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PREFACE

Perhaps the simplest way to introduce the subject of these notes is to give
a fairly precise formulation of one of its central, open problems.

The Euclidean algorithm on the natural numbers can be specified suc-
cinctly by the recursive program

ε : gcd(a, b) =

{
b, if rem(a, b) = 0,

gcd(b, rem(a, b)), otherwise
(a ≥ b ≥ 1),

where rem(a, b) is the remainder in the division of a by b. It is an algo-
rithm from (relative to) the remainder function rem and the relation eq0

of equality with 0, meaning that in its execution, ε has access to “oracles”
which provide on demand (in one “time unit”) the value rem(x, y) for any
x and y and the truth value of eq0(x). It is not hard to prove that

c{rem}(ε, a, b) ≤ 2 log b (a ≥ b ≥ 2),

where c{rem}(ε, a, b) is the number of divisions (calls to the rem-oracle)
required for the computation of gcd(a, b) by the Euclidean, and logarithms
are to the base 2. Much more is known about c{rem}(ε, a, b), but this
upper bound suggests one plausible formulation of the Euclidean’s (worst-
case) suboptimality among its peers—algorithms from rem and eq0 with
the corresponding definition of the complexity measure c{rem}(α, a, b):

Main Conjecture. For every algorithm α from rem and eq0 which
computes the function gcd(x, y), there is a (positive, rational) constant r
such that for infinitely many a > b,1

c{rem}(α, a, b) ≥ r log a.

Now, there are Turing machines which compute gcd(x, y) making no calls
at all to any rem-oracle, simply because gcd(x, y) is a computable function.
So to make the conjecture precise and meaningful, we must employ a notion
of (relative) algorithm from given functions and relations Φ which does not

1Requiring a log a rather than log b < log a lower bound simplifies the statement
without strengthening the conjecture, since c(ε, a, b) = c(ε, b, rem(a, b)) + 1.

iii



iv Preface

take any non-logical notions not included in Φ for granted. (Turing ma-
chines have free access to the successor and predecessor operations, which
are built into their definitions.) These algorithms should also support (at
least) the most natural complexity measures, which count the number of
calls to primitives in any Φ0 ⊆ Φ.

Contrary to popular belief, there is no generally accepted, rigorous defin-
ition of the notion of algorithm in mathematics or computer science.2 This
is not a problem when we study particular algorithms, which are typically
specified precisely in some form or other without any need to investigate
whether all algorithms can be similarly specified. In Complexity Theory—
and especially when we want to establish lower bounds for some measure of
computational complexity—the standard methodology is to ground proofs
on rigorously defined models of computation, such as Turing machines, reg-
ister or random access machines, straight line computation, decision trees,
etc., and also on specific representations of the input, e.g., unary or binary
notation for natural numbers, adjacency matrices for graphs, etc. There is
a problem with this practice, when we try to compare lower bound results
obtained for different models, typically attacked by establishing simula-
tions of one model by another, cf. van Emde Boas [1990]; and this problem
becomes acute when we want to establish absolute (or at least “very widely
applicable”) lower bounds which are small, polynomial or even linear3 (as in
the Conjecture above), generally less complex than the known simulations.

So there are two, equally important aims of research in this area.
One is to derive lower bounds for interesting mathematical problems rela-

tive to natural primitives and with respect to natural complexity measures;
the other is to develop a foundational framework in which one may be able
to prove (or at least argue convincingly) that these bounds are absolute,
that they restrict all algorithms from the specified primitives. The first
of these inevitably requires mathematical tools from the area in which the
problems arise, and the second involves logic. Recursion enters the picture
because it provides the most straightforward method to express algorithms
from specified primitives and to analyze them using methods from logic.

Our main interest is on the foundational problems which arise in the
search for absolute lower bounds, but we will derive several basic, lower
bounds in arithmetic and algebra to illustrate the notions and explain the
foundational framework.

2There are careless references in the literature to the “definition of algorithms given
by the Church-Turing Thesis”, but Turing and Church did not define algorithms: they
postulated that every computable function on the natural numbers can be computed by
a Turing machine, carefully avoiding the subtle question of what algorithms are.

3Complexity measures of algorithms which compute functions f : N→ N are usually
expressed as functions of the length of the input written in binary notation, essentially
log x, so that the Euclidean is “linear”. We will sometimes use this terminology to agree
with general practice, but will generally express bounds as functions of x until Chapter 8.
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CHAPTER 1

INTRODUCTION

We summarize some basic facts from recursion theory, logic, arithmetic
and algebra, primarily to set up notation. One should scan this generally
well-known material, perhaps solve some of the problems, and then go on,
coming back to this chapter as the need arises.

1A. Notation and preliminaries

We will use (mostly) standard notation: N = {0, 1, . . . } is the set of
natural numbers, Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers, Q
is the set of fractions and R,C are the sets of real and complex numbers
respectively. As usual, we use the same symbols 0, 1, +,−, ·,÷ for the
corresponding objects and functions in all these sets—and in all rings and
fields, in fact.

We also set

S(x) = x + 1, x−· y = if (x < y) then 0 else x− y, Pd(x) = x−· 1

for the successor, arithmetic subtraction and predecessor functions on N,
and

log(x) = the unique real number y such that 2y = x. (x ∈ R, x > 0).

This is the “true”, binary logarithm function. We will sometimes compose
it with one of the functions

bxc = the largest integer ≤ x (the floor of x),

dxe = the least integer ≥ x (the ceiling of x)

to get an integer value.

By the Division Theorem, if x, y ∈ N and y > 0, then there exist unique
numbers q and r such that

x = yq + r (0 ≤ r < y);(1)

1



2 1. Introduction

if x < y, then q = 0 and r = x, while if x ≥ y, then q ≥ 1. We refer to (1)
as the correct division equation for x, y, and we set

iq(x, y) = q, rem(x, y) = r (y ≥ 1)

with the unique q and the r for which it holds. We will also write

iqm(x) = iq(x,m), parity(x) = rem(x, 2) (m ≥ 2).

For the divisibility relation, we write

y | x ⇐⇒ rem(x, y) = 0 (y > 0).

Two positive numbers are coprime if they have no common divisors 6= 1,

x⊥⊥ y ⇐⇒ x, y ≥ 1 & (∀d > 1)[d - x ∨ d - y].

The greatest common divisor of two natural numbers is what its name
means:

gcd(x, y) =df the largest d such that d | x and d | y (x, y ≥ 1).(2)

Thus,

x⊥⊥ y ⇐⇒ x, y ≥ 1 & gcd(x, y) = 1.

The most commonly used notations for comparing the growth rate of
unary functions on N are the Landau symbols:

f(n) = o(g(n)) ⇐⇒ limn→∞
f(n)
g(n)

= 0

f(n) = O(g(n)) ⇐⇒ (∃K, C)(∀n ≥ K)[f(n) ≤ Cg(n)]
f(n) = Θ(g(n)) ⇐⇒ f(n) = O(g(n)) & g(n) = O(f(n))
f(n) = Ω(g(n)) ⇐⇒ (∃K, r)(∀n ≥ K)[f(n) ≥ rg(n))

where the constants K, C ∈ N while r is a positive fraction.

Finally, the characteristic function of a relation R ⊆ An on a set A is
defined by

χR(~x) =

{
tt, if R(~x),
ff, otherwise.

We will identify a relation R with χR and write synonymously

R(~x) ⇐⇒ χR(~x) = tt, ¬R(~x) ⇐⇒ χR(~x) = ff.(3)

An algorithm decides R if it computes χR.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 2
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1A. Notation and preliminaries 3

Strings. For any set L, L∗ = L<ω is the set of strings4 (words, finite
sequences) from L, and we will use mostly standard notations for them:

nil = ( ) (the empty string),
|(u0, . . . , um−1)| = m, (u0, . . . , um−1)i = ui (i < m),

app((t), (u0, . . . , um−1)) = (t, u0, . . . , um−1)
(with app(v, u) = nil is |v| 6= 1)

head((u0, . . . , um−1)) = (u0) (= nil if u = nil),
tail((u0, . . . , um−1)) = (u1, . . . , um−1) (= nil if u = nil),

(u0, . . . , um−1) ∗ (v0, . . . , vn−1) = (u0, . . . , um−1, v0, . . . , vn−1),
u v v ⇐⇒ (∃w)[u ∗ w = v], (the initial segment relation),

u v/ v ⇐⇒ u v v & u 6= v.

(4)

The definitions of app(v, u) (append) and head(u) in effect identify a mem-
ber t of L with the string (t) ∈ L∗, which simplifies in some ways dealing
with strings.

Trees. For our purposes, a (finite, non-empty, rooted, N-labelled) tree
on a set X is any finite set T ⊂ (N×X)<ω of non-empty finite sequences
(nodes) from N ×X which has a unique node of length 1, its root, and is
closed under initial segments,

∅ 6= u v v ∈ T =⇒u ∈ T .

The children of a node u ∈ T are all one-point extensions u ∗ (y) ∈ T , and
its (out-) degree is the maximal number of children that any node has. A
node is a leaf if it has no children.

A node v is below a node u if there is some w such that v = u ∗ w, and
in that case

distance(u, v) =

{
length(w) if u ∗ w = v,

∞ if u v/ v.

The depth of a node is its distance from the root and the depth of the tree
is the largest of these numbers,

depth(T ) = max{distance(root, u) :u ∈ T }.
The size of a tree is the number of its nodes

size(T ) = |T |,

4Sometimes we denote strings by simply listing their elements

u0u1 · · · vm−1 = (u0, u1, . . . , um−1),

especially when we think of them as “words” from some alphabet L of “symbols”; and
in such cases, we typically use “≡” to denote the equality relation on words, since “=”
is often one of the symbols in the alphabet.
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4 1. Introduction

and it is easy to check that

size(T ) ≤ degree(T )depth(T )(5)

by induction on depth(T ).5

For each u ∈ T , let

Tu = {v ∈ X<ω : u ∗ v ∈ T }.
If u is not a leaf, then this is the subtree of T below u, with root u, and if
u is a leaf then Tu = ∅.

For each tree T , let

T ′ = {u ∈ T :u is not a leaf}.
If T has more than one element, then this is the derived (pruned) subtree
of T , and clearly depth(T ′) = depth(T )−1. Again, it is convenient to have
the notation for a singleton T , for which T ′ = ∅.

In dealing with these trees, we will think of them as sets of sequences
from X mostly disregarding the labels: their only purpose is to allow a
node to have several “identical” children which are counted separately. For
example, we will want to draw the tree

ª R

x

x1 x2

and assume it has this structure (with a root which has two children) even
if it happens that x1 = x2; so formally

T = {((0, x)), ((0, x), (0, x1)), ((0, x), (1, x2))},
but we will indicate this by the simpler

T = {(x), (x, x1), (x, x2)}.
For example, if z ∈ X and T , T1, . . . , Tk are trees on X, then Top(z, T1, . . . , Tk)
is the tree with root z and T1, . . . , Tk immediately below it. We will draw
the result of this operation as if

(6) Top(z, T1, . . . , Tk)

= {(z, x1, . . . , xn) | for some i = 1, . . . , k, (x1, . . . , xn) ∈ Ti};
the formal definition, with the labels, is the more formidable

Top(z, T1, . . . , Tk) = {((0, z), (〈i, j1〉, x1), . . . , (〈i, jn〉, xn))

| i = 1, . . . , k, ((j1, x1), . . . , (jn, xn)) ∈ Ti},
and 〈i, j〉 is some pairing function on N, e.g., 〈i, j〉 = 2i+13j+1.

5Setting 00 = 1 to cover the basis depth(T ) = degree(T ) = 0.
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1B. Partial functions and the Fixed Point Lemma 5

Problems for Section 1A

Problem x1A.1. Suppose T is a tree on X, C ⊆ X, H ∈ N, and for
all u, x0, . . . , xn with n ≥ H,

u ∗ (x0, . . . , xn−1) ∈ T =⇒ (∃i)[xi ∈ C];

then

size(T ) ≤ degree(T )H + |C|degree(T )H .

1B. Partial functions and the Fixed Point Lemma

For any two sets A,W , an n-ary partial function f : An ⇀ W is a
function f : Df → W defined on some subset of An. For ~x ∈ An, we set

f(~x)↓ ⇐⇒ ~x ∈ Df (f(~x) converges),

f(~x) ↑ ⇐⇒ ~x /∈ Df (f(~x) diverges),

f(~x) = g(~x) ⇐⇒ [f(~x)↓ & g(~x)↓ & f(~x) = g(~x)] or [f(~x) ↑ & g(~x) ↑],
f v g ⇐⇒ (∀~x)[f(~x)↓ =⇒ f(~x) = g(~x)],

and on occasion (in definitions) the ungrammatical “f(~x) = ↑” which is
synonymous with “f(~x) ↑”. Notice that if f is total and f v g, then f = g.

Partial functions compose strictly :

f(g1(~x), . . . , gn(~x)) = w

⇐⇒ (∃w1, . . . , wn)[g1(~x) = w1 & · · · & gn(~x) = wn

& f(w1, . . . , wn) = w],

so that in particular,

f(g1(~x), . . . , gn(~x))↓ =⇒ g1(~x)↓ , . . . , gn(~x)↓ .

Let (An ⇀ W ) be the set of all f : An ⇀ W , and consider functionals,
partial functions

F : Am × (An1
1 ⇀ W1)× · · · × (Ank

k ⇀ Wk) ⇀ W

which take tuples in some set A and partial functions (on various sets) as
arguments and give a value in some set W (when they converge). Such a
functional F is monotone, if

F (~x, p1, . . . , pk)↓ & p1 v q1 & · · · & pk v qk

=⇒ F (~x, p1, . . . , pk) = F (~x, q1, . . . , qk),

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 5
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6 1. Introduction

and it is continuous if

F (~x, p1, . . . , pk)↓
=⇒ (∃ finite p0

1 v p1, . . . , p0
k v pk)[F (~x, p0

1, . . . , p0
k) = F (~x, p1, . . . , pk)],

where a partial function is finite if it has finite domain of convergence.
From recursion theory, we will need the following, simple result which

justifies definitions by mutual recursion:

Lemma 1B.1 (The Fixed Point Lemma). For every monotone and con-
tinuous functional

F : An × (An ⇀ W ) ⇀ W,

the recursive equation

p(~x) = F (~x, p)(7)

has a v-least solution p : An ⇀ W , characterized by the conditions

p(~x) = F (~x, p) (~x ∈ An),

if (∀~x)[F (~x, q)↓ =⇒ F (~x, q) = q(~x)], then p v q.

Similarly, every system of mutual monotone and continuous recursive
equations 




p1(~x1) = F1(~x1, p1, . . . , pK)
...

pK(~xK) = FK(~xK , p1, . . . , pK)
(8)

(with domains and ranges matching so that the equations make sense) has
a v-least (canonical) solution tuple p1, . . . , pK .

Proof. For the one-equation case, define by recursion on N the iterates

p0(~x) = ↑ (i.e., p0 is the totally undefined n-ary partial function),

pk+1(~x) = F (~x, pk);

prove by induction, using monotonicity, that pk v pk+1, so that

p0 v p1 v p2 v · · · ;

and set p =
⋃{pk : k ∈ N}, i.e.,

p(~x) = w ⇐⇒ (∃k)[pk(~x) = w].

If p(~x) = w, then, for some k,

pk+1(~x) = F (~x, pk) = w

by the definition, and hence F (~x, p) = w, by monotonicity, since pk v p.
On the other hand, if F (~x, p) = w, then there is a finite q v p such that
F (~x, q) = w, by continuity, and then there is some k such that q v pk;
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1B. Partial functions and the Fixed Point Lemma 7

thus, by monotonicity, F (~x, pk) = pk+1(~x) = w, and so p(~x) = w, which
completes the proof that, for all ~x,

F (~x, p) = p(~x).

To verify the minimality of p, suppose that

(∀~x)[F (~x, q)↓ =⇒ F (~x, q) = q(~x)],

show (by an easy induction on k, using monotonicity) that pk v q, and
infer the required p v q.

The argument for recursive systems of equations is similar. a
It is well known that the hypothesis of continuity is not needed for this

basic lemma, cf. Theorem 7.36 in Moschovakis [2006]. This is a classical
result of elementary set theory, whose proof, however, requires some work.
We will not need it in these notes.

Problems for Section 1B

To solve a recursive equation (7) or a system (8) means to identify the
least solution(s) in explicit terms. For example, the solution of

f(x, y) = if (y = 0) then x else S(f(x, Pd(y)))

in N is f(x, y) = x + y, since addition satisfies the equation and it is total,
so it must be exactly the (unique) least solution. In the problems which
follow, individual variables vary over N, and function variables vary over
partial functions on N (of various arities).

Problem x1B.1. Solve in N the recursive equation

f(x, y) = if (y = 0) then 0 else f(x,Pd(y)) + x.

Problem x1B.2. Solve in N the recursive equation

f(x, y) = if (y = 0) then 0

else if (y = 1) then x

else 2 · f(x, iq2(y)) + f(x, parity(y)).

Problem x1B.3. Consider the following recursive equation in N:

f(x, y, r) =





r, if x = y = 0,

2f(iq2(x), iq2(y), 0), ow., if parity(x) + parity(y) + r = 0,

2f(iq2(x), iq2(y), 0) + 1, ow., if parity(x) + parity(y) + r = 1,

2f(iq2(x), iq2(y), 1), ow., if parity(x) + parity(y) + r = 2,

2f(iq2(x), iq2(y), 1) + 1, ow.

Prove that if f is its least solution, then f(x, y, 0) = x + y.
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8 1. Introduction

Problem x1B.4. Solve in N the recursive equation

f(x, y) = if (φ(x, y) = 0) then y else f(x, y + 1),

where φ : N2 ⇀ N is some fixed, given partial function.

Problem x1B.5. Solve in N the recursive equation

f(x, y) = if (x = 0) then 1 else f(Pd(x), f(x, y)).

Problem x1B.6. Solve in L∗ the recursive equation

f(u) = if (u = nil) then nil else f(tail(u)) ∗ head(u).

1C. Equational logic with partial terms and conditionals

To apply the basic notions of equational logic to the theory of compu-
tation, we must introduce two small wrinkles: allow the interpretations
of function symbols by partial functions, since computations often diverge,
and add branching (conditionals) to the term-formation rules. We also need
to embrace finite structures (even empty ones) and structures in which the
identity relation = is not one of the primitives.

(Partial) structures. A pair (S,Φ) is a signature if the set of sorts
S is not empty, containing in particular the boolean sort boole, and the
vocabulary Φ is a set of function symbols, each with an assigned type of the
form

type(φ) ≡ (s1, . . . , sn, sort(φ))

with s1, . . . , sn ∈ S \{boole} and sort(φ) ∈ S. A (partial) (S, Φ)-structure
is a pair

A = ({As}s∈S ,Φ) = ({As}s∈S , {φA}φ∈Φ),(9)

where each As is a set; Aboole is the set of truth values {tt, ff}; and for each
φ ∈ Φ,

if type(φ) = (s1, . . . , sn, s), then φA : As1 × · · · ×Asn ⇀ As.

The convergent objects φA with type(φ) = (s) are the distinguished ele-
ments of sort s of A.

We will adopt the natural convention about the identity symbol: if =s

occurs in the vocabulary Φ, it is then interpreted in every (S, Φ)-structure A
by some subfunction =A

s v =As of the (total) identity relation =As : As →
{tt,ff} on As—not necessarily by =As . We will also use the notations

eq(x, y) ⇐⇒ x = y, eqw(x) ⇐⇒ x = w
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1C. Equational logic with partial terms and conditionals 9

if there is any danger of confusing the formal symbol “=” in the signature
with the relation of identity between values of partial functions as this was
defined in Section 1B.

Φ-structures. Most often there is just one sort a (other than boole)
and Φ is finite: we describe these structures as usual, by identifying the
universe A = Aa, listing Φ, and letting the notation suggest

type(φ) ≡ (nφ, s) ≡ (arity(φ), sort(φ)) :≡ (a, . . . , a︸ ︷︷ ︸
nφ

, s)

for every φ ∈ Φ. Typical are the basic structures of unary and binary
arithmetic

Nu = (N, 0, S, Pd, eq0), Nb = (N, 0,parity, iq2, em2, om2, eq0),(10)

where

em2(x) = 2x, om2(x) = 2x + 1

are the operations of even and odd multiplication by 2. More generally, for
any k ≥ 3, the structure of k-ary arithmetic is

Nk = (N, 0, mk,0, . . . , mk,k−1, iqk, remk, eq0),(11)

where mk,i(x) = kx + i, iqk(x) = iq(x, k) and remk(x) = rem(x, k). These
are total structures, as is the standard structure of Peano arithmetic

N = (N, 0, 1,+, ·, =)(12)

Another interesting structure is that of strings (or lists) from a set L,

L∗ = (L∗, nil,=nil,head, tail, app).(13)

An example of a genuinely partial structure is a field (with identity)

F = (F, 0, 1,+,−, ·,÷, =),

where the quotient x÷ y is defined only when y 6= 0.
There are many interesting examples of many-sorted structures, e.g., a

vector space V over a field F

V = (V, F, 0F , 1F ,+F , ·F , 0V , +V , ·)
where · : F × V → V is scalar-vector multiplication and the other symbols
have their natural meanings. On the other hand, dealing directly with
many sorts is tedious, and we will work with one-sorted Φ-structures. The
more general versions follow by “identifying” a many-sorted A as in (9)
with the single-sorted

(]s∈S′As, {As : s ∈ S′},Φ) (S′ = S \ {boole}),(14)

where ]s∈S′As =
⋃{(s, x) : s ∈ S′ & x ∈ As} is the disjoint union of the

basic universes of A, As(x) ⇔ x ∈ As for s 6= boole, and the primitives
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10 1. Introduction

in Φ are as before, undefined on arguments not of the appropriate type.
There are still two sorts in Φ-structures, a and boole, and we will need to
deal with both partial functions and relations on their universe. Typically
we will write

f : An ⇀ As (s ∈ {a, boole})
to cover both partial functions and relations on the universe A, most often
skipping the tiresome side notation explaining what this “s” stands for.

Restrictions. If A = (A,Φ) is a Φ-structure and U ⊆ A = Aa, we set

A ¹ U = (U, {φA ¹ U}φ∈Φ),

where, for any f : An ⇀ As,

f ¹ U(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn ∈ U,w ∈ Us & f(x1, . . . , xn) = w.

Expansions and reducts. An expansion of a Φ-structure A is obtained
by adding new primitives to A,

(A,Ψ) = (A,Φ ∪Ψ).

Conversely, the reduct A ¹ Φ0 of a structure A = (A,Φ) to a subset Φ0 ⊆ Φ
of its vocabulary is defined by removing all the operations in Φ \Φ0. For
example, the reduct of the field of real numbers to {0, +,−} is the additive
group on R,

(R, 0, 1, +,−, ·,÷) ¹ {0, +,−} = (R, 0,+,−).

Diagrams. The (equational) diagram of a Φ-structure A is the set

eqdiag(A) = {(φ, ~x,w) : φ ∈ Φ, ~x ∈ An, w ∈ Asort(φ) and φA(~x) = w},
and its visible universe is the set of members of A which occur in eqdiag(A),

Avis = {x ∈ A : ∃(φ, x0, . . . , xn−1, xn) ∈ eqdiag(A)(∃i)[x = xi]}.
It is sometimes convenient to specify a structure A by giving its equa-

tional diagram, which (by convention then) means that A = Avis. For
example, if we set

U = {2 + 1 = 3, 2 + 3 = 5, 2 ≤ 5, 5 6≤ 1}(15)

with Φ = {0, S, +,≤}, then U = Uvis = {1, 2, 3, 5} and U is a finite struct-
ure in which (among other things) S is interpreted by the empty partial
function. And we have used here the obvious conventions, to write in dia-
grams

φ(~x) = w, R(~x), ¬R(~x)

rather than the more pedantic

(φ, ~x,w), (R, ~x, tt), (R, ~x,ff)

and to use “infix notation”, i.e., write x + y rather than +(x, y).
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1C. Equational logic with partial terms and conditionals 11

Substructures or pieces. A (partial) substructure U ⊆p A or piece of
a Φ-structure A is a structure of the same vocabulary Φ, such that U ⊆ A
and for every φ ∈ Φ, φU v φA, i.e.,

(
~x ∈ Un & w ∈ Us & φU(~x) = w

)
=⇒φA(~x) = w.

A piece U is strong (or induced) if in addition
(
~x ∈ Un & w ∈ Us & φA(~x) = w

)
=⇒φU(~x) = w,

in which case U = A ¹ U , the restriction of A to the universe of U. Notice
that

U ⊆p A ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A),

and if U = Uvis, then

U ⊆p A ⇐⇒ eqdiag(U) ⊆ eqdiag(A).

Notice also that we allow U = ∅, and we do not insist that a substructure
U ⊆p A be closed under the primitives of A—in particular, it need not
contain all the distinguished elements of A. This is contrary to the usual
terminology in mathematics and logic, where, for example, a subfield of a
field F must (by definition) contain 0, 1 and be closed under +.−, · and
÷. To avoid confusion, we have introduced and will sometimes use the
awkward term “piece” for these objects, but it should be remembered that
a piece U of a Φ-structure A is a Φ-structure in its own right.

Homomorphisms and embeddings. A homomorphism π : U → V
of one Φ-structure into another is any mapping π : U → V such that

φU(x1, . . . , xn) = w =⇒φV(π(x1), . . . , π(xn)) = π(w).(16)

In reading this we extend π to {tt,ff} by π(tt) = tt, π(ff) = ff, so that for
partial relations it insures

RU(x1, . . . , xn)=⇒RV(π(x1), . . . , π(xn)),

¬RU(x1, . . . , xn)=⇒¬RV(π(x1), . . . , π(xn)).

A homomorphism is an embedding π : U ½ V if it is injective (one-to-
one), and it is an isomorphism π : U½→V if it is a surjective embedding
and, in addition, the inverse map π−1 : U ½→V is also an embedding.
Clearly

U ⊆p V ⇐⇒ U ⊆ V and the identity idU : U ½ V is an embedding.
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12 1. Introduction

If π : U → A is a homomorphism, then π[U] is the piece of A with
universe π[U ] and

eqdiag(π[U]) = {(φ, π(x1), . . . , π(xn), π(w))

: (φ, x1, . . . , xn), w) ∈ eqdiag(U)}.
This construction is especially useful when π : U ½ A is an embedding, in
which case π : U½→π[U] is an isomorphism.

Syntax. The terms (with parameters) of a Φ-structure A are defined
by the structural recursion

(A-terms) E :≡ tt | ff | x (x ∈ A)

| vi | φ(E1, . . . , Enφ
) | if E0 then E1 else E2,

where v0, v1, . . . is a fixed sequence of individual variables of sort a.6 The
definition assigns to each term a sort boole or a and sets type restrictions on
the formation rules in the obvious way; for the conditional it is required that
sort(E0) ≡ boole and sort(E1) ≡ sort(E2), and then sort(E) ≡ sort(E1).
The propositional connectives on terms of boolean sort can be defined using
the conditional:

(17) ¬E :≡ if E then ff else tt,
E1 & E2 :≡ if E1 then E2 else ff, E1 ∨ E2 :≡ if E1 then tt else E2,

E1 → E2 :≡ ¬E1 ∨ E2, E1 ↔ E2 :≡ (E1 → E2) & (E2 → E1).

The parameters of an A-term E are the members of A which occur in
it. A term E is pure (or a Φ-term) if it has no parameters, and closed if
no variables occur in it.

The subterms of a term are defined as usually.
We will also need the terms without conditionals, which we will now call

algebraic A-terms. They are defined by the simpler recursion

E :≡ tt | ff | vi | x | φ(E1, . . . , Enφ
).(Algebraic A-terms)

Notice that these include terms of sort boole, e.g., tt, ff and R(E1, . . . , En)
if R ∈ Φ is of boole sort, so they are more general than the usual terms of
logic which are all of sort a.

The depth of an algebraic term is defined by the recursion

depth(tt) = depth(ff) = depth(vi) = depth(x) = 0,

depth(φ(E1, . . . , En)) = max{depth(E1), . . . , depth(En)}+ 1.

6We do not allow variables of boolean sort. This is a convenient choice for the kinds
of algorithms we will want to analyze, and it does not affect in any serious way the
breadth of applicability of the results we will prove.
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1C. Equational logic with partial terms and conditionals 13

Formal substitution. For any two A-terms E, M and any variable x,

E{x :≡ M} = the result of replacing every occurrence of x in E by M,

which is (easily) also a term. We will use extensively the familiar notation7

E(x1, . . . , xn) :≡ (E, (x1, . . . , xn))

for a pair of a term and a sequence of distinct variables which includes all
the variables that occur in E. The convention provides a useful notation
for substitution: if M1, . . . , Mn are A-terms, then

E(M1, . . . , Mn) :≡ E{x1 :≡ M1, . . . , xn :≡ Mn}.
In particular, if x1, . . . , xn ∈ A, then E(x1, . . . , xn) is the closed A-term
constructed by replacing each xi by xi.

Semantics. For a fixed Φ-structure A, we define

den : {closed A-terms} ⇀ A ∪ {tt,ff}
by the obvious recursive clauses:

den(tt) = tt, den(ff) = ff, den(x) = x

den(φ(M1, . . . ,Mnφ
)) = φA(den(M1), . . . , den(Mnφ

))

den(if M0 then M1 else M2) =





den(M1), if den(M0) = tt,
den(M2), if den(M0) = ff
↑, otherwise.

We call den(M) the denotation of the closed A-term M (if den(M)↓), and
in that case, clearly

sort(M) = boole=⇒den(M) ∈ {tt,ff}, sort(M) = a=⇒den(M) ∈ A.

When we need to exhibit the structure in which the denotation is computed,
we write den(A,M), or we use model-theoretic notation,

A |= E = M ⇐⇒ den(A, E) = den(A,M).

Partiality introduces some complications which deserve notice. For ex-
ample, if we view subtraction as a partial function on N, then for all
x, y, z ∈ N,

(N, 0, 1,+,−) |= (x + y)− y = x;

but if x < y, then

(N, 0, 1, +,−) 6|= (x− y) + y = x

7We will also adopt the familiar abuse of this notation and refer to these pairs E(~x)
as “terms”, as there is no generally accepted name for them.
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14 1. Introduction

because (x− y) ↑—and then, by the strictness of composition, (x− y)+ y ↑
also. On the other hand,

den(M0) = tt =⇒ den(if M0 then M1 else M2) = den(M1),

whether den(M2) converges or not.
Notice that as we defined them in (17), the connectives of propositional

logic give the correct truth value only when both their constituents con-
verge.

Explicit definability. A partial function f : An ⇀ As is explicitly
defined or just explicit in A if there is a pure Φ-term E(~x) such that

f(~x) = den(A, E(~x)) (~x ∈ An).(18)

We set

expl(A) = {f : An ⇀ As : f is explicit in A}.
If (18) holds with a term E(~x) with parameters, we say that f is explicit
with parameters in A.

First order logic. If all the primitives of a Φ-structure A are total
functions (or relations), we can think of A as a first-order structure and
interpret first-order logic on it. We will not have many occasions to do this
in general, but the quantifier-free formulas are occasionally needed and so
we include here their definition:

θ :≡ tt | ff | R(E1, . . . Em) | (¬θ1) | (θ1 & θ2) | (θ1 ∨ θ2) | (θ1 → θ2)(19)

where R ∈ Φ is of Boolean sort and E1, . . . , En are pure, algebraic Φ-terms
of sort a. These are interpreted naturally on any total Φ-structure and
they comprise the quantifier-free relations of A.

Generation. For a fixed Φ-structure A and any X ⊆ A, we set

G0[X] = X,

Gm+1[X] = Gm[X] ∪ {φA(u1, . . . , unf
) : u1, . . . , unφ

∈ Gm[X]},
G∞[X] =

⋃
mGm[X].

By a simple induction on m,

Gm+k[X] = Gm[Gk[X]].(20)

We write

Gm(~x) = Gm[{x1, . . . , xn}], G∞(~x) =
⋃

mGm(~x)

for the set generated in m steps by a tuple ~x = (x1, . . . , xn) ∈ An. If
the structure in which these sets are computed is not obvious, we write
Gm[A, X], Gm(A, ~x), and for the corresponding induced pieces of A,

Gm(A, ~x) = A ¹ Gm(A, ~x), G∞(A, ~x) = A ¹ G∞(A, ~x).
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1C. Equational logic with partial terms and conditionals 15

A structure A is generated by ~x if A = G∞(A, ~x), so that if it also
finite, then A = Gm(A, ~x) for some m. Most often we will be concerned
with finite pieces of some fixed A which are generated by a tuple of their
members, and we set

depth(U, ~x) = min{m : ~x ∈ Un,U = Gm(U, ~x) ⊆p A}.
The size of a finite U ⊆p A is the number of all visible elements of its

universe,

(21) size(U) = |Uvis|
=

∣∣∣{v ∈ U : v occurs in some (φ, ~u,w) ∈ eqdiag(U)}
∣∣∣ ≤ |U |.

We also need the depth of an element below a tuple,

depth(w;A, ~x) = min{m : w ∈ Gm(A, ~x)}, (w ∈ G∞(A, ~x)).(22)

Clearly,

depth(xi;A, ~x) = 0,

depth(φA(u1, . . . , unφ
);A, ~x) = max{depth(ui;A, ~x) : i = 1, . . . , nφ}+ 1.

Proposition 1C.1. If U is a Φ-structure, ~x ∈ Un and depth(w;U, ~x) =
m for some w ∈ U , then

m ≤ size(Gm(U, ~x)) ≤ |eqdiag(Gm(U, ~x))|.(23)

It follows that if U is finite and generated by ~x, then

depth(U, ~x) ≤ size(U) ≤ |eqdiag(U)|.(24)

Proof of (23) is by induction on m, the basis being trivial since all
three numbers in it are 0.

For the induction step in the first inequality, we are given some w with

depth(w;U, ~x) = m + 1,

so that w = φU(u1, . . . , un) and for some i, depth(ui;U, ~x) = m. By the
induction hypothesis,

m ≤ size(Gm(U, ~x)) ≤ size(Gm+1(U, ~x))− 1,

the latter because w occurs in the entry

(φ, u1, . . . , un, w) ∈ eqdiag(Gm+1(U, ~x))

and is not a member of Gm(U, ~x). So m + 1 ≤ size(Gm+1(U, ~x)).
For the induction step in the proof of the second inequality, notice that

(skipping U and ~x which remain constant in the argument),

Gm+1 = Gm ∪ {φU(u1, . . . , uk) : u1, . . . , uk ∈ Gm & φU(u1, . . . , uk) /∈ Gm}.
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16 1. Introduction

The first of these two disjoint pieces has size ≤ |eqdiag(Gm)| by the induc-
tion hypothesis, and to each w is the second piece we can associate in a
one-to-one way some entry (φ, ~u,w) in the diagram of Gm+1 which is not
in the diagram of Gm, because w /∈ Gm; so

size(Gm+1) ≤ |eqdiag(Gm)|+
(
|eqdiag(Gm+1)|−|eqdiag(Gm)|

)

= |eqdiag(Gm+1)|. a

Problems for Section 1C

Problem x1C.1. Give an example of an embedding φ : U ½ V of one
Φ-structure to another which is bijective but not an isomorphism.

Problem x1C.2 (Parsing for terms). Prove that for any Φ-structure A,
every A-term E satisfies exactly one of the following conditions.

1. E ≡ tt, or E ≡ ff, or E ≡ x for some x ∈ A, or E ≡ v for a variable v.
2. E ≡ φ(E1, . . . , En) for a uniquely determined φ ∈ Φ and uniquely

determined terms E1, . . . , En.
3. E ≡ if E0 then E1 else E2 for uniquely determined E0, E1, E2.

Problem x1C.3. Give an example of two terms E1(x) and E2(x) such
that for every x ∈ A, den(E1(x)) = den(E2(x)), but if M is closed and
den(M) ↑, then den(E1(M)) 6= den(E2(M)).

Problem x1C.4. Show that for every term E(x) and closed term M ,

den(M) = w =⇒den(E(M)) = den(E(w)).

Problem x1C.5. Show that for any two terms E1(x), E2(x), if M is
closed, den(M)↓ and den(E1(x)) = den(E2(x)) for every x ∈ A, then

den(E1(M)) = den(E2(M)).

These results extend trivially to simultaneous substitutions.

