

the expansion (M; g1; : : : ; gm), and we skip the reference to M if the claim
holds for all functional algebras on the set M .

Distinguished points are de�ned for functional algebras as for partial al-
gebras by De�nition x5B.1, and the natural extension of Proposition 3A.15
is established by exactly the same proof:

5B.7. Proposition. If a functional algebra M has two distinguished

points 0; 1, then a functional f(~x; ~p) on M is M-recursive if and only if

there is a simple �xed point g(~u; ~x; ~p) of M such that for some k and all

~x; ~p,

f(~x; ~p) = g(~0k; ~x; ~p):

We leave for Problems x5B.6 and ∗x5B.6 the proof of this and the cor-
responding extension of Proposition 3A.17, which (in e�ect) allow us to
assume that every functional algebra has two distinguished points.

5B.8. Theorem. The set rec1(M) of recursive functionals on a func-

tional algebra M is explicitly closed, and also closed under the full �-sub-
stitution scheme (5B.4).

Proof is easy, using the rules satis�ed by the where construct. We
consider a few of the cases using small numbers of parts in the recursions
to simplify notation.

(1) The givens of M are M-recursive, because

f(~x; ~p) = f(~x; ~p) where { }:

(Or, if the empty body in a recursion o�ends you, just put in some body
which does not de�ne any of the variables in ~p.) In fact, all explicit func-
tionals are recursive by similar, \dummy" recursions.
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138 5. Functional recursion

(2) Closure under substitution, h(~x; ~y; ~p; ~q) = f(g(~x; ~p); ~y; ~q). We com-
pute:

f(g(~x; ~p); ~y; ~q) = f(a; ~y; ~q) where {a = g(~x; ~p)} (by recap, (2) of 4C.6)

= f(a; ~y; ~q) where {a = �0(~x; ~p; ~r) where {~r = ~�(~x; ~p; ~r)}}
= f(a; ~y; ~q) where {a = �0(~x; ~p; ~r); ~r = ~�(~x; ~p; ~r)};

where the last transformation is justi�ed by by the Beki�c-Scott rule, The-
orem 4C.4. Now by the hypothesis on f ,

f(a; ~y; ~q) = �0(a; ~y; ~q; ~r′) where {~r′ = ~�(a; ~q; ~r′)}

with M-explicit �0; ~�, and if we replace this expression in the last formula
and appeal to the head rule (1) of Theorem 4C.6, we get

h(~x; ~y; ~p; ~q) = �0(a; ~y; ~q; ~r′) where

{~r′ = ~�(a; ~y; ~q; ~r′); a = �0(~x; ~p; ~r); ~r = ~�(~x; ~p; ~r)}
which witnesses the fact that h(~x; ~y; ~p; ~q) is M-recursive.

(3) and (4) (closure under branching and shu�ing) are proved similarly
and we will skip them, see Problem x5B.8.
(5) Closure under �-substitution into the givens,

f(y; ~x; ~p) = F (y; �(s)�(t)h(s; t; ~x; ~p))

in the notationally simple cases we have been considering. We compute
again, using now the �-rule (3) of Theorem 4C.6, and skipping the ~x; ~p
(which do not enter the computation) after the �rst line:

f(y; ~x; ~p) = F (y; �(s)�(t)h(s; t; ~x; ~p))
= F (y; r′) where {r′ = �(s)�(t)h(s; t)}
= F (y; r′) where {r′ = �(s; t)[
0(s; t; ~q) where {~q = ~
(s; t; ~q)}]}
= F (y; r′) where {r′ = �(s; t)
0(s; t; ~r(s; t))

where {~r = �(s; t)~
(s; t; ~r(s; t))}}
= F (y; r′)

where {r′ = �(s; t)
0(s; t; ~r(s; t)); ~r = �(s; t)~
(s; t; ~r(s; t))}
If we put in again the \side terms" y; ~x; ~p, the conclusion is that

f(y; ~x; ~p) = F (y; r′)

where {r′ = �(s; t)
0(s; t; ~x; ~p; ~r(s; t)); ~r = �(s; t)~
(s; t; ~x; ~p; ~r(s; t))}
which witnesses that f(y; ~x; ~p) is M-recursive. a

5B.9. Theorem (The First Recursion Theorem). If f(~x; p; ~q) isM-

recursive where ~x = (x1; : : : ; xn) and p varies over (Mn *M), and if

g(~x; ~q) = p(~x) where {p = �(~x)f(~x; p; ~q)}
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5B. Explicit and recursive functionals 139

is the simple �xed point de�ned by f(~x; p; ~q), then g(~x; ~q) is M-recursive.

Proof. The argument for (2) of Proposition 4C.7 does not depend on
the continuity of the given functionals|only their monotonicity|and so it
gives this result too. a

5B.10. Corollary (Transitivity Theorem). For eachM-recursive func-

tional f(~x; ~p),

rec1(M; f) = rec1(M):

Proof. Every explicit functional of the expansion (M; f) is recursive in
M, by the closure properties of rec1(M), and so every simple �xed point
of the expansion is recursive in M by the Recursion Theorem; and then
every (M; f)-recursive functional is M-recursive, since it is the section of
a simple �xed point of M by Proposition 5B.7. a

Problems for Section 5B

x5B.1. Prove Proposition 5B.4.

x5B.2. Prove that E is recursive in E#.

x5B.3. Prove that the functionals p ∨ q and p & q de�ned in (5-5)
and (5-6) are recursive in E#.

x5B.4. Prove that for every set M , QM is recursive in EM ; Q#
M .

x5B.5 (open). Is QM always recursive in Q#
M?

x5B.6. Prove Proposition 5B.7.