Problem x1C.6. For each of the following (and using the definitions
in (17), determine whether it is true or false in every structure A for all
closed terms of boolean sort (sentences).
(1) |= if φ then ψ1 else ψ2 = if ¬φ then ψ2 else ψ1.
(2) |= ¬(φ & ψ) = (¬φ) ∨ (¬ψ).
(3) |= ¬(φ & ψ) ↔ (¬φ) ∨ (¬ψ) = tt.
(4) |= φ & ψ = ψ & φ.
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1C. Equational logic with partial terms and conditionals 17

Problem x1C.7∗ (Explicit expansions). Suppose the vocabulary Φ has
a relation symbol R of arity k > 0 and A is a Φ-structure such that RA :
Ak → {tt,ff} is total. Suppose f : An ⇀ A is explicit in A. Let f be a
fresh function symbol and let (A, f) be the expansion of A in which f is
interpreted by f . Define a mapping

M 7→ M∗

which assigns to each term M in the vocabulary Φ∪{f} a Φ-term M∗ with
the same variables, so that

den((A, f),M(~y)) = den(A,M∗(~y)).

Show also by a counterexample that the hypothesis about R cannot be
removed.

Problem x1C.8. Show that if π : A → B is a homomorphism of one
Φ-structure into another, then for every Φ-term M(~x) and all ~x ∈ An,

if den(A, M(~x))↓ , then π(den(A,M(~x)) = den(B,M(π(~x)))

where, naturally,

π(x1, . . . , xn) = (π(x1), . . . , π(xn)).

Problem x1C.9. Prove that for every m and ~x ∈ An,

Gm(A, ~x) = {den(A, E(~x)) : E(~x) is pure, algebraic,

sort(E(~x)) = a and depth(E(~x)) ≤ m},
Problem x1C.10. Show that for every vocabulary Φ, there is a number

a such that for every Φ-structure A, every ~x ∈ An and every m,

|Gm(~x)| ≤ C2am

(C = n + 2).

Give an example of a structure A where |Gm(x)| cannot be bounded by
a single exponential in m.

Problem x1C.11. Prove that a partial function f : An ⇀ As is A-
explicit if and only if there are pure, algebraic terms Ci(~x) of boolean sort
and algebraic terms Vi(~x) such that

f(~x) =





den(V0(~x)) if den(C0(~x)) = tt,
den(V1(~x)) ow., if den(C0(~x))↓ & den(C1(~x)) = tt,

...
den(Vk(~x)) ow., if den(Ck−1(~x))↓ & den(Ck(~x)) = tt,
den(Vk+1(~x)) ow., if den(Ck(~x))↓ .

(25)

Infer that for a total structure A, a relation R ⊆ An is A-explicit if and
only if it is definable by a quantifier-free formula, as these are defined in
Section 1C.
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18 1. Introduction

This representation of explicit functions and relations is especially inter-
esting (and has been much studied) for the Presburger structure

NPres = (N, 0, 1, +,−· , <, =, {remm, iqm}m≥2)(26)

where remm(x) = rem(x,m), iqm(x) = iq(x,m). This is because expl(NPres)
(the Presburger functions) is the set of all functions on N whose graphs are
first-order definable in additive (Presburger) arithmetic

N+ = (N, 0, 1,+, =).

This follows from the classical quantifier elimination result for Presburger
arithmetic, cf. Enderton [2001]. The Presburger functions are piecewise
linear in the following, precise sense:

Problem x1C.12∗. Prove that if f : Nn → N is a Presburger function,
then there is a partition of Nn into disjoint sets D1, . . . , Dk ⊆ Nn that
are definable by quantifier free formulas of NPres, such that for each i =
1, . . . , k, and suitable rational numbers q0, q1, . . . , qn,

f(~x) = q0 + q1x1 + · · ·+ qnxn (~x ∈ Di).

Hint: Check that the result holds for the primitives of NPres and that the
class of functions which satisfy it is closed under composition. Notice that
f(~x) ∈ N in this expression, although some of the qi ∈ Q may be proper,
positive or negative fractions.

The next three problems will follow from results that we will prove later,
but perhaps there are elementary proofs of them that can be given now:

Problem x1C.13∗. Prove that successor function S : N → N is not
explicit in binary arithmetic Nb.

Problem x1C.14∗. Prove that the parity relation

parity(x) ⇐⇒ 2 | x
is not quantifier-free definable in unary arithmetic Nu, and the successor
relation

S(x, y) ⇐⇒ x + 1 = y

is not quantifier-free definable in binary arithmetic Nb.

Problem x1C.15∗. Prove that the divisibility relation

x | y ⇐⇒ y 6= 0 & rem(x, y) = 0

is not quantifier-free definable in the Presburger structure NPres.

There are many obvious, similar questions relating the various primitives
of Presburger arithmetic which also do not seem to be easy to answer now.
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1D. Some basic algorithms 19

1D. Some basic algorithms

We review here briefly some classical examples of algorithms from prim-
itives, primarily to illustrate how recursive equations can be interpreted as
instructions for the computation of their least fixed points. This process
will be made precise in the next chapter.

The merge-sort algorithm. Suppose L is a set with a fixed total
ordering ≤ on it. A string

v = v0v1 · · · vn−1 = (v0, . . . , vn−1) ∈ L∗

is sorted (in non-decreasing order), if v0 ≤ v1 ≤ · · · ≤ vn−1, and for each
u ∈ L∗, sort(u) is the sorted “rearrangement” of u,

sort(u) =df the unique, sorted v ∈ L∗ such that for some(27)

bijection π : {0, . . . , n− 1}½→{0, . . . , n− 1},
v = (uπ(0), uπ(1), . . . , uπ(n−1)).

The efficient computation of sort(u) is important in many computing ap-
plications and many sorting algorithms have been studied. We consider
here just one of these algorithms, which is easily expressed by a system of
two, simple, recursive equations.

The merge-sort uses as a “subroutine” an algorithm for merging two
strings, which is defined as follows.

Proposition 1D.1. The equation

merge(w, v) = if (|w| = 0) then v(28)

else if (|v| = 0) then w

else if (w0 ≤ v0) then (w0) ∗merge(tail(w), v)

else (v0) ∗merge(w, tail(v))

determines a value merge(w, v) for all strings w, v ∈ L∗, and if w and v
are both sorted, then

merge(w, v) = sort(w ∗ v).(29)

Moreover, the value merge(w, v) can be computed by successive applications
of (28), using no more than |w|+ |v| −· 1 comparisons.

Proof. That (28) determines a function and that (29) holds are both
trivial, by induction on |w|+ |v|. For the comparison counting, notice first
that (28) computes merge(w, v) using no comparisons at all, if one of w
or v is nil; if both |w| > 0 and |v| > 0, we make one initial comparison
to decide whether w0 ≤ v0, and no more than |w| + |v| − 2 additional
comparisons after that (by the induction hypothesis, in either case), for a
total of |w|+ |v| − 1. a
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20 1. Introduction

We did not define precisely what it means to compute merge(w, v) by
successive applications of (28) (or from (28), as we will sometimes say),
but the procedure is obvious; for example, when L = N with the natural
ordering:

merge((3, 1), (2, 4)) = (2) ∗merge((3, 1), (4))
= (2, 3) ∗merge((1), (4))
= (2, 3, 1) ∗merge(( ), (4))
= (2, 3, 1, 4).

For each sequence u with |u| = m > 1 and k = bm
2 c the integer part of

1
2 |u|, let:

half1(u) = (u0, . . . , uk−1), half2(u) = (uk, . . . , um−1),(30)

and for |u| ≤ 1, set

half1(nil) = nil, half2(nil) = nil, half1((x)) = nil, half2((x)) = (x),(31)

so that in any case
u = half1(u) ∗ half2(u)

and each of the two halves of u has length within 1 of 1
2 |u|.

Proposition 1D.2. The sort function satisfies the equation

sort(u) = if |u| ≤ 1 then u(32)

else merge(sort(half1(u)), sort(half2(u)))

and it can be computed from (28) and (32) using no more than |u| log |u|
comparisons.

Proof. The validity of (32) is immediate, by induction on |u|. To prove
the bound on comparisons, also by induction, note that it is trivial when
|u| ≤ 1, and suppose that dlog |u|e = k+1, so that (easily) both halves of u
have length ≤ 2k. Thus, by the induction hypothesis and Proposition 1D.1,
we can compute sort(u) using no more than

k2k + k2k + 2k + 2k − 1 < (k + 1)2k+1

comparisons. a
The merge-sort is optimal (in a very strong sense) for the number of

comparisons required to sort a string, e.g., see Problem x1D.7∗.
The Euclidean algorithm. This classical process, first described in

Book VII of the Elements, is (perhaps) the most ancient and still one of
the most important algorithms in mathematics. We consider the “iterated
division” rather than the original “iterated subtraction” version of the algo-
rithm, which is implicit in Euclid and offers itself more easily to complexity
analysis.
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1D. Some basic algorithms 21

Lemma 1D.3. The function gcd(x, y) satisfies the following recursive equa-
tion, for x ≥ y ≥ 1:

gcd(x, y) = if (rem(x, y) = 0) then y else gcd(y, rem(x, y)).(33)

Proof. If y - x, then the pairs {x, y} and {y, rem(x, y)} have exactly
the same common divisors. a

Equation (33) is an example of a recursive program from the primitives
rem, eq0, and it provides a procedure for computing gcd(x, y):

if rem(x, y) = 0 give output y, else set x := y, y := rem(x, y)
and repeat.

For example:

gcd(231, 165) = gcd(165, 66) c.d.e. 231 = 165 · 1 + 66
= gcd(66, 33) c.d.e. 165 = 66 · 2 + 33
= 33 because 33 | 66.

The computation required three divisions in this case—the last one verify-
ing that 33 | 66. In general, we set

c{rem}(ε, x, y) = the number of divisions required to compute
gcd(x, y) using (33) (x ≥ y ≥ 1),

so that, directly from (33), for x ≥ y ≥ 1,

c{rem}(ε, x, y) = if (y | x) then 1 else 1 + c{rem}(ε, y, rem(x, y)).(34)

Proposition 1D.4. For all x ≥ y ≥ 2, c{rem}(x, y) ≤ 2 log y.

Proof is by (complete) induction on y, and we must consider three
cases (with c(x, y) = c{rem}(x, y)):

Case 1, y | x; now c(x, y) = 1 ≤ 2 log y, since y ≥ 2 and so log y ≥ 1.

Case 2, x = yq1 + r1 with 0 < r1 < y, but r1 | y; now c(x, y) = 2, and
2 ≤ 2 log y, as in Case 1.

Case 3, x = yq1 + r1 and y = r1q2 + r2 with 0 < r2 < r1 < y. Notice
that the last, triple inequality implies that y ≥ 3. If r2 = 1, then only one
more division is needed, so c(x, y) = 3, and (easily) 3 < 2 log 3 ≤ 2 log y.
Suppose then that r2 ≥ 2, and consider the next division,

r1 = r2q3 + r3 (q3 ≥ 1, 0 ≤ r3 < r2).

Using the facts that q2 ≥ 1 and r2 < r1,

y = r1q2 + r2 ≥ r1 + r2 > 2r2,
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22 1. Introduction

which by the induction hypothesis for r2 ≥ 2 gives

c(x, y) = 2 + c(r1, r2) ≤ 2 + 2 log r2

≤ 2 + 2 log(
y

2
) = 2

(
1 + log(

y

2
)
)

= 2 log y,

as required. a
The lower bounds for the complexity measure c{rem}(ε, x, y) are best ex-

pressed in terms of the classical Fibonacci sequence, defined by the recursion

F0 = 0, F1 = 1, Fk+2 = Fk + Fk+1,(35)

so that F2 = 0 + 1 = 1, F3 = 1 + 1 = 2, F4 = 3, F5 = 5, etc. We leave
them for the problems.

Coprimeness by the Euclidean. In the formal terminology that we
will introduce in the next Chapter, the Euclidean is a recursive algorithm
of the structure (N, rem, eq0). If we use it to check the coprimeness rela-
tion, we also need to test at the end whether gcd(x, y) = 1, so that as a
decision method for coprimeness, the Euclidean is a recursive algorithm of
the structure

Nε = (N, rem, eq0, eq1).

As we mentioned in the Preface, it is not known whether the Euclid-
ean algorithm is optimal (in any natural sense) among algorithms from
its primitives, either for computing the gcd or for deciding coprimeness.
One of our main aims is to make these questions precise and establish the
strongest, known partial results about them.

The binary (Stein) algorithm. This modern algorithm computes
gcd(x, y) and decides x⊥⊥ y in O(log x + log y) steps, from “linear” oper-
ations, which are much simpler than division.

Proposition 1D.5 (Stein [1967], Knuth [1973], Vol. 2, Sect. 4.5.2).
The gcd satisfies the following recursive equation for x, y ≥ 1, using which
it can be computed in O(log x + log y) steps:

gcd(x, y) =





x if x = y,

2 gcd(x/2, y/2) otherwise, if Parity(x) = Parity(y) = 0,

gcd(x/2, y) otherwise, if Parity(x) = 0, Parity(y) = 1,

gcd(x, y/2) otherwise, if Parity(x) = 1, Parity(y) = 0,

gcd(x−· y, y) otherwise, if x > y,

gcd(x, y−· x) otherwise.

Proof. That the gcd satisfies these equations and is determined by
them is trivial. To check the number of steps required, notice that (at
worst) every other application of one of the clauses involves halving one
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1D. Some basic algorithms 23

of the arguments—the worst case being subtraction, which, however must
then be immediately followed by a halving, since the difference of two odd
numbers is even. a

The structure in which the Stein algorithm lives is clearly

Nst = (N, parity, em2, iq2,−· ,=, <).

We will show that the Stein algorithm is weakly optimal for coprimeness
from Presburger primitives.

Horner’s rule. For any field F , Horner’s rule computes the value

VF,n(a0, . . . , an, x) = χ(x) = a0 + a1x + · · ·+ anxn (n ≥ 1)

of a polynomial χ(x) of degree n using no more than n multiplications and
n additions in F as follows:

χ0(x) = an,

χ1(x) = an−1 + xχ0(x) = an−1 + anx

...

χj(x) = an−j + xχj−1(x) = an−j + an−j+1x + · · ·+ anxj

...

χ(x) = χn(x) = a0 + xχn−1(x) = a0 + a1x + · · ·+ anxn.

This is an example of a simple but important finite algorithm from the
field primitives of F . It can also be used to decide the (plausibly simpler)
nullity relation on F ,

NF,n(a0, . . . , an, x) ⇐⇒ a0 + a1x + · · ·+ anxn = 0,(36)

from the primitives of the expansion of F by the identity relation

F = (F, 0, 1,+,−, ·,÷, =).

It is known that Horner’s rule is optimal for many fields and inputs,
both for the number of multiplications and the number of additions that
are needed to compute VF,n(~a, x) or to decide NF,n(~a, x), in fact the relevant
theorems (from the 1960s) were the first significant lower bounds for natural
problems in algebra. We will establish some of them.

Problems for Section 1D

Problem x1D.1. Prove that if x > v0 > v1 > · · · > vn−1, then the
computation of merge((x), v) by (28) will require n comparisons.
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24 1. Introduction

In the next two problems we define and analyze a simple algorithm for
sorting, which is much less efficient than the merge-sort.

Problem x1D.2. Prove that the equation

insert(x, u) = if (|u| = 0) then (x)(37)

else if x ≤ u0 then (x) ∗ u

else (u0) ∗ insert(x, tail(u))

determines a value insert(x, u) ∈ L∗ for any x ∈ L and u ∈ L∗, and if u is
sorted, then

insert(x, u) = sort((x) ∗ u).(38)

Moreover, insert(x, u) can be computed from (37) using no more than |u|
comparisons.

Problem x1D.3 (The insert-sort algorithm). Prove that the sort
function satisfies the equation

sort(u) = if |u| ≤ 1 then u(39)

else insert(u0, sort(tail(u))),

and can be computed from (39) and (37) using no more than 1
2 |u|(|u| − 1)

comparisons. Illustrate the computation with some examples, and show
also that if u is inversely ordered, then this computation of sort(u) requires
exactly 1

2 |u|(|u| − 1) comparisons.

To see the difference between the merge-sort and the insert-sort, note
that when |u| = 64 = 26, then the insert-sort may need as many as 2016
comparisons, while the merge-sort will need no more than 384. On the
other hand, as the next two problems show, there is nothing wrong with
the idea of sorting by repeated inserting—it is only that (37) expresses a
very inefficient algorithm for insertion.

Problem x1D.4∗ (Binary insertion). Prove that the equation

binsert(x, u) = if (|u| = 0) then (x)(40)
else if (x ≤ half2(u)0)

then binsert(x, half1(u)) ∗ half2(u)
else half1(u) ∗ (half2(u)0) ∗ binsert(x, tail(half2(u)))

determines a value binsert(x, u) ∈ L∗ for any x ∈ L and u ∈ L∗, and if u is
sorted, then

binsert(x, u) = insert(x, u) = sort((x) ∗ u).
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1D. Some basic algorithms 25

Moreover, binsert(x, u) can be computed from (40) using (for |u| > 0) no
more than b(|u|) comparisons, where

b(m) =

{
log m + 1, if m is a power of 2,

blog mc, otherwise.

Problem x1D.5∗ (Binary-insert-sort). Prove that the sort function sat-
isfies the equation

sort(u) = if |u| ≤ 1 then u(41)

else binsert(u0, sort(tail(u))),

and can be computed from (41) and (40) using no more than s(|u|) com-
parisons, where for m > 0,

s(m) = blog((m− 1)!)c+ (m− 1) ≤ log((m− 1)!) + (m− 1).(42)

Problem x1D.6∗. For the function s(m) defined in (42), prove that

limm→∞
s(m)

log(m!) = 1.

By Stirling’s formula,

limm→∞
m log m
log(m!) = 1,

and so the merge-sort and the binary-insert-sort algorithms are asymptot-
ically equally efficient for the required number of comparisons.

In fact, these algorithms are asymptotically worst-case-optimal for this
complexity measure among all “deterministic sorting algorithms”, in a very
strong sense which we will not make precise until later. Here we state
only one version of this result for “Turing machines with oracles” which
uses and illustrates the idea of this basic argument, one of the standard
methods for establishing lower bounds. (This problem naturally requires
some knowledge of Turing machines.)

Problem x1D.7∗ (Lower bound for sorting). Suppose L is a finite set
with n ≥ 2 elements and ≤ is a fixed ordering of L. A Turing machine M
is a Turing sorter for (L,≤) if
• it has a special query tape which it can read and on which it can write;
• an output tape on which it can write;
• query states ?, a0, a1;

and M acts on an arbitrary u = (u0, . . . , un−1) ∈ Ln so that the following
conditions hold:
(1) The computation starts with all tapes empty.
(2) Consulting the input oracle: If the computation reaches the state ?,

then the query tape has two numbers ki, kj on it and the computation
moves to state a0 if uki ≤ ukj or to state a1 if uki > ukj .
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26 1. Introduction

(3) The computation terminates, and when it does, then the output tape
supplies a sequence of numbers k0, . . . , kn−1 such that

sort(u0, . . . , un−1) = (uk0 , . . . , ukn−1).

Other than this, M may have any number of tapes, of any kind (infinite
in one or both directions), it may “read” and “write” natural numbers on
the query and output tapes in unary, binary (or any unambiguous way)
to give meaning to (2) and (3), and it may have additional “oracle tapes”
which supply the values of arbitrary functions on N.

Prove that every such Turing sorter will consult the input oracle for at
least dlog(n!)e times, for at least one string u ∈ Ln.

Hint: The computation of M for any u ∈ Ln proceeds deterministi-
cally until the first question to the input oracle, after which it may split
depending on whether the next state is a0 or a1—and then it may split
again on the second question, etc. Consider the tree of all computations of
M structured in this way and use (5).

We now turn to some problems related to the Euclidean algorithm.

Recall the definition of the Fibonacci sequence {Fk}k in (35).

Problem x1D.8. Show that if ϕ = 1
2 (1+

√
5) is the positive root of the

quadratic equation x2 = x + 1, then for all k ≥ 2,

ϕk−2 ≤ Fk ≤ ϕk.

Problem x1D.9. Show that if ϕ = 1+
√

5
2 and ϕ̂ = 1−√5

2 are the two
roots of the quadratic equation x2 = x + 1, then for all k,

Fk =
ϕk − ϕ̂k

√
5

≥ ϕk

√
5
− 1.

Hint: Use induction on k for the equation, and infer the inequality from

the fact that
∣∣∣ ϕ̂k

√
5

∣∣∣ < 1.

Problem x1D.10. Show that successive Fibonacci numbers Fk, Fk+1

with k ≥ 2 are relatively prime, and c(ε, Fk+1, Fk) = k − 1.

Problem x1D.11. Lamé’s Lemma. Show that if y ≤ Fk with k ≥ 2,
then, for every x ≥ y, c(ε, x, y) ≤ k − 1. Hint: Use induction on k ≥ 2,
checking separately (by hand) the two basis cases k = 2, 3 and imitating
the argument in the proof of Proposition 1D.4.
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1D. Some basic algorithms 27

Lamé’s Lemma predicts the following upper bounds for c(ε, x, y) for small
values of y (and any x ≥ y):

Values of y c(ε, x, y)
1 1
2 2
3 3

4 - 5 4
6 - 8 5
9 - 13 6

These are a bit better than the simple 2 log y bound. The next two problems
clarify the situation, but require some arithmetic (of the sort that we will
often “leave for an exercise”):

Problem x1D.12. Show that if x ≥ y ≥ 2, then

c(ε, x, y) ≤ log(
√

5y)
log ϕ

,

where ϕ is the positive root of x + 1 = x2.

Problem x1D.13. Show that for all real numbers y ≥ 16,
log(

√
5y)

log ϕ
<

2 log y. Hint: Check the inequality by hand for y = 16, and then check
that the function

f(y) = 2 log y − log(
√

5y)
log ϕ

on R is increasing for y > 0.

Problem x1D.14 (Bezout’s Lemma). Show that for all natural num-
bers x, y ≥ 1, there exist integers α, β ∈ Z such that

gcd(x, y) = αx + βy.

In fact, we can set α = α(x, y), β = β(x, y) where the functions

α, β : N× N→ Z = {. . . ,−2,−1, 0, 1, 2, . . . }
satisfy the following system of recursion equations, for x ≥ y ≥ 1:

α(x, y) = if (y | x) then 0 else β(y, rem(x, y)),
β(x, y) = if (y | x) then 1

else α(y, rem(x, y))− iq(x, y)β(y, rem(x, y)).

Use this recursion to express gcd(231, 165) as an integer, linear combi-
nation of 231 and 165.

Problem x1D.15. Show that two numbers x, y ≥ 1 are coprime if and
only if there exist integers α, β ∈ Z such that 1 = αx + βy.
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28 1. Introduction

Problem x1D.16. For positive numbers, show: if x⊥⊥ a and x | ab, then
x | b.

Problem x1D.17. Show that for all x ≥ y ≥ 1, there are infinitely
many choices of rational integers α and β such that

gcd(x, y) = αx + βy,

but only one choice such that 0 ≤ α < y
d , if d = gcd(x, y).

Problem x1D.18. Define a (finite) algorithm from the primitives of a
field F of characteristic 6= 2, which decides the nullity relation (36) using
no more than n − 1 additions and/or subtractions, and count how many
multiplications and/or divisions and equality tests it needs. Hint: Show
first that you can test whether ax+b = 0 using no additions or subtractions,
just multiplications and equality tests.
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CHAPTER 2

RECURSIVE (McCARTHY) PROGRAMS

Recursive programs are deterministic versions of the classical Herbrand-
Gödel-Kleene systems of recursive equations, and they can be used to de-
velop very elegantly the classical theory of recursive (computable) functions
on the natural numbers. Here we will study them on arbitrary, partial
structures, and we will use them primarily to introduce some natural and
robust notions of complexity relative to specified primitives.

We will also discuss briefly (finitely) nondeterministic recursive programs
in Section 2C.

2A. Syntax and semantics

Syntax. A (deterministic) recursive program on the vocabulary Φ is a
syntactic expression

E ≡ E0(~x) where {p1(~x1) = E1(~x1), . . . , pK(~xK) = EK(~xK)},(43)

where p1, . . . , pK are distinct function symbols; each Ei(~xi) is a pure term
in the program vocabulary

voc(E) = Φ ∪ {p1, . . . , pK}
whose variables are, as usual, in the list ~xi, with ~x0 ≡ ~x; and the arities and
sorts of the recursive variables p1, . . . , pK of E are such that the equations
in E make sense.

The term E0 is the head of E, and the remaining parts E1, . . . , EK com-
prise the body of E. The recursive variables p1, . . . , pK and the individual
variables in the lists ~xi for i = 1, . . . ,K are bound in E, so that its only
free variables (if any) are those which occur in the head E0(~x). The idea is
that E(~x) denotes the value of E0(~x) when p1, . . . , pK are interpreted by
the canonical (least) solutions of the recursive equations in the body of E.

We allow K = 0 in this definition, so that every Φ-term is identified with
a Φ-program with empty body,

E ≡ E where { }.

29



30 2. Recursive (McCarthy) programs

In general, we think of recursive programs as generalized Φ-terms, we write,
as usual, E(~x) = (E,~x) for any list of individual variables ~x ≡ x1, . . . , xn

which includes all the free variables of E, i.e., those which occur in the
head E0, and we set

sort(E) = sort(E0), arity(E) = n.

The total arity of E is the maximum of arity(E) and the arities of all the
function symbols φ ∈ Φ and the recursive variables of E.

Algorithms are often expressed by a single recursive equation, e.g.,

gcd(x, y) = if eq0(rem(x, y)) then y else gcd(y, rem(x, y))

for the Euclidean, and in this case we need to add a trivial head term to
accord with the “official” definition: so the formal recursive program which
expresses the Euclidean is

Eε(x, y) ≡ p(x, y) where

{p(x, y) = if eq0(rem(x, y)) then y else p(y, rem(x, y))}.
We will assume that this addition of a head term is done when needed.

If A is a Φ-structure, then Φ-programs are also called A-programs.
All the recursive equations and systems of equations in the problems

of Sections 1A and 1D are really recursive programs, just not sufficiently
formalized. Problem x1D.14, for example, determines two programs in the
structure (Z, 0, 1,+,−, ·, rem, iq, eq0), one for each of the needed coefficients
in Bezout’s Lemma. The first of these is

α(x, y) where
{

α(x, y) = if eq0(rem(x, y)) then 0 else β(y, rem(x, y)),

β(x, y) = if eq0(rem(x, y)) then 1

else α(y, rem(x, y))− iq(x, y) · β(y, rem(x, y))
}

,

and the second is obtained from this by changing the head to β(x, y). Both
programs have the binary recursive variables α and β, and the addition
symbol is not used by either of them.

Semantics. Fix a recursive program E on the vocabulary Φ and a Φ-
structure A. For any pure voc(E)-term N(~x, p1, . . . , pK), let

FN (~x, p1, . . . , pK) = den(A, N(~x, p1, . . . , pK)),(44)

where the replacement of the recursive variables p1, . . . , pK by the partial
functions p1, . . . , pK signifies that we are computing the denotation in the
voc(E)-structure

(A, p1, . . . , pK) = (A, {φA}φ∈Φ, p1, . . . , pK).

Lemma 2A.1. For each voc(E)-term N(~x, p1, . . . , pK), the functional FN

defined by (44) is monotone and continuous.
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2A. Syntax and semantics 31

Proof is very easy, by induction on the term N . For example, if N ≡ x,
then FN (x, p1, . . . , pK) = x is independent of its partial function argu-
ments, and so trivially monotone and continuous. If N ≡ φ(N1, . . . , Nn)
with φ ∈ Φ, then

FN (~x, p1, . . . , pK) = φA(FN1(~x, p1, . . . , pK), . . . , FNn
(~x, p1, . . . , pK)),

and the monotonicity and continuity of the FNi
imply the same properties

for FN . The argument for the conditional is similar. Finally, if N ≡
pi(N1, . . . , Nn), then to compute

FN (~x, p1, . . . , pK) = pi(FN1(~x, p1, . . . , pK), . . . , FNn
(~x, p1, . . . , pK))

we need just one value of pi in addition to those needed for the computation
of the parts FNi

(~x, p1, . . . , pK). a

Let pE be a fresh recursion variable of arity and sort those of E. It follows
by the Fixed Point Lemma 1B.1 that the system of recursive equations





pE(~x) = den(A, E0(~x, p1, . . . , pK)),
p1(~x1) = den(A, E1(~x1, p1, . . . , pK)),

...
pK(~xK) = den(A, EK(~xK , p1, . . . , pK))

(45)

defined by the body of E has a canonical, least solution tuple

pE , p1, . . . , pK ,

and we set

pA
E (~x) = den((A, p1, . . . , pK), E0(~x)).(46)

This is the partial function on A computed in A by E, and its value at ~x is
the denotation of the program E in A at ~x,

den(A, E, ~x) = pA
E (~x).(47)

We will also use the notation

A ` E(~x) = w ⇐⇒ den(A, E, ~x) = w,(48)

where “`” is read proves.

Notice that if E ≡ E0(~x) is a program with no body, i.e., a Φ-term, then

den(A, E, ~x) = pA
E (~x) = den(A, E0(~x)),

in agreement with the semantics of explicit terms in A.
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32 2. Recursive (McCarthy) programs

2A.1. A-recursive functions. Suppose A = (A,Φ) is a structure. A
partial function f : An ⇀ As is A-recursive or recursive in (or from) the
primitives Φ = {φA : φ ∈ Φ} of A if f is computed by some recursive
program in A. We let

rec(A) = the set of A-recursive partial functions.

The classical example is the (total) structure Nu = (N, 0, S, Pd, eq0) of
unary arithmetic whose recursive partial functions are exactly the Turing
computable partial functions. This elegant characterization of Turing com-
putability is due to McCarthy [1963], and so recursive programs are also
called McCarthy programs. (The Nb-recursive and (N, 0, 1, +, ·)-recursive
partial functions are also the Turing computable partial functions, cf. Prob-
lem x2A.3.)

As we do with the propositional connectives and quantifiers of logic, we
often use the “ where ” construct informally, in definitions of the form

f(~x) = f0(~x, ~p) where {p1(~x1) = f1(~x1, ~p), . . . , pK(~x1) = fK(~xK , ~p)}
when the functionals fi(~xi, ~p) are monotone and continuous (and the arities
and sorts match in the obvious way); a partial function f : An ⇀ As defined
this way is A-recursive if the fi’s are explicitly defined in A—or even in
expansions (A,Φ) by A-recursive functions by Problem x2A.2. We can also
give a single recursive equation which determines a function: for example,
arithmetic subtraction is Nu-recursive because it satisfies the equation

x−· y = if (y = 0) then x else Pd(x−· Pd(y)),(49)

see Problem x2A.1.
The study of rec(A) for various structures is generally known as (ele-

mentary or first-order) abstract recursion theory in logic, and by various
other names in theoretical computer science, where many questions about
it arise naturally. It is an interesting subject, but not centrally related to
our concerns here, and so we will confine ourselves to the next two remarks
and a few relevant results in the problems.

2A.2. Tail recursion. A partial function g : Ak ⇀ As is defined by
tail recursion from test : Ak → {tt,ff}, output : Ak → As and σ : Ak ⇀ Ak

if it is the least partial function which satisfies the equation

g(~u) = if test(~u) then output(~u) else g(σ(~u)).(50)

Most often the transition function σ is total, as in the characteristic exam-
ple of the gcd(x, y) in (33) where

test(x, y) = eq0(rem(x, y)), output(x, y) = y, σ(x, y),= (y, rem(x, y)),

but it is useful, in general, to allow σ to be partial.
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2A. Syntax and semantics 33

The class of tail recursive partial functions in A is the smallest class
of f : An ⇀ As which contains the primitives of A and the projections
Pn

i (~x) = xi and which is closed under composition

f(~x) = h(g1(~x), . . . , gn(~x)),

and tail recursion,

tailrec(A) = the A-tail recursive partial functions.

It can be shown that for every expansion (Nu,Φ) of the unary numbers
by total functions,

rec(Nu,Φ) = tailrec(Nu,Φ),(51)

This is a basic result about recursion in Nu which, in fact, holds for many
other “rich” structures. At the same time, there are interesting examples of
total structures in which tail recursion does not exhaust all recursive func-
tions, cf. Stolboushkin and Taitslin [1983], Tiuryn [1989]. This is a rather
difficult result which we will skip,8 as we will also skip most of the theory
of tailrec(A). However, the relation between rec(A) and tailrec(A) for
arbitrary A is important and not very well understood.

2A.3. Simple fixed points. One interesting aspect of recursive pro-
grams is the use of systems rather than single recursive equations. A partial
function f : An ⇀ A is a simple fixed point of A if it is the least solution
of an equation

p(~x) = den(A, E(~x, p))(52)

for some (pure) (Φ, p)-term E. Addition, for example, is a simple fixed point
of Nu because it is the least (unique) solution of the recursive equation

p(x, y) = if (y = 0) then x else S(p(x, Pd(y))).

One might think that every A-recursive function f : An ⇀ A is a simple
fixed point, and this is almost true, cf. Problems x2A.16, x2A.17∗. But it
is not exactly true, even in Nu:

Proposition 2A.2 (Moschovakis [1984]). If A = (Nu,Φ) is an expan-
sion of the unary numbers with any set Φ = (φ1, . . . , φk) of total, Turing
computable functions, then there exists a total function f : N→ N which is
Turing computable (and hence A-recursive) but is not a simple fixed point
of A.

A proof of this is outlined in problems x2A.18 - x2A.20.
McColm [1989] has also shown that multiplication is not a simple fixed

point of (N, 0, 1, S, Pd), along with several other results in this classical

8Tiuryn’s example is defined in Problem x2A.15.
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34 2. Recursive (McCarthy) programs

case. The general problem of characterizing in a natural way the simple
fixed points of a structure A is largely open.

Problems for Section 2A

Problem x2A.1. Prove that arithmetic subtraction x−· y is Nu-recursive,
by verifying and (for once) formalizing (49).

Problem x2A.2 (Transitivity). Show that if f is A-recursive and g is
(A, f)-recursive, then g is A-recursive. It follows that if (A,Ψ) is an ex-
pansion of A by partial functions which are A-recursive, then

rec(A,Ψ) = rec(A).

This means that to show that a certain f : An ⇀ As is A-recursive, it
is enough to find a recursive program which computes it using any partial
functions already known to be A-recursive.

Problem x2A.3. Show that rec(Nu) = rec(Nb) = rec(N, 0, S, =).

Problem x2A.4 (Composition). Prove that if h, g1, . . . , gn are A-recur-
sive (of the appropriate arities) and

f(~x) = h(g1(~x), . . . , gn(~x)),

then f is also A-recursive.

In the next few problems we consider the special case of recursion in the
structure Nu of unary numbers and its expansions by total functions. These
structures are not our main concern, but they are important because they
provided the context in which most (nearly all) results about recursion
were first discovered. Moreover, some of the complexity results we will
study further on have interesting applications to (Nu,Ψ)-recursion which
were missed in the classical theory.

Problem x2A.5 (Primitive recursion). Suppose A = (Nu,Φ) is an ex-
pansion of Nu, g : Nn ⇀ N and h : Nn+2 ⇀ N are A-recursive, and
f : Nn ⇀ N satisfies the following two equations:

f(0, ~x) = g(~x),

f(y + 1, ~x) = h(f(y, ~x), y, ~x).
(53)

Prove that f is A-recursive. Verify also that f(y, ~x)↓ =⇒ (∀i < y)[f(i, ~x)↓ ].

The class of primitive recursive functions on N is the smallest class of
(total) functions on N which contains the successor S and the n-ary con-
stant function Cn

0 (~x) = 0 and projection functions Pn
i (~x) = xi for each n,
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2A. Syntax and semantics 35

and which is closed under composition and primitive recursion. A relation
R : Nn → {tt, ff} is primitive recursive if the corresponding function

Rc(~x) =

{
1, if R(~x),
0, otherwise

is primitive recursive.
The last two problems imply that every primitive recursive function f :

Nn → Ns is Nu-recursive.

Problem x2A.6 (Minimalization). Prove that if g : Nn+1 ⇀ N is recur-
sive in some expansion A = (Nu,Ψ) of Nu, then so is the partial function

f(~x) = µy[g(y, ~x) = 0]

= the least y such that (∀i < y)(∃w)[g(i, ~x) = w + 1 & g(y, ~x) = 0].

Problem x2A.7 (McCarthy [1963]). Prove that rec(Nu) comprises the
class of Turing computable partial functions on N.

Hint: This (obviously) requires some knowledge of Turing computabil-
ity. In one direction, use the

Kleene Normal Form Theorem: Every Turing computable f : Nn ⇀ N
satisfies an equation of the form

f(~x) = ϕe(~x) = U(µyTn(e, ~x, y)) (~x ∈ Nn)(54)

with some e and fixed primitive recursive Tn : Nn+1 → {tt,ff}, U : N→ N.
For the other direction, appeal to the proof of the Fixed Point Lemma 1B.1:
show that for every system of recursive equations as in (45), there is a total
recursive function u(m, k) such that

pk
m = ϕu(m,k),

where ϕe is the recursive partial function with code (Gödel number) e,
and then take (recursively) the union of these partial functions to get the
required least fixed points.

Problem x2A.8∗ (Rózsa Péter). A function f : Nn+1 → N is defined
by nested recursion from g, h and τ1, . . . , τn if it satisfies the following
equations:

f(0, ~y) = g(~y),

f(x + 1, ~y) = h(f(x, τ1(x, y), . . . , τn(x, ~y)), x, ~y).
(55)

(1) Prove that if f is defined by nested recursion from (Nu,Φ)-recursive
functions, then it is (Nu,Φ)-recursive.

(2) Prove that if f is defined from primitive recursive functions by nested
recursion, then it is primitive recursive.
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36 2. Recursive (McCarthy) programs

Primitive recursive functions have been studied extensively. The Grze-
gorczyk hierarchy ramifies them by the number of primitive recursions re-
quired for their definition, and its extension into the (constructive) trans-
finite has very important applications to proof theory. At the bottom end,
the elementary functions in the first three levels of the Grzegorczyk hier-
archy also have important applications to “intermediate” (exponential and
doubly exponential) complexity theory.

Problem x2A.9 (Double recursion). A function f : N2+n → N is de-
fined by double recursion from g, h1, σ, h2 if it satisfies the following equa-
tions for all x, y, ~z:

f(0, y, ~z) = g(y, ~z),

f(x + 1, 0, ~z) = h1(f(x, σ(x, ~z), ~z), x, ~z),

f(x + 1, y + 1, ~z) = h2(f(x + 1, y, ~z), x, y, ~z).
(56)

Prove that if f is defined by double recursion from (Nu,Ψ)-recursive func-
tions, then it is (Nu,Ψ)-recursive.

Problem x2A.10∗ (The Ackermann function). Consider the system of
equations

A(0, x) = x + 1

A(n + 1, 0) = A(n, 1)

A(n + 1, x + 1) = A(n,A(n + 1, x)),
(57)

on a function A : N2 → N.
(1) Verify that this defines A by double recursion.
(2) Prove that the Ackermann function is not primitive recursive.
Hint: For (2), prove first that every Ackermann section

An(x) = A(n, x)

is primitive recursive and then show that for every primitive recursive func-
tion f(~x) there is some m such that

f(~x) < Am(max ~x) (~x ∈ Nn).(58)

This requires establishing some basic inequalities about these functions,
including

An(x) ≥ 1, x < y =⇒An(x) < An(y),

n < m =⇒An(x) < Am(x), An(An(x)) < An+2(x)

which are also needed for the punchline—that A(n, x) is not primitive re-
cursive.
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The function A(n, x) is sometimes called the Ackermann-Péter function.
It is a modification of the original example of a doubly recursive function
defined by Ackermann in the 1930s and it is due to Rózsa Péter, who
introduced and studied the more general n-fold recursive definitions in her
classic 1951 monograph.9

These problems about recursion in total expansions of Nu suggest that
an interesting theory of recursive complexity can be developed for rec(A),
at least for these structures: a function f : An → As is “recursively less
complex” than g : Am → As if f can be defined by (syntactically) “simpler”
recursions than the recursions needed to define g. One would think that
hierarchies constructed along these ideas must be related to our more direct
intuitions about computational complexity and, of course, they are. We will
not pursue these ideas in any detail, but we will study in the sequel some
more direct connections between recursive and computational complexity.

Problem x2A.11. Prove that the following functions on L∗ (from (4),
(30) and (31)) are recursive in the string structure L∗ defined in (13):

u ∗ v, half1(u), half2(u),

and u 7→ (ui), set to nil if i ≥ |u|. Infer that for every ordering ≤ of L, the
functions merge(u, v) and sort(u) are (L∗,≤)-recursive.

Problem x2A.12. Prove that if f : An ⇀ A is A-recursive, then

f(~x) = w =⇒w ∈ G∞(A, ~x).

Infer that S /∈ rec(N, 0, Pd, eq0).

It is also true that Pd /∈ rec(N, 0, S, eq0), but (perhaps) this is not so
immediate at this point, see Problem x2B.7. However:

Problem x2A.13. Prove that rec(Nu) = rec(N, 0,=, S).

Problem x2A.14. Let A = (A, 0, ·, eq0) be a structure with · binary,
and define xn for x ∈ A and n ≥ 1 as usual,

x1 = x, xn+1 = x · xn.

Define f : A2 ⇀ A by

f(x, y) = xk where k = the least n such that yn = 0,

and prove that f is A-recursive.

Problem x2A.15. Let

T = {(n, v0, . . . , vm−1) : n ∈ N & m ≤ n & (∀i < m)[vi ≤ 1]},

9References to the original papers in this work can be found in Kleene [1952].
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38 2. Recursive (McCarthy) programs

and consider the structure T = (T, l, r,=) where

l(u) = if length(u) ≤ u0 then u ∗ (0) else u,

r(u) = if length(u) ≤ u0 then u ∗ (1) else u.

Prove that the relation

B(u, v) ⇐⇒ (∃w)[u ∗ w = v] (v is equal to or below u)(59)

is recursive in T.

Tiuryn [1989] proves that the relation B(u, v) is not tail recursive in T.
Next we consider the connection between A-recursive partial functions

and the fixed points of A.
An element a ∈ A in the universe of a structure A is strongly explicit

if both the constant a and the equality-with-a relation eqa are A-explicit.
For example, 0 and 1 are strongly explicit in Nu and Nb.

Problem x2A.16. Suppose A is a structure with two strongly explicit
points a, b. Prove that a partial function f : An ⇀ As is A-recursive if and
only if there is a simple fixed point g : Am+n ⇀ As of A such that

f(~x) = g(~a, ~x) (~x ∈ An,~a = a, . . . , a︸ ︷︷ ︸
m times

).(60)

When this equation holds, we say that f is a section of g by explicit
constants.

Problem x2A.17∗. For any Φ-structure A, let

A[a, b] = (A ∪ {a, b},Φa,b, a, b, eqa, eqb)

where a, b are distinct objects not in A and for each φ ∈ Φ, φa,b is the
extension of φA to A∪ {a, b} set equal to a when any one of its arguments
is a or b. Prove that for every f : An ⇀ As,

f ∈ rec(A) ⇐⇒ f ∈ rec(A[a, b]).(61)

These two problems together say that every A-recursive partial function
is a section of a fixed point, except that to realize this, we may have to add
two strongly explicit points to A. The remaining problems in this section
lead to a proof of Proposition 2A.2.

Problem x2A.18. Suppose F (x, p) is a monotone, continuous func-
tional whose fixed point p : N→ N is a total, unary function, and let

stage(x) = stageF (x) = the least k such that pk(x)↓ −1(62)

in the notation of Lemma 1B.1. Show that for infinitely many x,

stage(x) ≤ x.
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2B. Deterministic models of computation 39

Problem x2A.19. Suppose ψ : N→ N is strictly increasing, i.e.,

x < y =⇒ψ(x) < ψ(y),

and let by recursion,

ψ(0)(x) = x,

ψ(n+1)(x) = ψ(ψ(n)(x)).

A unary partial function f : N ⇀ N is n-bounded (relative to ψ, for n > 0)
if

f(x)↓ =⇒ f(x) ≤ ψ(n)(x);

and a functional F (x, p) (with p a variable over unary partial functions) is
`-bounded (relative to ψ), if for all p and n ≥ 1,

if p is n-bounded, then for all x, F (x, p) ≤ ψ(`n)(x).

Suppose A = (N, {φA}φ∈Φ) is a structure such that Φ is finite, every
primitive is total, and every primitive φA : Nn → N is total and bounded
by some fixed ψ as above, in the sense that

φ(~x) ≤ ψ(max ~x).

Prove that for every term E(x, p) in the vocabulary Φ ∪ {p}, there is an `
such that the functional

F (x, p) = den(E(x, p))

is `-bounded. Hint: You will need to verify that ψ(x) ≥ x, because ψ is
increasing, and hence, for all `, `′

` ≤ `′=⇒ψ(`)(x) ≤ ψ(`′)(x).

(This is also needed in the next problem.)

Problem x2A.20. Prove Proposition 2A.2.

Problem x2A.21 (Open). Prove that if A = (Nu,Φ) is an expansion
of the unary numbers with any set Φ = (φ1, . . . , φk) of total, Turing com-
putable functions, then there exists a total relation R : N → {tt,ff} which
is recursive in A but not a simple fixed point of A.

2B. Deterministic models of computation

All the standard deterministic models of computation for partial func-
tions f : X ⇀ W on one set to another are captured by the following,
well-known, general notion:
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40 2. Recursive (McCarthy) programs
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Figure 1. Iterator computing f : X ⇀ W .

2B.1. Iterators. For any two sets X and W , a (partial) iterator (or
sequential machine)

i : X Ã W

is a quintuple (input, S, σ, T, output), satisfying the following conditions:
(I1) S is an arbitrary (non-empty) set, the set of states of i;
(I2) input : X → S is the input function of i;
(I3) σ : S ⇀ S is the transition function of i;
(I4) T ⊆ S is the set of terminal states of i, and s ∈ T =⇒σ(s) = s;
(I5) output : T → W is the output function of i.
The iterator i is total if its transition function σ : S → S is total, which is
the most usual and useful case.

A partial computation of i is any finite sequence (s0, . . . , sn) such that
for all i < n, si is not terminal and σ(si) = si+1, and it is convergent if,
in addition, sn ∈ T . Note that (with n = 0), this includes every one-term
sequence (s), and (s) is convergent if s ∈ T . We write

s →∗
i s′ there is a convergent computation with s0 = s, sn = s′,(63)

and we say that i computes a partial function f : X ⇀ W if

f(x) = w ⇐⇒ (∃s ∈ T )[input(x) →∗
i s & output(s) = w].(64)

It is clear that there is at most one convergent computation starting from
any state s0, and so exactly one partial function i : X ⇀ W computed by
i. The computation of i on x is the finite sequence

Compi(x) = (input(x), s1, . . . , sn, output(sn)) (x ∈ X, i(x)↓),(65)

such that (input(x), s1, . . . , sn) is a convergent computation, and its length

Timei(x) = n + 2(66)

is the natural time complexity of i.
There is little structure to this definition of course, and the important

properties of specific computation models derive from the judicious choice
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2B. Deterministic models of computation 41

of the set of states and the transition function, but also the input and
output functions. The first two depend on what operations (on various
data structures) are assumed as given (primitive) and regulate how the
iterator calls them, while the input and output functions often involve
representing the members of X and W in some specific way, taking for
example numbers in unary or binary notation if X = W = N. We will
not study computation models in this version of the notes, beyond the few
simple facts in the remainder of this section which relate them to recursion.

Fix an iterator i, let

Ai = X ]W ] S

be the disjoint union of the indicated sets. We identify, as usual, each set
Z ⊆ Ai with its characteristic function Z : Ai → {tt, ff}. on the universe
Ai, and we set

Ai = (Ai, X,W, S, input, σ, T, output),(67)

where input, σ, output are now total extensions of the functions of the it-
erator which just return their argument when it is not in the appropriate
domain. This is the structure of i, it is a total structure if i is total, and
the tail recursive program associated with i is

(68) Ei(x) ≡ q(input(x)) where

{q(s) = if T (s) then output(s) else q(σ(s))}.
Proposition 2B.1. For each iterator i and the associated recursive pro-

gram E ≡ Ei on Ai, and for all x ∈ X,

i(x) = pAi

E (x).

In particular, the partial function computed by an iterator i : X Ã W is
tail recursive in the associated structure Ai.

Proof. Let q be the least fixed point of the equation in the body of Ei,
and define q̃ : S ⇀ W by

q̃(s) = w ⇐⇒ (∃s′ ∈ T )[s →∗
i s′ & output(s′) = w].

It is clear that q̃ satisfies the recursive equation for q in Ei, and so

q v q̃.

For the converse inclusion, we show by induction on n that

if [s → s1 → · · · → sn ∈ T ], then output(sn) = q(s).

This is trivial at the base n = 0. At the induction step, the hypothesis

s → s1 → · · · → sn+1 ∈ T
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42 2. Recursive (McCarthy) programs

gives output(sn+1) = q(s1), by the induction hypothesis; but s1 = σ(s),
and so

q(s) = q(σs) = q(s1) = output(sn+1)

as required. This establishes that q = g̃, and so

i(x) = q̃(input(x)) = q(input(x)) = pE(x)

as required. a
This simple Proposition is foundationally significant, because it reduces

computability, as it is captured by the notion of sequential machines to
recursiveness, in fact tail recursiveness relative to the data structures and
primitives of any specific model of computation. Next we prove a strong
converse, which reduces recursiveness to computability: for every A and
every A-program E, the partial function pA

E computed in A by E can
also be computed by an iterator i(A, E) constructed from A and E. The
construction yields a total iterator when A is total.

2B.2. The recursive machine. Fix a Φ-structure A and a Φ-program
E as in (43).

An (A, E)-term is a closed term

M ≡ N(x1, . . . , xm),(69)

where N(x1, . . . , xm) is a subterm of one of the terms Ei(~xi) of the recursive
program E and x1, . . . , xm ∈ A. These are closed, voc(E)-terms with
parameters from A, but not all such: the (A, E)-terms are constructed by
substituting parameters from A into the finitely many subterms of E.

The states of i = i(A, E) are all finite sequences s of the form

a0 · · · am−1 : b0 · · · bn−1

where the elements a0, . . . , am1 , b0, . . . , bn−1 of s satisfy the following con-
ditions:

• Each ai is a function symbol in Φ, or one of p1, . . . , pK , or the special
symbol ?, or an (A, E)-term, and

• each bj is a parameter from A or a truth value, i.e., bj ∈ A ∪ {tt, ff}.
The special separator symbol ‘:’ has exactly one occurrence in each state,
and the sequences ~a,~b are allowed to be empty, so that the following se-
quences are states (with x ∈ A ∪ {tt,ff}):

x : : x :

The terminal states of i are the sequences of the form

: w
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2B. Deterministic models of computation 43

(pass) ~a x : ~b → ~a : x ~b (x ∈ A)

(e-call) ~a φi : ~x ~b → ~a : φA
i (~x) ~b

(i-call) ~a pi : ~x ~b → ~a Ei(~x,~p) : ~b

(comp) ~a h(F1, . . . , Fn) : ~b → ~a h F1 · · · Fn : ~b

(br) ~a if F then G else H : ~b → ~a G H ? F : ~b

(br0) ~a G H ? : tt ~b → ~a G : ~b

(br1) ~a G H ? : ff ~b → ~a H : ~b

• The underlined words are those which trigger a transition and are
changed by it.

• In (pass), x ∈ A ∪ {tt,ff}.
• In the external call (e-call), ~x = x1, . . . , xn, φi ∈ Φ, and arity(φi) = n.
• In the internal call (i-call), pi is an n-ary recursive variable of E

defined by the equation pi(~x) = Ei(~x,~p).
• In the composition transition (comp), h is a (constant or variable)

function symbol in voc(E) with arity(h) = n.

Table 1. Transition Table for the recursive machine i(A, E).

i.e., those with no elements on the left of ‘:’ and just one constant on the
right; and the output function of i simply reads this constant w, i.e.,

output( : w) = w.

The states, the terminal states and the output function of i depend only
on Φ, A and the recursive variables which occur in E. The input function
of i depends also on the head term E0(~x) of E,

input(~x) ≡ E0(~x) :

The transition function of i is defined by the seven cases in the Transition
Table 1, i.e.,

σ(s) =

{
s′, if s → s′ is a special case of some line in Table 1,

s, otherwise,
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44 2. Recursive (McCarthy) programs

and it is a partial function, because for a given s (clearly) at most one
transition s → s′ is activated by s. Notice that only the external calls
depend on the structure A, and only the internal calls depend on the
program E—and so, in particular, all programs with the same body share
the same transition function.

An illustration of how these machines compute is given in Figure 2.
The next result is a trivial but very useful observation:

Lemma 2B.2 (Transition locality). If s0, s1, . . . , sn is a partial compu-
tation of i(A, E) and ~a∗,~b∗ are such that the sequence ~a∗ s0

~b∗ is a state,
then the sequence

~a∗ s0
~b∗,~a∗ s1

~b∗, . . . ,~a∗ sn
~b∗

is also a partial computation of i(A, E).

Theorem 2B.3 (Implementation correctness). Suppose A is a Φ-struct-
ure, E is a Φ-program with recursive variables p1, . . . , pK , p1, . . . , pK are
the mutual fixed points of E in A, and M(p1, . . . , pK) is a closed (A, E)-
term. Then for every w ∈ A ∪ {tt, ff},

den(A,M(p1, . . . , pK)) = w ⇐⇒ M(p1, . . . , pK) : →∗
i(A,E) : w.(70)

In particular, with M ≡ E0(~x,~p)

den(A, E, ~x) = w ⇐⇒ E0(~x,~p) →∗
i(A,E) : w,

and so the recursive machine i(A, E) and the program E compute the same
partial function in A.

Outline of proof. First we define the partial functions computed by
i(A, E) in the indicated way,

p̃i(~xi) = w ⇐⇒ pi(~xi) : →∗ : w,

and show by an easy induction on the term F the version of (70) for these,

den(A, F (p̃1, . . . , p̃K)) = w ⇐⇒ F : →∗
i(A,E) : w.(71)

When we apply this to the terms Ei{~xi :≡ ~xi} and use the form of the
internal call transition rule, we get

den(A, Ei(~xi, p̃1, . . . , p̃K)) = w ⇐⇒ p̃i(~xi) = w,

which means that the partial functions p̃1, . . . , p̃K satisfy the system (45),
and so p1 ≤ p̃1, . . . , pK ≤ p̃K .

Next we show that for any closed term F as above and any system
p1, . . . , pK of solutions of (45),

F : →∗ w =⇒den(A, F (p1, . . . , pK)) = w.

This is done by induction of the length of the computation which establishes
the hypothesis, and setting F ≡ E0{~xi :≡ ~xi}, it implies that

p̃1 ≤ p1, . . . , p̃K ≤ pK .
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2B. Deterministic models of computation 45

f(2, 3) : (comp)
f 2 3 : (pass, pass)

f : 2 3 (i-call)
if (2 = 0) then 3 else S(f(Pd(2), 3)) : (br)

3 S(f(Pd(2), 3)) ? eq0(2) : (pass)
3 S(f(Pd(2), 3)) ? : ff (br2)

S(f(Pd(2), 3)) : (comp)
S f(Pd(2), 3) : (comp)
S f Pd(2) 3 : (pass)

S f Pd(2) : 3 (comp)
S f Pd 2 : 3 (pass)

S f Pd : 2 3 (e-call)
S f : 1 3 (i-call)

S if (1 = 0) then 3 else S(f(Pd(1), 3)) : (br), (comp many times)
S S f Pd(1) 3 : (pass)

S S f Pd(1) : 3 (comp)
S S f Pd 1 : 3 (pass)

S S f Pd : 1 3 (e-call)
S S f : 0 3 (i-call)

S S if (0 = 0) then 3 else S(f(Pd(0), 3)) : (br), (comp many times), (pass)
S S 3 S f(Pd(0), 3) ? eq0(0) :

S S 3 S f(Pd(0), 3) ? : tt (br0)
S S 3 : (pass)

S S : 3 (e-call)
S : 4 (e-call)

: 5

Figure 2. The computation of 2 + 3 by the program
f(i, x) = if eq0(i) then x else S(f(Pd(i), x)).

It follows that p̃1, . . . , p̃K are the least solutions of (45), i.e., p̃i = pi, which
together with (71) completes the proof.
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46 2. Recursive (McCarthy) programs

Both arguments appeal repeatedly to the simple but basic Lemma 2B.2.a
There are many natural complexity measures that can be associated with

the recursive machine i(A, E), among them

TimeE(~x) = the length of the computation starting with E0(~x) :(72)
Timee

E,Φ0
(~x) = the number of external calls(73)

to primitives φ ∈ Φ0 in this computation,(74)

where Φ0 ⊆ Φ is a subset of the vocabulary. We will compare them in the
next chapter with the natural, “structural” complexity measures which can
be defined directly for each recursive program E, without reference to its
implementations.

2B.3. Simulating Turing machines with Nb-programs. To con-
nect these complexity measures with classical, Turing-machine time com-
plexity, we show here (in outline) one typical result:10

Proposition 2B.4. If a function f : N → N is computable by a Turing
machine M in time T (log n) for n > 0, then there is a natural number k
and an Nb-program E which computes f with Timei(n) ≤ kT (log n) for
n > 0, where i = i(Nb, E) is the recursive machine associated with E.

We are assuming here that the input n is entered on a tape of M in
binary notation (which is why we express the complexity as a function of
log n), but other than that, the result holds in full generality: the machine
M may or may not have separate input and output tapes, it may have one
or many, semi-infinite or infinite work tapes, etc. An analogous result holds
also for functions of several variables.

Outline of proof. Consider the simplest case, where M has a two-
way infinite tape and only one symbol in its alphabet, 1. We use 0 to
denote the blank symbol, so that the “full configuration” of a machine at a
stage in a computation is a triple (q, τ, i), where q is a state, τ : Z→ {0, 1},
τ(j) = 0 for all but finitely many j’s, and i ∈ Z is the location of the
scanned cell. If we write τ as a pair of sequences emanating from the
scanned cell y0

· · ·x3x2x1x0y0
↑

y1y2y3 · · ·

one “growing” to the left and the other to the right, we can then code (τ, i)
by the pair of numbers

(x, y) = (
∑

j xj2j ,
∑

j yj2j).

10This is not needed for the sequel, and its proof assumes some familiarity with Turing
machines.
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2B. Deterministic models of computation 47

Notice that y0 = parity(y) and x0 = parity(x), so that the scanned symbol
and the symbol immediately to its left are computed from x and y by Nb-
operations. The input configuration for the number z is coded by the triple
(q0, 0, z), with q0 the starting state, and all machine operations correspond
to simple Nb-functions on these codes. For example:

move to the right : x 7→ 2x + parity(y), y 7→ iq2(y),

move to the left : x 7→ iq2(x), y 7→ 2y + parity(x),

where (in the notation of (1C)),

2x + parity(y) = if (parity(y) = 0) then em2(x) else om2(x).

It is not difficult to write a Nb-program using these functions which simu-
lates M .

We leave for the problems the details and the proof of the general result.a

Problems for Section 2B

Problem x2B.1. Consider the following three recursive programs in Nu:

E1 ≡ p(x) where {p(x) = S(p(x))}
E2 ≡ p(x) where {p(x) = p(q(x)), q(x) = x},
E3 ≡ p(x, y) where {p(x, y) = q(p(x, y), y), q(x, y) = x}.

Determine the partial functions computed by these programs and discuss
how their computations by the recursive machine differ.

Problem x2B.2. Let A be a Φ structure where Φ contains the binary
function constant φ and the unary function constant ψ which are inter-
preted by total functions in A. Let

f(x) = φA(ψA(x), ψA(x)) (x ∈ A).

(1) Check that the recursive machine for the obvious (explicit) program

E ≡ φ(ψ(x), ψ(x))

which computes f in A will make two calls to ψ in its computations.
(2) Construct a better recursive program E which computes f(x) in A

using only one call to ψ.

Problem x2B.3. Construct a program in Aε which computes gcd(x, y)
making exactly c{rem}(ε, x, y) calls to rem when x ≥ y ≥ 1, as this measure
was defined in (34).
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48 2. Recursive (McCarthy) programs

Problem x2B.4 (Stack discipline). (1) Show that for every program E
in a total structure A, and every closed (A, E)-term M , there is no com-
putation of i(A, E) of the form

M : → s1 → · · · → sm(75)

which is stuck, i.e., the state sm is not terminal and there is no s′ such that
s → s′.

(2) Show that if A is a partial structure, M is a closed (A, E)-term and
the finite computation (75) is stuck, then its last state sm is of the form

~a φj : y1, . . . , ynj
~b

where φj is a primitive function of A of arity nj and φj(y1, . . . , ynj ) ↑.
Problem x2B.5. Give a detailed proof of Proposition 2B.4 for a Turing

machine M which has two, two-way tapes, K symbols in its alphabet and
computes a partial function f : N2 ⇀ N of two arguments. Hint: If there
are two symbols a and b, represent the blank by 00, a by 01 and b by 10.

Symbolic computation. The symbolic recursive machine i = is(Φ, E)
associated with a vocabulary Φ and a Φ-program E is defined as follows.

The states of i are all finite sequences s of the form

a0 . . . am−1 : b0 . . . bn−1

where the elements a0, . . . , am1 , b0, . . . , bn−1 of s satisfy the following con-
ditions:
• Each ai is a function symbol in Φ or one of p1, . . . , pK , or a pure

voc(E)-term, or the special symbol ?, and
• each bj is a pure, algebraic Φ-term.
The transitions of i are those listed for a recursive machine in Table 1,

except for the following three which are modified as follows:

(e-call) ~a φi : ~x ~b → ~a : φi(~x) ~b

(br0) ~a G H ? : b0
~b → ~a G : ~b (if b0 = tt)

(br1) ~a G H ? : b0
~b → ~a H : ~b (if b0 = ff)

In the last two commands, b0 is a pure, algebraic Φ-term (perhaps with
variables in it), and the conditions b0 = tt or b0 = ff cannot be checked,
unless b0 is a term with no variables and no Φ-symbols. The computations
of i are defined relative to an environment, a set of boolean claims

E = {tt = tt, P0 = tt, P1 = tt, . . . , Pm−1 = tt,

ff = ff, N0 = ff, N1 = ff, . . . , Nn−1 = ff},
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2B. Deterministic models of computation 49

where the Pi and Nj are pure, algebraic Φ-terms. We say that E activates
(or justifies) the transition (br0) if (b0 = tt) ∈ E , and E activates (br1) if
(b0 = ff) ∈ E . A computation relative to an environment E is a sequence of
states s0, s1, . . . , sn where for each i < n the Table and the environment
justifies the transition si → si+1.

Take, for example, the program which defines 2x in Nu,

E ≡ p(u, u) where {p(u, v) = if (v = 0) then u else S(p(u, Pd(v)))}
and consider the symbolic computation starting with the head p(u, u) :

p(u, u) : → if (eq0(u)) then u else S(p(u, Pd(u))) :

→ u S(p(u, Pd(u))) ? eq0(u) : → u S(p(u,Pd(u))) ? : eq0(u)

If the environment does not decide the term eq0(u), then the computa-
tion cannot go any further, it stalls. If the environment has the condition
eq0(u) = ff, then (br1) is activated and we continue:

u S(p(u, Pd(u)) ? : eq0(u) → S(p(u, Pd(u))) : → S p(u, Pd(u)) :

→ S p u, Pd(u) : → S p u, Pd u :

→ S p u, Pd : u → S p u : Pd(u) → S p : u Pd(u)

→ S if eq0(u) then u else S(p(u, Pd(u))) : Pd(u) . . .

The next time that ? will show up, we will need to have one of the two
conditions

eq0(Pd(u)) = tt or eq0(Pd(u)) = ff

in the environment to continue, etc. The computation will go on forever
unless the environment has a condition eq0(Pdn(u)) = tt for some n, which
will then turn it around so that eventually it stops in the state

: Sn(u)

which gives the correct answer for u = n.
The next problem is very easy, once you define correctly the terminology

which occurs in it—and it is part of the problem to do this.

Problem x2B.6. Fix a Φ-structure and a Φ-program E, and suppose
that

M(x1, . . . , xn) : → s1 → · · · → : w

is a computation of the recursive machine of E which computes the value
of the closed (A, E) term M(x1, . . . , xn) with the indicated parameters.
Prove that there is an environment E in the distinct variables x1, . . . , xn

which is sound for x1, . . . , xn in A, such that the given computation is
obtained from the symbolic computation relative to E and starting with
M(v1, . . . , vn) by replacing each vi in it by xi.
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50 2. Recursive (McCarthy) programs

Problem x2B.7. Prove that Pd(x) is not (N, 0, S, eq0)-recursive.

There are many other applications of symbolic computation, but we will
not cover the topic. (And it is rather surprising that the simple and basic
Problem x2B.7 seems to need it. Perhaps there is a simpler proof.)

2C. Finite non-determinism

Much of the material in Section 2B can be extended easily to non-de-
terministic computation models, in which the transition function σ : S ⇀ S
is replaced by a relation σ ⊆ S × S, usually assumed total, i.e., such that
(∀s)(∃s′)σ(s, s′). We do not have much use for these here, and the model
theory of the structures associated with them is a bit messy. We will cover
only the most useful, special case of finite non-determinism.

For any two sets X, W , a (finitely) non-deterministic iterator i : X Ã W
is a tuple

i = (input, S, σ1, . . . , σk, T, output)

which satisfies (I1) – (I5) in Section 2B.1 except that (I3) is replaced by
the obvious
(I3′) for every i = 1, . . . , k, σi : S ⇀ S.
So i has k transition functions. Computations are defined as before, except
that we allow transitions si+1 = σj(si) by any one of the transition func-
tions, so that, for example, s, σ1(s), σ3(σ1(s)), . . . is a partial computation.
This allows the possibility that the machine may produce more than one
value on some input, and we must be careful in defining what if means for
i to compute some f : X ⇀ W . The formal definition is the same as (64)
for deterministic iterators, i.e., f must satisfy the equaivalence

f(x) = w ⇐⇒ (∃s ∈ T )[input(x) →∗
i s & output(s) = w],(76)

but it must be read more carefully now: i : X Ã W computes f if whenever
f(x)↓ , then at least one convergent computation starting with input(x) pro-
duces the value f(x) and no convergent computation from input(x) produces
a different value. Divergent computations are disregarded.

Non-deterministic recursive programs are defined exactly as before, ex-
cept that we allow multiple definitions for each recursive variable. For
example, in (N, 0, S, φ), we might have

E∗ ≡ φ(p(~x), ~x) where {p(~x) = 0, p(~x) = S(p(~x))}.(77)

It is possible to define least-fixed-point semantics for them, but the details
are a bit complex and it is easier to use the associated recursive machines.
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2C. Finite non-determinism 51

These are now non-deterministic: if both

p(~u) = E1(~u, p1, . . . , pn) and p(~u) = E2(~u, p1, . . . , pn)

are in the body of E, then i(A, E) allows both transitions

p : ~x → E1(~x, p1, . . . , pn) : and p : ~x → E2(~x, p1, . . . , pn) :

And, again, we say that E computes f : An ⇀ As in a Φ-structure A
if (76) holds for the iterator i(A, E) associated with the non-deterministic
program E. The main difference from the deterministic case is that not
every non-deterministic Φ-program computes a partial function in every
Φ-structure A. To express simply when this happens, put

A ` E(~x) = w ⇐⇒ E0(~x) : →i(A,E) : w.(78)

This extends (48) to non-deterministic programs, and clearly E computes
a partial function in A, if and only if for all ~x ∈ An and all w, w′ ∈ As,(

A ` E(~x) = w & A ` E(~x) = w′
)

=⇒w = w′.(79)

If E computes f in A, we also set for any Φ0 ⊆ Φ,

(80) Timee
E,Φ0

(~x) = min
(
number of external calls to φ ∈ Φ0

in any computation of i(A, E) on the input ~x
)
.

This is the only complexity measure on non-deterministic programs that
we will need (for now).

A partial function f : An ⇀ As is non-deterministically recursive in A if
it is computed by a non-deterministic recursive program in A for A0 = An,
and we set

recnd(A) = the set of non-deterministic A-recursive partial functions.

The distinction between deterministic and non-deterministic algorithms
underlies some of the most interesting and deep problems of computation
theory, including the central P=NP? problem. Closer to the questions
we have been considering, the results of Stolboushkin and Taitslin [1983]
and Tiuryn [1989] that we mentioned above were established to distinguish
deterministic from non-deterministic tail recursion (in the terminology we
have been using) as well as (deterministic) tail recursion from full recursion.
We will not go into the topic here, except for the following discussion of a
non-deterministic algorithm for the gcd (and coprimeness) which is relevant
to the Main Conjecture in the Preface.11

11This theorem and Problems x2C.6 – x2C.9 are in Pratt [2008] which has not been
published. They are included here with Vaughan Pratt’s permission.
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52 2. Recursive (McCarthy) programs

Theorem 2C.1 (Pratt’s nuclid algorithm). Consider the following non-
deterministic recursive program EP in the structure Nε = (N, rem, eq0, eq1)
of the Euclidean:

EP ≡ nuclid(a, b, a, b) where
{

nuclid(a, b, m, n) = if (n 6= 0) then nuclid(a, b, n, rem(choose(a, b, m), n))

else if (rem(a,m) 6= 0) then nuclid(a, b, m, rem(a,m))

else if (rem(b,m) 6= 0) then nuclid(a, b, m, rem(b,m))
else m,

choose(a, b,m) = a, choose(a, b,m) = b, choose(a, b,m) = m
}

.

If a ≥ b ≥ 1, then fEP
(a, b) = gcd(a, b).

Proof. Fix a ≥ b ≥ 1, and let

(m,n) → (m′, n′)

⇐⇒
(
n 6= 0 & m′ = n

& [n′ = rem(m,n) ∨ n′ = rem(a, n) ∨ n′ = rem(b, n)]
)

∨
(
n = 0 & rem(a,m) 6= 0 & m′ = m & n′ = rem(a, m)

)

∨
(
n = 0 & rem(b,m) 6= 0 & m′ = m & n′ = rem(b, m)

)
.

This is the transition relation of the main loop of the program (with a, b
omitted), and it obviously respects the property m > 0. The terminal
states are

T (a, b, m, n) ⇐⇒ n = 0 & m | a & m | b,
and the output on a terminal (a, b, m, 0) is m.

It is obvious that there is at least one computation which outputs gcd(a, b),
because one of the choices at each step is the one that the Euclidean would
make. To see that no convergent computation produces any other value,
we observe that directly from the definition,

If x divides a, b, m and n and (m, n) → (m′, n′), then x divides m′ and n′.
Since the input satisfies the hypothesis of this remark, every divisor of a and
b divides the output m; and because of the conditions on the terminal state,
every divisor of an output m divides both a and b, so that m = gcd(a, b).a

In fact, EP does not have any divergent computations on its intended
inputs, see Problem x2C.6. Pratt’s algorithm allows at each stage replacing
the Euclidean’s (m,n) → (n, rem(m,n)) by (m,n) → (n, rem(a, n)) or
(m,n) → (n, rem(b, n)) which does not lose any common divisors of a
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2C. Finite non-determinism 53

and b, and then simply adds a check at the end which insures that the
output is not some random divisor of (say) a which does not also divide
b. The important thing about it is that in some cases this guessing can
produce a much faster computation of gcd(a, b): see Problems x2C.7 –
x2C.9 which outline a proof that for successive Fibonacci numbers it can
compute gcd(Ft+1, Ft) using only

O(log t) = O(log log(Ft))

divisions, thus beating the Euclidean on its worst case. A complete analysis
of the inputs on which it does better than the Euclidean does not appear
to be easy.

Problems for Section 2C

Problem x2C.1. Prove that the following are equivalent for a Φ-structure
A and a non-deterministic Φ-program E:
(a) E computes a partial function in A.
(b) E computes a partial function in every substructure U ⊆p A.
(c) E computes a partial function in every finite substructure U ⊆p A.

Problem x2C.2. Formulate for recnd(A) and prove the properties in
Problems x2A.2, x2A.4, x2A.5 and x2A.6.

Problem x2C.3. Prove that if Φ is a set of total functions on N, then

recnd(Nu,Φ) = recnd(Nb,Φ) = rec(Nu, Φ).

Problem x2C.4∗. Give an example of a partial function φ : N2 ⇀ N
such that

rec(Nu, φ) ( recnd(Nu, φ).

Problem x2C.5. For the program E∗ defined in (77), prove that

pE∗(~x) = w ⇐⇒ (∃n)[φA(n, ~x) = w]

provided that

(∀n, m, u, v)[φA(n, ~x) = u & φA(m,~x) = v] =⇒u = v};
if this condition does not hold, then E∗ does not compute a partial function
in (N, 0, S, φ). Define also a related non-deterministic program E∗∗ which
computes in the same structure (N, 0, S, φ) a partial function pE∗∗ such
that

pE∗∗(~x)↓ ⇐⇒ (∃n)[φA(n, ~x)↓ ].

The remaining problems in this section are due to Vaughan Pratt.
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54 2. Recursive (McCarthy) programs

Problem x2C.6. Prove that the program EP has no divergent (infinite)
computations on inputs (a, b, a, b) with a ≥ b ≥ 1. Hint: Show convergence
of the main loop under the hypothesis by induction on max(m,n) and
within this by induction on n.