5B.11. De�nition. SupposeM1 andM2 are functional algebras of pos-
sibly di�erent characteristics, but such that M1 ⊆ M2. We say that M2

is an inessential extension of M1, if a functional f(~x; ~p) on M1 is M1-
recursive if and only if there exists some M2-recursive functional g(~x; ~p)
such that if ~x ∈Mn

1 and pi : Mki
1 *M1 ∪ {tt;�} for i = 1; : : : ;m, then

f(~x; ~p) = g(~x; ~p):

(The equation makes sense, because if p : Mk
1 * M1 ∪ {tt;�}, then also

p : Mk
2 *M2 ∪ {tt;�}.)

∗x5B.7. Prove that every functional structure M has an inessential ex-
tension M[0; 1] with two distinguished points.

x5B.8. Prove that if g; h1; h2 are M-recursive and

f(~x; ~p) = if g(~x; ~p) then h1(~x; ~p) else h2(~x; ~p);

then f(~x; ~p) is also M-recursive.
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140 5. Functional recursion

5C. Stage comparison

We will establish here one of the basic results about functional recursion,
which makes it possible to combine in parallel (interweave) recursive de�-
nitions, and to de�ne selection operators. One of its elementary corollaries
is that in normal functional algebras (which include all total, partial alge-
bras), the class of M-semirecursive relations is closed under disjunction.

5C.1. De�nition (the stage comparison function). Suppose f(~x; p)
is a monotone, operative functional on M , and let

�f (p) = �(~x)f(~x; p)

be the associated operator. By the Fixed Point Theorem 4B.6, there is a
sequence of partial functions

{f� : Mn *MB | � ∈ Ordinals}
indexed by the ordinal numbers, such that

� ≤ �=⇒ f
� v f

�
;

and for some �, the partial function

f =
⋃

�f
�

=
⋃

�<�f
�

is the least �xed point of �f . As in De�nition 3A.19 for the continuous
case (but using f rather than �f in the notation), we set

|~x|f =

{
the least � such that f

�
(~x)↓ ; if f(~x)↓ ;

∞; otherwise:
(5-21)

The ordinal |~x|f is a (crude) measure of the complexity of computing f(~x)
using the given recursive de�nition.
If f(~x; p) and g(~y; q) are two monotone, operative functionals on M , we

set

σf;g(~x; ~y) =


tt; if f(~x)↓ & |~x|f ≤ |~y|g;
�; if g(~y)↓ & |~y|g < |~x|f ;
⊥; otherwise:

(5-22)

This is the stage comparison (partial) function of f(~x; p) and g(~y; q).

To see the signi�cance of this function, suppose

P (~x) ⇐⇒ f(~0k; ~x)↓ ; Q(~x) ⇐⇒ g(~0l; ~x)↓

are two typical M-semirecursive relations, with f and g M-simple �xed
points of a functional algebra which admits two distinguished points; now

P (~x) ∨Q(~x) ⇐⇒ σf;g(~0k; ~x;~0l; ~x) = tt;
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5C. Stage comparison 141

and so if σf;g is M-recursive, then the disjunction P (~x) ∨ Q(~x) is M-
semirecursive. Thus it is useful to investigate conditions under which the
stage comparison function of any twoM-explicit functionals isM-recursive.
Key to this problem is the following notion:

5C.2. De�nition (Normality). Suppose f(~x; p; q) is a functional on
M . A normalizing functional for f is any ∆(~x; p; �; q; ") with �; " ranging
over partial functions with arities (respectively) those of p and q, such that
the following hold, with

Z� = {~t | �(~t) = tt}; Z" = {~s | "(~s) = tt};

the truthsets of � and ":

(N1) If f(~x; p�Z�; q�Z")↓ , then ∆(~x; p; �; q; ") = tt.
(N2) If � and " are total functions, p(~t)↓ for every ~t ∈ Z�, q(~s)↓ for every

~s ∈ Z", and f(~x; p�Z�; q�Z")↑, then ∆(~x; p; �; q; ") = �.

The de�nition extends naturally to functionals f(~x; ~p) with any number of
partial function arguments, with ∆ having twice as many partial function
arguments as f , and it gives us a way to decide whether f(~x; p) converges
or not in certain (circumscribed) situations. At the other end, the only nor-
malizing functional for a partial function f : Mn *MB is the characteristic
function of the domain of convergence of f ,

∆(~x) =

{
tt; if f(~x)↓ ;
�; otherwise:

A functional f(~x; ~p) is normal in M if it admits an M-recursive nor-
malizing functional, and a functional algebraM is normal if all the givens
of M are M-normal.
Thus a partial algebra M is normal if the domains of convergence of all

the givens are M-recursive|including the trivial case when all the givens
are total functions. We can think of normal functionals as the analog of
partial functions which have a recursive domain of convergence, just as
Kleene objects correspond to total functions.

For the simplest example of a normal honest functional, consider an
evaluation

ev(~x; p) = p(~x):

It is quite clear that there is no way to decide in general whether ev(~x; p)↓ ,
but it is normalized by the trivial

∆(~x; p; �) = ¬̇¬̇�(~x) =

{
tt; if �(~x) = tt;

�; if �(~x)↓ &6= tt;
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142 5. Functional recursion

because if ev(~x; p �Z�) = (p �Z�)(~x)↓ , then �(~x) = tt, and if � is total and
the domain of convergence of p includes Z�, then

(p�Z�)(~x)↑=⇒ �(~x) 6= tt=⇒∆(~x; p; �) = ¬̈�(~x) = �:

5C.3. Theorem. If M is a normal functional algebra, then every M-

explicit functional is M-normal.

Proof. It is enough to show that the set F of allM-explicit,M-normal
functionals on M is explicitly closed over M, and we have already shown
that F contains all total functions on M and the evaluation functionals.
Thus F satis�es (1) of De�nition 3A.3

(2), Substitution. In a notationally simple example, suppose that

f(~x; ~y; p; q) = g(h(~x; p); ~y; q)

and ∆h(~x; p; �);∆g(s; ~y; q; ") are recursive normalizing functionals for g and
h. Let

(5-23) ∆f (~x; ~y; p; �; q; ")

= if ¬̇∆h(~x; p; �) then � else ∆g(h(~x; p�Z�); ~y; q; "):

This is clearly recursive. To prove that it normalizes f(~x; ~y; p; q), we verify
the two required properties (N1) and (N2) in De�nition 5C.2.

(N1) If f(~x; ~y; p�Z�; q�Z")↓ , then ∆f (~x; ~y; p; �; q; ") = tt.

Proof. From the hypothesis, there is some s ∈M such that

h(~x; p�Z�) = s and g(s; ~y; q�Z")↓ ;

and so,

∆h(~x; p; �) = tt; ∆g(s; ~y; q; ") = tt;

and (5-23) yields immediately the required ∆f (~x; ~y; p; �; q; ") = tt.

(N2) If � and " are total functions, p(~s)↓ for every ~s ∈ Z�, q(~t)↓ for

every ~t ∈ Z", and f(~x; ~y; p�Z�; q�Z")↑, then ∆f (~x; ~y; p; �; q; ") = �.

Proof. We assume the hypothesis for some speci�c ~x; ~y; p; �; q; ", and we
take cases on the two ways in which f(~x; ~y; p�Z�; q�Z") may diverge.

(N2a) h(~x; p�Z�)↑. Now ∆h(~x; p; �) = �, and so ∆f (~x; ~y; p; �) = �.

(N2b) h(~x; p�Z�) = s for some s, but g(s; ~y; q�Z")↑. Now the hypothesis
on h gives ∆h(~x; p; �) = tt, and that on g gives ∆g(s; q; ") = �, so that by
the de�nition of ∆f ,

∆f (~x; ~y; p; �; q; ") = ∆g(s; q; ") = �:

The arguments for branching (3) and shu�ing (4) are similar and we
skip them (see Problem x5C.1).
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5C. Stage comparison 143

(5), �-substitution in the givens. We show that (in general) the scheme
of �-substitution (3-16) preserves normality. So suppose (in a notationally
simple case) that

f(~x; ~y; p; q) = g(~x; �(t)h(t; ~y; q); p);

and assume that we are given recursive, normalizing functionals

∆h(t; ~y; q; ") and ∆g(~x; r; �; p; �)

for h and g. We set

∆f (~x; ~y; p; �; q; ") = ∆g(~x; �(t)h(t; ~y; q�Z"); �(t)∆h(t; ~y; q; "); p; �):(5-24)

For �xed ~x; ~y; p; �; q; ", let

r = �(t)h(t; ~y; q�Z"); � = �(t)∆h(t; ~y; q; ")

and notice that by the hypothesis on ∆h, for any t,

r(t)↓ =⇒ �(t) = tt; and so r = r�Z� :

Hence,

(5-25) f(~x; ~y; p�Z�; q�Z") = g(~x; �(t)h(t; y; q�Z"); p�Z�)

= g(~x; r; p�Z�) = g(~x; r�Z� ; p�Z�)

and !

∆f (~x; ~y; p; �; q; ") = ∆g(~x; r; �; p; �):(5-26)

(a) Suppose f(~x; ~y; p �Z�; q �Z")↓ ; now (5-25) and (5-26) yield immedi-
ately that ∆f (~x; ~y; p; �; q; ") = tt.

(b) Suppose f(~x; ~y; p �Z�; q �Z")↑, � and " are total functions, p(t)↓ for
each t ∈ Z� and q(s)↓ for each s ∈ Z". By (5-25) and (5-26), !

g(~x; r�Z� ; p�Z�)↑; ∆f (~x; ~y; p; �; q; ") = ∆g(~x; r; �; p; �);

and so to infer that ∆f (~x; ~y; p; �; q; ") = � it is enough to verify from the
assumptions that � is total and r(t)↓ for every t ∈ Z�|but these conditions
follow immediately from the de�nitions of r and �. a

5C.4. Theorem (Stage Comparison Theorem). If M is a normal

functional structure, then the stage comparison function σf;g(~x; ~y of any

two M-explicit operative functionals f(~x; p) and g(~y; q) is M-recursive.

Proof. We �x two explicit, operative functionals f(~x; p); g(~y; q) and
recursive functionals ∆f (~x; p; �);∆g(~y; q; ") which normalize them, and we
let

σ(~x; ~y) = σf;g(~x; ~y)
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144 5. Functional recursion

be the stage comparison function for f and g de�ned in (5-22). We will
also skip the subscripts in the notation for stages

|~x| = |~x|f ; |~y| = |~y|g;

letting the speci�c letters ~x; ~y specify the relevant functionals. Finally, set

f
<�

(~x) = w ⇐⇒ (∃� < �)[f
�
(~x) = w];(5-27)

and similarly for g<�(~y). We also understand (5-27) for � = ∞, in which
case

f
<∞

(~x) = f
∞

(~x) = f(~x):

To discover the recursive equation which should be satis�ed by σ(~x; ~y),
assume f(~x)↓ ∨ g(~y)↓ and compute:

σ(~x; ~y) = tt ⇐⇒ f
|~y|

(~x)↓

⇐⇒ f(~x; f
<|~y|

)↓
⇐⇒ f(~x; f �{~x′ | |~x′| < |~y|})↓ :