The complexity estimate for Pratt’s algorithm depends on some classical
identities that relate the Fibonacci numbers.

Problem x2C.7. Prove that for all t ≥ 1 and m ≥ t,

Fm(Ft+1 + Ft−1) = Fm+t + (−1)tFm−t.(81)

Hint: Show in sequence, by direct computation, that

ϕϕ̂ = −1; ϕ +
1
ϕ

=
√

5; ϕ̂ +
1
ϕ̂

= −
√

5; Ft+1 + Ft−1 = ϕt + ϕ̂t.

Problem x2C.8. (1) Prove that for all odd t ≥ 2 and m ≥ t,

rem(Fm+t, Fm) = Fm−t (t odd).(82)

(2) Prove that for all even t ≥ 2 and m ≥ t,

rem(Fm+t, Fm) = Fm − Fm−t,(83)
rem(Fm, (rem(Fm+t, Fm))) = Fm−t,(84)

Hint: For (2), check that for t ≥ 2, 2Fm−t < Fm.

Problem x2C.9. Fix t ≥ 2. Prove that for every s ≥ 1 and every u
such that u ≤ 2s and t−u ≥ 2, there is a computation of Pratt’s algorithm
which starts from (Ft+1, Ft, Ft+1, Ft) and reaches a state (Ft+1, Ft, ?, Ft−u)
doing no more than 2s divisions.

Infer that for all t ≥ 3,

Timee
EP

(Ft+1, Ft) ≤ 2dlog(t− 2)e+ 1 = O(log(t− 1)).(85)

(The measure Timee
E(~x) for non-deterministic recursive programs is defined

in (80).)

2D. The homomorphism and finiteness properties

In the notation introduced by (78), Problem x2A.12 says that

A ` E(~x) = w ∈ A =⇒w ∈ G∞(A, ~x).(86)

which also (easily) holds for non-deterministic programs, Problem x2D.2.
This is a weak restriction on A-recursive functions which, in particular, has
no consequences for A-recursive relations. We formulate here two related,
simple but very basic properties of non-deterministic recursive programs
that will prove very useful further on.
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2D. The homomorphism and finiteness properties 55

Theorem 2D.1. For any Φ-structure A and any non-deterministic Φ-
program E:

(a) The Homomorphism property: if π : U → V is any homomorphism
of one substructure U ⊆p A into another, then

U ` E(~x) = w =⇒V ` E(~π(x)) = π(w) (~x ∈ Un).

(b) The Finiteness property: for any ~x ∈ An,

A ` E(~x) = w =⇒ (∃m)[Gm(A, ~x) ` E(~x) = w].

Moreover, if E is a program with empty body (a pure Φ-term), then

(∃m)(∀~x,w)[A ` E(~x) = w =⇒Gm(A, ~x) ` E(~x) = w].

Proof is simple and we will leave it for a problem. a

Problems for Section 2D

Problem x2D.1. Prove Proposition 2D.1. Hint: For each computa-
tion

CompiE (~x) = (E0(~x) : , . . . , : w)

of the recursive machine which proves that U ` E(~x) = w, define a sequence
of states

π(CompiE (~x)) = (E0(π(~x)) : , . . . , : π(w))

by replacing every parameter u ∈ A which occurs in Comp(~x) by π(u) and
verify that π(Comp(~x)) is a computation of the recursive machine which
proves that V ` E(π(~x)) = π(w).

Problem x2D.2. Prove that Problem x2A.12 holds for any non-de-
terministic A-recursive functions and infer that S /∈ recnd(N, 0, Pd, eq0).

Problem x2D.3. True or false: Pd ∈ recnd(N, 0, S, eq0)?

Problem x2D.4. Prove the claims in Problems x1C.13∗ – x1C.15∗ (and
formulate the proofs so that they could have been given immediately after
these problems were stated, without reference to recursive computation).
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CHAPTER 3

COMPLEXITY THEORY FOR RECURSIVE

PROGRAMS

Suppose Π is a class of programs which compute (in some precise sense)
partial functions and relations on a set A. In the most general terms, a
complexity measure for Π associates with each n-ary E ∈ Π which computes
f : An ⇀ As an n-ary partial function

CE : An ⇀ N(87)

which intuitively assigns to each ~x such that f(~x)↓ a cost of some sort of
the computation of f(~x) by E.

We introduce here several natural complexity measures on the (determin-
istic) recursive programs of a Φ-structure A, directly from the programs,
i.e., without reference to the recursive machine. These somewhat abstract,
“implementation-independent” (logical) definitions help clarify some com-
plexity questions, and they are also useful in the derivation of upper bounds
for recursive programs and robust lower bounds for problems. Much of
what we will say extends naturally to non-deterministic programs, but the
formulas and arguments are substantially more complex and it is better to
keep matters simpler by dealing first with the more important, determin-
istic case.

3A. The basic complexity measures

Suppose A is a structure, E is an n-ary A-program and M is a closed
(A, E)-term as these were defined in (69). We set

M = den(A, E, M) = den((A, p1, . . . , pK),M)(88)

where p1, . . . , pK are the recursive variables of E and p1, . . . , pK their
mutual fixed points. This extends the notation in (47) by which

den(A, E, ~x) = den(A, E, E0(~x)).

57



58 3. Complexity theory for recursive programs

Normally we will use the simpler M since A and E will be held constant
in most of the arguments in this section. We also set

Conv(A, E) = {M : M is an (A, E)-term and M ↓}.(89)

3A.1. The tree-depth complexity DA
E (M). With each convergent

(A, E)-term M , we can associate a computation tree T (M) which repre-
sents an abstract, parallel computation of M using E. The tree-depth
complexity of M is the depth of T (M), but it is easier to define DA

E (M)
first and T (M) after that, by recursion on DA

E (M).

Lemma 3A.1. Fix a structure A and an A-program E. There is exactly
one function D = DA

E which is defined for every M ∈ Conv(A, E) and
satisfies the following conditions:

(D1) D(tt) = D(ff) = D(x) = 0.
(D2) D(φ(M1, . . . , Mm)) = max{D(M1), . . . , D(Mm)}+ 1.
(D3) If M ≡ if M0 then M1 else M2, then

D(M) =

{
max{D(M0), D(M1)}+ 1, if M0 = tt,
max{D(M0), D(M2)}+ 1, if M0 = ff.

(D4) If p is a recursive variable of E,12 then

D(p(M1, . . . ,Mm)) = max{D(M1), . . . , D(Mm), dp(M1, . . . , Mm)}+ 1,

where dp(~w) = D(Ep(~w, p1, . . . , pK)).

Proof. If M = den(M(~x, p1, . . . , pK))↓ , then there is some k such that

M
k

= den(M(~x, pk
1 , . . . , pk

K))↓ ,

by Lemma 2A.1. We define D(M) by recursion on

stage(M) = the least k such that M
k↓ ,

and recursion on the length of terms within this. We consider cases on the
form of M .

(D1) If M is tt, ff or a parameter x, set D(M) = 0.
(D2) If M ≡ φ(M1, . . . , Mm) for some φ ∈ Φ and M ↓ , then

stage(M) = max{stage(M1), . . . , stage(Mm)},
and these subterms are all smaller than M , so we may assume that D(Mi)
is defined for i = 1, . . . ,m; we set

D(M) = max{D(M1), . . . , D(Mm)}+ 1.

12If p ≡ pi is a recursive variable of E, we sometimes write Ep ≡ Ei for the term

which defines p in E. It is a useful convention which saves typing double subscripts.
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3A. The basic complexity measures 59

(D3) If M ≡ if M0 then M1 else M2 and M ↓ , then either M0 = tt,
M1 ↓ and stage(M) = max{stage(M0), stage(M1)} or the corresponding
conditions hold with M0 and M2. In either case, the terms M0,Mi are
proper subterms of M , and we can assume that D is defined for them and
define D(M) appropriately as in case (D2).

(D4) If M ≡ p(M1, . . . , Mm) with a recursive variable p of E, M ↓ and
k = stage(M), then

M
k

= pk(M
k

1 , . . . , M
k

m),

and so stage(Mi) ≤ k and we can assume that D(Mi) is defined for
i = 1, . . . , n, since these terms are smaller than M . Moreover, if M1 =
w1, . . . , Mm = wm, then

pk(w1, . . . , wm) = den(Ep(w1, . . . , wm, pk−1
1 , . . . , pk−1

K ))↓ ,

by the definition of the iterates in the proof of Lemma 1B.1, and so

stage(Ep(w1, . . . , wm, p1, . . . , pK)) < k;

thus we may assume that D(Ep(w1, . . . , wm, p1, . . . , pK)) is defined, and
define D(M) so that (D4) in the Lemma holds.

The uniqueness of D is proved by a simple induction on stage(M), fol-
lowing the definition. a

The tree-depth complexity function of a program E is that of its head
term,

dA
E (~x) = D(E0(~x, p1, . . . , pK)),

and it is defined exactly when pA
E (~x)↓ .

It should be clear that there is no reasonable way to implement recursive
programs so that the number of steps required to compute M is D(M).
For example, to attain

D(p(M)) = max{D(M), D(Ep(M))}+ 1,

we need to compute in parallel the value M of M and the value of Ep(M),
but we cannot start on the second computation until we complete the first,
so that we know M . We can imagine a non-deterministic process which
“guesses” the correct M and works with that; but if A is infinite, then this
amounts to infinite non-determinism, which is not a useful idealization.

In any case, our methods do not yield any interesting lower bounds for
tree-depth complexity, but it is a very useful tool for defining rigorously
and analyzing many properties of recursive programs.
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Figure 3. Computation trees.

The computation tree. The computation tree T (M) = T (A, E, M)
for M ∈ Conv(A, E) is defined by recursion on D(M) using the operation
Top in (6), see Figure 3. We take cases, corresponding to the definition of
D(M):
(T 1) If M is tt, ff or some x ∈ A, set T (M) = {(M)}.
(T 2) If M ≡ T (φ(M1, . . . , Mm)), set T (M) = Top(M, T (M1), . . . , T (Mm)).
(T 3) If M ≡ if M0 then M1 else M2, set

T (M) =

{
Top(M, T (M0), T (M1)) if M0 = tt,
Top(M, T (M0), T (M2)) if M0 = ff.

(T 4) If M ≡ p(M1, . . . , Mm), set

T (M) = Top(M, T (M1), . . . , T (Mm), T (Ep(M1, . . . , Mm))).
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3A. The basic complexity measures 61

Proposition 3A.2. For every M ∈ Conv(A, E),

D(M) = depth(T (M)).

Proof is immediate, by induction on D(M). a

3A.2. The sequential logical complexity Ls(M). For a fixed Φ-
structure A and a Φ-program E, the sequential logical complexity Ls(M)
of each M ∈ Conv(A, E) is defined by the following recursion on D(M):

(Ls1) Ls(tt) = Ls(ff) = Ls(x) = 0 (x ∈ A).
(Ls2) Ls(φ(M1, . . . , Mn)) = Ls(M1) + Ls(M2) + · · ·+ Ls(Mn) + 1.
(Ls3) If M ≡ if M0 then M1 else M2, then

Ls(M) =

{
Ls(M0) + Ls(M1) + 1 if M0 = tt,
Ls(M0) + Ls(M2) + 1 if M0 = ff.

(Ls4) If p is a recursive variable of E, then

Ls(p(M1, . . . , Mn)) = Ls(M1) + · · ·+ Ls(Mn)

+ Ls(Ep(~x, p1, . . . , pK)) + 1.

The sequential logical complexity

lsE(~x) = Ls(E0(~x)) (pA
E (~x)↓)(ls)

counts the minimal number of steps that a sequential (call-by-value) imple-
mentation of E would execute on the input ~x. It aims to capture the most
natural implementation-independent time complexity measure for recursive
programs.

3A.3. The parallel logical complexity Lp(M). For a fixed Φ-struc-
ture A and a Φ-program E, the parallel logical complexity Lp(M) of each
term M ∈ Conv(A, E) is defined by the following recursion on D(M):

(Lp1) Lp(tt) = Lp(ff) = Lp(x) = 0 (x ∈ A).
(Lp2) Lp(φ(M1, . . . , Mn)) = max{Lp(M1), . . . , Lp(Mn)}+ 1.
(Lp3) If M ≡ if M0 then M1 else M2, then

Lp(M) =

{
max{Lp(M0), Lp(M1)}+ 1, if M0 = tt,
max{Lp(M0), Lp(M2)}+ 1, if M0 = ff.

(Lp4) If p is a recursive variable of E, then

Lp(p(M1, . . . ,Mn)) = max{Lp(M1), . . . , Lp(Mn)}
+ Lp(Ep(~x, p1, . . . , pK)) + 1.
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62 3. Complexity theory for recursive programs

We also set

lpE(~x) = Lp(E0(~x)) (pA
E (~x)↓).(lp)

The measure lpE(~x) counts the (minimal) number of steps that must be
executed in sequence by a fully parallel, call-by-value implementation of E
on the input ~x.

The difference between lsE(~x) and lpE(~x) measures (in some vague sense)
how “parallel” the algorithm expressed by E is and it is no more than
exponential by the next result. The base of the exponential is one more
than the total arity of the program

(90) `(E) = max{arity(E), max{arity(φ) :φ ∈ Φ},
max{arity(pi) : i = 1, . . . , K}} ≥ 1.

Theorem 3A.3. For every Φ-structure A, every Φ-program E of total
arity ` ≥ 1, and every M ∈ Conv(A, E),
(a) Ls(M) ≤ size(T (M)),
(b) depth(T (M)) ≤ Lp(M),
(c) Ls(M) ≤ (` + 1)Lp(M),

and hence, for all ~x such that pE(~x)↓ ,
lsE(~x) ≤ (` + 1)lp

E
(~x).

Proof. (a) and (b) are verified by simple inductions on D(M), and then
(c) follows by (5) since the degree of T (M) is obviously ≤ ` + 1.

For example, in the most complex case for (a) with M ≡ p(M1, . . . , Mn):

Ls(M) = Ls(M1) + · · ·+ Ls(Mn) + Ls(Ep(M1, . . . , Mn)) + 1

≤ size(T (M1)) + · · ·+ size(T (Mn))

+ size(T (Ep(M1, . . . , Mn))) + 1

= size(T (M)).

For the corresponding case for (b):

depth(T (M)) = max{depth(T (M1)), . . . , depth(T (Mn)),

depth(T (Ep(M1, . . . , Mn)))}+ 1

≤ max{depth(T (M1)), . . . , depth(T (Mn))}
+ depth(T (Ep(M1, . . . , Mn))) + 1

≤ max{Lp(M1), . . . , Lp(Mn)}
+ Lp(Ep(M1, . . . , Mn)) + 1

= Lp(M).
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3A. The basic complexity measures 63

(The inequalities on size and depth are obvious from the tree pictures in
Figure 3.) a

Next we define two complexity measures on recursive programs which
disregard the logical steps and count only calls to the primitives.

3A.4. The number-of-calls complexity Cs(M). Fix a Φ-structure
A, a subset Φ0 ⊆ Φ of the vocabulary and a Φ-program E. The number of
calls to Φ0

Cs
Φ0

(M) = Cs
Φ0

(A, E, M)

of any M ∈ Conv(A, E) is defined by the following recursion on D(M):
(Cs1) Cs

Φ0
(tt) = Cs

Φ0
(ff) = Cs(x) = 0 (x ∈ A).

(Cs2) If M ≡ φ(M1, . . . , Mm), then

Cs
Φ0

(M) =

{
Cs

Φ0
(M1) + · · ·+ Cs

Φ0
(Mm) + 1, if φ ∈ Φ0,

Cs
Φ0

(M1) + · · ·+ Cs
Φ0

(Mm), otherwise.

(Cs3) If M ≡ if M0 then M1 else M2, then

Cs
Φ0

(M) =

{
Cs

Φ0
(M0) + Cs

Φ0
(M1), if M0 = tt,

Cs
Φ0

(M0) + Cs
Φ0

(M2), if M0 = ff.

(Cs4) If M ≡ p(M1, . . . , Mm) with p a recursive variable of E, then

Cs
Φ0

(M) = Cs
Φ0

(M1) + · · ·+ Cs
Φ0

(Mm) + Cs
Φ0

(Ep(M1, . . . , Mm)).

The number of Φ0-calls complexity of the partial function pE : An ⇀ ASs

to Φ0 of E in A is that of its head term,

cs
Φ0

(~x) = cs
Φ0

(A, E, ~x) = Cs
Φ0

(A, E,E0(~x, p1, . . . , pK)),(cs
Φ0

)

and it is defined exactly when pE(~x)↓ . We also set

Cs(M) = Cs
Φ(M), cs(~x) = cs

Φ(~x)(Cs, cs)

when we want to count the calls to all primitives.
This is a very natural complexity measure: Cs

Φ0
(M) counts the number

of calls to the primitives in Φ0 which are required for the computation
of M using “the algorithm expressed” by the program E and disregard-
ing the “logical steps” (branching and recursive calls) as well as calls to
primitives not in Φ0. It does not distinguish between parallel and sequen-
tial implementations of E, although it is more directly relevant to the
second—so we will sometimes refer to it as the sequential calls complexity.

Notice that E may (stupidly) call many times for the same value of one
of the primitives, and all these calls will be counted separately by Cs

Φ0
(M).

Most of the lower bounds of algebraic problems that we will derive are about
a somewhat smaller measure which counts only the number of distinct calls
to the primitives in Φ0.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 63

Preliminary draft, incomplete and full or errors.



64 3. Complexity theory for recursive programs

3A.5. The depth-of-calls complexity Cp(M). Fix again a Φ-structure
A, a subset Φ0 ⊆ Φ of the vocabulary and a Φ-program E. The depth of
calls to Φ0

Cp
Φ0

(M) = Cp
Φ0

(A, E, M)

of any M ∈ Conv(A, E) is defined by the following recursion on D(M):

(Cp1) Cp
Φ0

(tt) = Cp
Φ0

(ff) = Cp
Φ0

(x) = 0 (x ∈ A).

(Cp2) If M ≡ φ(M1, . . . , Mm), then

Cp(M) =

{
max{Cp

Φ0
(M1), . . . , Cp

Φ0
(Mm)}+ 1, if φ ∈ Φ0,

max{Cp
Φ0

(M1), . . . , Cp
Φ0

(Mm)}, otherwise.

(Cp3) If M ≡ if M0 then M1 else M2, then

Cp(M) =

{
max{Cp

Φ0
(M0), C

p
Φ0

(M1)}, if M0 = tt,
max{Cp

Φ0
(M0),Φ0 Cp(M2)}, if M0 = ff.

(Cp4) If M ≡ p(M1, . . . , Mm) of E with p a recursive variable of E, then

Cp
Φ0

(M) = max{Cp
Φ0

(M1), . . . , Cp
Φ0

(Mm)}+ Cp
Φ0

(Ep(M1, . . . , Mm)

The depth of calls to Φ0 of E in A is that of its head term,

cp
Φ0

(~x) = cp
Φ0

(A, E, ~x) = Cp
Φ0

(A, E,E0(~x, p1, . . . , pK)),(cp
Φ0

)

and we also skip the subscript Φ when Φ0 = Φ, as with the sequential calls
complexity,

Cs(M) = Cs
Φ(M), cp(~x) = cp

Φ(~x).(Cp, cp)

Intuitively, the number Cp(M) counts the maximal number of calls to the
primitives that must be executed in sequence in any computation of M by E.
It is more directly relevant to parallel implementations—which is why we
will sometimes call it the parallel calls complexity. It is not as easy to read it
from T (M), however, which assumes not only parallelism but (potentially
infinite) non-determinism. In the key recursive calls p(M1, . . . , Mn), for
example, we put the children on the same level,

M1, . . . , Mn, Ep(M1, . . . , Mn)

so that the depth of the tree is one more than the maximum of the depths
of the trees for these terms; but M1, . . . , Mn must be computed before the
computation of the rightmost child is started, which is why we set

Cp(p(M1, . . . , Mn))

= max{Cp(M1), . . . , Cp(Mn)}+ Cp(Ep(M1, . . . , Mn)).
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The same disconnect between the tree picture and the depth-of-calls in
implementations comes up in the parallel logical complexity Lp(M), of
course.

The complexity measure cp(~x) is majorized by all natural complexity
measures of all reasonable implementations of recursive programs, and so
lower bound results about it have wide applicability. Most of the lower
bounds for problems in arithmetic we will derive are for a complexity mea-
sure somewhat smaller than cp(~x).

Problems for Section 3A

The first problem is a more detailed version of Proposition 2B.1, which re-
lates the time complexity of an iterator with the sequential calls-complexity
of the associated tail recursion.

Problem x3A.1. For each iterator i and the associated recursive pro-
gram E ≡ Ei on A = Ai and for all x ∈ X,

i(x) = pA
E (x),

Timei(x) = cs
E(A, x) (i(x)↓).

This exact equality of the time complexity Timei(x) with the sequential
complexity cs

E(x) of the associated recursive program is due partly to some
choices we made in defining Timei(x)—we could, for example, not “charge”
for the calls to input(x) and output(s) and end up with a time complexity
two units smaller. The precise definitions of time complexity for specific
computation models frequently reflect various implementation concerns and
we cannot expect a result as neat as this Lemma. It is always the case,
however, that with each computation model c there is a natural associated
structure Ac whose primitives are the primitives of the model—not always
explicitly identified; and an associated recursive program E ≡ Ec on Ac so
that

Timec(x) = Θ(cs
E(x)),

i.e., these two complexity measures are (essentially) linearly related. The
same is true of all the other, natural complexity measures associated with
computation models, which are similarly related to one or another of the
measures we introduced in this section (and some more we will introduce
later). We will not go into results of this type here.

Problem x3A.2. Prove that the following are equivalent for any term
M ∈ Conv(A, E):

(i) Cp(M) = 0.
(ii) Cs(M) = 0.
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66 3. Complexity theory for recursive programs

(iii) The value M is independent of the primitives of A, i.e., for any Φ-
structure A′ = (A,Φ′) with the same universe

den(A, E, M) = den(A′, E, M).

(iv) There are no Φ-nodes in the computation tree T (M).

We will sometimes appeal silently to this simple observation to simplify
formulas, for example by dividing by cp

E(~x) or using it in the form cp
E(~x) ≥ 1

when the value pA
E (~x) obviously depends on the primitives of A.

Problem x3A.3. Compute (up to a multiplicative constant) cp
E(x, y)

for the program defined (informally) in Problem x1B.1.

Problem x3A.4. Compute (up to a multiplicative constant) cp
E(x, y)

for the program defined (informally) in Problem x1B.2.

Problem x3A.5. Compute (up to a multiplicative constant) cp
E(x, y)

for the program in Problem x1B.3.

Problem x3A.6. Fix a Φ-structure A and a Φ-program E of total arity
` = 1. Prove that for every M ∈ Conv(A, E),

Ls(M) ≤ 2Lp(M) − 1 < 2Lp(M).

Problem x3A.7∗. Give a direct proof, by induction on D(M) of (c) in
Theorem 3A.3, that

Ls(M) ≤ (` + 1)Lp(M).

Hint: You may assume ` ≥ 2, since Problem x3A.6 gives the result when
` = 1.

Problem x3A.8. Consider the program E with the single equation

p(x) = if (x = 0) then 0 else p(Pd(x)) + p(Pd(x))

in the structure (N, 0, 1, Pd, +, eq0). Determine the function pE(x) com-
puted by this program, and verify that that for all sufficiently large x,

lsE(x) ≥ 2lp
E

(x), cs
E(x) ≥ 2cp

E
(x)

A Φ0-node in a computation tree T (M) is a node of the form form
(M,L1, . . . , Lk) in which Lk ≡ φ(N1, . . . , Nn) for some φ ∈ Φ0.

Problem x3A.9 (Open, vague). Is there a conceptually simple and tech-
nically useful way to read Cp

Φ0
(A, E, M) from the tree T (M) or the com-

putation of the recursive machine for A which starts with M : , similar to
the characterization of Cs

Φ0
(A, E,M) in the next two problems?

Problem x3A.10. Prove that Cs
Φ0

(A, E, M) is the number of Φ0-nodes
in T (M).
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3B. Complexity inequalities 67

Problem x3A.11. Prove that Cs
Φ0

(A, E, M) is the number of external
calls ~a φ : w1 · · · wn

~b with φ ∈ Φ0 in the computation of the recursive
machine for A which starts with M : .

3B. Complexity inequalities

Next we derive the expected inequalities that relate these complexity
measures.

Proposition 3B.1. For each Φ-structure A, each Φ-program E and
each M ∈ Conv(A, E):

Cs(M) (` + 1)Lp(M)

≤ ≤ ≤
Cp(M) Ls(M)

≤ ≤
Lp(M)

and, in particular, for all ~x such that pE(~x)↓ ,
cs(~x) (` + 1)lp(~x)

≤ ≤ ≤
cp(~x) ls(~x).

≤ ≤
lp(~x)

Proof. The four inequalities on the left are very easy to check by in-
duction on D(M), and the last one on the right is Theorem 3A.3. a

Together with Problem x3A.8, Theorem 3A.3 gives the expected relation
between the sequential and parallel logical complexities: lsE(~x) is bounded
by an exponential function of lpE(x), and in some cases it attains this rate
of growth.

What is less obvious is that for suitable constants Ks,Kp (which depend
only on the program E),

(a) lsE(~x) ≤ Ks + Ksc
s
E(~x), (b) lpE(~x) ≤ Kp + Kpc

p
E(~x),(91)

i.e., in both the sequential and the parallel measures, counting the logical
steps in addition to the calls to the primitives produces at most a linear
increase in complexity. From the point of view of deriving lower bounds,
the significance of these inequalities becomes evident if we reverse them:

(a) cs
E(~x) ≥ 1

Ks
(lsE(~x)−Ks), (b) cp

E(~x) ≥ 1
Kp

(lpE(~x)−Kp).(92)
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68 3. Complexity theory for recursive programs

Here (a) means that the high sequential computational complexity of a
particular relation R ⊆ An from specified primitives is not caused by the
large number of logical operations that we must execute to decide R(~x)—
i.e., (literally) by the “computational complexity” of R—but is due to the
large number of calls to the primitives that are necessary to decide R(~x), at
least up to a linear factor. Ditto for the parallel computational complexity
lpE(~x) and its “calls-counting” counterpart cp

E(~x). This explains why lower
bounds results are most often proved by counting calls to the primitives,
and incidentally emphasizes the importance of identifying all the (non-
logical) primitives that are used by an algorithm which decides a particular
relation.

The proofs of these inequalities require some new ideas due to Anush
Tserunyan.13

We fix a Φ-structure A and a recursive program E with recursive vari-
ables p1, . . . , pK and total arity ` = `(E) ≥ 1. We can insure that

the number of free and bound variables in E ≤ `

by making innocuous alphabetic changes to the bound variables of E. It
follows that if

t = t(E) = the number of distinct subterms of the terms in E,

H = H(E) = t``,

then H is an overall upper bound to the number of terms that can be
constructed by a single assignment of parameters to the variables in all the
subterms of E.

We start with some preliminary estimates which are needed for the proofs
of both inequalities in (91).

Lemma 3B.2. If M ∈ Conv(A, E) and Cp(M) = 0, then the value M
occurs in M .

Proof is by an easy induction on D(M). a
Notice that the Lemma applies even when M is tt or ff, which we do not

formally count as “parameters”.

Lemma 3B.3. Suppose M ∈ Conv(A, E).
(a) If (M1, . . . , Mk) ∈ T (M), then Mk ∈ Conv(A, E).
(b) If (M1, . . . , Mk) ∈ T (M) and the parameters in every Mi occur in

M , then k ≤ H.

13The results in the remainder of this section are due to Tserunyan and are part of
her Ph.D. Thesis.
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3B. Complexity inequalities 69

Proof. (a) is immediate by the construction of T (M).
(b) Suppose x1, . . . , xm is a list of the parameters in M1 ≡ M , so m ≤ `.

Each Mi is an (A, E)-term whose parameters are among x1, . . . , xm, and
there are at most H distinct such terms; so if k > H, then Mi ≡ Mj for
some 1 ≤ i < j ≤ k, and then M1 ↑. a

It is clear from the construction of the computation tree that new pa-
rameters enter the tree only by Case (T 4), in the term Ep(M1, . . . , Mm),
and then only if some M i does not occur in the parent node. Isolating and
counting these critical nodes is the main new tool we need.

Splitting. A term M ∈ Conv(A, E) is splitting, if M ≡ p(M1, . . . , Mn)
with a recursive variable p of E and

max1≤j≤n Cp(Mj) > 0, Cp(Ei(M1, . . . , Mn)) > 0.

By Problem x3A.2, these conditions are equivalent to their version with Cs

rather than Cp.

Lemma 3B.4. If (M1, . . . ,Mk) ∈ T (M) = T (M1) and no Mi is split-
ting, then k ≤ 2H.

Proof. If the parameters in every Mi occur in M1 ≡ M , then we apply
(b) of Lemma 3B.3. Otherwise, let i be least such that Mi+1 has parameters
that do not occur in M1. Now i ≤ H by Lemma 3B.3 again, and by the
definition of T (M),

Mi ≡ p(N1, . . . , Nn), and Mi+1 ≡ Ep(N1, . . . , Nn).

Moreover, max{Cp(Nj) : 1 ≤ j ≤ n} > 0 since otherwise, each N j occurs in
Nj and hence N j ∈ Mi by Lemma 3B.2, contradicting the choice of i. But
Mi is not splitting, so Cp(Mi+1) = Cp(Ep(N1, . . . , Nn)) = 0. Hence for all
j ≥ i + 1, Cp(Mj) = 0 and then by Lemma 3B.2 again, all parameters in
Mj occur in Mi+1, and the length of (Mi+1, . . . , Mk) is ≤ H; which means
that k = i + (k − i) ≤ H + H = 2H. a

Let

v(M) =
{

(M1, . . . , Mn) ∈ T (M) : ∀i,Mi is not splitting
}

.

This is the empty set if M is splitting and a subtree of T (M) if it is not.
By Lemma 3B.4 and the fact that degree(T (M)) ≤ (` + 1),

|v(M)| ≤ V, where V = (` + 1)2H .(93)

Lemma 3B.5. If Cp(M) = 0, then Ls(M) ≤ |v(M)|.
Proof. If Cp(M) = 0, then there are no splitting terms below M , and

so v(M) = T (M) and the inequality follows from (a) of Theorem 3A.3. a
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70 3. Complexity theory for recursive programs

For the proof of (a) in (91), we need the sequential splitting complexity
of a closed, convergent (A, E)-term:

F s(M) = the number of splitting nodes in T (M),(94)

where (M0, . . . , Mk) ∈ T (M0) is splitting if Mk is splitting. This satisfies
some obvious recursive conditions which we will introduce and use in the
proof of the next lemma. It is clear, however, that

Cp(M) = 0 =⇒F s(M) = 0;

because if Cp(M) = 0, then Cp(N) = 0 for every N in T (M) and so no
such term can be splitting.

Lemma 3B.6. For every M ∈ Conv(A, E),

F s(M) ≤ Cs(M)−· 1.

Proof is by induction on D(M), as usual, and it is trivial in all cases
except when M is splitting. If M ≡ p(M1, . . . , Mm) is splitting, let
Mm+1 ≡ Ep(M1, . . . , Mm) and compute:

F s(M) = F s(M1) + · · ·+ F s(Mm) + F s(Mm+1) + 1

≤ (Cs(M1)−· 1) + · · ·+ (Cs(Mm)−· 1) + (Cs(Mm+1)−· 1) + 1

≤ Cs(M1) + · · ·+ Cs(Mm)− 1 + Cs(Mm+1)− 1 + 1

= Cs(M)− 1.

The only thing we used here is that if M is splitting, then Cs(Mi) ≥
Cp(Mi) > 0 for at least one i, and similarly Cs(Mm+1) > 0. a

Lemma 3B.7. If M ∈ Conv(A, E), then there is a (possibly empty)
sequence of splitting terms N0, . . . , Nk−1 in T (M) such that

F s(M) =
∑

i<k F s(Ni), Ls(M) ≤ ∑
i<k Ls(Ni) + |v(M)|.(95)

Proof. If M is splitting, we take just one N0 ≡ M , and if there are no
splitting terms in T (M) we set k = 0 and understand

∑
i<k Ls(Ni) = 0,

so that T (M) = v(M) by definition and (95) follows from (a) of Theo-
rem 3A.3. The lemma is proved in the general case by induction on D(M),
and the argument is trivial in most of the cases. We consider only the case
of a non-splitting recursive call

M ≡ p(M1, . . . , Mm).

Set Mm+1 ≡ Ep(M1, . . . , Mm). The induction hypothesis gives us (a pos-
sibly empty) sequence N i

0, . . . , N i
ki

of splitting terms in each T (Mi) such

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 70

Preliminary draft, incomplete and full or errors.
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that, to begin with,

Ls(M) = Ls(M1) + · · ·+ Ls(Mm) + Ls(Mm+1) + 1

≤ ∑
j<k1

Ls(N1
j ) + |v(M1)|+ · · ·+ ∑

j<km
Ls(Nm

j ) + |v(Mm)|
+

∑
j<km+1

Ls(Nm+1
j ) + |v(Mm+1)|+ 1

≤ ∑
1≤i≤m+1,j<ki

Ls(N i
j) + |v(M1)|+ · · ·+ |v(Mm+1)|+ 1.

Now v(M) =
⋃

i=1,... ,m+1v(Mi) ∪ {M} because M is not splitting, and so

|v(M1)|+ · · ·+ |v(Mm+1)|+ 1 = |v(M)|.
Moreover, F s(Mi) =

∑
j<ki

N i
j by the induction hypothesis, and so

F s(M) = F s(M1) + · · ·+ F s(Mm+1) =
∑

1≤i≤m+1,j<ki
F s(N i

j)

as required, again because M is not splitting. a
Theorem 3B.8 (Tserunyan). For every Φ-structure A, every Φ-program

E and every M ∈ Conv(A, E), if V is the constant defined in (93), then:
(a) If M is splitting, then Ls(M) ≤ ((` + 1)V + 1)F s(M).
(b) If M is not splitting, then Ls(M) ≤ ((` + 1)V + 1)F s(M) + V .
It follows that Ls(M) ≤ V + ((` + 1)V + 1)Cs(M), and so

lsE(~x) ≤ Ks + Ksc
s
E(~x) (pE(~x)↓)(96)

with Ks = (` + 1)V + 1, a constant which depends only on the program E.

Proof. The main result (96) follows from (a) and (b) by taking M ≡
E0(~x) and appealing to Lemma 3B.6.

We prove (a) and (b) together by induction on D(M), noting that (b) is
a weaker inequality than (a) and so we can use it whether M is splitting
or not when we invoke the induction hypothesis.

Case 1, M ≡ p(M1, . . . ,Mm) is splitting. Set Mm+1 ≡ Ep(M1, . . . , Mm)
as above and compute:

Ls(M) = Ls(M1) + · · ·+ Ls(Mm+1) + 1

≤ ((` + 1)V + 1)[F s(M1) + · · ·+ F s(Mm+1)] + (` + 1)V + 1

= ((` + 1)V + 1)[F s(M1) + · · ·+ F s(Mm+1) + 1]

= ((` + 1)V + 1)F s(M),

because F s(M) = F s(M1) + · · ·+ F s(Mm+1) + 1 for splitting M .
Case 2, M is not splitting. Choose splitting terms N0, . . . , Nk−1 by

Lemma 3B.7 so that

F s(M) =
∑

i<k F s(Ni), Ls(M) ≤ ∑
i<k Ls(Ni) + |v(M)|
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72 3. Complexity theory for recursive programs

and compute using the result from Case 1:

Ls(M) ≤ ∑
i<k Ls(Ni) + |v(M)|

≤ ((` + 1)V + 1)
∑

i<k F s(Ni) + V = ((` + 1)V + 1)F s(M) + V

as required. a
We now turn to the proof of (b) in (91), and for this we need a count

F p(M) of the splitting terms which parallels the way in which Cp(M)
counts “the depth” of calls to the primitives. This is easiest to define by
induction on D(M):
(F p1) F p(tt) = F p(ff) = F p(x) = 0 (x ∈ A).
(F p2) If M ≡ φ(M1, . . . ,Mm), then

F p(M) = max{F p(M1), . . . , F p(Mm)}.
(F p3) If M ≡ if M0 then M1 else M2, then

F p(M) =

{
max{F p(M0), F p(M1)}, if M0 = tt,
max{F p(M0), F p(M2)}, if M0 = ff.

(F p4) If M ≡ p(M1, . . . , Mm) of E, let Mm+1 ≡ Ep(M1, . . . , Mm) and
set

F p(M) =

{
max{F p(M1), . . . , F p(Mm)}+ F p(Mm+1), if M is not splitting,

max{F p(M1), . . . , F p(Mm)}+ F p(Mm+1) + 1, if M is splitting.