Now,

|~x′| < |~y| ⇐⇒ |~x′| <∞ & g|~x
′|(~y)↑ ⇐⇒ |~x′| <∞ & g(~y; g<|~x

′|)↑;

this implies that

f �{~x′ | |~x′| < |~y|})↓ = f �{~x′ | g(~y; g<|~x
′|)↑};

because we only need consider the values of these two partial functions in
the domain of f , i.e., for ~x′ such that |~x′| <∞. Assuming that the correct
conditions can be veri�ed, so that the normalizing functionals compute
correctly convergence and non-convergence, this yields

σ(~x; ~y) = tt ⇐⇒ f(~x; f �{~x′ | g(~y; g�{~y′ | |~y′| < |~x′|})↑)↓
⇐⇒ ∆f (~x; f; �(~x′)¬̇∆g(~y; g; �(~y′)¬̇σ(~x′; ~y′))) = tt;

and a similar equivalence for σ(~x; ~y) = �. Thus, assuming again that the
correct conditions for the application of the normalizing functinals can be
veri�ed,

σ(~x; ~y)↓ =⇒σ(~x; ~y) = ∆f (~x; f; �(~x′)¬̇∆g(~y; g; �(~y′)¬̇σ(~x′; ~y′)));

so that σ v r with r the least solution of the recursive equation

r(~x; ~y) = ∆f (~x; f; �(~x′)¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′))):(5-28)

This is an explicit equation in the expansion (M; f ; g;∆f ;∆g), so that r is
M-recursive by the transitivity property, Corollary 2B.6.
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5C. Stage comparison 145

We now prove by ordinal induction on �, that if r(~x; ~y) is the least solution
of (5-28), then

if min(|~x|; |~y|) = �; then r(~x; ~y) = σ(~x; ~y):(5-29)

This su�ces to show that σ(~x; ~y) is M-recursive, since it implies that !
!
!

σ(~x; ~y) = if r(~x; ~y) then

if f(~x) then tt else tt

else if g(~y) then � else �:

Lemma A. If |~x| = � ≤ |~y|, then r(~x; ~y) = tt.

Proof. Fix ~x′ with |~x′| < �. By the induction hypothesis, for all ~y′,

r(~x′; ~y′) =

{
tt; if |~x′| ≤ |~y′|;
�; otherwise, i.e., if |~y′| < |~x′|:

In particular,

� = �(~y′)¬̇r(~x′; ~y′)

is a total function, and

~y′ ∈ Z� =⇒|~y′| < |~x′| <∞=⇒ g(~y′)↓ ;

but g(~y; g �{~y′ | |~y′| < |~x′|})↑, since the opposite implies that |~y| ≤ |~x′| < �
contradicting the hypothesis of the Lemma. It follows that

∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = �;

and so (taking \complements"), we have shown that

|~x′| < �=⇒¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt:

Now the hypothesis |~x| = � of the Lemma also implies that

f(~x; f �{~x′ | |~x′| < �})↓ ;

and so by monotonicity,

f(~x; f �{~x′ | ¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt})↓ ;

and then by the normalizing property (N1) for ∆f ,

r(~x; ~y) = ∆f (~x; f; �(~x′)¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′))) = tt;

which completes the proof. a (Lemma A)

Lemma B. If |~y| = � < |~x|, then the partial function

� = �(~x′)¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′))(5-30)

it total.
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146 5. Functional recursion

Proof. To show that �(~x′)↓ for all ~x′, we consider two cases.

Case B1. |~x′| < �. By the induction hypothesis, for all ~y′,

r(~x′; ~y′) =

{
tt; if |~x′| ≤ |~y′|;
�; otherwise, i.e., if |~y′| < |~x′|:

Thus g(~y′)↓ when ¬̇r(~x′; ~y′) = tt, since for those ~y′'s, |~y′| < |~x′| < �. It
follows that

g(~y; g; �(~y′)¬̇r(~x′; ~y′))↑;

since the opposite (with monotonicity) would give |~y| ≤ |~x′| < �, and so

�(~x′) = ∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = �;

and, in particular, �(~x′)↓ .
Let us also record for later the speci�c value here,

|~x′| < �=⇒¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt:(5-31)

Case B2. � ≤ |~x′|, including the possibility that |~x′| = ∞. Now r(~x′; ~y′)↓
for all ~y′ with |~y′| < �, by the induction hypothesis, and it gives the correct
value, so that

|~y′| < �=⇒¬̇r(~x′; ~y′) = tt:

Since |~y| = � and so g(~y; g�{~y′ | |~y′| < �})↓ it follows that

�(~x′) = ∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt;

and, in particular, �(~x′)↓ . a (Lemma B)

Lemma C. If �(~x′) = tt with � de�ned in (5-30), then f(~x′)↓ .
Proof. In fact we will show the stronger implication,

¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt=⇒|~x′| < �:(5-32)

So assume that

∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = �;

and suppose, towards a contradiction, that � ≤ |~x′|, allowing for |~x′| = ∞.
Now, for each ~y′ with |~y′| < �, by the induction hypothesis

r(~x′; ~y′) = �; and hence ¬̇r(~x′; ~y′) = tt;

g(~y′)↓ , and g(~y; g�{~y′ | ¬̇r(~x′; ~y′) = tt})↓ ; but this implies that

∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = tt;

which contradicts the hypothesis of (5-32) and establishes it.a (Lemma C)
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5C. Stage comparison 147

To complete now the proof of (5-29) (and the theorem), we note that

f(~x; f �{~x′ | �(~x′) = tt})↑
(because |~x| > �), and since the necessary conditions on � and f have been
established by Lemmas B and C,

r(~x; ~y) = ∆f (~x; f; �(~x′)¬̇∆g(~y; g; �(~y′)¬̇r(~x′; ~y′)) = �

as required. a
In the rest of the section we will prove a sequence of Propositions which

insure that this basic result applies in a strong way to all the examples
listed in Section 5A|except for search computability.