Notice that if M is not splitting, then

F p(M) = max{F p(M1), . . . , F p(Mm), F p(Mm+1)},
since one of max{F p(M1), . . . , F p(Mm)} and F p(Mm+1) is 0, so that the
sum of these two numbers is the same as their maximum.

With this splitting complexity, the proof of (b) in (91) is only a minor
modification (a parallel version) of the proof of Theorem 3B.8.

Lemma 3B.9. For every M ∈ Conv(A, E),

F p(M) ≤ Cp(M)−· 1.

Proof is by induction on D(M) and it is again trivial in all cases except
when M is splitting. In this case, if M ≡ p(M1, . . . , Mm) and we set
Mm+1 ≡ Ep(M1, . . . , Mm), then

F p(M) = max{F p(M1), · · ·+ F p(Mm)}+ F p(Mm+1) + 1

≤ max{(Cp(M1)−· 1), · · ·+ (Cp(Mm)−· 1)}+ Cp(Mm+1)−· 1 + 1

≤ max{Cp(M1), · · · , Cp(Mm)} − 1 + Cp(Mm+1)− 1 + 1

= Cp(M)−· 1.
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As in the proof of Lemma 3B.6, the only thing we use here is that if M is
splitting, then Cp(Mi) > 0 for at least one i, and similarly Cp(Mm+1) > 0.a

Lemma 3B.10. If M ∈ Conv(A, E), then there is a term N in T (M)
which is either a leaf or splitting and such that

Lp(M) ≤ Lp(N) + |v(M)|.(97)

Proof is by induction on D(M), as usual, and the result is trivial if M
is a leaf or splitting, taking N ≡ M .

If M ≡ φ(M1, . . . ,Mm), then Lp(M) = Lp(Mi) + 1 for some i, and the
induction hypothesis gives us a leaf or splitting term N in T (Mi) such that

Lp(Mi) ≤ Lp(N) + |v(Mi)|.
It follows that

Lp(M) = Lp(Mi) + 1 ≤ Lp(N) + |v(Mi)|+ 1 ≤ Lp(N) + |v(M)|
since M is not splitting and so v(M) =

⋃
j=1,...Mv(Mj) ∪ {M}.

The argument is similar for conditional terms.

If M is a non-splitting recursive call

M ≡ p(M1, . . . , Mm),

set again Mm+1 ≡ Ep(M1, . . . , Mm) and choose i such that Lp(Mi) =
max{Lp(M1), . . . , Lp(Mm)}. If Cp(Mi) = 0, then then Lp(Mi) ≤ |v(Mi)|
by Lemma 3B.5, and if we choose N ∈ T (Mm+1) by the inductive hypoth-
esis so that Lp(Mm+1) ≤ Lp(N) + |v(Mm+1|, then

Lp(M) = Lp(Mi) + Lp(Mm+1) + 1

≤ |v(Mi)|+ Lp(N) + |v(Mm+1)|+ 1 = Lp(N) + |v(M)|.
If Cp(Mi) > 0, then Cp(Mm+1) = 0, since M is not splitting, and we can
repeat the argument with Mi and Mm+1 interchanged. a

Theorem 3B.11 (Tserunyan). For every Φ-structure A, every Φ-program
E and every M ∈ Conv(A, E), if V is the constant defined in (93), then:

(a) If M is splitting, then Lp(M) ≤ (2V + 1)F p(M).

(b) If M is not splitting, then Lp(M) ≤ (2V + 1)F p(M) + V .

It follows that Lp(M) ≤ V + (2V + 1)Cp(M) and

lpE(~x) ≤ Kp + Kpc
p
E(~x) (pE(~x)↓)(98)

with Kp = 2V + 1, which depends only on the program E.
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Proof is a minor adaptation of the proof of Theorem 3B.8, with (98)
following from (a) and (b) by appealing to Lemma 3B.9. We prove (a) and
(b) together by induction on D(M).

Case 1, M ≡ p(M1, . . . ,Mm) is splitting. Set Mm+1 ≡ Ep(M1, . . . , Mm)
as above and compute:

Lp(M) = max
1≤i≤m

Lp(Mi) + Lp(Mm+1) + 1

≤ (2V + 1) max
1≤i≤m

F p(Mi) + V + (2V + 1)F p(Mm+1) + V + 1

= (2V + 1)
(

max
1≤i≤m

F p(Mi) + F p(Mm+1)
)

+ 2V + 1

= (2V + 1)
(

max
1≤i≤m

F p(Mi) + F p(Mm+1) + 1
)

= (2V + 1)F p(M),

because F p(M) = max1≤i≤m F p(Mi) + F p(Mm+1) + 1 for splitting M .
Case 2, M is not splitting. There is nothing to prove if M is a leaf. If

it is not, choose a leaf or splitting term N in T (M) by Lemma 3B.10 such
that Lp(M) ≤ Lp(N) + |v(M)|. If N is a leaf, then Lp(N) = 0 and so
Lp(M) ≤ |v(M)| ≤ V ≤ (2V + 1)F (M) + V by (93). If N is splitting,
then the induction hypothesis applies to it since it is not M and hence
D(N) < D(M), and we have

Lp(M) ≤ Lp(N) + |v(M)| ≤ (2V + 1)F p(N) + V

by (93) again, as required. a
Corollary 3B.12. For every Φ-program E, there is a constant K such

that for every Φ-structure A,

cs(~x) ≤ Kcp(~x) (pA
E (~x)↓).(99)

Proof. Notice that (99) is true for any K > 0 if cp(~x) = 0, because in
that case cs(~x) = 0 also by Problem x3A.2. So we assume that p(~x)↓ and
cp(~x) > 0 and compute:

cs(~x) ≤ ls(~x) ≤ (` + 1)lp(~x) (Theorem 3A.3)

≤ (` + 1)Kp+Kpcp(~x) (Theorem 3B.11)

= (` + 1)2Kpcp(~x) ≤
(
(` + 1)2Kp

)cp(~x)

. a

Corollary 3B.13. For every Φ-program E of total arity `, there is a
constant Kp such that for every Φ-structure A,

ls(~x) ≤ (` + 1)Kp(cp(~x)+1) (p(~x)↓).(100)

Proof is immediate, from Theorems 3B.11 and 3A.3. a
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This last inequality bounds ls(~x), the largest of the basic complexity
functions associated with a recursive program by an exponential of the
smallest, cp(~x). One of its consequences is that we can talk of programs of
bounded complexity without ambiguity, since

(∃k)(∀~x)[pA
E (~x)↓ =⇒ lsE(~x) ≤ k]

⇐⇒ (∃k)(∀~x)[pA
E (~x)↓ =⇒ cp

E(~x) ≤ k].

3C. Recursive vs. explicit definability

The length of a pure Φ-term E is defined recursively by the clauses

length(tt) = length(ff) = length(v) = 0,

length(φ(E1, . . . , En) = length(E1) + · · ·+ length(En) + 1,

length(if E0 then E1 else E2)

= length(E0) + length(E1) + length(E2) + 1,

and it is easy to check that if we think of E(~x) as a program, then for any
Φ-algebra A,

Ls(E(~x)) ≤ length(E(~x)) (~x ∈ A, den(A, E(~x))↓),(101)

see Problem x3C.1. Together with the results in the preceding section, this
implies that if we derive a non-constant lower bound for lsE(~x) for every
program E which computes f : An ⇀ As, then no Φ-term defines f in
A. We establish here the converse of this proposition for structures which
satisfy a mild “richness” condition.

Theorem 3C.1. Suppose Φ has a relation symbol R of arity k > 0 and
A is a Φ-structure such that RA : Ak → {tt, ff} is total. Then: for any
f : An ⇀ As and S ⊆ {~x : f(~x)↓} the following are equivalent:
(a) There is a Φ-term M(~x) which defines f on S, i.e.,

~x ∈ S =⇒ f(~x) = den(A,M(~x)).

(b) There is a Φ-program E and a number k such that for every ~x ∈ S,

f(~x) = pA
E (~x) and lsE(~x) ≤ k.

In particular, a function f : An → A is explicit in A if and only if it is
computed in A by a Φ-program with bounded complexity.

Proof. (a) =⇒ (b) follows immediately from (101). For the converse
implication we need some preliminary work. We will assume for simplicity
that the given relation symbol R is unary. (If it is not, simply replace R(x)
by R(x, . . . , x) in the construction.)
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76 3. Complexity theory for recursive programs

It is convenient for this proof to add to the language nullary function
constants ∅a, ∅boole which denote the nullary, totally undefined partial func-
tions of sort a and boole. The semantics of these (extended) (Φ, ∅)-terms
in a Φ-structure A are obvious, and we will need only one (monotonicity)
property of them, which is established by a trivial induction on M .

Lemma 1. If M is a closed (Φ, ∅)-term such that den(M)↓ and N is any
closed (Φ, ∅)-term of sort s, then den(M{∅s :≡ N}) = den(M(N)).

Next we associate with each Φ-program E, each pure voc(E)-term

M ≡ M(~x,~p)

and each k, a (Φ, ∅)-term [M ](k)(~x) with the same individual variables. This
(explicit) term approximation of M to depth k is defined by recursion on
k, and within this, recursion on length(M):

1. If M is a variable or tt or ff, then [M ](k) ≡ M .
2. [M ](0)(~x) ≡ M(~x,~∅), where the substitution pi 7→ ∅ means that every

subterm of M(~x,~p) of the form pi(M1, . . . , Mn) is replaced by ∅s with
s = sort(pi).

3. If M ≡ φ(M1, . . . ,Mn), then [M ](k+1) ≡ φ([M1](k+1), . . . , [Mn](k+1)).
4. If M ≡ if M0 then M1 else M2, then

[M ](k+1) ≡ if [M0](k+1) then [M1](k+1) else [M2](k+1).

5. If M ≡ pi(M1, . . . , Mn), then

[M ](k+1) ≡ if ([M1](k)↓ & · · · & [Mn](k)↓)

then [Ei](k)([M1](k), · · · , [Mn](k)) else ∅s,

where s = sort(pi).

Here N1↓ & · · · & Nn↓ is defined by the following recursion on n:

N1↓ :≡ if R(N1) then tt else tt,

N1↓ & · · · & Nn+1↓ :≡ if (N1↓ & · · · & Nn↓) then R(Nn+1)↓
else R(Nn+1)↓ .

The definition of [M ](k) depends on the program E (so that we should
properly write [M ](k)

E ), but not on any specific Φ-structure A.

Lemma 2. For each Φ-program E, each voc(E)-term M(~x), each k and
any ~x ∈ An:

(i) If den([M ](k)(~x))↓ , then den([M ](k)(~x)) = den([M ](k+1)(~x)).

(ii) If Ls(M(~x)) ≤ k, then den([M ](k)(~x)) = M(~x).
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3C. Recursive vs. explicit definability 77

Proof. (i) is verified by induction on k, and within this by induction
on length(M).

Basis, k = 0. The result is obvious when M is tt, ff or a variable, and
there is nothing to prove if M ≡ pi(M1, . . . ,Mn), since in that case

den([pi(M1, . . . , Mn)](0)(~x)) = den(∅s) ↑ .

For the other two cases where the hypothesis may hold, (i) follows by an
easy induction on the length.

Induction Step. We use again induction on the length of M and the
argument is exactly like that in the basis, except for the new case of M ≡
pi(M1, . . . ,Mn) which may now arise. In this case, the hypothesis gives us
that den([Mj ](k)(~x))↓ for all j, and so by the definition and the induction
hypothesis

den([M ](k+1)(~x)) = den([Ei](k)([M1](k)(~x), . . . , [Mn](k)(~x)))

= den([Ei](k+1)([M1](k+1)(~x), . . . , [Mn](k+1)(~x))) = den([M ](k+2)(~x)).

(ii) is proved by induction on Ls(M). It is obvious when M is tt, ff or
a variable and quite routine in the induction step, with the help of the
monotonicity properties established in (i), as follows.

If M ≡ φ(M1, . . . ,Mn), then

Ls(M) = Ls(M1) + . . . + Ls(Mn)}+ 1 = k + 1,

and by the induction hypothesis and (i)

den([Mi](k+1)) = den([Mi](k)) = M i,

so that

den([M ](k+1)) = φ(den([M1](k+1)), . . . , den([Mn](k+1)))

= φ(M1, . . . , Mn) = M.

The argument is similar for conditionals, and if M ≡ pi(M1, . . . , Mn), then

k + 1 = Ls(M) = Ls(M1) + . . . + Ls(Mn) + Ls(Ei(M1, . . . , Mn)) + 1,

so that the induction hypothesis applies to M1, . . . , Mn, Ei(M1, . . . , Mn)
and yields

den([Mi](k)) = M i, den([E](k)(M1, . . . , Mn)) = Ei(M1, . . . , Mn) = M ;

the required den([Mi](k+1)) = M now follows by (i). a (Lemma 2)
To prove that (b) =⇒ (a) in the Theorem from Lemma 1, let E0(~x) be

the head of the given program E, k = max{lsE(~x) : ~x ∈ S}. To construct
the required M(~x), start with [E0(~x)](k) and first replace ∅boole in all its
occurrences by tt. If ~x ≡ x1, . . . , xn is a non-empty tuple, replace next
each ∅a by x1, so that the resulting M(~x) has the required property by
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78 3. Complexity theory for recursive programs

Lemma 2. Finally, if n = 0 so that E0 is a closed term, then there must
be some individual constant c in the vocabulary Φ—otherwise there are no
closed voc(E)-terms (other than those which can be constructed from the
truth values and which cause no problem); and in this case we can replace
∅a by c and appeal again to Lemma 2. a

Problems for Section 3C

Problem x3C.1. Prove (101).
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CHAPTER 4

THE HOMOMORPHISM METHOD

Most of the known lower bound results in the literature are established for
specific computation models and the natural complexity measures associ-
ated with them, and so any claim that they are absolute—or even that they
hold for a great variety of models—must be inferred from the proofs. The
results about recursive programs in van den Dries and Moschovakis [2004],
[2009] are somewhat more robust: they are proved directly from the ab-
stract definitions of complexities in Chapter 3 using basically nothing more
than the homomorphism and finiteness properties of Theorem 2D.1, with-
out reference to the recursive machine or any other implementations of
recursive program. They imply immediately lower bounds for most com-
putation models, because of the simulations discussed briefly in Section 2B
and in the comment after Problem x3A.1.

Our main aim in this Chapter is to extract from the homomorphism and
finiteness properties of recursive programs a general, “algebraic” method for
deriving robust lower bounds for algorithms from specified primitives. The
key notions of the chapter are those of a uniform process and certification
in Sections 4C and 4E and the main result is the Homomorphism Test,
Lemma 4F.2. We will start, however, with a brief discussion of “algorithms
from primitives” which motivates our choice of notions.

4A. Axioms which capture the uniformity of algorithms

Our basic intuition is that an n-ary algorithm α of sort s ∈ {a, boole}
of a structure A = (A,Φ)—or from Φ—computes (in some way) an n-ary
partial function

α = αA : An ⇀ As (with Aboole = {tt, ff}, Aa = A)

using the primitives in Φ as oracles. We understand this to mean that
in the course of a computation of α(~x), the algorithm may request from
the oracle for any φA any particular value φA(u1, . . . , unφ

), where each
ui either is given by the input or has already been computed; and that if
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80 4. The homomorphism method

the oracles cooperate and respond to all requests, then this computation of
α(~x) is completed in a finite number of steps.

The three axioms we formulate in this section capture part of this mini-
mal understanding of how algorithms from primitives operate in the style
of abstract model theory.

The crucial first axiom expresses the possibility that the oracles may
choose not to respond to a request for φA(u1, . . . , unφ

) unless

u1, . . . , un ∈ U & φU(u1, . . . , un)↓
for some fixed substructure U ⊆p A: the algorithm will still compute a
partial function, which simply diverges on those inputs ~x for which no
computation of α(~x) by α can be executed “inside” U (as far as calls to
the oracles are involved).

I. Locality Axiom. An n-ary algorithm α of sort s ∈ {a, boole} of a
structure A assigns to each substructure U ⊆p A an n-ary partial function

αU : Un ⇀ Us.

We understand this axiom constructively, i.e., we claim that the localization
operation

(U 7→ αU) (where U ⊆p A and αU : Un ⇀ Us)(102)

is induced naturally by a specification of α. We set

U ` α(~x) = w ⇐⇒ ~x ∈ Un & αU(~x) = w(103)

U ` α(~x)↓ ⇐⇒ (∃w)[U ` α(~x) = w],(104)

and we call αU the partial function computed by α in U. We read “`” as
proves.

In particular, α computes in A the partial function α = αA : An ⇀ As.
For example, if E is a non-deterministic recursive program which com-

putes a partial function in A, then the localization of (the algorithm spec-
ified by) E is defined by

U ` αE(~x) = w ⇐⇒ pU
E (~x) = w (U ⊆p A).(105)

II. Homomorphism Axiom. If α is an algorithm of A and π : U → V
is a homomorphism of one substructure of A into another, then

U ` α(~x) = w =⇒V ` α(π(~x)) = π(w) (~x ∈ Un).

In particular, by applying this to the identity embedding idU : U ½ A,

U ⊆p A=⇒αU v αA = α.

The idea here is that the oracle for each φA may consistently respond
to each request for φU(~u) by delivering φV(π(~u)). This transforms any
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4A. Axioms which capture the uniformity of algorithms 81

computation of αU(~x) into one of αV(π(~x)), which in the end delivers the
value π(w) = π(αU(~x)).

This argument is convincing for the identity embedding idU : U ½ V. It
is not quite that simple in the general case, because α may utilize in its com-
putations complex data structures and rich primitives, e.g., stacks, queues,
trees, conditionals, the introduction of higher type objects by λ-abstraction
and subsequent application of these objects to suitable arguments, etc. The
claim is that any homomorphism π : U → V lifts naturally to these data
structures, and so the image of a convergent computation of αU(~x) is a con-
vergent computation of αV(π(~x)). Put another way: if some π : U → V
does not lift naturally to a mapping of the relevant computations, then α
is using essentially some hidden primitives not included in A and so it is
not an algorithm from {φA}φ∈Φ.

It is clear, however, that the Homomorphism Axiom demands something
more of algorithms (and how they use oracles) than the Locality Axiom,
and so it is important that we verify it for algorithms specified by the
standard computation models.

The Homomorphism Axiom is at the heart of this approach to the deriva-
tion of lower bounds.

III. Finiteness Axiom. If α(~x) = w, then there is a finite U ⊆p A
generated by ~x such that U ` α(~x) = w.

This combines two ingredients of the basic intuition: first that in the
course of a computation, the algorithm may only request of the oracles val-
ues φA(~u) for arguments ~u that it has already constructed from the input,
and second, that computations are finite. A suitable U is then determined
by putting in eqdiag(U) all the calls made by α in some computation of
α(~x).

This axiom implies, in particular, that partial functions computed by an
A-algorithm take values in the substructure generated by the input,

αA(~x) = w =⇒w ∈ G∞(A, ~x) ∪ {tt, ff}.

This is a substantial restriction, e.g., it rules out notions of “algorithm”
by which the function (x 7→

√
|x|) would be computable in the real field

(R, 0, 1, =,+,−, ·,÷). It has no implications for decision problems, how-
ever, when α is a relation and so for all ~x, α(~x) ∈ {tt,ff}.

It is useful to set

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x,(106)
and U ` α(~x) = w,

U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w].(107)
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82 4. The homomorphism method

In this notation, the Finiteness Axiom takes the form

α(~x) = w =⇒ (∃U ⊆p A)[U `c α(~x) = w].(108)

If we read “`c” as computes, then this form of the axiom suggests that the
triples (U, ~x, w) such that U `c α(~x) = w play the role of computations in
this abstract setting.

From Theorem 2D.1 we have immediately

Proposition 4A.1. The algorithms expressed by non-deterministic re-
cursive programs on a structure A satisfy axioms I – III.

4B. Concrete algorithms and the Uniformity Thesis

We have been using the word algorithm informally, and we will not (and
do not need to) “define algorithms” in these notes. Rigorous results in com-
plexity theory are established for concrete algorithms, specified by compu-
tation models, e.g., Turing machines, Random Access machines, recursive
programs, . . . , and their non-deterministic versions.

Axioms I – III are satisfied by all concrete algorithms which compute
a partial function f : An ⇀ As from specified primitives. This is plau-
sible from the motivation for the axioms above, but complete proofs are
rather tedious, as they must specify in detail and take into account the idio-
syncracies of each model. Part of the difficulty comes from the fact that
many computation models have some functions on the intended universe
A “built-in”, so to speak: e.g., Turing machines acting on N assume the
successor and predecessor functions if we code numbers by strings in unary
or the primitives of binary arithmetic if we code numbers in binary, and
random access machines have the identity relation on N built in, in addition
to whatever functions on N are explicitly identified in their definition. To
prove rigorously that these models satisfy the axioms, we must identify all
the non-logical primitives they assume—and then the result becomes basi-
cally trivial, either by direct verification or by appealing to the validity of
the axioms for the recursive programs that represent the model described
in Section 2B. We leave this analysis for Section ??, where we will also
establish some general results which support the following claim:

Uniformity Thesis. Every algorithm which computes a partial func-
tion f : An ⇀ A or decides a relation R ⊆ An from the primitives of a
Φ-structure A satisfies axioms I, II and III.

This is a weak Church-Turing-type assumption about algorithms which,
of course, cannot be established rigorously absent a precise definition of
algorithms. It limits somewhat the notion of “algorithm”, but not in any
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4C. Uniform processes 83

novel way which yields new undecidability results. We will show, however,
that it can be used to derive absolute lower bounds for decidable relations,
very much like the Church-Turing Thesis is used to establish absolute un-
decidability.

4C. Uniform processes

An n-ary uniform process of sort s ∈ {a, boole} of a Φ-structure A is
any operation

α = (U 7→ αU) (U ⊆p A, αU : Un ⇀ Us)

on the substructures of A which satisfies the Homomorphism and Finiteness
Axioms. We say that α computes the partial function α : An ⇀ As, and
we set

unif(A) = {f : An ⇀ As : f is computed by a uniform process of A}.
We will also use for uniform processes the notations introduced in (103) –
(107) of 4A.14

We have argued (briefly) that every algorithm from specified primitives
induces a uniform process and we have proved this for recursive algorithms
in Proposition 4A.1,

recnd(A) ⊆ unif(A).(109)

The converse, however, is far from true: nothing in axioms I – III suggests
that functions computed by uniform processes are “computable” from the
primitives of A in any intuitive sense, and in general, they are not.

Proposition 4C.1. If a Φ-structure A is generated by the empty tuple,
then every f : An ⇀ As is computed by some uniform process of A.

In particular, every f : Nn ⇀ Ns is computed by some uniform process
of A = (N, 0, ΦA) if ΦA includes either the successor function S or the
primitives of binary arithmetic em2(x) = 2x and om2(x) = 2x + 1.

14In categorical terms, an n-ary uniform process α of A of sort s ∈ {boole, a} is a
continuous functor on the category HA to PA,s, where:

(1) The objects of HA are all pairs (U, ~x) where ~x ∈ Un and U is generated by ~x,
and a morphism φ : (U, ~x) → (V, ~y) is any homomorphism π : U → V which carries ~x
to ~y; and

(2) The objects of PA,s are all n-ary partial functions on A to As, and a morphism
ψ : p → q is any partial function ψ : A ⇀ A such that

p(u1, . . . , un) = w =⇒ q(ψ(u1), . . . , ψ(un)) = ψ(w).
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84 4. The homomorphism method

Proof. Let Gm = Gm(A, ( )) be the set generated in ≤ m steps by the
empty tuple, so that G0 = ∅, G1 comprises the distinguished elements of
A, etc. Let

d(~x,w) = min{m : x1, . . . , xn, w ∈ Gm ∪ {tt, ff}},
and define αU for each U ⊆p A by

αU(~x) = w ⇐⇒ f(~x) = w & Gd(~x,w) ⊆p U.

The Finiteness Axiom is immediate taking U = Gd(~x,w), and the Homo-
morphism Axiom holds because if Gm ⊆p U, then every homomorphism
π : U → V fixes every u ∈ Gm. a

The axioms aim to capture the uniformity of algorithms—that they com-
pute all their values following “the same procedure”— but surely do not
capture their effectiveness.

Problems for Section 4C

Problem x4C.1. Prove the categorical characterization of uniform pro-
cesses in Footnote 14.

Problem x4C.2. For each (possibly non-deterministic) iterator i which
computes a partial function f : X ⇀ W , define a uniform process αi which
computes f in the associated structure Ai.

Problem x4C.3. Prove that if f : An ⇀ As is computable by a uniform
process of A, then so is every g ∈ unif(A, f).

Problem x4C.4. Prove that if f : An ⇀ A is computed by some uni-
form process of A and ρ : A½→A is an automorphism of A, then

f(ρ(~x)) = ρ(f(~x)) (f(~x)↓).

Problem x4C.5. Give an example of a finite structure A and a unary
relation P ⊆ A which is respected by all automorphisms of A but is not
decided by any uniform process of A.

Problem x4C.6. Find all the total functions fn : A → As which are
computable by uniform processes in A = (A) (with no primitives), where
A is infinite.

Problem x4C.7∗. Suppose A = (A,R1, . . . , RK) is a structure whose
primitives are relations on A. What are the (total) relations P ⊆ An which
are decided by uniform processes of A?
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4D. Complexity measures on uniform processes 85

4D. Complexity measures on uniform processes

A substructure norm on a Φ-structure A is a function µ which assigns
to each ~x ∈ A and each finite U ⊆p A which is generated by ~x a number
µ(U, ~x), e.g.,

depth(U, ~x) = min{m :U = Gm(U, ~x)},
size(U, ~x) = |Uvis| =

∣∣∣{v ∈ U : v occurs in some (φ, ~u,w) ∈ eqdiag(U)}
∣∣∣,

callsΦ0(U, ~x) = |eqdiag(U ¹ Φ0)| (Φ0 ⊆ Φ).

The complexity measure of a uniform process α relative to a substructure
norm µ is the function

Cµ(α, ~x) = min{µ(U, ~x) : U `c α(~x)↓},(110)

defined on the domain of convergence of αA.
By using the norms above, we get three natural complexity measures on

uniform processes,15

depth(α, ~x), size(α, ~x), callsΦ0(α, ~x).(111)

The first and last of these three correspond to familiar complexity measures
with roughly similar names for concrete algorithms but not exactly:16

- callsΦ0(α, ~x) intuitively counts the least number of distinct calls to
primitives in Φ0 required to compute α(~x) by the process α;

- the “parallel” measure depth(α, ~x) counts the least number of distinct
calls to the primitives of A which must be executed in sequence to
compute α(~x); and

- the less familiar middle measure size(α, ~x) counts the least number of
points in A that α must see to compute α(~x).

These measures are typically smaller than their versions for algorithms be-
cause they count distinct calls and points, while an algorithm may (stupidly
or by design, to control some other measure) make the same call many
times, cf. Problem x4D.1.

Lemma 4D.1. For every uniform process α of a Φ-structure A and every
~x such that α(~x)↓ ,

depth(α(~x);A, ~x) ≤ depth(α, ~x) ≤ size(α, ~x) ≤ calls(α, ~x),(112)

15The depth measure can also be relativized to arbitrary Φ0 ⊆ Φ, but it is tedious
and we have no interesting results about it.

16There are, of course, many other substructure norms which induce useful complexity
measures, including those which come by combining the three basic ones: for example

µ(U, ~x) = size(U, ~x) · 6depth(U,~x)

actually comes up naturally in a proof further on!
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86 4. The homomorphism method

where, by convention, depth(tt,A) = depth(ff,A) = 0.

Proof. The first inequality is trivial if w ∈ {tt, ff} and immediate for
w ∈ A, because if U `c α(~x) = w, then w ∈ U and so

depth(w;A, ~x) ≤ depth(w;U, ~x) ≤ depth(U, ~x).

For the third claimed inequality, suppose α(~x) = w and choose a sub-
structure U ⊆p A with least |eqdiag(U)| such that U `c α(~x) = w, so
that calls(α, ~x) = |eqdiag(U)|. Now size(U) ≤ |eqdiag(U)| by (23) in
Proposition 1C.1, and since U is among the substructures considered in
the definition of size(α, ~x), we have

size(α, ~x) ≤ |eqdiag(U)| = calls(α, ~x).

The second inequality is proved by a similar argument. a

Problems for Section 4D

Problem x4D.1. Let αE be the uniform process induced by a deter-
ministic program E in a Φ-structure A by (105). Prove that for all ~x ∈ An

such that pE(~x)↓ ,

depth(αE , ~x) ≤ cp(A, E, ~x),

callsΦ0(αE , ~x) ≤ cs
Φ0

(A, E, ~x) (Φ0 ⊆ Φ)

as these complexities were defined in Sections 3A.5 and 3A.4, and give an
example where these inequalities are strict.

Hint: Show the following refinement of (b) of Proposition 2D.1 for de-
terministic programs: if M ∈ Conv(A, E) and X ⊆ A contains all the
parameters which occur in M , then

den(A, E, M) = den(Gm[A, X], E,M) with m = Cp(A, E,M).

Problem x4D.2. Prove that if αE is the uniform process induced by a
non-deterministic recursive program in A by (105), then

calls(α, ~x) ≤ Timee
E(~x) (α(~x)↓).

Problem x4D.3. Prove that if the successor S is a primitive of a struct-
ure A = (N, 0,Φ), then every f : Nn ⇀ Ns is computed by some uniform
process α of A with

calls(α, ~x) ≤ max{~x, f(~x)} (f(~x)↓)

where max{~x,w} = max{~x} if w ∈ {tt, ff}. Hint: Look up the proof of
Lemma 4C.1.
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Problem x4D.4. Prove that if 0, 1 and the binary primitives em2(x) =
2x, om2(x) = 2x + 1 are among the primitives of A = (N,Φ), then every
f : Nn ⇀ Ns is computed by some uniform process α of A with

calls(α, ~x) ≤ 2max{blog(x1)c, . . . , blog(xn)c, blog(f(~x))c} (f(~x)↓),

with the same convention about truth values as in the previous problem.

4E. Forcing and certification

Suppose A is a Φ-structure, f : An ⇀ As (with s ∈ {a, boole}), U ⊆p A,
and f(~x)↓ . A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f(~x) ∈ Us & π(f(~x)) = f(π(~x)).(113)

Next come forcing and certification, the two basic notions of this chapter:

U °A f(~x) = w ⇐⇒ f(~x) = w

& every homomorphism π : U → A respects f at ~x,

U °A
c f(~x) = w ⇐⇒ U is finite, generated by ~x & U °A f(~x) = w,

U °A
c f(~x)↓ ⇐⇒ (∃w)[U °A

c f(~x) = w].

If U °A
c f(~x)↓ , we call U a certificate for f at ~x in A.17

Notice that(
U1 ⊆p U2 & U1 °A f(~x) = w

)
=⇒U2 °A f(~x) = w,

so, in particular, if U1 forces f(~x) = w, then so does every U2 ⊇p U1, and
similarly for certification for finite U1,U2 generated by the input.

Example: the Euclidean algorithm. To illustrate the notions con-
sider once more the Euclidean algorithm for coprimeness, specified by the
recursive program

ε ≡ eq1(gcd(x, y)) where

{gcd(x, y) = if eq0(rem(x, y)) then y else gcd(y, rem(x, y))}
of the structure Nε = (N, rem, eq0, eq1). Given x, y ≥ 1, the Euclidean
computes gcd(x, y) by successive divisions and 0-tests (calls to the rem-
and eq0-oracles)

rem(x, y) = r1, r1 6= 0, rem(y, r1) = r2, r2 6= 0,

. . . , rn+1 6= 0, rem(rn, rn+1) = rn+2, rn+2 = 0

17To the best of my knowledge, certificates were first introduced in Pratt [1975] in
his proof that primality is NP. The present notion is model theoretic and more abstract
than Pratt’s, but the idea is the same.
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88 4. The homomorphism method

until the remainder 0 is obtained, at which time it is known that gcd(x, y) =
rn+1; and to decide if x⊥⊥ y, it must then do one last check to test whether
rn+1 = 1. Suppose x⊥⊥ y and collect all these calls into a substructure U0,
writing u 6= 0, u = 1 for eq0(u) = ff, eq1(u) = tt as above:

eqdiag(U0) = {rem(x, y) = r1, r1 6= 0, rem(y, r1) = r2, r2 6= 0,

. . . , rn+1 6= 0, rem(rn, rn+1) = rn+2, rn+2 = 0, rn+1 = 1};
it is now easy to check that

U0 °Nε
c x⊥⊥ y,

because if π : U0 → Nε is a homomorphism, then

(114) rem(π(x), π(y)) = π(r1), π(r1) 6= 0,

rem(π(y), π(r1)) = π(r2), π(r2) 6= 0,

. . . , π(rn+1) 6= 0, rem(π(rn), π(rn+1)) = π(rn+2), π(rn+2) = 0,

π(rn+1) = 1,

and this in turn guarantees that π(x)⊥⊥π(y), so that π respects the coprime-
ness relation at x, y. This is how certificates for functions and relations can
be constructed from computations, and it is the basic method of apply-
ing uniform process theory to the derivation of lower bounds for concrete
algorithms.

On the other hand, U0 is not a smallest substructure of Nε which certifies
that x⊥⊥ y. Let

(115) U1 = {rem(x, y) = r1, rem(y, r1) = r2,

. . . , rem(rn, rn+1) = rn+2, rn+1 = 1},
be the substructure of U0 with all the 0-tests deleted. We claim that U1

is also a certificate for x⊥⊥ y, and to see this suppose that π : U1 → Nε

is a homomorphism. To verify that π respects x⊥⊥ y, check first that for
i = 1, . . . , n + 1, π(ri) 6= 0; otherwise rem(π(ri−1), π(ri)) would not be
defined (with r0 = y), since rem requires its second argument to be non-
zero, and so π would not be totally defined in U1. So the homomorphism
property for π guarantees that

rem(π(x), π(y)) = π(r1), π(r1) 6= 0, rem(π(y), π(r1)) = π(r2), π(r2) 6= 0,

. . . , π(rn+1) 6= 0, rem(π(rn), π(rn+1)) = π(rn+2), π(rn+1) = 1.

The last two of these equations mean that for some q,

π(rn) = q · 1 + π(rn+2), 0 ≤ π(rn+2) < 1

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 88

Preliminary draft, incomplete and full or errors.



4F. Intrinsic complexities of functions and relations 89

so that we must have π(rn+2) = 0; and then all the equations in (114)
hold and we have the required π(x)⊥⊥π(y). This is typical: although com-
putations of concrete algorithms define certificates, they generally do not
give least-in-size certificates—which is why the lower bounds for uniform
processes are typically not the best (largest) lower bounds that one might
be able to prove for concrete algorithms using other methods.

Problems for Section 4E

Problem x4E.1. Suppose E is anon-deterministic A-recursive program
which computes f = pE : An ⇀ As and

c = (E0(~x) : , . . . , : w)

is a computation of E, so that w = f(~x). Let Uc be the structure with

eqdiag(Uc) = {(φ, ~u, v) : a transition φ : ~u → v occurs in c}.
Prove that Uc °c f(~x) = w.

Problem x4E.2. Prove that for any coprime x ≥ 1 ≥ 1, the structure
U1 defined in (115) is a minimal certificate of x⊥⊥ y in Nε, i.e., no proper
substructure of U1 certifies x⊥⊥ y. Hint: For example, if we delete the last
equation rn+1 = 1 from eqdiag(U1), then the function π(u) = 2u defines a
homomorphism on the resulting substructure such that gcd(π(x), π(y)) = 2.

4F. Intrinsic complexities of functions and relations

For each substructure norm µ on a Φ-structure A and each f : An ⇀ As,
set

Cµ(A, f, ~x) = min{µ(U, ~x) :U `c f(~x)↓} (f(~x)↓),(116)

where, as usual, min(∅) = ∞. This is the intrinsic µ-complexity (of f , in
A, at ~x). It records the µ-smallest size of a piece of A that is needed to
determine the value f(~x), and its significance derives from the following,
trivial

Proposition 4F.1. If a uniform process α computes f : An ⇀ As in a
Φ-structure A, then for any substructure norm µ on A,

Cµ(A, f, ~x) ≤ Cµ(α, ~x) (f(~x)↓).(117)

Proof is immediate, because

U `c α(~x) = w =⇒U °A
c f(~x) = w,(118)

directly from Axioms II and III for uniform processes and the definition
of certification. a
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90 4. The homomorphism method

The key point here is that Cµ(A, f, ~x) is defined directly from A, µ
and f , but it provides a lower bound for the µ-complexity of any uniform
process which might compute f in A—and a fortiori for the µ-complexity
of any algorithm which might compute f in A. The situation is most
interesting, of course, when Cµ(A, f, ~x) matches the µ-complexity of some
known algorithm which computes f in A, at least up to a multiplicative
constant.

Moreover, the definitions yield a purely algebraic method for deriving
these intrinsic lower bounds:

Lemma 4F.2 (The Homomorphism Test). Suppose µ is a substructure
norm on a Φ-structure A, f : An ⇀ As, f(~x)↓ , and

(119) for every finite U ⊆p A which is generated by ~x,(
f(~x) ∈ Us & µ(U, ~x) < m

)
=⇒ (∃π : U → A)[f(π(~x)) 6= π(f(~x))];

then Cµ(f,A, ~x) ≥ m.

Other than the definition of Cµ(A, f, ~x), this is the main—in fact the
only—tool we will use in the following chapters to derive intrinsic lower
bounds from specified primitives. The results will be (primarily) about the
most important intrinsic complexity measures, when µ(U, ~x) is depth(U, ~x),
size(U) or calls(U ¹ Φ0), in symbols

depthf (A, ~x) = Cdepth(A, f, ~x) = min{depth(U, ~x) :U °A
c f(~x)↓},

sizef (A, ~x) = Csize(A, f, ~x) = min{size(U) :U °A
c f(~x)↓},

callsf,Φ0(A, ~x) = CcallsΦ0
(A, f, ~x) = min{calls(U ¹ Φ0) :U °A

c f(~x)↓}.
We will find both of these notations for the basic intrinsic complexities
useful on different occassions.

As usually, callsf (A, ~x) = callsf,Φ(A, ~x), so that by Lemma 4D.1,

depthf (A, ~x) ≤ sizef (A, ~x) ≤ callsf (A, ~x).

Value-depth and intrinsic depth complexity. We note here that
for any f : An ⇀ A,

depth(f(~x);A, ~x) ≤ depthf (A, ~x);(120)

this holds simply because if U °c f(~x)↓ , then f(~x) ∈ U , U = G∞(U, ~x),
and so

depth(f(~x);A, ~x) ≤ depth(f(~x);U, ~x) ≤ depthf (A, ~x).

The value-depth complexity depth(f(~x);A, ~x) provides a lower bound for
any reasonable notion of algorithmic complexity measure which counts
(among other things) the applications of primitives that must be executed
in sequence, simply because an algorithm must (at least) construct from
the input the value f(~x). This is well understood and used extensively to
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4F. Intrinsic complexities of functions and relations 91

derive lower bounds in arithmetic and algebra which are clearly absolute.18

We will consider some results of this type in Section 5A. The more sophis-
ticated complexity measure depthf (A, ~x) is especially useful when f takes
simple values, e.g., when f is a relation: in this case depth(f(~x);A, ~x) = 0
and (120) does not give us any information.

Explicit (term) reduction and equivalence. Intrinsic complexities
are very fine measures of information. Sometimes, especially in algebra, we
want to know the exact value Cµ(A, f, ~x), which might be the degree of a
polynomial or the dimension of a space. In other cases, especially in arith-
metic, we only need to know Cµ(A, f, ~x) up to a factor (a multiplicative
constant), either because the exact value is too difficult to compute or be-
cause we care only for asymptotic estimates of computational complexity.
The next, simple proposition gives a trivial way to relate the standard com-
plexity measures of two structures when the primitives of one are explicitly
definable in the other.

A structure A = (A,Φ) is explicitly reducible to a structure A′ = (A,Ψ)
on the same universe if Φ ⊆ expl(A′), and explicitly equivalent to A′ if in
addition Ψ ⊆ expl(A).

Proposition 4F.3 (Explicit reduction). If A = (A,Φ) is explicitly re-
ducible to A′ = (A,Ψ), then there is constant K ∈ N such that for every
f : An ⇀ As and each of the standard complexities µ = depth, size, calls,

Cµ(A′, f, ~x) ≤ K Cµ(A, f, ~x) (f(~x)↓).

It follows that if A and A′ are explicitly equivalent, then for suitable ratio-
nal constants K, r > 0, every f : An ⇀ As and µ = depth, size, calls,

r Cµ(A, f, ~x) ≤ Cµ(A′, f, ~x) ≤ K Cµ(A, f, ~x) (f(~x)↓).

Proof is fairly simple and we will leave it for Problem x4F.5∗. a

Problems for Section 4F

Problem x4F.1. Prove that if f(~x) ↓ and callsf (A, ~x) = 0, then for
every structure A′ (on any vocabulary) with universe A, callsf (A′, ~x) = 0.

This allows us in most cases to check “by inspection” that callsf (A, ~x) >
0: for example, callsPrime(A, x) > 0 for every x and in every structure A

18The most interesting result of this type that I know is Theorem 4.1 of van den Dries

and Moschovakis [2009], an O

(√
log log a

)
-lower bound on depth(gcd(a + 1, b),A, a, b)

with A = (N, 0, 1, +,−, ·,÷) and (a, b) a Pell pair. This is due to van den Dries, and it is
the largest lower bound known for the gcd from primitives that include multiplication.
It is not known whether it holds for coprimeness, for which the best result is a log log log-
lower bound for algebraic decision trees in Mansour, Schieber, and Tiwari [1991a].
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92 4. The homomorphism method

with A = N, simply because there is always a y which is prime exactly when
x is not. There is no equally simple, analogous test for depthf (A, ~x) > 0,
but it is worth putting down the obvious condition which comes straight
from the definition so we can quote it:

Problem x4F.2. Prove that if f : An ⇀ As, f(~x) ↓ , f(~x) 6= f(~y) and
the map xi 7→ yi is a homomorphism of A ¹ {x1, . . . , xn} to A, then
depthf (A, ~x) ≥ 1.

Problem x4F.3. Prove that for the coprimeness relation,

depth⊥⊥ (Nε, x, y) ≤ 2 log(min(x, y)) + 1 (x, y ≥ 1).

Problem x4F.4. Prove that for the coprimeness relation, some K and
all t ≥ 3,

depth⊥⊥ (Nε, Ft+1, Ft) ≤ K(log t) = O(log log Ft),

where F0, F1, . . . is the Fibonacci sequence. Hint: Use Pratt’s algorithm.

Problem x4F.5∗. Prove Proposition 4F.3. Hint: Start with

K = max{Cµ(A′, φA, ~x) : φ ∈ Φ}.

4G. The best uniform process

Is there a “best algorithm” which computes a given f : An ⇀ As from
specified primitives on A? The question is vague, of course—and the answer
is probably negative in the general case, no matter how you make it precise.
The corresponding question about uniform processes has a positive (and
very simple) answer.

For given f : An ⇀ As, set

β
U

f,A(~x) = w ⇐⇒ U °A f(~x) = w (U ⊆p A).(121)

Theorem 4G.1. The following are equivalent for any Φ-structure A and
any partial function f : An ⇀ As, s ∈ {a, boole}.

(i) Some uniform process α of A computes f .
(ii) (∀~x)

(
f(~x)↓ =⇒ (∃U ⊆p A)[U °A

c f(~x)↓ ]
)
.

(iii) βf,A is a uniform process of A which computes f .
Moreover, if these conditions hold, then

Cµ(βf,A, ~x) = Cµ(A, f, ~x) ≤ Cµ(α, ~x) (f(~x)↓),

for every substructure norm on A and any uniform process α of A which
computes f .
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4H. Deterministic uniform processes 93

Proof. (iii) =⇒ (i) is immediate and (i) =⇒ (ii) follows from (118).

(ii) =⇒ (iii). The operation (U 7→ β
U

f,A) satisfies the Finiteness Axiom
III by (ii). To verify the Homomorphism Axiom II, suppose

U °A f(~x) = w & π : U → V

so that π(~x) ∈ V n, π(w) ∈ Vs and (since π : U → V is a homomorphism),
f(π(~x)) = π(w). Let ρ : V → A be a homomorphism. The composition
ρ ◦ π : U ½ A is also a homomorphism, and so it respects f at ~x, i.e.,

f(ρ(π(~x)) = ρ(π(f(~x)) = ρ(π(w)) = ρ(f(π(~x))).

So ρ respects f at π(~x), and since it is arbitrary, we have the required

V °A f(π(~x)) = π(w).

The second claim follows from the definition of βf,A and (118). a
Weak optimality. A uniform process α of A is µ-weakly optimal for a

total function f : An → As if it computes f in A and

(∃K)(for infinitely many ~x)[Cµ(α, ~x) ≤ KCµ(A, f, ~x)];(122)

put another way, a uniform process α which computes f in A is not µ-
weakly optimal for f if

(∀r > 0)(for all but finitely many ~x)[Cµ(A, f, ~x) < rCµ(α, ~x)],

i.e., if the optimal process which computes f in A cannot be matched by
α up to a multiplicative constant on a cofinite set. This is not necessarily
the best—and certainly not the only—notion of optimality for algorithmic
complexity, but it has the advantage that it holds for some specific, concrete
algorithms and problems and it is often the strongest optimality result that
we can prove.

4H. Deterministic uniform processes

An n-ary uniform process of a structure A is deterministic if it satisfies
the following, stronger form of the Finiteness Axiom as expressed in (108):

(123) α(~x) = w =⇒ (∃U ⊆p A)
(
U `c α(~x) = w]

& (for all V ⊆p A)[V `c α(~x) = w =⇒U ⊆p V]
)
,

i.e., if whenever α(~x)↓ , then there is a unique, ⊆p-least “abstract computa-
tion” of α(~x) by α. The notion is natural and interesting. We put it down
here for completeness, but we have no real understanding of determinis-
tic uniform processes and no methods for deriving lower bounds for them
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94 4. The homomorphism method

which are better (larger) that the lower bounds for all uniform processes
which compute the same function.

Problems for Section 4H

Problem x4H.1. Prove that the uniform process αE induced by a de-
terministic recursive A-program is deterministic.

Problem x4H.2∗. Give an example of a total, finite structure A and a
unary relation R on A such that for some a, depth(A, R, a) = 1, but for
every deterministic uniform α which decides R in A, depth(α, a) > 1.
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CHAPTER 5

LOWER BOUNDS FROM PRESBURGER

PRIMITIVES

We establish here log-lower bounds for depthf (Lind, ~x) of various functions,
where Lind = {0, 1, . . . , d, +,−· , iqd, =, <} and

Nd = (N,Lind) = (N, 0, 1, . . . , d, +,−· , iqd, =, <) (d ≥ 2).(124)

The structure Nd is clearly explicitly equivalent to its reduct without the
constants 2, . . . , d, but including them among the primitives simplifies some
of the formulas below. Lower bounds for Nd have wide applicability: bi-
nary arithmetic Nb and the Stein structure Nst are explicitly reducible to
N2, and every structure on N with finitely many Presburger primitives is
explicitly equivalent with some Nd, cf. Problems x5A.1 and x5A.3∗.

The results in this Chapter are interesting on their own, but they also
illustrate the use of the Homomorphism Test 4F.2 in a very simple context,
where the required arithmetic is trivial. They are mostly from van den
Dries and Moschovakis [2004], [2009].

5A. Representing the numbers in Gm(Nd,~a)

To illustrate the use of the primitives of Lind, consider the following.

Lemma 5A.1. There is a recursive program E which computes the prod-
uct x · y from Lin2 with parallel complexity

cp
E(x, y) ≤ 3 log(min(x, y)) (x, y ≥ 2).

Proof. The idea (from Problem x1B.2) is to reduce multiplication by
x to multiplication by 2 and iq2(x) (and addition), using the identity

(2x1 + r) · y = 2(x1 · y) + r · y,

95



96 5. Lower bounds from Presburger primitives

which means that the multiplication function satisfies and is determined
by recursive equation:

f(x, y) = if (x = 0) then 0
else if (x = 1) then y

else if (parity(x) = 0) then 2(f(iq2(x), y))
else 2(f(iq2(x), y)) + y.

Now, obviously,

cp
f (0, y) = 1, cp

f (1, y) = max{1, 1} = 1,

and with a careful reading of the equation, for x ≥ 2,

cp
f (x, y) ≤ cp

f (iq2(x), y) + 2.

To get an explicit form for an upper bound to cp
f (x, y), we prove by (com-

plete) induction the inequality

cp
f (x, y) ≤ 3 log(x) (x ≥ 2),

the basis being trivial, since cp
f (2, y) = cp

f (1, y) + 2 = 3 = 3 log 2, directly
from the definition. In the inductive step,

cp
f (x, y) ≤ cp

f (iq2(x), y) + 2 ≤ 3 log(
x

2
) + 3 = 3(log(

x

2
) + 1) = 3 log x.

Finally, to complete the proof, we add a head equation which insures that
the first argument of f is the minimum of x and y:

g(x, y) = if (y < x) then f(y, x) else f(x, y);

the resulting program E has the claimed complexity bound. a
The basic tool for the derivation of lower bounds in Nd is a canonical

representation of numbers in Gm(Nd,~a).
For a fixed d and each tuple of natural numbers ~a = (a1, . . . , an), let

(125) Bm(~a) = Bd
m(~a) =

{x0 + x1a1 + · · ·+ xnan

dm
∈ N

:x0, . . . , xn ∈ Z and |xi| ≤ d2m, i ≤ n
}

.

The members of Bm(~a) are natural numbers. In full detail:

x ∈ Bm(~a) ⇐⇒ x ∈ N and there exist x0, . . . , xn ∈ Z
such that x =

x0 + x1a1 + · · ·+ xnan

dm
,

and for i = 0, . . . , n, |xi| ≤ d2m.

Lemma 5A.2 (Lind-inclusion). For all ~a ∈ Nn and all m:
(1) a1, . . . , an ∈ Bm(~a) ⊆ Bm+1(~a).
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5A. Representing the numbers in Gm(Nd,~a) 97

(2) For every primitive φ : Nk → N in Lind,

x1, . . . , xk ∈ Bm(~a) =⇒ φ(x1, . . . , xk) ∈ Bm+1(~a).

(3) Gm(~a) = Gm(Nd,~a) ⊆ Bm(~a).

Proof. We take n = 2 to simplify the formulas, the general argument
being only a notational variant.

(1) The first inclusion holds because ai =
dmai

dm
and the second because

x0 + x1a1 + x2a2

dm
=

dx0 + dx1a1 + dx2a2

dm+1

and |dxi| ≤ d · d2m < d2(m+1).
(2) Clearly 0, . . . , d ∈ Bm(~a) for every m ≥ 1, and so the constants stay

in Bm(~a) once they get in.
For addition, let x, y ∈ Bm(~a), so

x + y =
x0 + x1a1 + x2a2

dm
+

y0 + y1a1 + y2a2

dm

=
d(x0 + y0) + d(x1 + y1)a1 +1 +d(x2 + y2)an

dm+1

and the coefficients in the numerator satisfy

|d(xi + yi)| ≤ d(d2m + d2m) ≤ dd2m+1 = d2m+2.

The same works for arithmetic subtraction. Finally, for integer division by
d, if i = remd(x) < d, then

iqd(x) =
1
d
(x− i) =

(x0 − idm) + x1a1 + x2a2

dm+1
for some 1 ≤ i < d

and this number is in Bm+1(~a) as above.
(3) follows immediately from (2), by induction on m. a
Proposition 5A.3 (Multiplication from Lind). For every number a ≥ 2,

depth(a2;Nd, a) ≥ 1
log d

log
( a2

a + 1

)
.

Proof. It is enough to show that for a ≥ 2,

a2 ∈ Gm(Nd, a)=⇒m ≥ 1
log d

log
( a2

a + 1

)
,

so assume that a2 ∈ Gm(a). By Lemma 5A.2, there exist x0, x1 ∈ Z such
that |x0|, |x1| ≤ d2m and

a2 =
x0 + x1a

dm
,
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98 5. Lower bounds from Presburger primitives

from which we get dma2 = |x0 + x1a| ≤ d2m + d2ma; thus a2 ≤ dm + dma,
which yields the required

dm ≥ a2

a + 1 a
Similar arguments can be used to establish value-depth lower bounds

from Lind for all functions which grow faster than x.

Problems for Section 5A

Problem x5A.1. Prove that the structures

Nb = (N, 0, parity, iq2, em2, om2, eq0),

Nst = (N,parity, em2, iq2,−· , =, <)

of binary arithmetic and the Stein algorithm are explicitly reducible to N2.

Problem x5A.2. Prove that remd(x) is explicit in Nd.

Problem x5A.3∗. Prove that for all m,n ≥ 2:
(i) iqm ∈ expl(Nmn);
(ii) iqmn ∈ expl(N, 0, 1, . . . , d, +,−· , iqm, iqn,=, <).

Infer that if Φ is any finite set of Presburger primitives, then the structure

(N, 0, 1, +,−· , <, =,Φ)

is explicitly equivalent with some Nd. (For the definition of the Presburger
primitives see (26).)

Problem x5A.4. Specify a system of two recursive equations

q(x, y) = Eq(x, y, q, r)
r(x, y) = Er(x, y, q, r),

in the vocabulary Lin2 ∪ {q, r}, such that in N2,

q(x, y) = iq(x, y), r(x, y) = rem(x, y),

and the corresponding complexities are O(log(x)), i.e., for some B and all
sufficiently large x,

cp
q(x, y) ≤ B log x, cp

r(x, y) ≤ B log x.

(With the appropriate head equations, this system defines two programs
from Lin2, one for iq(x, y) and the other for rem(x, y).)

Problem x5A.5. Show that the recursive program for the integer quo-
tient function in Problem x5A.4 is weakly optimal from Lind, for any d ≥ 2.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 98

Preliminary draft, incomplete and full or errors.



5B. Primality from Lind 99

Problem x5A.6∗. Prove that for every d ≥ 2, there is an r > 0 and
infinitely pairs of numbers (a, b) and every d ≥ 2,

depth(rem(a, b);Lind, a, b) > r log(max(a, b)).

Infer that the recursive program for rem(x, y) in Problem x5A.4 is weakly
optimal for rem(x, y) in every Nd. (Note: An easier proof of an O(log max(a, b))
lower bound for depthrem(Nd, a, b) can be given using the Homomorphism
Test, see Problem x5B.1. This proof that uses value-depth complexity re-
quires a simple divisibility argument and is due to Tim Hu.)

Problem x5A.7. Define a weakly optimal program from Lind which
computes the exponential function f(x, y) = xy (with 00 = (x + 1)0 = 1).

5B. Primality from Lind

To establish lower bounds from Lind for decision problems, we need to
complement Lemma 5A.2 with a uniqueness result.

Lemma 5B.1 (Lind-Uniqueness). If xi, yi ∈ Z, |xi|, |yi| < a

2
and λ ≥ 1,

then

x0 + x1λa = y0 + y1λa ⇐⇒ [x0 = y0 & x1 = y1],

x0 + x1λa > y0 + y1λa ⇐⇒ [x1 > y1 ∨ (x1 = y1 & x0 > y0)].

Proof. It is enough to prove the result for λ = 1, since a ≤ λa, and so
the general result follows from the special case applied to λa.

The second equivalence easily implies the first one, and follows from the
following fact applied to (x0 − y0) + (x1 − y1)a:

If x, y ∈ Z and |x|, |y| < a, then

x + ya > 0 ⇐⇒ [y > 0] ∨ [y = 0 & x > 0].

Proof. This is obvious if y = 0; and if y 6= 0, then |x| < a ≤ |ya|, so that
x + ya has the same sign as ya, which has the same sign as y. a

Lemma 5B.2 (Lind-embedding). Suppose d2m+2 < a, and let λ > 1 be
any number such that dm+1 | λ− 1; then there exists an embedding

π : Gm(Nd, a) ½ Nd,

such that πa = λa.

Proof. By Lemma 5B.1 and part (3) of Lemma 5A.2, the equation

π
(x0 + x1a

dm

)
=

x0 + x1λa

dm
(|x0|, |x1| ≤ d2m,

x0 + x1a

dm
∈ Gm(a))
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100 5. Lower bounds from Presburger primitives

defines a map π : Gm(Nd, a) → Q, since

d2m < d2m+1 <
a

2
by the hypothesis. This map takes values in N, because

x0 + λx1a = x0 + x1a + (λ− 1)x1a,(126)

so that if dm | (x0 + x1a), then also dm | (x0 + λx1a) since dm | (λ− 1) by
the hypothesis. It is injective and order-preserving, by Lemma 5B.1 again,
applied to both a and λa.

To check that it preserves addition when the sum is in Gm(a) = Gm(Nd, a),
suppose that X,Y, X + Y ∈ Gm(a), and write

X =
x0 + x1a

dm
, Y =

y0 + y1a

dm
, X + Y = Z =

z0 + z1a

dm

with all |xi|, |yi|, |zi| ≤ d2m. Now

Z =
(x0 + y0) + (x1 + y1)a

dm
,

and |x0 + y0|, |x1 + y1| ≤ 2 · d2m ≤ d2m+1 <
a

2
, and so by the Uniqueness

Lemma 5B.1,

x0 + y0 = z0, x1 + y1 = z1,

which gives πX + πY = πZ.
The same argument works for arithmetic subtraction.
Finally, for division by d, suppose

X =
x0 + x1a

d
= d iqd(X) + i (i < d)

where |x0|, |x1| ≤ d2m as above, so that

iqd(X) =
1
d

(x0 + x1a

dm
− i

)
=

x0 − idm + x1a

dm+1
= Z =

z0 + z1a

dm

for suitable z0, z1 with |z0|, |z1| ≤ d2m, if Z ∈ Gm. These two representa-
tions of Z must now be identical since |dzi| ≤ dd2m = d2m+1 <

a

2
, and

|x0 − idm| ≤ d2m + idm < d2m + dm+1

= dm(dm + d) ≤ dmdm+1 = d2m+1 <
a

2
.

So x0 − idm = dz0 and x1 = dz1. These two equations imply that
x0 + x1λa

dm
= d

z0 + z1λa

dm
+ i

which means that

iq2(πX) =
z0 + z1λa

dm
= π(Z) = π(iqd(X))
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5B. Primality from Lind 101

as required. a
Theorem 5B.3. For every prime number p,

depthPrime(Nd, p) ≥ 1
4 log d

log p.

Proof. Let m = depthPrime(Nd, p) and suppose that

d2m+2 < p.(127)

Lemma 5B.2 guarantees an embedding

π : Gm(Nd, p) ½ Nd

with λ = 1 + dm+1 such that πp = λp, and this π does not respect the
primality relation at p, which is absurd. So (127) fails, and so (taking
logarithms and using the fact that m ≥ 1 by Problem x4F.2),

4m log d ≥ (2m + 2) log d ≥ log p. a

Problems for Section 5B

Problem x5B.1. Suppose e ≥ 2, set

|e (x) ⇐⇒ e | x ⇐⇒ reme(x) = 0

and assume that e⊥⊥ d.

(a) Prove that for all a which are not divisible by e,

depth|e(Nd, a) ≥ 1
4 log d

log a.

(b) For some r > 0 and all a which are not divisible by e,

depth(Nd, iqe, a) > r log a, depth(Nd, reme, a) > r log a.

In particular, if e is coprime with d, then the relation |e (x) is not explicit
in Nd; the divisibility relation x | y is not explicit in any Nd; and the
recursive programs for iq(x, y) and rem(x, y) in Problem x5A.4 are weakly
optimal in N2 and in every Nd (such that 2 | d, so they can be expressed).

Hint: Use the fact that if x⊥⊥ y, then there are constants A ∈ Z and
B ∈ N such that 1 = Ax−By.
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102 5. Lower bounds from Presburger primitives

5C. Good examples: perfect square, square-free, etc.

The method in the preceding section can be easily adapted to derive
lower bound results for many unary relations on N. Some of these are
covered by the next, fairly general notion.

A unary relation R(x) is a good example if for some polynomial

λ(µ) = 1 + l1µ + l2µ
2 + · · ·+ lsµ

s(128)

with coefficients in N, constant term 1 and degree > 0 and for all µ ≥ 1,

R(x) =⇒¬R(λ(µ)x).(129)

For example, primality is good, taking λ(µ) = 1 + µ, and being a power of
2 is good with λ(µ) = 1+2µ. We leave for the problems several interesting
results of this type.

Problems for Section 5C

Problem x5C.1. Design a weakly optimal recursive program from Lind

for the relation

P (x) ⇐⇒ (∃y)[x = 2y].

Problem x5C.2 (van den Dries and Moschovakis [2004]). Prove that if
R(x) is a good example, then for all a ≥ 2,

R(a)=⇒depthR(Nd, a) ≥ 1
4 log d

log a

Problem x5C.3. Prove that if m > 0, then (1 + m2)n2 is not a perfect
square. Hint: Show first that 1 + m2 is not a perfect square, and then
reduce the result to the case where m⊥⊥n.

Problem x5C.4. Prove that the following two relations are good ex-
amples:

R1(a) ⇐⇒ a is a perfect square
R2(a) ⇐⇒ a is square-free.

Problem x5C.5. Prove that if λ(µ) is as in (128), then there is a con-
stant C such that

log λ(µ) ≤ C log µ (µ ≥ 2).(130)

The next problem gives a logarithmic lower bound for depthR(Nd, a)
with good R at many points where R(a) fails to hold.
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5D. Stein’s algorithm is weakly optimal from Lind 103

Problem x5C.6. Suppose R(x) is a good example with associated poly-
nomial λ(µ). Prove that there is a rational constant r > 0, such that for
all a ≥ 2 and m ≥ 1,

R(a)=⇒depthR(Nd, λ(dm+1)a) ≥ r log(λ(dm+1)a).

5D. Stein’s algorithm is weakly optimal from Lind

We extend here (mildly) the methods in the preceding section so they
apply to binary functions, and we show the result in the heading.

For the remainder of this section, a, b, c range over N and x, y, z, xi, yi, zi

range over Z.

Lemma 5D.1. Suppose a > 2 and set b = a2 − 1.
(1) a⊥⊥ b, and if |xi|, |yi| < a

4
for i = 0, 1, 2 and λ ≥ 1, then

x0 + x1λa + x2λb = y0 + y1λa + y2λb ⇐⇒ x0 = y0 & x1 = y1 & x2 = y2,

x0 + x1λa + x2λb > y0 + y1λa + y2λb

⇐⇒ [x0 > y0 & x1 = y1 & x2 = y2]

∨ [x1 > y1 & x2 = y2] ∨ [x2 > y2].

(2) If d2m+3 < a and λ = 1 + dm+1, then there is an embedding

π : Nd ¹ Gm(a, b) ½ Nd

such that πa = λa, πb = λb.

Proof. (1) The identity 1 = a · a− b exhibits that a⊥⊥ b.

The second equivalence implies clearly the first, and it follows from the
next proposition applied to (x0 − y0), (x1 − y1), (x2 − y2).

If |x|, |y|, |z| < a

2
and λ ≥ 1, then x+ yλa+ zλb > 0 if and only if either

x > 0 and y = z = 0; or y > 0 and z = 0; or z > 0.

Proof. If z = 0, then the result follows from Lemma 5B.1, so assume
z 6= 0 and compute:

x + yλa + zλb = x + yλa + zλ(a2 − 1) = (x− λz) + yλa + zλa2.

Now
∣∣∣(x− λz) + yλa

∣∣∣ = λ
∣∣∣(x

λ
− z) + ya

∣∣∣ < λ(a +
a2

2
) < λa2 ≤ λ|z|a2,

and so x + yλa + zλb and λza2 have the same sign, which is the sign of z.
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104 5. Lower bounds from Presburger primitives

(2) Assume d2m+3 < a, set λ = 1 + dm+1, and notice that d2m < 1
4a, so

as in Lemma 5B.2, we can define the required embedding by

π
(x0 + x1a + x2b

dm

)
=

x0 + x1λa + x2λb

dm

(|x0|, |x1|, |x2| ≤ d2m,
x0 + x1a + x2b

dm
∈ Gm(a, b)),

using now (1) instead of Lemma 5B.1. a
Theorem 5D.2 (van den Dries and Moschovakis [2004]). For all a > 2,

depth⊥⊥ (Nd, a, a2 − 1) >
1

10 log d
log(a2 − 1).

Proof. Let m = depth⊥⊥ (N0, a, a2 − 1) for some a > 2. Since λa and
λ(a2 − 1) are not coprime, part (2) of the preceding Lemma 5D.1 and the
Homomorphism Test 4F.2 imply that

d2m+3 ≥ a;

taking the logarithms of both sides and using the fact that m ≥ 1 (by Prob-
lem x4F.2), we get

5m log d ≥ (2m + 3) log d ≥ log a;

which with log(a2 − 1) < 2 log a gives the required

5m log d >
1
2

log(a2 − 1). a

Corollary 5D.3. Let E be the recursive program of N2 which decides
a⊥⊥ b by adding to the Stein algorithm one step checking gcd(a, b) = 1. For
each d ≥ 2, there is a constant K > 0 such that for all a > 2,

lsE(a, a2 − 1) ≤ Kdepth⊥⊥ (Nd, a, a2 − 1).

In particular, the Stein algorithm is weakly optimal for coprimeness from
Presburger primitives, for both the depth and calls complexity measures.

Proof. Choose K1 such that

lsE(a, b) ≤ K1(log a + log b) (a, b > 2),

and compute for a > 2:

lsE(a, a2 − 1) < 2K1 log(a2 − 1) < 20 log dK1depth⊥⊥ (a, a2 − 1). a
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5D. Stein’s algorithm is weakly optimal from Lind 105

Problems for Section 5D

Problem x5A.4 defines a recursive program from N2 which computes
rem(x, y) with O(log) complexity. The next problem claims that it is
weakly optimal from Presburger primitives—and a little more.

Problem x5D.1. Prove that for each d ≥ 2, there is a rational r > 0,
such that

for infinitely many pairs (x, y), x | y and depth |(Nd, x, y) ≥ r log y.

Infer that the recursive program for the remainder in Problem x5A.4 is
weakly optimal from Lind.

Hint: Show that when a, b, λ and µ satisfy suitable conditions, then the
mapping

x0 + x1a + x2b

dm
7→ x0 + x1λa + x2µb

dm

is an embedding on Nd ¹ Gm(a, b).

Busch [2007], [2009] has used “asymmetric” embeddings of this kind to
derive lower bounds for several problems in number theory and algebra
that are related to the Stein algorithm.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 105

Preliminary draft, incomplete and full or errors.





CHAPTER 6

LOWER BOUNDS FROM DIVISION WITH

REMAINDER

We now add to the basic primitives of the Presburger structures division
with remainder, i.e., the integer quotient and remainder operations. Set:

Lin0 = {0, 1, =, <, +,−· }, N0 = (N,Lin0),

Lin0[÷] = Lin0 ∪ {iq, rem} = {0, 1,=, <, +,−· , iq, rem},
N0[÷] = (N,Lin0[÷]) = (N, 0, 1, =, <, +,−· , iq, rem).

Every expansion of a Presburger structure by division with remainder is
obviously explicitly equivalent to N0[÷], and so all the results of this chap-
ter apply to these richer structures with only inessential changes in the
constants.

The derivations of absolute lower bounds for unary relations from Lin0[÷]
is similar to those from Lind in Sections 5B and 5C and we will consider it
first. For binary relations, however, like coprimeness, some new ideas are
required as well as some results from elementary number theory.

6A. Unary relations from Lin0[÷]

We start with a representation of the numbers in Gm(N0[÷],~a) similar
to that for Gm(Nd,~a) in Lemma 5A.2, except that we cannot keep the
denominators independent of ~a.

For each tuple ~a = (a1, . . . , an) of numbers and for each h ≥ 1, we let

(131) C(~a; h) =
{x0 + x1a1 + · · ·+ xnan

xn+1
∈ N :x0, . . . , xn+1 ∈ Z,

xn+1 > 0 and |x0|, . . . , |xn+1| ≤ h
}

.

The numbers in C(~a;h) are said to have height (no more than) h with
respect to ~a, and, trivially,

x ≤ h =⇒x ∈ C(a; h), h ≤ h′=⇒C(~a; h) ⊆ C(~a;h′).

107



108 6. Lower bounds from division with remainder

We need to estimate how much the height is increased when we perform
various operations on numbers. The results are very simple for the primi-
tives in Lin0.

Lemma 6A.1. For all ~a = (a1, . . . , an), h ≥ 2 and every k-ary operation
in Lin0,

X1, . . . , Xk ∈ C(~a;h)=⇒ f(X1, . . . , Xk) ∈ C(~a; h3).

Proof is by direct computation. For example (taking n = 2 to keep the
notation simple),

x0 + x1a + x2b

x3
+

y0 + y1a + y2b

y3

=
(y3x0 + x3y0) + (y3x1 + x3y1)a + (y3x2 + x3y2)b

x3y3
,

and for the typical coefficient,

|y3x0 + x3y0| ≤ h2 + h2 = 2h2 ≤ h3. a

There is no simple, general result of this type for division with remainder,
and in this section we will consider only the simplest case n = 1, when
C(a; h) comprises the numbers of height h with respect to a single a. We
start with the appropriate version of Lemma 5B.1.

Lemma 6A.2 (Lin0[÷]-Uniqueness). If |xi|, |yi| ≤ h for i ≤ 2, λ ≥ 1
and 2h2 < a, then:

x0 + x1λa

x2
=

y0 + y1λa

y2
⇐⇒ y2x0 = x2y0 & y2x1 = x2y1,

x0 + x1λa

x2
>

y0 + y1λa

y2
⇐⇒ [y2x1 > x2y1] ∨ [y2x1 = x2y1 & y2x0 > x2y0].

In particular, if x ∈ C(a; h) and 2h2 < a, then there are unique x0, x1, x2

with no common factor other than 1 such that

x =
x0 + x1a

x2
(|x0|, |x1|, |x2| ≤ h).(132)

Proof of the two equivalences is immediate from Lemma 5B.1, since
x0 + x1a

x2
>

y0 + y1a

y2
⇐⇒ y2x0 + y2x1a > x2y0 + x2y1a.

The uniqueness of relatively prime x0, x1, x2 which satisfy (132) and these
equivalences requires a simple divisibility argument, Problem x6A.1. a

We will sometimes save a few words by referring to (132) as the canonical
representation of x in C(a; h), when 2h2 < a.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 108

Preliminary draft, incomplete and full or errors.



6A. Unary relations from Lin0[÷] 109

Lemma 6A.3. If x, y ∈ C(a; h), x ≥ y > 0, h ≥ 2 and h9 < a, then
iq(x, y), rem(x, y) ∈ C(a; h6).

Proof. The hypothesis implies that 2h2 < a, and so we have canonical
representations

x =
x0 + x1a

x2
, y =

y0 + y1a

y2

of x and y in C(a; h). Suppose

x = yq + r (0 ≤ r < y)

and consider two cases.
Case 1, y1 = 0. Now y =

y0

y2
≤ h, and so

r = rem(x, y) < h.

Solving for q (and keeping in mind that r ∈ N), we have

q = iq(x, y) =
y2

y0
·
[x0 + x1a

x2
− r

]
=

y2

y0
· (x0 − x2r) + x1a

x2

and the (potentially) highest coefficient in this expression is

|y2x0 − y2x2r| ≤ h2 + h2h ≤ 2h3 ≤ h4 < h6.

Case 2, y1 6= 0. We must now have y1 > 0, otherwise y < 0 by
Lemma 6A.2. Moreover,

y · (2x1y2) =
2y0x1y2 + 2y1x1y2a

y2
>

x0 + x1a

x2
≥ yq

by the same Lemma, because |y2x1| < 2|x2y1x1y2|, and the Lemma applies
since (for the potentially largest coefficient),

2|2y1x1y2|2 ≤ 23h6 ≤ h9 < a.

It follows that

q = iq(x, y) ≤ 2x1y2 ≤ h3,

and then solving the canonical division equation for r, we get

r = rem(x, y) =
(y2x0 − x2y1q) + (y2x1 − x2y1q)a

x2y2
.

The (potentially) highest coefficient in this expression is

|y2x0 − x2y1q| ≤ h2 + h2h3 ≤ h6. a

Lemma 6A.4. For every m, if

26m+2
< a and Gm(a) = Gm(N0[÷], a),

then Gm(a) ⊆ C(a; 26m

).
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110 6. Lower bounds from division with remainder

Proof is by induction on m, the basis being trivial since 260
= 2 and

G0(a) = {a} ⊆ C(a; 2). For the induction step, set h = 26m

to save typing
exponents, and notice that h ≥ 2, and

h9 =
(
26m

)9

= 29·6m

< 26m+2
< a.