5C.5. Proposition. If the Kleene existential quanti�er E = EM de�ned

in (5-3) is M-recursive, then every Kleene object on M is normal in M.

Proof. Assuming for simplicity a Kleene object F (p) which takes just
one, unary partial function argument, let

∆(p; �) = ¬̇E(�(t)[if �(t) then test(�; p; t) else tt]);

where the (explicit) functional

test(x; t; p) = if p(t) then x else x

converges exactly when p(t)↓ and then it gives x as output. For given p
and �, let

r = �(t)[if �(t) then test(�; p; t) else tt]):

If F (p �Z�)↓ , then p �Z� is total, so that �(t) = tt and p(t)↓ for every t,
hence r(t) = � for every t, and hence

∆(p; �) = ¬̇E(r) = ¬̇� = tt:

If � is total and p(t)↓ for every t ∈ Z�, then r is a total function and so
E(r)↓ ; now F (p � Z�)↑ can only happen when there is some t such that
¬̈�(t) = �, which gives r(t) = tt for that t, and hence

∆(p; �) = ¬̇E(r) = ¬̇tt = �: a

5C.6. Proposition. For every quanti�er Q on M , if the sharp object

Q# is recursive in M, then Q# is normal in M.

Proof. We set !

∆Q(p; �) =


tt; if Q#(�(~x)[if �(~x) then p(~x) else tt]) = tt;

tt; ow., if Q#(�(~x)[if �(~x) then p(~x) else �]) = �;

�; otherwise:

This is recursive in M.

Lemma A. If Q#(p�Z�) = tt, then ∆Q(p; �) = tt.

Recursion, by Yiannis N. Moschovakis

informal notes, full of errors May 24, 2008, 11:05 147



148 5. Functional recursion

Proof . The hypothesis means that (Q~x)[¬̈(p�Z�)(~x) = tt], so that

Q#(�(~x)[if �(~x) then ¬̈p(~x) else ⊥]) = tt;

but

�(~x)[if �(~x) then ¬̈p(~x) else ⊥] v �(~x)[if �(~x) then ¬̈p(~x) else tt];

and so (by monotonicity) Q#(�(~x)[if �(~x) then ¬̈p(~x) else tt]) = tt and by
the de�nition, ∆Q(p; �) = tt. a (Lemma A)

Lemma B. If Q#(p�Z�) = �, then ∆Q(p; �) = tt.

Proof . The hypothesis means that (
^

Q~x)[¬̈(p�Z�)(~x) = �], so that

Q#(�(~x)[if �(~x) then ¬̈p(~x) else ⊥]) = �;

but

�(~x)[if �(~x) then ¬̈p(~x) else ⊥] v �(~x)[if �(~x) then ¬̈p(~x) else tt];

and so (by monotonicity) Q#(�(~x)[if �(~x) then ¬̈p(~x) else tt]) = � and the
de�nition of ∆Q(p; �) falls into the second case. Also,

�(~x)[if �(~x) then ¬̈p(~x) else ⊥] v �(~x)[if �(~x) then ¬̈p(~x) else �];

and so (by monotonicity) Q#(�(~x)[if �(~x) then ¬̈p(~x) else �]) = � and by
the de�nition in the second case, ∆Q(p; �) = tt. a (Lemma B)

Lemma C. If � is total, and �(~x) = tt=⇒ p(~x)↓ , and Q#(p �Z�)↑, then
∆Q(p; �) = �.

Proof . In this case, Q# is applied to total functions in the de�nition
of ∆Q(p; �), and so it converges on these values and ∆Q(p; �)↓ ; thus it
is enough to show that neither of the �rst two cases in its de�nition is
satis�ed, so that ∆Q(p; �) = �.
First, we cannot have Q#(�(~x)[if �(~x) then p(~x) else tt]) = tt, because

that implies that (Q~x)[�(~x) = tt & p(~x) = tt], so that Q#(p � Z�) = tt,
contrary to hypothesis.
Similarly, we cannot have Q#(�(~x)[if �(~x) then p(~x) else �]) = �, be-

cause this implies that (
^

Q(~x)[�(~x) = tt & ¬̈p(~x) = �], so that Q#(p�Z�) =
�, again contrary to hypothesis. a (Lemma C)

Now the Proposition follows immediately from these Lemmas. a

Problems for Section 5C

x5C.1. Prove that of g; h1; h2 are normal inM, then so is the functional

f(~x; ~p) = if g(~x; ~p) then h1(~x; ~p) else h2(~x; ~p):
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5D. The master recursion for functional algebras 149

∗x5C.2. Prove that ifM is normal, then the inessential extensionM[0; 1]
by two distinguished points is also normal.

x5C.3. Prove that if M is normal, then the disjunction of any two M-
semirecursive relations is M-recursive, and a relation R(~x) is M-recursive
if and only if it is semirecursive with semirecursive complement.

5D. The master recursion for functional algebras

The Kleene Master Recursion for functional algebras which imbed N0 is
de�ned by a simple extension of the construction in Section 3C, and the
proof of that everyM-recursive partial function is Kleene-recursive is a very
minor modi�cation of the proof given for partial algebras in Section 3C.
The converse, however, (apparently) cannot be established in general for
functional algebras which imbedN0, because the computation of a recursive
function f(~x) does not necessarily take place in the subalgebra generated
by the arguments ~x: for that direction, we will need to assume that M
admits a recursive pair.
Recall the de�nition 3C.1 of a computation theory K over a pair

(M;N0) with N ⊆M , and that of strongly K-e�ective functional, 3C.7.
We state in full the extended version of Theorem 3C.6 that we need for

functional algebras.