Thus by Lemmas 6A.1 and 6A.3, the value of any operation in Lin0[÷]
with arguments in C(a;h) is in C(a; h6), and

h6 =
(
26m

)6

= 26m+1
. a

Lemma 6A.5 (Lin0[÷]-embedding). If Gm(a) = Gm(N0[÷], a), and

26m+3
< a and a! | (λ− 1),

then there is an embedding

π : N0[÷] ¹ Gm(a) ½ N0[÷]

such that π(a) = λa.

Proof. Set

h = 26m+1
,

so that from the hypothesis (easily), 2h2 < a, and then by Lemma 6A.2,
each x ∈ C(a;h) can be expressed uniquely in the form

x =
x0 + x1a

x2

with all the coefficients ≤ h. We first set

ρ(x) = ρ
(x0 + x1a

x2

)
=

x0 + x1λa

x2
(x ∈ C(a; h)).

The values of ρ(x) are all in N, since

x0 + x1λa = x0 + x1a + (λ− 1)x1a,

so that for any x2 ≤ h ≤ a,

x2 | x0 + x1λa ⇐⇒ x2 | x0 + x1a,

by the hypothesis that a! | (λ− 1). By another appeal to Lemma 6A.2, we
verify that ρ is an injection, and it is order-preserving.

The required embedding is the restriction

π = ρ ¹ Gm(a),

and the verification that it respects all the operations in Lin0 follows along
familiar lines. For addition, for example, set

h1 = 26m

,
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6A. Unary relations from Lin0[÷] 111

and consider canonical representations

x =
x0 + x1a

x2
, y =

y0 + y1a

y2

of two numbers in C(a;h1). Adding the fractions, we get

x + y =
x0 + x1a

x2
+

y0 + y1a

y2
=

(y2x0 + x2y0) + (y1x1 + x2y1)a
x2y2

,

and we notice that the expression on the right is a canonical representation
of x + y in C(a; h), since, with a typical coefficient,

|y2x0 + x2y0| ≤ h5
1 < h6

1 = h.

This means that

π(x + y) =
(y2x0 + x2y0) + (y1x1 + x2y1)λa

x2y2
= π(x) + π(y),

as required.
The argument that π respects the integer quotient and remainder oper-

ations is a bit more subtle, primarily because these are defined together:
we need to show that

if iq(x, y) ∈ Gm(a), then ρ(iq(x, y)) = iq(ρ(x), ρ(y)),

even if rem(x, y) /∈ Gm(a), but we cannot define one without the other.
This is why we introduced ρ, which is defined on the larger set C(a; h) ⊇
Gm+1(a), and we proceed as follows.

Assume again canonical representations of x and y in C(a; h1), and also
that x ≥ y ≥ 1, we consider the correct division equation

x = yq + r (0 ≤ r < y)

as in the proof of Lemma 6A.3. Recall the two cases in that proof.
Case 1, y2 = 0. Now r ≤ h1, and

q = iq(x, y) =
(y2x0 − y2x2r) + y2x1a

x2y0

with all the coefficients ≤ h5
1 < h6

1 = h, so that this is the canonical
representation of q in C(a;h). It follows that

ρ(r) = r, ρ(q) =
(y2x0 − y2x2r) + y2x1λa

x2y0
,

so that, by direct computation,

ρ(x) = ρ(y)ρ(q) + ρ(r).(133)

Moreover, ρ is order-preserving, so that

0 ≤ ρ(r) < ρ(y),
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112 6. Lower bounds from division with remainder

and (133) is the correct division equation for ρ(x), ρ(y). Thus

ρ(q) = iq(ρ(x), ρ(y)), ρ(r) = rem(ρ(x), ρ(y))),

whether or not iq(x, y) ∈ Gm(a) or rem(x, y) ∈ Gm(a); but if it happens
that iq(x, y) ∈ Gm(a), then

π(iq(x, y)) = ρ(iq(x, y)) = iq(ρ(x), ρ(y)) = iq(π(x), π(y)),

independently of whether rem(x, y) ∈ Gm(a) or not. The same argument
works for π(rem(x, y)) and completes the proof in this case.

Case 2 is handled in the same way, and we skip it. a
Recall the definition of good examples in Section 5C.

Theorem 6A.6. If R(x) is a good example, then for all a ≥ 2

R(a) =⇒depthR(N0[÷], a) >
1
12

log log a.

Proof. Suppose R(a), let m = depthR(N0[÷], a), and assume that

26m+3
< a.

If λ(µ) is the polynomial which witnesses the goodness of R and

λ = λ(a!),

then Lemma 6A.5 guarantees an embedding

π : N0[÷] ¹ Gm(a) ½ N0[÷],

with πa = λa; and since ¬R(λa), the Homomorphism Test 4F.2 yields a
contradiction, so that

26m+3 ≥ a.(134)

Taking logarithms twice, we get from this

m + 3 ≥ log log a

log 6
;

and since m ≥ 1 by Problem x4F.2, 4m ≥ m + 3, so that we get the
required

m ≥ log log a

4 log 6
>

log log a

12
. a
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6B. Three results from number theory 113

Problems for Section 6A

Problem x6A.1. Prove that if x ∈ C(a;h) and 2h2 < a, then (132)
holds for uniquely determined, relatively prime x0, x1, x2. Hint: By an
(easy) extension of Bezout’s Lemma, Problem x1D.14,

gcd(x0, x1, x2) = αx0 + βx1 + γx2 (for some α, β, γ ∈ Z).

Use this and the equivalences in Lemma 6A.2.

6B. Three results from number theory

We establish in this section three elementary results from diophantine ap-
proximation, which give us just what we need to establish an analog of the
Lin0[÷]-Uniqueness Lemma 6A.2 for canonical forms involving two num-
bers, when these satisfy certain conditions. Those with some knowledge of
number theory know these—in fact they probably know better proofs of
them, which establish more; they should peruse the section quickly, just
to get the terminology that we will be using—especially the definition of
difficult pairs, which is not standard.

Theorem 6B.1 (Pell pairs). The pairs (xn, yn) ∈ N2 defined by the re-
cursion

(x1, y1) = (3, 2), (xn+1, yn+1) = (3xn + 4yn, 2xn + 3yn)(135)

satisfy Pell’s equation

x2
n − 2y2

n = 1,(136)

and the inequalities

2n ≤ 2 · 5n−1 ≤ yn < xn ≤ 7n+1,(137)

0 <
xn

yn
−
√

2 <
1

2y2
n

.(138)

Proof. Equation (136) is true for n = 1, and inductively:

x2
n+1 − 2y2

n+1 = (3xn − 4yn)2 − 2(2xn − 3yn)2 = x2
n − 2y2

n = 1.

For (137), we first check that 2n ≤ 2 · 5n−1 by a trivial induction on n ≥ 1,
and then, inductively again,

yn+1 = 2xn + 3yn ≥ 5yn ≥ 5 · 2 · 5n−1 = 2 · 5n.

The last part of the triple inequality is proved similarly:

xn+1 = 3xn + 4yn ≤ 7xn ≤ 7 · 7n = 7n+1.
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114 6. Lower bounds from division with remainder

The crucial, last inequality (138) holds for any pair of positive numbers
which satisfies Pell’s equation. To see this, suppose x2 − 2y2 = 1, and
notice first that since

x2

y2
= 2 +

1
y2

> 2,

we have
x

y
>
√

2, and hence

x

y
+
√

2 > 2
√

2 > 2;

now

(
x

y
−
√

2)(
x

y
+
√

2) =
1
y2

yields the required

0 <
x

y
−
√

2 =
1

(x
y +

√
2)y2

<
1

2y2
.

a
In fact, the pairs (xn, yn) defined in (135) comprise all positive solutions

of Pell’s equation, cf. Problem x6B.1.
Good approximations of irrationals. A pair of numbers (a, b) (or

the proper fraction
a

b
) is a good approximation of an irrational number ξ,

if a⊥⊥ b and ∣∣∣a
b
− ξ

∣∣∣ <
1
b2

.(139)

Theorem 6B.1 asserts in part that there are infinitely many good ap-
proximations of

√
2. This is true of all irrational numbers, and it is worth

understanding it in the context of what we are doing, although we will
never need it in its full generality.

Theorem 6B.2 (Hardy and Wright [1938], Theorem 188). For each ir-
rational number ξ > 0, there are infinitely many pairs (x, y) of relatively
prime natural numbers such that

∣∣∣ξ − x

y

∣∣∣ <
1
y2

.

Of the many proofs of this result, we outline one which (according
to Hardy and Wright) is due to Dirichlet.

Proof. For any real number ξ, let

bξc = the largest natural number ≤ ξ.

This bξc is the house, and ξ − bξc is its fractional part, for which, clearly

0 ≤ ξ − bξc < 1.
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6B. Three results from number theory 115

If we divide the half-open (real) unit interval into n disjoint, equal parts,

[0, 1) = [0,
1
n

) ∪ [
1
n

,
2
n

) ∪ · · · ∪ [
n− 1

n
, 1),

then for every ξ, the fractional part ξ − bξc will belong to exactly one of
these subintervals. Now fix a number

n ≥ 1,

and apply this observation to each of the n + 1 numbers

0, ξ, 2ξ, . . . , nξ;

at least two of their fractional parts will be in the same subinterval of [0, 1),
so that, no matter what the n ≥ 1, we get

0 ≤ j < k ≤ n

such that ∣∣∣jξ − bjξc − (kξ − bkξc)
∣∣∣ <

1
n

;

and setting y = k − j, x = bkξc − bjξc, we get
∣∣∣x− yξ

∣∣∣ <
1
n

.

We may assume that x and y are relatively prime in this inequality, since
if we divide both by gcd(x, y) the inequality persists. Moreover, since
0 < y < n, we can divide the inequality by y to get

∣∣∣x
y
− ξ

∣∣∣ <
1
ny

<
1
y2

.

Notice that if n = 1, then this construction gives y = 1, x = bξc, and the
rather trivial good approximation

∣∣∣bξc
1
− ξ

∣∣∣ <
1
12

.

However, we have not yet used the fact that ξ is irrational, which implies
that

0 <
∣∣∣x
y
− ξ

∣∣∣,

so that there is a number

m >
1

|xy − ξ| .

We now repeat the construction with m instead of n, to get x1, y1 such
that ∣∣∣x1

y1
− ξ

∣∣∣ <
1
y2
1

and
∣∣∣x1

y1
− ξ

∣∣∣ <
1

my1
≤ 1

m
<

∣∣∣x
y
− ξ

∣∣∣,
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116 6. Lower bounds from division with remainder

so that
x1

y1
is a better, good approximation of ξ; and repeating the construc-

tion indefinitely, we get infinitely many, distinct good approximations. a
Next comes the most important result we need, which says, in effect,

that algebraic irrational numbers cannot have “too good” approximations.

Theorem 6B.3 (Liouville’s Theorem). Suppose ξ is an irrational root
of an irreducible (over Q) polynomial f(x) with integer coefficients and of
degree n ≥ 2, and let

c = dsup{|f ′(x)| | |x− ξ| ≤ 1}e.
It follows that for all pairs (x, y) of relatively prime integers,

∣∣∣ξ − x

y

∣∣∣ >
1

cyn
.

In particular, for all relatively prime (x, y),
∣∣∣
√

2− x

y

∣∣∣ >
1

5y2
.

Proof. We may assume that |ξ − x
y | ≤ 1, since the desired inequality

is trivial in the opposite case. Using the fact that f(ξ) = 0 and the Mean
Value Theorem, we compute, for any x

y within 1 of ξ,

|f(
x

y
)| = |f(ξ)− f(

x

y
)| ≤ c|ξ − x

y
|.

Moreover, f(x
y ) 6= 0, since f(x) does not have any rational roots, and

ynf(x
y ) is an integer, since all the coefficients of f(x) are integers and the

degree of f(x) is n; thus

1 ≤ |ynf(
x

y
)| ≤ ync|ξ − x

y
|,

from which we get the desired inequality (noticing that it must be strict,
since ξ is not rational).

For the special case ξ =
√

2, we have f(x) = x2 − 2, so that f ′(x) = 2x
and

c = dsup{2x | |
√

2− x| ≤ 1}e = d2(
√

2 + 1)e = 5. a

Liouville’s Theorem implies that good approximations of a non-rational
algebraic number cannot be too-well approximated by fractions with a much
smaller denominator. We formulate precisely the special case of this general
fact that we need.
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6B. Three results from number theory 117

Difficult pairs. A pair of numbers (a, b) is difficult if a⊥⊥ b,

2 ≤ b < a < 2b,(140)

and for all y, z,

0 < |z| < b√
10

=⇒
∣∣∣a
b
− y

z

∣∣∣ >
1

10z2
.(141)

Lemma 6B.4. (1) Every good approximation of
√

2 other than 1 is a dif-
ficult pair; in particular, every solution (a, b) of Pell’s equation is a difficult
pair.

(2) If (a, b) is a difficult pair, then for all y, z,

0 < |z| < b√
10

=⇒ |za + yb| > b

10|z| .(142)

Proof. (1) Let (a, b) be a good approximation of
√

2 with b ≥ 2. Then
(140) follows from

1 <
√

2− 1
4
≤
√

2− 1
b2

<
a

b
<
√

2 +
1
b2
≤
√

2 +
1
4

< 2.

To prove (141), suppose 0 < |z| < b√
10

, and use Liouville’s Theorem 6B.3:

∣∣∣a
b
− y

z

∣∣∣ ≥ |y
z
−
√

2| − |a
b
−
√

2|

>
1

5z2
− 1

b2
>

1
5z2

− 1
10z2

=
1

10z2
.

The result holds for all solutions of Pell’s equation because the proof
of (138) was based only on the hypothesis x2 = 1 + 2y2.

(2) is very useful and easy: assuming the hypothesis of (142),

|za + yb| = |z|b
∣∣∣a
b

+
y

z

∣∣∣ > |z|b 1
10z2

=
b

10|z| . a

We leave for the problems the similar proof that pairs (Fk+1, Fk) of
successive Fibonacci numbers with k ≥ 3 are also difficult.

Problems for Section 6B

Problem x6B.1. Prove that the pairs of numbers (xn, yn) defined in
the proof of Theorem 6B.1 comprise all the positive solutions of the Pell
equation a2 = 2b2 + 1.
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118 6. Lower bounds from division with remainder

Recall from the problems of Section 1 that

ϕ =
1 +

√
5

2
, ϕ̂ =

1−√5
2

are the two solutions of the quadratic equation x + 1 = x2, so that

1 < ϕ < 2, ϕ̂ < 0, |ϕ̂| < 1,

and that the Fibonacci numbers are explicitly defined in terms of these,

Fk =
ϕk − ϕ̂k

√
5

.

Problem x6B.2. Show that for k ≥ 1,

if k is even, then ϕ <
Fk+1

Fk
, and if k is odd, then

Fk+1

Fk
< ϕ.

Hint: Use the equation

Fk+1

Fk
= ϕR(k) where R(k) =

1− ϕ̂k+1

ϕk+1

1− ϕ̂k

ϕk

,

and compute the sign and size of R(k) for odd and even k.

Problem x6B.3. Show that for all n ≥ 1,

Fn+1Fn−1 − F 2
n = (−1)n.(143)

Infer that
∣∣∣Fn+1

Fn
− ϕ

∣∣∣ <
1

F 2
n

(n ≥ 1).

Problem x6B.4. Prove that for each n ≥ 3, the pair (Fn+1, Fn) is a
difficult pair.

Hint: The golden mean ϕ is a root of the polynomial f(x) = x2−x−1.
Use Liouville’s Theorem 6B.3 to show that for all coprime x, y,

∣∣∣x
y
− ϕ

∣∣∣ >
1

5y2
,

and then imitate the proof of (1) of Lemma 6B.4 with ϕ in place of
√

2.

The definition of difficult pair is tailor made for the good approximations
of
√

2, and it is only a lucky coincidence that it also applies to pairs of suc-
cessive Fibonacci numbers. It is, however, quite easy to fix the constants
hard-wired in it so that it applies to the good approximations of any qua-
dratic irrational, and then use it to extend the results in the next section
to this more general case, cf. Problems x6B.5 and x6C.1∗.
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6C. The complexity of coprimeness from Lin0[÷] 119

Problem x6B.5. Suppose ξ > 1 is irrational, C > 0, a⊥⊥ b, 2 ≤ b and

1
Cb2

<
∣∣∣ξ − a

b

∣∣∣ <
1
b2

.(∗)

Let bξc = M ≥ 1, so that

1 ≤ M < ξ < M + 1.

Show that:

(1) a < (M + 2)b.

(2) For all z, y ∈ Z,

0 < |z| < b√
2C

=⇒
∣∣∣a
b
− y

z

∣∣∣ >
1

2Cz2
=⇒|za− yb| > b

2C|z| .

Show also that for every quadratic irrational ξ > 1, (∗) holds for infinitely
many coprime pairs a, b.

Problem x6B.6 (Liouville). Prove that the following number is tran-
scendental (i.e., not algebraic):

ξ =
∞∑

i=1

1
10i!

=
1
10

+
1

102!
+

1
103!

+
1

104!
+ · · ·(144)

Hint: Write each of the partial sums as a proper fraction,

ξn =
i=n∑

i=1

1
10i!

=
pn

qn
,

and prove that for all n,
∣∣∣ξ − pn

qn

∣∣∣ <
2

(qn)n
;

then invoke Liouville’s Theorem.

6C. The complexity of coprimeness from Lin0[÷]

We can now combine the methods from Sections 5D and 6A, to derive
a double-log lower bound for coprimeness from Lin0[÷]. The key is the
following Uniqueness Lemma for linear combinations of a difficult pair.

Lemma 6C.1. Suppose (a, b) is a difficult pair, 1 ≤ λ ∈ N, and

|x3yi|, |y3xi| <
√

b

2
√

10
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120 6. Lower bounds from division with remainder

for i = 0, 1, 2, 3 with x3, y3 > 0. Then

x0 + x1λa + x2λb

x3
=

y0 + y1λa + y2λb

y3

⇐⇒ [y3x0 = x3y0 & y3x1 = x3y1 & y3x2 = x3y2],

x0 + x1λa + x2λb

x3
>

y0 + y1λa + y2λb

y3

⇐⇒ [y3(x1a + x2b) > x3(y1a + y2b)]

or
(
[y3(x1a + x2b) = x3(y1a + y2b)]

& y3x0 > x3y0

)
.

Proof. The claimed equivalences follow from the following two facts,
applied to (y3x0 − x3y0) + (y3x1 − x3y1)λa + (y3x2 − x3y2)λb.

(1) If x + zλa + yλb = 0 and |x|, |y|, |z| <
√

b√
10

, then x = y = z = 0.

Proof. Assume the hypothesis of (1). The case y = z = 0 is trivial, and
if z = 0 and y 6= 0, then

b ≤ λ|y|b = |x| <
√

b√
10

,

which is absurd. So we may assume that z 6= 0. Now the assumed bound
on z and (142) implies

|zλa + yλb| ≥ |za + yb| > b

10|z| ≥ |x|

the last because

|xz| ≤
√

b√
10

√
b√
10

=
b

10
;

and this contradicts the hypothesis |zλa + yλb| = | − x|.

(2) If |x|, |y|, |z| <
√

b√
10

, then

x + zλa + yλb > 0 ⇐⇒ [za + yb > 0] ∨ [x > 0 & z = y = 0].

Proof. If z = 0, then the equivalence follows from Lemma 5B.1; and if
z 6= 0, then |zλa+yλb| > |x| as above, and so adding x to zλa+yλb cannot
change its sign. a

Lemma 6C.2. Suppose (a, b) is a difficult pair, h ≥ 2, X, Y ∈ C(a, b; h),
and h28 ≤ b. Then iq(X,Y ), rem(X, Y ) ∈ C(a, b; h12).
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6C. The complexity of coprimeness from Lin0[÷] 121

Proof. Let us notice immediately that (by a simple computation, using
2 ≤ h) the assumption h28 ≤ b implies that

h2 <

√
b

2
√

10
.(145)

This allows us to appeal to Lemma 6C.1 in several parts of the argument,
and the more outrageous-looking h28 ≤ b will be needed for one more,
specific application of the same Lemma. In effect, we just need to assume
that h is sufficiently smaller than b to justify these appeals to Lemma 6C.1,
and the 28th power is what makes this particular argument work.

It is enough to prove the result when X ≥ Y > 0, since it is trivial when
X < Y . Suppose

X =
x0 + x1a + x2b

x3
, Y =

y0 + y1a + y2b

y3

where all |xi|, |yi| ≤ h, and x3, y3 > 0, and consider the correct division
equation

x0 + x1a + x2b

x3
=

y0 + y1a + y2b

y3
Q + R (0 ≤ R < Y ).(146)

We must show that Q,R ∈ C(a, b;h12).
Case 1, y1a + y2b = 0. Now (146) takes the form

x0 + x1a + x2b

x3
=

y0

y3
Q + R (0 ≤ R <

y0

y3
),

so that R < h. Solving (146) for Q, we get in this case

Q =
y3

y0

(x0 − x3R) + x1a + x2b

x3
∈ C(a, b; h4).(147)

Case 2, y1a+y2b 6= 0. Then y1a+y2b > 0, by Lemma 6C.1, since Y > 0,
using (145). We are going to show that in this case

h9Y > X(148)

so that Q ≤ h9. Assuming this, we can solve the division equation (146)
for R, to get

R =
(x0y3 − y0x3Q) + (x1y3 − y1x3Q)a + (x2y3 − y2x3Q)b

x3y3
;(149)

and from this, easily, R ∈ C(a, b;h12).
We show (148) by separately comparing the “infinite parts” (those in-

volving a and b) of X and Y with b. Compute first:

y3(x1a + x2b) ≤ |y3x1|a + |y3x2|b ≤ h22b + h2b = 3h2b ≤ h4b,(150)

using a < 2b. On the other hand, if y2 = 0, then y1 > 0 and so

x3(y1a + y2b) = x3y1a > b;
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122 6. Lower bounds from division with remainder

and if y2 6= 0, then by (142),

(y1a + y2b) >
b

10|y1| , so that 10|y1|(y1a + y2b) > b,

and hence (since 10 < 24), in either case,

h5(y1a + y2b) > b.(151)

Now (150) and (151) imply that

h9x3(y1a + y2b) > h4h5(y1a + y2b) > h4b ≥ y3(x1a + x2b),

and we can finish the proof of (148) with an appeal to Lemma 6C.1, pro-
vided that the coefficients of h9Y and X in canonical form satisfy the
hypotheses of this Lemma. For the worst case, the required inequality is

|x3h
9yi| ≤

√
b

2
√

10
,

and it is implied by

h11 ≤
√

b

2
√

10
;

if we square this and simplify (using that 40 < 26), we see that it follows
from the assumed h28 ≤ b. a

Lemma 6C.3 (Inclusion). Suppose (a, b) is a difficult pair, and for any
m, let Gm(a, b) = Gm(N0[÷], a, b); it follows that

if 224m+5 ≤ a, then Gm(a, b) ⊆ C(a, b; 224m

).

Proof is by induction on m, the case m = 0 being trivial. To apply
Lemmas 6A.1 and 6C.2 at the induction step, we need to verify (under the
hypothesis on a and m) the following two inequalities.

(1)
(
224m

)12

≤ 224(m+1)
. This holds because

(
224m

)12

= 212·24m

< 224·24m

= 224(m+1)
.

(2)
(
224m

)28

≤ b. So compute:
(
224m

)28

= 228·24m

< 225·24m

= 224m+5 ≤ a. a

Lemma 6C.4. Suppose (a, b) is a difficult pair, 224m+6 ≤ a, and set λ =
1 + a!. Then there is an embedding

π : N0[÷] ¹ C(a, b; 224m

) ½ N0[÷]

such that π(a) = λa, π(b) = λb
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6C. The complexity of coprimeness from Lin0[÷] 123

Proof. To simplify notation, let

h = 224m

.

As in the proof of Lemma 6A.5, we will actually need to define the embed-
ding on the larger substructure N0[÷] ¹ C(a, b;h12), so let’s first verify that
the assumed bound on h is good enough to insure unique canonical forms
in C(a, b; h12). By Lemma 6C.1, we need to check that

(
h12

)2

<

√
b

2
√

10
,

which is equivalent to

4 · 10h48 < b;(152)

and this is true, because

4 · 10h49 < 22 · 24h49 ≤ h55 =
(
224m

)55

< 226·24m

= 224m+6
< a,

by the hypothesis, and it yields (152) when we divide both of its sides by
h.

Using Lemma 6C.1 now, we define

ρ : C(a, b;h12) → N,

in the expected way,

ρ
(x0 + x1a + x2b

x3

)
=

x0 + x1λa + x2λb

x3
,

and we verify as in the proof of Lemma 6A.5 that this is a well-defined,
order-preserving injection, with values in N (since h < a, and so x3 | λ−1),
and it respects all the operations in Lin0. We let

π = ρ ¹ Gm(a, b),

and all that it remains is to show that π respects iq(x, y) and rem(x, y)
when they are defined in Gm(a, b). The key fact is that by Lemma 6C.2
and the bound on h12,

X, Y ∈ Gm(a, b)=⇒ iq(X, Y ), rem(X, Y ) ∈ C(a, b;h12).

Thus it is enough to show that if

X = Y Q + R (0 ≤ R < Y )

is the correct division equation for X,Y , then

ρX = ρY · ρQ + ρR (0 ≤ ρR < ρY )(153)

is the correct division equation for ρX, ρY . We distinguish two cases, fol-
lowing the proof of Lemma 6C.2.
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124 6. Lower bounds from division with remainder

Case 1, y1a + y2b = 0. Then 0 ≤ R < Y =
y0

y3
≤ h, so ρR = R

and ρY = Y . Now ρR < ρY since ρ is order-preserving. The explicit
formula (147) for Q yields

ρQ =
y3

y0

(x0 − x3R) + x1λa + x2λb

x3
,

and a direct computation with these expressions for ρR, ρY and ρQ yields
(153).

Case 2, y1a+y2b > 0. Now Q ≤ h9, which implies ρQ = Q. The explicit
formula (149) for R yields

ρR =
(x0y3 − y0x3Q) + (x1y3 − y1x3Q)λa + (x2y3 − y2x3Q)λb

x3y3
;

with these expressions for ρR and ρQ we get again (153) by direct compu-
tation. a

Theorem 6C.5 (van den Dries and Moschovakis [2004]). For all difficult
pairs (a, b),

depth⊥⊥ (N0[÷], a, b) >
1
10

log log a.(154)

Proof. Let m = depth⊥⊥ (N0[÷], a, b) for some difficult pair (a, b). If

224m+6 ≤ a,

then Lemma 6C.4 provides an embedding π which does not respect coprime-
ness at (a, b) since πa = λa and πb = λb, with some λ. This contradicts
the choice of m, and so

224m+6
> a;

in other words

4m + 6 ≥ log log a;

and since m ≥ 1 by Problem x4F.2,

10m ≥ 4m + 6 ≥ log log a,

as required. a
Corollary 6C.6. For every difficult pair (a, b),

depthgcd(N0[÷], a, b) ≥ 1
10

log log a.

Proof. For any U, every embedding π : U ½ N0[÷] which respects
gcd(a, b) also respects a⊥⊥ b, so

depth⊥⊥ (N0[÷], a, b) ≤ depthgcd(N0[÷], a, b). a
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6C. The complexity of coprimeness from Lin0[÷] 125

Corollary 6C.7. Pratt’s algorithm is optimal for coprimeness on the
set of pairs (Ft+1, Ft) of successive Fibonacci numbers.

Proof is immediate from Problem x2C.8. a
This corollary implies that Theorem 6C.5 is best possible (except, of

course, for the specific constant 10), because the absolute lower bound
it gives for all difficult pairs is matched by the Pratt algorithm on pairs
of successive Fibonacci numbers. Note, however, that it does not rule
out the possibility that the Main Conjecture in the Preface holds for all
uniform processes of Nε, even if we formulate it for coprimeness rather than
the gcd—because it might hold with another, more restrictive or different
notion of “difficult pair”; in other words, we may have the wrong proof.

The most exciting possibility would be that the conjecture holds for
all deterministic uniform processes but not for all uniform processes, which
would exhibit the distinction between determinism and non-determinism in
a novel context. This seems unlikely and, in any case, there is no obvious
way how one would go about trying to prove it.

Problems for Section 6C

Problem x6C.1∗ (van den Dries and Moschovakis [2004], [2009]). For
every quadratic irrational ξ > 1, there is a rational number r > 0 such
that for all but finitely many good approximations (a, b) of ξ,

depth(N[÷],⊥⊥ , a, b) ≥ r log log a.(155)

Hint: Use Problem x6B.5 to adjust the argument for difficult pairs in this
section.

The O(log log) bound in this problem is best possible, because of Pratt’s
algorithm.
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CHAPTER 7

LOWER BOUNDS FROM DIVISION AND

MULTIPLICATION

The arithmetic becomes substantially more complex—and a little algebra
needs to be brought in—when we add both division with remainder and
multiplication to the primitives of Lin0. We will derive here lower bounds
for unary functions and relations from

Lin0[÷, ·] = Lin0 ∪ {iq, rem, ·} = {0, 1, =, <, +,−· , iq, rem, ·}.
In the last section of the chapter we will discuss the known results about
binary functions which we are omitting, and we will list some basic problems
which remain open.19

7A. Polynomials and their heights

We review here briefly some basic results about the ring K[T ] of unary
polynomials over a field K, and we also derive some equally simple facts
about the ring Z[T ] of polynomials over the integers which are not always
covered in standard algebra classes.

To fix terminology, a polynomial in the indeterminate (variable) T over
a ring K is a term

X = x0 + x1T + x1T
2 + · · ·+ xnTn,

where xi ∈ K and xn 6= 0 together with the zero polynomial 0. It is
sometimes useful to think of X as an infinite sum of monomials xiT

i, in
which only finitely many of the xi’s are not 0; however we do this, the
degree of a non-zero X is the largest power of T which appears in X with a
non-zero coefficient, and it is 0 when X = x0 is just an element of K. We
do not assign a degree to the zero polynomial.20

19This section is missing in Version 1.2.
20The usual convention is to set deg(0) = −∞, which saves some considerations of

cases in stating results.
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128 7. Lower bounds from division and multiplication

Two polynomials are equal if they are literally identical as terms, i.e., if
the coefficients of like powers are equal.

The sum, difference and product of two polynomials are defined by the
performing the obvious operations on the coefficients and collecting terms:

X + Y =
∑

i(xi + yi)T i, deg(X + Y ) ≤ max(deg(X), deg(Y ))

−X =
∑

i(−xi)T i, deg(−X) = deg(X)

XY =
∑

k

(∑i=k
i=0 xiyk−i

)
T k deg(XY ) = deg(X) + deg(Y ).

The last formula illustrates the occasional usefulness of thinking of a poly-
nomial as an infinite sum with just finitely many non-zero terms.

With these operations, the set K[T ] of polynomials over a ring K is a
(commutative) ring over K. For the more interesting division operation,
we need to assume that K is a field.

Theorem 7A.1 (The Division Theorem for polynomials). If K is a field,
and X, Y ∈ K[T ] such that deg(X) ≥ deg(Y ) and Y 6= 0, then there exist
unique polynomials Q,R ∈ K[T ] such that

X = Y Q + R and R = 0 or deg(R) < deg(Y ).(156)

Proof is by induction on the difference d = n−m of the degrees of the
given polynomials, n = deg(X), m = deg(Y ).

At the basis, if m = n, then

X = Y
xn

yn
+ R

with R defined by this equation, so that either it is 0 or its degree is less
than n, since X and

xn

yn
Y have the same highest term xnTn.

In the induction step, with d = n −m > 0, first we divide X by Y T d,
the two having the same degree:

X = Y T dQ1 + R1 (R1 = 0 or deg(R1) < n).

If R1 = 0 or deg(R1) < m, we are done; otherwise deg(R1) ≥ deg(Y ) and
we can apply the induction hypothesis to get

R1 = Y Q2 + R2 (R2 = 0 or deg(R2) < deg(Y )).

We now have

X = Y (T dQ1 + Q2) + R2 (R2 = 0 or deg(R2) < deg(Y )),

which is what we needed.
We skip the proof of uniqueness, which basically follows from the con-

struction. a
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7A. Polynomials and their heights 129

We call (156) the canonical division equation (c.d.e.) for X, Y .
This basic fact does not hold for polynomials in Z[T ]: for example, if

X = 3 and Y = 2, then there are no Q,R which satisfy (156), simply
because 2 does not divide 3 in Z. To get at the results we need, it is
most convenient to work with the larger ring Q[T ], but study a particular
“presentation” of it, in which the concept if height is made explicit.

The height of a non-zero integer polynomial is the maximum of the ab-
solute values of its coefficients,

height(x0 + x1T + · · ·+ xnTn) = max{|xi| | i = 0, . . . , n} (xi ∈ Z).

To extend the definition to Q[T ], we let for each n, h ∈ N,

(157) Qn(T ; h) =
{x0 + x1T + x2T

2 + · · ·+ xnTn

x∗
|

x0, . . . , xn, x∗ ∈ Z, x∗ > 0 and |x0|, . . . , |xn|, |x∗| ≤ h
}

.

This is the set of polynomials in the indeterminate T over Q, with degree
n and height no more than h. When the degree is not relevant, we skip the
subscript,

Q(T ; h) =
⋃

n Qn(T ; h);

and in computing heights, it is sometimes convenient to use the abbrevia-
tion

X : h ⇐⇒ X ∈ Q(T ;h).

The canonical form (157) gives a unique height(X) if the coefficients xi

have no common factor with x∗, but this is not too important: most of the
time we only care for an upper bound for height(X) which can be computed
without necessarily bringing X to canonical form. Notice however, that (as
a polynomial over Q),

X =
3 + 2T

6
=

1
2

+
1
3
T,

but the height of X is neither 3 nor
1
2
; it is 6.

It is very easy to make “height estimates” for sums and products of
polynomials:

Lemma 7A.2. If X,Y are in Q[T ] with respective degrees n and m and
X : H,Y : h, then

X + Y : 2Hh, XY : (n + m)Hh.

Proof. For addition,

X + Y =
(y∗x0 + x∗y0) + (y∗x1 + x∗y1)T + · · ·

x∗y∗
,
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130 7. Lower bounds from division and multiplication

and every term in the numerator clearly has absolute value ≤ 2Hh. For
multiplication,

XY =

∑n+m
k=0

( ∑i=k
i=0 xiyk−i

)
T k

x∗y∗
.

For k < n + m, the typical coefficient in the numerator can be estimated
by ∣∣∣ ∑i=k

i=0 xiyk−i

∣∣∣ ≤ ∑i=k
i=0 Hh ≤ (k + 1)Hh ≤ (n + m)Hh;

and if k = n + m, then∣∣∣ ∑i=n+m
i=0 xiyk−i

∣∣∣ = |xnym| ≤ Hh < (n + m)Hh

since xi = 0 when i > n and yj = 0 when j > m. a
The next result is a version of the Division Theorem 7A.1 for Q[T ] which

supplies additional information about the heights.

Lemma 7A.3 (Lemma 2.3 of Mansour, Schieber, and Tiwari [1991b]). Sup-
pose X and Y are polynomials with integer coefficients,

deg(X) = n ≥ m = deg(Y ), X : H, Y : h,

and X = Y Q + R with R = 0 or deg(R) < deg(Y ).

Then

Q =
Q1

yd+1
m

, R =
R1

yd+1
m

,

where d = n−m and Q1, R1 are in Z[T ] with height ≤ H(2h)d+1. It follows
that

Q,R : H(2h)d+1.

Proof is by induction on d.
Basis, deg(X) = deg(Y ) = n. In this case

X = Y
xn

yn
+ R

with R defined by this equation, so that either it is 0 or it is of degree < n.
Now Q1 =

xn

yn
has height ≤ H, and

R1 = ynX − xnY

so that the typical coefficient of R1 is of the form ynxi − xnyi, and the
absolute value of this is bounded by 2Hh = H(2h)0+1.

Induction Step, d = deg(X) − deg(Y ) = n − m > 0. Consider the
polynomial

Z = ymX − xnY T d(158)
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7A. Polynomials and their heights 131

whose degree is < n = m+d since the coefficient of Tn in it is ymxn−xnym.
If Z = 0 or deg(Z) < m, then

X = Y
xnT d

ym
+

Z

ym
= Y

xnyd
mT d

yd+1
m

+
yd

mZ

yd+1
m

is the c.d.e. for X,Y , and it follows easily that

Q1 = xnyd
mT d : Hhd < H(2h)d+1,

R1 = yd
mZ = yd+1

m X − xnyd
mY T d : H(2h)d+1.

This proves the Lemma for this case. If deg(Z) ≥ m, then the Induction
Hypothesis applies to the pair Z and Y since, evidently,

deg(Z)− deg(Y ) < n−m = d.