5D.1. Theorem (The Master Recursion for functional algebras).
SupposeM = (f1; : : : ; fL) is a functional algebra andN0 = (N; 0; S;Pd ;=0)
is a copy of the natural numbers with N ⊆M .

There is a monotone functional !

Φ : N×M∗ × (N×M∗ *MB) *MB;(5-33)

such that if p is the least solution of the recursive equation

p(z; ~x) = Φ(z; ~x; p) (z ∈ N; ~x ∈M∗)

and we set

K(z; ~x) = {z}(~x) = p(z; ~x);(5-34)

|z; ~x| = |z; ~x|Φ; ({z}(~x)↓);(5-35)

then the pair

K[M;N0] = (K; | |)(5-36)

is a computation theory over (M;N0) such that the given functionals f1; : : : ;
fL are strongly K-e�ective.
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150 5. Functional recursion

By de�nition 3C.7, trivially, a partial function f : Mn *MB is strongly
K-e�ective if and only if it isK-computable, and so this theorem is a direct
generalization of Theorem 3C.6.

Proof is an extension of the proof of Theorem 3C.6, with a small change
in Case (KL1) which subtracts the introduction of the givens ((z)1 = 7)
and the addition of one more case in which the givens are introduced, as
follows.

Case (KL8), introduction of the givens. If (z)0 = 8, (z)1 = i (1 ≤ i ≤ L)
and fi(y; r) is one of the givens with (for example) r ranging over binary
partial function variables, then

Φ8(z; ~w; p) = fi(w2; �(s)�(t)p(w1; s; t; w3; : : : ; wl));

provided that the length l of ~w = (w1; : : : ; wl) is at least 2. (The de�nition
is adjusted in the obvious way for given functionals fi or di�erent arities.)

The proof that K[M;N0] is a computation theory is exactly as before,
and so we only need verify that the new Case (KL8) insures the strong
K-e�ectiveness of all the givens. First, because {z}(~w) = p(z; ~w) is a �xed
point of Φ, if fi(y; r) is a given with r ranging over binary partial functions,
we have the equation

{〈8; i〉}(e; y; ~x) = fi(y; �(s)�(t){e}(s; t; ~x));

and so fi(y; r) is K-e�ective. Moreover, taking f̃ = 〈8; i〉 in De�nition 3C.7
and �xing e; y; ~x, suppose that

{〈8; i〉}(e; y; ~x) = w and |〈8; i〉; e; y; ~x| = �:

Let r� : M2 *MB be the part of �(s)�(t){e}(s; t; ~x) computed before stage
�, i.e.,

r�(s; t) =

{
{e}(s; t; ~x); if |e; s; t; ~x| < �;

⊥; otherwise:

It follows from the assignment of stages to the least �xed point of a monotone
functional that

{〈8; i〉}(e; y; ~x) = fi(y; r�);

which is exactly the condition required of 〈8; i〉 to verify that fi(y; r) is
strongly K-e�ective. a

5D.2. Lemma. If M is a functional algebra, N0 ,→ M, and K is a

computation theory over (M;N0) such that every given of M is strongly

K-e�ective, then every M-explicit functional is strongly K-e�ective.

Proof. This extends Lemma 3C.8, whose proof we omitted because it
is very simple. Here too, we will leave for Problem x5D.1 the new, required
case, which is also basically simple. a
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5D. The master recursion for functional algebras 151

At this point, the proof of Lemma 3C.9 goes through word-for-word in
this extended case and gives us half of what we want to prove in this section.

5D.3. Lemma. If M is a functional algebra and N0 ,→M, then every

M-recursive partial function is K[M;N0]-computable.

Next we turn to the converse, which requires stronger hypotheses.

5D.4. De�nition. A recursive pair in a functional algebra M is any
triple π = (�; �1; �2) such that:

(1) � : M ×M � M is an M-recursive injection|a coding of pairs.
(2) �1 and �2 are M-recursive inverses of �, i.e.,

�1�(u; v) = u; �2�(u; v) = v (u; v ∈M):

(3) The image of �,

Pair(w) ⇐⇒ w ∈ �[M ×M ] = {�(u; v) | u; v ∈M}
is M-recursive.

The last condition (3) is automatically true if � : M×M�→M is a bijection,
or if the equality relation =M is M-recursive, since by (1) and (2)

Pair(w) ⇐⇒ w = �(�1(w); �2(w)):

An algebra M is paired if it has two distinguished points (0; 1) and
admits an M-recursive pair.

5D.5. Lemma. If M is paired, then N0 ,→M.

Proof. Suppose �rst that for all v, �(1; v) 6= 0 (we will take care of that
possibility later), and set

0M = 0;

S(u) = �(1; u);

Pd(u) = if (u = 0) then 0 else �1(u);

N =
⋂
{X ⊆M | 0 ∈ X & S[X] ⊆ X}:

The function S is an injection and never = 0 by the extra hypothesis on �,
and the algebra (N; 0; S � N;Pd � N;=0) clearly satis�es the Peano axioms
and so is isomorphic with N0. To see that N is semirecursive, suppose r is
the least solution of the recursion equation

r(u) = if (u = 0) then tt(5-37)

else if (Pair(u) & �1(u) = 1) then r(Pd(u))
else ⊥:

By an easy induction on n, r(n) = tt for every n ∈ N. For the converse, it
is enough to show that the partial function

s�N(u) = if (u ∈ N) then tt else ⊥
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152 5. Functional recursion

satis�es (5-37), and this is obvious for u ∈ N. If for some u =∈ N the
right-and-side of (5-37) were de�ned, then u ∈ �[M ×M ], �1(u) = 1 and
�2(u) = Pd(u) ∈ N, which means that u = �(1;Pd(u)) = S(Pd(u)) ∈ N
contradicting the hypothesis.
Finally, if 0 = �(1; v) for some v, replace � by

�′(u; v) = �(0; �(u; v))

which never takes on the value 0 since �1�
′(u; v) = 0 6= 1 = �1(0). The

projection functions for this pair and the image �′[M × M ] are (easily)
M-recursive. a

5D.6. Proposition (Sequence coding). If M is paired, then there ex-

ists an injection

〈 〉M : M∗ � M;

a tuple coding, so that the following conditions hold.

(1) For each n = 0; 1; : : : ; the n-ary function!

fn(u0; : : : ; un−1) = 〈u0; : : : ; un−1〉M

is recursive.

(2) The relations

Null(u) ⇐⇒ u = 〈∅〉M;
Symbol(u) ⇐⇒ (∃s)[u = 〈s〉M]

are recursive.

(3) There exist (total) recursive functions head(u), tail(u) and append(s; u),
such that

head(〈u0; : : : ; un−1〉M) = u0 if (n > 0)
tail(〈u0; : : : ; un−1〉M) = 〈u1; : : : ; un−1〉M

append(s; 〈u0; : : : ; un−1〉M) = 〈s; u0; : : : ; un−1〉M:

Proof. First we de�ne 〈u0; : : : ; un−1〉M by the following recursion on
the length n of the tuple:

〈∅〉M = �(0; 1);

〈u0; : : : ; un〉M = �(1; �(u0; 〈u1; : : : ; un〉M)):

The restriction of 〈 〉M to tuples of any �xed length n is obviously recursive,

Null(u) ⇐⇒ Pair(u) & �1(u) = 0 & �2(u) = 1;
Symbol(u) ⇐⇒ Pair(u) & �1(u) = 1;
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5D. The master recursion for functional algebras 153

and (3) follows easily by setting

head(u) =df �1�2(u);
tail(u) =df �2�2(u);

append(s; u) =df �(1; �(s; u)): a

Using these basic sequence-coding functions, we can de�ne many more,
useful recursive functions which allow us to manipulate sequence codes.

5D.7. Proposition. If a coding of sequences 〈 〉M : M∗ � M in a func-

tional algebra M satis�es (1) { (3) of Proposition 5D.6, then the following

hold, where

SeqM(u) ⇐⇒ (∃u0; : : : ; un−1)[u = 〈u0; : : : ; un−1〉M](5-38)

and N is the copy of the natural numbers in M .

(4) There is a recursive partial function lhM(u) : M * N, such that

SeqM(u) ⇐⇒ lhM(u)↓ ;
lhM(〈u0; : : : ; un−1〉M) = n (u0; : : : ; un−1 ∈M);

so that, in particular, the relation SeqM(u) is M-semirecursive.

(5) There is a binary, M-recursive partial function (u)Mi , such that

(u)Mi ↓ ⇐⇒ i ∈ N (u ∈M);

(〈u0; : : : ; un−1〉M)Mi = ui (i < n);

In using iterations of these partial functions, we will write

(u)Mi;j = ((u)Mi )Mj ; (u)Mi;j;k = (((u)Mi )Mj )Mk ; etc.(5-39)

(6) There is a binary, recursive partial function u ∗ s, which codes con-

catenation on sequence codes,

〈u0; : : : ; un−1〉M ∗ 〈v0; : : : ; vm−1〉M = 〈u0; : : : ; un−1; v0; : : : ; vm−1〉M;

and such that

SeqM(u) =⇒ (∀s)(u ∗ s↓);(5-40)

SeqM(u) & SeqM(v) =⇒ (∀s)[(u ∗ v) ∗ s) = u ∗ (v ∗ s)]:(5-41)

(7) There is a recursive, partial function rev(u), such that

rev(〈u0; : : : ; un−1〉M) = 〈un−1; un−2; : : : ; u0〉M:

Proof. For (4), set

(5-42) lhM(u) = p(u)

where {p(u) = if (u = 〈∅〉M) then tt else p(tail(u)) + 1}:
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154 5. Functional recursion

Clearly lhM(〈u0; : : : ; un−1〉M) = n, by induction in n; and the length func-
tion (de�ned only on sequence codes) satis�es the recursion equation (5-42),
and so the least solution cannot have a larger domain.
For the remaining functions, we set:

(u)Mi = p(u) where {p(u) = if (i = 0) then head(u) else p(tail(u))i−1}
u ∗ s = p(u; s) where {p(u; s) = if (u = 〈∅〉M) then s

else if Symbol(u) then append(head(u); s)
else append(head(u); p(tail(u); s))}

rev(u) = p(u) where {if u = 〈∅〉M then u else (p(tail(u)) ∗ 〈head(u)〉M)}:

The crucial properties (5-40), (5-41) of the concatenation function are
proved by induction on lhM(u), and the remaining claims are trivial. a

5D.8. Exercise. Show that if M is paired, then there are recursive,
partial functions u�j, u � j, f(j; u) such that

〈u0; : : : ; un−1〉M �j = 〈u0; : : : ; uj−1〉M (tt ≤ j ≤ n);
〈u0; : : : ; un−1〉M � j = 〈uj ; : : : ; un−1〉M (tt ≤ j ≤ n);

f(j; 〈u1; : : : ; un−1〉M) = 〈uj ; u1; : : : ; uj−1; uj+�; : : : ; un〉M:

Hint: Use primitive recursion for u � j and u � j and de�ne f(j; u) using
these functions.

We have used the annoying superscript M to decorate some of the func-
tions and relation associated with a coding of M∗, because we will be
using them in the next theorem along with the corresponding functions
of classical (primitive recursive) coding of tuples of N and we must avoid
confusion. It goes without saying that when there is no need of confusion,
we will just skip the superscript|just as we often say \recursive" when we
mean \M-recursive".

5D.9. Theorem. For a paired functional algebra M, a partial function

f : Mn *M is M-recursive if and only if it is K[M;N0]-recursive.

Proof. We only need to show the \if" part of the theorem, which
amounts to proving that the partial function

�(z; x) = {z}((x)M0 ; (x)M1 ; : : : ; (x)M
lhM(z)−· 1

)

is M-recursive. In fact, it is the �xed point of some M-recursive functional
whose de�nition is routine|if somewhat messy. a
This basic result applies to most functional algebras which arise naturally

in computability theory, if for no other reason because we always can (and
we often want to) add a distinguished points and a \free" pair to algebraM,
cf. Problem ∗x5D.2. And when it holds, then M-recursion has all the nice
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5D. The master recursion for functional algebras 155

properties whose proof requires the Enumeration Theorem|most often via
the Second Recursion Theorem. A most beautiful example of this is the
following theorem of Gandy.

5D.10. Theorem (Gandy's Selection Theorem). Suppose M is a

paired and normal functional algebra and f : Mn+1 * M is M-recursive:

then there exists an M-recursive partial function g : M * N such that

if (∃n ∈ N)f(n; ~x)↓ ; then g(~x)↓ & f(g(~x); ~x)↓ :

Proof. Let σ(z; ~u; e; ~v) be the stage comparison function for the enu-
merating partial function {z}(~u) \against itself", so that

σ(z; ~u; e; ~v) =

{
tt; if {z}(~u)↓ & |z; ~u| ≤ |e;~v|;
�; if {e}(~v)↓ & |e;~v| < |z; ~u|;

where ~u and ~v range over tuples of the same length, say n+ 1. Suppose

f(n; ~x) = {f̃}(n; ~x);

and choose by the Second Recursion Theorem a number e such that

{e}(t; ~x) =

{
0; if t ∈ N & σ(f̃ ; t; ~x; e; t+ 1; ~x) = tt;

{e}(t+ 1; ~x) + 1; otherwise:

(1) If f(t; ~x)↓ , then {e}(t; ~x)↓ . This is because if f(t; ~x)↓ , then

w = σ(f̃ ; t; ~x; e; t+ 1; ~x)↓ :
If w = tt, then {e}(t; ~x) = 0, by the de�nition; and if w = �, then the
de�nition gives

{e}(t; ~x) = {e}(t+ 1; ~x) + 1;

but |e; t+ 1; ~x| < |f̃ ; t; ~x| <∞, so {e}(t+ 1; ~x)↓ .
By (essentially) the same argument,

(2) If {e}(t+ 1; ~x)↓ , then {e}(t; ~x)↓ ;
and then directly from (1) and (2),

(3) If f(n; ~x)↓ for some n, then {e}(0; ~x)↓ .
(4) If {e}(t; ~x)↓ , then either {e}(t; ~x) = 0, or {e}(t; ~x) = {e}(t+1; ~x)+1.
Let

s = the least t such that {e}(t; ~x) = 0;

this exists, otherwise by (4)

{e}(0; ~x) = {e}(1; ~x) + 1 = {e}(2}(2; ~x) + 2 = · · ·
so that {e}(0; ~x) ≥ t for all t, which is absurd. For this s then,

f(s; ~x)↓ ; {e}(s; ~x) = 0;
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156 5. Functional recursion

and then, by the choice of s, successively,

i < s=⇒{e}(s− i) = i;

so that {e}(0; ~x) = s and the conclusion of the theorem is satis�ed if we set
g(~x) = {e}(0; ~x). a

Problems for Section 5D

x5D.1. Suppose K is a computation theory over (M;N0), g(~x; r; p) and
h(s; t; ~y; q) are strongly K-e�ective functionals, and

f(~x; ~y; q; p) = g(~x; �(s)�(t)h(s; t; ~y; q); p):

Prove that f(~x; ~y; q; p) is strongly K-e�ective.

∗x5D.2. Prove that for every functional algebraM such that N0 ,→M,
every M-recursive functional is strongly K[M;N0]-e�ective.

∗x5D.3. Suppose M = (M;f1; : : : ; fL) is a functional algebra, 0; 1 are
points not in the universe M , set M [0; 1] = M ∪ {0; 1}. Show �rst that
there exists an injection

� : M [0; 1]×M [0; 1] � M [0; 1] � U \M [0; 1]

into some set U which never takes on a value in M [0; 1]. Let M+ be the
closure of M [0; 1] under such an injection �, and set

M+ = (M+; f+
1 ; : : : ; f

+
L ; 0; 1; �0; �1; �; �1; �2)

where �1; �2 are the inverses of � (set = 0 on M [0; 1]) and f+
1 ; : : : ; f

+
L are

the minimal extensions of f1; : : : ; fL to monotone functionals on M+, e.g.,
with p binary,

f+
i (~x; p) = fi(~x; p�M2):

(1) Prove that every M-recursive partial function is M+-recursive.

(2) Prove that if M is paired and f : (M+)n * M+
B is M+-recursive,

then the restriction f �Mn : Mn *MB is M-recursive.

∗x5D.4 (open). Prove the Gandy Selection Theorem for normal func-
tional algebras M such that N0 ,→M. (This is likely to be false, but there
is no obvious counterexample.)!
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