Now

height(Z) ≤ hH + Hh = H(2h),

and so the Induction Hypothesis yields

Z = Y
Q2

yd
m

+
R2

yd
m

,(159)

with

Q2, R2 : H(2h)(2h)d = H(2h)d+1.

Solving (158) for X, we get

X =
1

ym
Z +

xn

ym
T dY

=
1

ym

(
Y

Q2

yd
m

+
R2

yd
m

)
+

xn

ym
T dY

=
Q2 + xnyd

mT d

yd+1
m

Y +
R2

yd+1
m

which is the c.d.e. for X, Y . We have already computed that R2 : H(2h)d+1.
To verify that Q2 +xnyd

mT d : H(2h)d+1, notice that deg(Q2) < d, since the
opposite assumption implies with (159) that deg(Z) ≥ m + d = n, which
contradicts the definition of Z; thus the coefficients of Q2 + xnyd

mT d are
the coefficients of Q2 and xnyd

m, and they all have height ≤ H(2h)d+1, as
required. a

Theorem 7A.4. If X, Y : h, deg(X) ≥ deg(Y ) and (156) holds, then

Q,R : (2h)2n+5.
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132 7. Lower bounds from division and multiplication

Proof. Theorem 7A.3 applied to y∗X and x∗Y (with height ≤ h2)
yields

y∗X = x∗Y
Q

(x∗ym)d+1
+

R

(x∗ym)d+1

with Q,R : h2(2h2)d+1 < (2h)2d+4; and if we divide by y∗, we get that

X = Y
x∗Q

y∗(x∗ym)d+1
+

R

y∗(x∗ym)d+1
,

which is the c.d.e. for X, Y , and such that (with d ≤ n)
x∗Q

y∗(x∗ym)d+1
,

R

y∗(x∗ym)d+1
: (2h)2n+5. a

7B. Unary relations from Lin0[÷, ·]

We establish here suitable versions of Lemma 6A.5 and Theorem 6A.6
for the structure

N0[÷, ·] = (N0,Lin0[÷, ·]) = (N, 0, 1, =, <,+,−· , iq, rem, ·)
with a

√
log log bound.

Set, for any a, n, h ∈ N,

(160) Qn(a; h) =
{x0 + x1a + x2a

2 + · · ·+ xnan

x∗
∈ N

| x0, . . . , xn, x∗ ∈ Z, x∗ > 0 and |x0|, . . . , |xn|, |x∗| ≤ h
}

.

These are the values for T := a of polynomials in Qn(T ;h), but only
those which are natural numbers; and they are the sort of numbers which
occur (with various values of h) in Gm(a) = Gm[(N0[÷, ·], a). To simplify
dealing with them, we will be using the standard notations

(161) x = f(a) =
x0 + x1a + x2a

2 + · · ·+ xnan

x∗
,

y = g(a) =
y0 + y1a + y2a

2 + · · ·+ ymam

y∗
,

where it is assumed that xn, ym 6= 0 (unless, of course, x = 0, in which
case, by convention, n = 0 and x0 = 0). It is also convenient to set xi = 0
for i > n, and similarly for yj , and to use the same abbreviations we set
up for Qn(T ;h), especially

Q(a; h) =
⋃

n Qn(a; h), x : h ⇐⇒ x ∈ Q(a; h).

Lemma 7B.1. With x and y as in (161), if h ≥ 2 and x, y ∈ Qn(a; h),
then x + y, x−· y ∈ Qn(a;h3), and xy ∈ Q2n(a;nh3).
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7B. Unary relations from Lin0[÷, ·] 133

Proof. These are all immediate, using Lemma 7A.2. a
The analogous estimates for iq(x, y) and rem(x, y) are substantially more

complex, and we need to establish first the uniqueness of the representa-
tions (161) when h is small relative to a.

Lemma 7B.2. (1) With all xi ∈ Z and a > 2, if |xi| < a for i ≤ n, then

x0 + x1a + · · ·+ xnan = 0 ⇐⇒ x0 = x1 = · · · = xn = 0;

and if, in addition, xn 6= 0, then

x0 + x1a + · · ·+ xnan > 0 ⇐⇒ xn > 0.

(2) With x and y as in (161) and assuming that 2h2 < a:

x = y ⇐⇒ m = n & (∀i ≤ n)[y∗xi = x∗yi],
x > y ⇐⇒ (∃k ≤ n)[(∀i > k)[xi = yi] & xk > yk].

In particular,

x > 0 ⇐⇒ xn > 0.

Proof. (1) If xn 6= 0, then

|x0 + x1a + · · ·xn−1a
n−1| ≤ (a− 1)(1 + a + a2 + · · ·+ an−1)

= (a− 1)
an − 1
a− 1

= an − 1 < an ≤ |xn|an,

and so adding x0 + x1a + · · ·xn−1a
n−1 to xnan cannot change its sign or

yield 0.
(2) follows immediately from (1). a
Lemma 7B.3. Let c ≥ 61, d ≥ 33, and assume that h ≥ 2 and hc(n+1) < a.

If x, y ∈ Qn(a;h) and x ≥ y > 0, then iq(x, y), rem(x, y) ∈ Qn(a; hd(n+1)).

Proof. How large c and d must be will be determined by the proof, as
we put successively stronger conditions on h to justify the computations.
To begin with, assume

c ≥ 3, so that 2h2 ≤ h3 ≤ hc(n+1) < a,(H1)

and Lemma 7B.2 guarantees that the canonical representations of x an y
in Qn(a;h) are unique. By the same Lemma,

n = deg(f(T )) ≥ deg(g(T )) = m,

and so we can put down the correct division equation for these polynomials
in Q[T ],

f(T ) = g(T )Q(T ) + R(T ) (R(T ) = 0 or deg(R(T )) < deg(g(T )).(162)

We record for later use the heights from Lemma 7A.4,

Q(T ), R(T ) : (2h)2n+5 ≤ h4n+10.(163)
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134 7. Lower bounds from division and multiplication

From (162) we get

f(a) = g(a)Q(a) + R(a) (R(a) = 0 or R(a) < g(a)),(164)

where the condition on R(a) is trivial if R(a) ≤ 0, and follows from the
corresponding condition about degrees in (162) by Lemma 7B.2, provided
that the height of R(a) is sufficiently small, specifically

2
(
h4n+10

)2

< a;

so here we assume

c ≥ 21, so that 2
(
h4n+10

)2

≤ hh8n+20 = h8n+21 < h21(n+1) < a.(H2)

However, (164) need not be the correct division equation for the numbers
f(a), g(a), because Q(a) might not be integral or R(a) might be negative.
For an example where both of these occur, suppose

f(a) = a2 − 1, g(a) = 2a with a odd,

in which case (162) and (164) take the form

T 2 − 1 = 2T (
T

2
)− 1, a2 − 1 = 2a(

a

2
)− 1.

To correct for this problem, we consider four cases.
Case 1, Q(a) ∈ N and R(a) ≥ 0. In this case (164) is the c.d.e. for f(a)

and g(a), and from (163),

Q(a), R(a) : h4n+10;

thus we assume at this point

d ≥ 10, so that h4n+10 ≤ hd(n+1).(H3)

Case 2, Q(a) ∈ N but R(a) < 0. From (164) we get

f(a) = g(a)[Q(a)− 1] + g(a) + R(a)︸ ︷︷ ︸,

and we contend that this is the c.d.e. for f(a), g(a) in N, if c is large
enough. We must show that

(1) 0 ≤ g(a) + R(a) and (2) g(a) + R(a) < g(a),

and (2) is immediate, because R(a) < 0. For (1), notice that the leading
coefficient of g(T ) + R(T ) is the same as the leading coefficient of g(T )
(because deg(R(T ) < deg(g(T )), and that it is positive, since g(a) > 0. To
infer from this that g(a)+R(a) > 0 using Lemma 7B.2, we must know that

2height(g(a) + R(a))2 < a,
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7B. Unary relations from Lin0[÷, ·] 135

and from Lemma 7B.1,

2height(g(a) + R(a))2 ≤ h
(
(h4n+10)3

)2

= h24n+61,

and so for this case we assume that

c ≥ 61, so that h24n+61 ≤ hc(n+1) < a.(H4)

Using Lemma 7B.1, easily (and overestimating again grossly)

Q(a)− 1, g(a) + R(a) : (h4n+10)3 = h12n+30 ≤ h30(n+1);

and so we also assume

d ≥ 30, so that h30(n+1) ≤ hd(n+1).(H5)

Case 3, Q(a) =
Q1(a)

z
/∈ N, and Q1(a) ≥ z > 1. We note that

Q1(a) : h4n+10, z ≤ h4n+10,

and both Q1(a) and z are positive, and so we can put down the c.d.e. for
them in N:

Q1(a) = zQ2 + R2 (0 < R2 < z),

where we know that R2 > 0 by the case hypothesis. From this it follows
that

R2 < z ≤ h4n+10, and Q2 =
Q1(a)−R2

z
:
(
h4n+10

)3

= h12n+30

by Lemma 7B.1 again. Replacing these values in (164), we get

f(a) = g(a)Q2 + g(a)
R2

z
+ R(a)

︸ ︷︷ ︸
(165)

and the number above the underbrace is in Z, as the difference between
two numbers in N. This number is the value for T := a of the polynomial

g(T )
R2

z
+ R(T )

whose leading coefficient is that of g(T )—since deg(R(T )) < deg(g(T ))—
and hence positive. We would like to infer from this that

g(a)
R2

z
+ R(a) > 0,

using Lemma 7B.2, and so we make sure that its height is suitably small.
From the two summands, the second has the larger height, h4n+10, and so
by Lemma 7B.1, the height of the sum is bounded by(

h4n+10)3 = h12n+30;
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136 7. Lower bounds from division and multiplication

and to apply Lemma 7B.2, we must insure that

2(h12n+30)2 = 2h24n+60 < a,

and so for this step we assume that

c ≥ 61, so that 2h24n+60 ≤ h24n+61 ≤ hc(n+1).(H6)

This number is also less than g(a), again because its leading coefficient

is that of g(a) multiplied by
R2

z
< 1. It follows that this is the correct

division equation for f(a), g(a), so it is enough to compute the height of
the quotient (above the underbrace) since we have already computed that

Q2 : h12n+30 ≤ h30(n+1);

using the known heights on g(a), R2, z and R(a), it is easy to check that

g(a)
R2

z
+ R(a) : ((h)4n+11)3 = h12n+33,

so at this point we assume that

d ≥ 33, so that h12n+30, h12n+33 ≤ hd(n+1).(H7)

Case 4, Q(a) =
Q1(a)

z
/∈ N, and Q1(a) < z. Since Q1(a) > 0, this case

hypothesis implies that deg(Q1(T )) = 0, so that deg(f(T )) = deg(g(T )).
By now familiar arguments, this means that

f(a) ≤ y∗xn

x∗yn
g(a)

and so the quotient of these two numbers is some number

Q ≤ y∗xn

x∗yn
≤ h2.

Thus (164) takes the form

f(a) = g(a)Q + R with 0 ≤ Q ≤ h2,

from which it follows immediately that

R = f(a)− g(a)Q : (h5)3 = h15,

and the hypotheses we have already made on d insure h15 ≤ hd(n+1), so
that we need not make any more.

In fact then, the Lemma holds with

c ≥ 61, d ≥ 33. a
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7B. Unary relations from Lin0[÷, ·] 137

Lemma 7B.4 (Lin0[÷, ·]-embedding). Let e = 61 and for any m,

Gm(a) = Gm(N0[÷, ·], a).

(1) If 22e(m+1)2

< a, then Gm(a) ⊆ Q2m(a; 22em2

).

(2) If 22e(m+2)2

< a and a! | (λ− 1), then there is an embedding

π : N0[÷, ·] ¹ Gm(a) ½ N0[÷, ·]
such that π(a) = λa.

Proof of (1) is by induction on m, the basis being trivial. To apply
Lemmas 7B.1 and 7B.3 at the induction step, we need the inequalities

2m
(
22em2 )3

≤ 22e(m+1)2

,
(
22em2 )61(2m+1)

< a,

(
22em2 )33(2m+1)

≤ 22e(m+1)2

,

and these are easily verified by direct computation.
(2) is proved very much like Lemma 6C.4, the only subtlety being that

we need to start with an injection

ρ : Gm+1(a) ½ N
on the larger set, which (by (1)) contains iq(x, y) and rem(x, y) for all
x, y ∈ Gm(a). The stronger hypothesis on m and a imply that the numbers
in Gm+1(a) have unique canonical forms in

Q2m+1(a; 22e(m+1)2

);

and so we can set (with n = 2m)

ρ
(x0 + x1a + · · ·xnan

x∗

)
=

x0 + x1λa + · · ·xnλan

x∗
,

take π = ρ ¹ Gm(a) and finish the proof as in Lemma 6C.4. a
Theorem 7B.5. (Mansour, Schieber, and Tiwari [1991b], van den Dries

and Moschovakis [2009]). If R(x) is a good example, then for all a ≥ 2

R(a)=⇒depthR(N0[÷, ·], a) >
1
24

√
log log a.

Proof. By the Homomorphism Test 4F.2 and the preceding Lemma,
we know that if m = depthR(N0[÷, ·], a), then

22e(m+2)2

> a,

with e = 61. Taking logarithms twice, then the square root and finally
using the fact that 3m ≥ m + 2 by Problem x4F.2, we get the required

3m ≥ m + 2 ≥
√

log log a

e
≥ 1

8

√
log log a,
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138 7. Lower bounds from division and multiplication

the last step justified because
√

e =
√

61 < 8. a
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CHAPTER 8

NON-UNIFORM COMPLEXITY IN N

A computer has finite memory, and so it can only store and operate on a
finite set of numbers. Because of this, complexity studies which aim to be
closer to the applications are often restricted to the analysis of algorithms
on structures with universe the set

[0, 2N ) = {x ∈ N :x < 2N}
of N -bit numbers for some fixed (large) N , typically restrictions to [0, 2N ) of
expansions of Nd or N0, e.g., N0[÷],N0[÷, ·], etc. The aim now is to derive
lower bounds for the worst case behavior of such algorithms as functions of
N ; and the field is sometimes called non-uniform complexity theory, since,
in effect, we allow the use of a different algorithm for each N which solves
a given problem in A ¹ [0, 2N ).

For each structure A = (N,Φ) with universe N, each relation R ⊆ Nn

and each N , let

depthR(A, 2N ) = max
{

depthR(A ¹ [0, 2N ), ~x) : x1, . . . , xn < 2N
}

(166)

and similarly for sizeR(A, 2N ), callsR(A, 2N ). These are the intrinsic (worst
case) bit complexities of R from the primitives of A, at least those of them
for which we can derive lower bounds. As it turns out, the results and
the proofs are essentially the same for Nd, except for the specific constants
which are now functions of N (and somewhat smaller). For N0[÷] and
N0[÷, ·], however, we need a finer analysis and we can only derive lower
bounds for the larger complexity sizeR(A, 2N ), primarily because there is
“less room” in [0, 2N ) for embeddings which exploit the uniformity assump-
tion in the definition of intrinsic complexities. It is this new wrinkle in the
proofs which is most interesting to us in this brief chapter.

8A. Non-uniform lower bounds from Lind

We will show here that the intrinsic lower bounds from Lind of Chap-
ter 5 hold also in the non-uniform case, with somewhat smaller constants.
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140 8. Non-uniform complexity in N

This means (roughly) that for these problems, the lookup algorithm in
Problem x8A.1 is weakly optimal for depth intrinsic bit complexity in Nd.

Theorem 8A.1 (van den Dries and Moschovakis [2009]). If N ≥ 3, then

depthPrime(Nd, 2N ) >
N

5 log d
.

Proof. Suppose p < 2N is prime and let

m = depthPrime(Nd ¹ [0, 2N ), p), λ = 1 + dm+1.

If

(a) d2m+2 < p and (b)
x0 + x1λp

dm
< 2N for all |x0|, |x1| ≤ d2m,

then the proof of Lemma 5B.2 would produce an embedding

π : Gm(Nd ¹ [0, 2n), p) ½ Nd ¹ [0, 2N )

which does not respect the primality of p, yielding a contradiction. So for
every prime p < 2N , one of (a) or (b) must fail. To exploit this alternative,
we need to apply it to primes not much smaller than 2N , but small enough
so that (b) holds, and to find them we appeal to Bertrand’s Postulate,
Theorem 418 of Hardy and Wright [1938]; this guarantees primes between
l and 2l when l ≥ 3. So choose p such that

2N−1 < p < 2N ,

which exists because 2N−1 > 3 when N ≥ 3.

Case 1, d2m+2 ≥ p, and so d2m+2 > 2N−1. Using as always the fact that
m ≥ 1, this gives easily m > N

5 log d .

Case 2, for some x0, x1 with |x0|, |x1| ≤ d2m, we have

x0 + x1(1 + dm+1)p
dm

≥ 2N .

Compute (with m ≥ 1):

x0 + x1(1 + dm+1)p
dm

<
d2m + d2m(1 + dm+1)2N

dm

< dm + dmdm+22N ≤ d2m+32N ≤ d5m2N

and so the case hypothesis implies that m > N
5 log d again, as required. a

Similar mild elucidations of the proofs we have given extend all the lower
bound results about Nd in Chapter 5 to intrinsic bit complexity, and they
are simple enough to leave for the problems.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 140

Preliminary draft, incomplete and full or errors.



8B. Non-uniform lower bounds from Lin0[÷] 141

Problems for Section 8A

Problem x8A.1 (The lookup algorithm). If n ≥ 1, then every n-ary
relation R on N can be decided for inputs x1, . . . , xn < 2N by an explicit
Nb-term EN (~x) of depth ≤ N . It follows that

depthR(Nb, 2N ) ≤ N.

Recall the definition of good examples in Subsection 5C.

Problem x8A.2 (van den Dries and Moschovakis [2009]). Suppose R is
a good example such that for some k and all sufficiently large m, there exists
some x such that

R(x) & 2m ≤ x < 2km.

Prove that for all d ≥ 2 there is some r > 0 such that for all sufficiently
large N ,

depthR(Nd, 2N ) > rN,

and verify that all the good examples in Problem x5C.4 satisfy the hypoth-
esis.

Problem x8A.3 (van den Dries and Moschovakis [2009]). Prove that for
some r > 0 and all sufficiently large N ,

depth⊥⊥ (Nd, 2N ) > rN.

8B. Non-uniform lower bounds from Lin0[÷]

The methods of the preceding section do not extend easily to N0[÷],
because the constant λ = 1 + a! that we used in the proof of Lemma 6A.5
is too large: a direct adaptation of that proof to the non-uniform case
leads to a log log N lower bound for depthPrime(N0[÷], 2N ) which is way
too low. In fact, it does not seem possible to get a decent lower bound for
depthPrime(N0[÷], 2N ) with this method, but a small adjustment yields a
lower bound for the size- and hence the calls- intrinsic bit complexities.

We start with the required modification of Lemma 6A.5.

Lemma 8B.1. Suppose U ⊆p N0[÷] is generated by a, m = depth(U, a),
and ν = |U |. If 26m+3

< a, then there is a number λ ≤ 2ν6m+2
and an

embedding π : U ½ N0[÷] such that π(a) = λa.

Proof. As in the proof of Lemma 6A.5, the assumed inequality on m
implies that each x ∈ U ⊆ Gm(N0[÷], a) can be expressed uniquely as a
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142 8. Non-uniform complexity in N

proper fraction of the form

x =
x0 + x1a

x2
(|xi| ≤ 26m+1

),(167)

and we can set

denom(x) = the unique x2 ≤ 26m+1
such that (167) holds (x ∈ U).

We claim that the conclusion of the Lemma holds with

λ = 1 +
∏

x∈U denom(x) ≤ 1 +
(
26m+1

)ν

< 2ν6m+2
,(168)

and to prove this we follow very closely the proof of Lemma 6A.5: we set

ρ(x) = ρ
(x0 + x1a

x2

)
=

x0 + x1λa

x2
;

check that this is a well defined injection on U which takes values in N,
because

x ∈ U =⇒denom(x) | (λ− 1);

and finally verify that it is an embedding from U to N0[÷] exactly as in
the proof of Lemma 6A.5. a

Theorem 8B.2 (van den Dries and Moschovakis [2009]). If N ≥ 8, then

sizePrime(N0[÷], 2N ) >
1
10

log N.(169)

Proof. Let k = bN
2 c − 1 so that

k + 1 ≤ N

2
< k + 2 and so k >

N

2
− 2.

The hypothesis on N yields 2k > 4, so Bertrand’s Postulate insures that
there exists some prime p such that 2k < p < 2k+1. This is the prime we
want. Let A = N0[÷] ¹ [0, 2N ) (to simplify notation) and choose U ⊆p A
so that

U °A
c Prime(p), ν = |U | = sizePrime(A, p)

and set m = depth(U, p). (It could be that m > depthPrime(A, p).) Let
also

λ = 1 +
∏

x∈U denom(x) < 2ν6m+2

as above. If

26m+3
< p and

x0 + x1λp

x2
< 2N whenever |xi| ≤ 26m+1

,

then the proof of Lemma 8B.1 produces an embedding π : U ½ A which
does not respect the primality of p contrary to the choice of U; so one of
the two following cases must hold.
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8B. Non-uniform lower bounds from Lin0[÷] 143

Case 1 : 26m+3 ≥ p > 2k. This gives 6m+3 > k > N
2 − 2, and this easily

implies (with m ≥ 1) that ν ≥ m > log N
10 in this case, cf. Problem x8B.1.

Case 2 : For some x0, x1, x2 with |xi| ≤ 26m+1
,

x0 + x1λp

x2
≥ 2N .

Compute:

x0 + x1λp

x2
≤ 26m+1

+ 26m+1 · 2ν6m+2 · 2N
2 ≤ 2 · 26m+1+ν6m+2 · 2N

2

≤ 22ν6m+2+1 · 2N
2 ≤ 23ν6m+2 · 2N

2 .

So the case hypothesis gives 23ν6m+2 · 2N
2 ≥ 2N which gives 3ν6m+2 ≥ N

2
and then

ν6m+3 ≥ N.

This is the basic fact about the intrinsic bit complexity of primality, and
it can be used to derive a lower bound for the measure induced by the
substructure norm

µ(U, a) = |U |6depth(U,a)+3.

To derive a lower bound for ν = sizePrime(N[÷], 2N ), we note as usual that
m ≥ 1, and so m ≤ ν < 6ν , 62ν+3 > N and so

ν >
1

5 log 6
log N >

1
10

log N. a
It should be clear that the numerology in this proof was given in detail

mostly for its amusement value, since from the first couple of lines in each
of the cases one sees easily that ν > r log N for some r. Moreover, one can
certainly bring that 1

10 up quite a bit, with more clever numerology, a more
judicious choice of p, or by weakening the result to show that (169) holds
only for very large N . The problems ask only for these more natural (if
slightly weaker) results, and leave it up to the solver whether they should
indulge in manipulating numerical inequalities.

Problems for Section 8B

Problem x8B.1. Prove that if m ≥ 1, N ≥ 1 and 6m+3 > N
2 − 2, then

m > log N
10 . Hint: Check that 66m ≥ 65m+1 > 2 · 6m+3 + 4 > N .

Problem x8B.2. Suppose R is a good example with the property that
for some k and every m ≥ 1, there is some x such that R(x) and

26m

< x < 26km

.
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144 8. Non-uniform complexity in N

Prove that for some r > 0 and sufficiently large N ,

sizeR(N[÷], 2N ) > r log N.

Verify also that the good examples in Problem x5C.4 satisfy the hypothesis.

Problem x8B.3 (van den Dries and Moschovakis [2009]). Prove that for
some r > 0 and all sufficiently large N ,

size⊥⊥ (N[÷], 2N ) > r log N.

Hint: Use the largest good approximation (a, b) of
√

2 with a < 2
N
2 .

Problem x8B.4. Derive a lower bound for sizeR(Lin0[÷, ·], 2N ) when
R is a good example or ⊥⊥ .
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CHAPTER 9

POLYNOMIAL EVALUATION AND 0-TESTING

In this chapter we will prove four results on the intrinsic complexity of
evaluation and 0-testing of polynomials, all of them establishing the op-
timality or “near-optimality” of Horner’s rule from various primitives for
“generic” inputs. Polynomial evaluation is perhaps the simplest problem
in algebraic complexity, and it has been much studied since its formulation
as a complexity problem by Ostrowski [1954]; here we are concerned with
0-testing, a plausibly easier problem which has received considerably less
attention.

For any field F , Horner’s rule computes the value

χ(b) =
∑

i≤n aib
i = a0 + a1b + · · ·+ anbn

of a polynomial χ(x) using no more than n multiplications and n additions
in F as follows:

χ0(b) = an,

χ1(b) = an−1 + bχ0(b) = an−1 + anb

...

χj(b) = an−j + bχj−1(b) = an−j + an−j+1b + · · ·+ anbj

...

χ(b) = χn(b) = a0 + bχn−1(b) = a0 + a1b + · · ·+ anbn.

For certain values of the coefficients, using division and subtraction might
lead to a more efficient computation because of identities like

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
,

This Chapter is in a very preliminary form. The main effort is to show that as
it applies to fields, the homomorphism method of deriving intrinsic lower bounds is
basically a somewhat more general version of the classical substitution method of Pan.
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146 9. Polynomial evaluation and 0-testing

and we also need the equality relation when we want to decide whether
χ(b) = 0; so it is natural to consider the optimality of Horner’s rule from
the primitives of the expansion

F = (F, 0, 1, +,−, ·,÷, =)(170)

of the field structure by =. We will use throughout the standard notation

NF (a0, a1, . . . , an, b) ⇐⇒ a0 + a1b + · · ·+ anbn = 0,

where F is a field and n ≥ 1.
A partial field homomorphism

π : F1 ⇀ F2

on one field to another is a partial function whose domain of convergence
is a subfield F ′1 ⊆ F1 and which respects (as usual) the field operations.

For any field F and indeterminates ~u = u1, . . . , uk, F [~u] is the ring of all
polynomials with coefficients in F and F (~u) is the field of all rational func-
tions in ~u with coefficients in F . If ψ(v, ~u) ∈ F (v, ~u) is a rational function,
then the substitution v := ψ(v, ~u) induces a partial field homomorphism

π
(χn(v, ~u)

χd(v, ~u)

)
=

χn(ψ(v, ~u), ~u)
χd(ψ(v, ~u), ~u)

(χn(v, ~u)
χd(v, ~u)

∈ F (v, ~u)
)

(171)

whose domain of convergence is the field
{χn(v, ~u)

χd(v, ~u)
:χd(ψ(v, ~u), ~u) 6= 0

}
⊆ F (v, ~u).

We will refer to π as “the substitution” v := ψ(v, ~u), and the only partial
field homomorphisms we will need are compositions of such substitutions.

9A. Horner’s rule is {·,÷}-optimal for nullity

The {·,÷}-optimality of Horner’s rule for polynomial evaluation was
proved by Pan [1966]. Pan worked with computation sequences (which
we will define in Section ??) and introduced the method of substitution,
i.e., the use of partial field homomorphisms induced by substitutions as
above.

By Horner’s rule, for all fields F and all ~a ∈ Fn,

calls{·,÷}(F, NF ,~a) ≤ n.

21The proof in Bürgisser and Lickteig [1992] is for algebraic decision trees, i.e.,
(branching) computation sequences with equality tests.
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9A. Horner’s rule is {·,÷}-optimal for nullity 147

Theorem 9A.1 (Bürgisser and Lickteig [1992]21). If F is a field of char-
acteristic 0, n ≥ 1, and a0, . . . , an, b ∈ F are algebraically independent
(over the prime field Q), then

calls{·,÷}(F, NF , a0, . . . , an, b) = n.(172)

In particular, (172) holds for the reals R and the complexes C with alge-
braically independent a0, a1, . . . , an, b.

To show the needed inequality calls{·,÷}(F, NF , a0, . . . , an, b) ≥ n by
the Homomorphism Test 4F.2, we must construct for every algebraically
independent tuple ~a, b ∈ Fn+2 and every finite substructure U ⊆p F such
that U °F

c ¬NF (~a, b) and calls{·,÷}(U,~a, b) < n a homomorphism π : U →
F which does not respect NF (~a, b); and since eqdiag(U) may contain all
true non-equalities u 6= v for u, v ∈ U , we must make sure that π is an
embedding. The construction is by induction on n, but we need a very
strong “induction loading device” for it to go through. The appropriate
lemma is an elaboration of the construction in Winograd [1967], [1970],
which extends and generalizes Pan’s results.

We will need a simple, preliminary fact.

Lemma 9A.2. If F is infinite, φ1(~u), φ2(~u), φ(~u) ∈ F (~u) with φ1(~u) 6= 0
or φ2(~u) 6= 0 and U is any finite subset of F (v, ~u), then there is some f ∈ F
such that the (partial field homomorphism ρf induced by the) substitution

v := ρf (v) = f
(
φ1(~u) + φ2(~u)v

)
+ φ(~u)

is totally defined and injective on U .

Proof. It is convenient to prove first a

Sublemma 9A.2.1. If U ′ ⊂ F [v, ~u] is any finite set of polynomials, then
there is some f ∈ F such that(

χ(v, ~u) ∈ U ′ and χ(v, ~u) 6= 0
)

=⇒χ(ρf (v), ~u) 6= 0.

Proof of the Sublemma. Write each χ(v, ~u) ∈ U ′ as a polynomial in v,

χ(v, ~u) = χ0(~u) + χ1(~u)v + · · ·+ χl(~u)vl,

let F (~u) be the algebraic closure of F (~u) and consider the complete factor-
ization

χ(v, ~u) = χl(~u)(v − α1) · · · (v − αl)

of χ(v, ~u) in F (~u)[v]. Now

χ(ρf (v), ~u) = χl(~u)(fφ1(~u) + fφ2(~u)v + φ(~u)− α1)

· · · (fφ1(~u) + fφ2(~u)v + φ(~u)− αl)
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148 9. Polynomial evaluation and 0-testing

with each αi ∈ F (~u). A factor in this product vanishes only if

fφ1(~u) + φ(~u)− αi = 0 and fφ2(~u) = 0,

and if we choose any f 6= 0, this can only happen if φ2(~u) = 0. But then
the hypothesis implies that φ1(~u) 6= 0 and so fφ1(~u) + φ(~u) − αi = 0 can
happen for at most one value of f . The conclusion is then satisfied by any
(non-zero) f which is different from the (at most) one value determined
from each αi, for each of the χ(v, ~u) ∈ U ′. a (Sublemma)

We now fix a specific representation of the form

χ(~u) =
χn(~u)
χd(~u)

(χd(~u) 6= 0)(173)

for each χ(v, ~u) ∈ U , and we apply this Sublemma to the finite set U ′

comprising all polynomials in one of the forms

(i) χd(v, ~u), (ii) χn(v, ~u)χ′d(v, ~u)− χ′n(v, ~u)χd(v, ~u)

with χ(v, ~u), χ′(v, ~u) ∈ U . Clearly ρf (χ(v, ~u)) is defined for every χ(v, ~u) ∈
U because we put in U ′ the polys in (i), and so it is enough to check that
it is injective on U ; and this is true because

ρf

(χn(v, ~u)
χd(v, ~u)

)
= ρf

(χ′n(v, ~u)
χ′d(v, ~u)

)

=⇒ ρf

(
χn(v, ~u)χ′d(v, ~u)− χd(v, ~u)χ′n(v, ~u)

)
= 0

=⇒χn(v, ~u)χ′d(v, ~u)− χd(v, ~u)χ′n(v, ~u) = 0

=⇒ χn(v, ~u)
χd(v, ~u)

=
χ′n(v, ~u)
χ′d(v, ~u)

where the inclusion in U ′ of all the polys in (ii) and the the fact that ρf is
injective (guaranteed by the Sublemma) are used in the second implication.

a
We write {·,÷} for multiplications and divisions, and we define the trivial

{·,÷} (relative to z, ~x, y) by22

a · b = c is trivial if a ∈ F or b ∈ F or a, b ∈ F (y);
a÷ b = c is trivial if b ∈ F or a, b ∈ F (y).

Lemma 9A.3. Suppose F is an infinite field, n ≥ 1, z, ~x = x1, . . . , xn,
y are distinct indeterminates,

U ⊆p F(z, ~x, y) = (F (z, x1, . . . , xn, y), 0, 1, +,−, ·,÷, =)

is finite, and ψ1, . . . , ψn ∈ F (y) so that the following conditions hold:
(1) U is generated by (F ∩ U) ∪ {z, ~x, y}.

22We are following closely the terminology and notation of Winograd [1967].
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9A. Horner’s rule is {·,÷}-optimal for nullity 149

(2) For any f1, . . . , fn ∈ F , if f1ψ1 + · · · + fnψn ∈ F , then f1 = · · · =
fn = 0.

(3) There are no more than n− 1 non-trivial {·,÷} in eqdiag(U).

Then there is a partial field homomorphism

π : F (z, ~x, y) ⇀ F (~x, y)

which is the identity on F (y) and satisfies

π(z) = π(x1)ψ1 + · · ·+ π(xn)ψn.(174)

Moreover, π is total and injective on U , so that its restriction to U defines
an embedding π ¹ U : U ½ F(~x, y).

Proof of Theorem 9A.1 from Lemma 9A.3. The hypothesis implies
that

a0 + a1b + · · ·+ anbn 6= 0,

and so by the Homomorphism Test 4F.2 it is enough to show that for every
finite U ⊆p F which is generated by a0,~a = a1, . . . , an, b, if |eqdiag(U ¹
{·,÷})| < n, then there is an embedding π : U ½ F such that

π(a0) + π(a1)π(b) + · · ·+ π(an)π(b)n = 0.(175)

We may assume that 0−a0 = −a0, 0− (−a0) = a0 ∈ eqdiag(U), by adding
them if necessary, so that U is also generated by −a0,~a, b. Moreover,
U ⊆p Q(−a0,~a, b) and Q(−a0,~a, b) is isomorphic with Q(z, ~x, y) by the
“relabelling” isomorphism ρ generated by −a0 7→ z, ai 7→ xi, b 7→ y. The
required π is now constructed by applying Lemma 9A.3 to U′ = ρ[U] and
ψ1 = y, ψ2 = y2, . . . , ψn = yn, carrying the embedding it gives back to an
embedding π : U ½ F(~a, b) and noticing that π(b) = b. a

Proof of Lemma 9A.3 is by induction on n, but it is useful to consider
first a case which covers the basis and also arises in the induction step.

Preliminary case: there are no non-trivial {·,÷} in U. It follows that
every X ∈ U is uniquely of the form

X = f0z +
∑

1≤i≤n fixi + φ(y)(176)

with fi ∈ F, φ(y) ∈ F (y). If π is the partial field homomorphism induced
by the substitution

z 7→ ∑
1≤i≤n xiψi,

then π is the identity on F (~x, y) and it is total on U , because the only {·,÷}
in U are with both arguments in F (y) or one of them in F . So it is enough
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150 9. Polynomial evaluation and 0-testing

to check that it is injective on the set of all elements of the form (176) and
that it satisfies (174). To check injectivity, suppose that

π(X) = f0

( ∑
1≤i≤n xiψi

)
+

∑
1≤i≤n fixi + φ(y)

= f ′0
( ∑

1≤i≤n xiψi

)
+

∑
1≤i≤n f ′ixi + φ′(y) = π(X ′)

so that

(f0 − f ′0)
∑

1≤i≤n xiψi +
∑

1≤i≤n(fi − f ′i)xi + (φ(y)− φ′(y))

=
∑

1≤i≤n

(
(f0 − f ′0)ψi + (fi − f ′i)

)
xi + (φ(y)− φ′(y)) = 0.

This yields φ(y) = φ′(y) and for each i, (f0 − f ′0)ψi + (fi − f ′i) = 0; and
since no ψi is a constant by (2) in the hypothesis, this implies that f0 = f ′0,
and finally that fi − f ′i for each i.

The identity (174) is trivial because π(z) = x1ψ1 + · · · + xnψn and
π(xi) = xi.

Basis, n = 1. This is covered by the preliminary case.
Induction Step, n > 1. If the preliminary case does not apply, then there

is at least one non-trivial {·,÷} in eqdiag(U); so there is a least m > 0
such that some χ ∈ Gm(U, z, ~x, y) is a non-trivial product or quotient of
elements of Gm−1(U, z, ~x, y) in which all {·,÷} are trivial; and so there is
at least one non-trivial {·,÷} in eqdiag(U) of the form

(f ′0z +
∑

1≤i≤n f ′ixi + φ′(y)) ◦ (f0z +
∑

1≤i≤n fixi + φ(y)) = χ(177)

where ◦ is · or ÷. We consider cases of how this can arise.
Case 1: There is some i ≥ 1 such that fi 6= 0, and the first factor in (177)

is not in F . We assume without loss of generality that f1 6= 0, and then
dividing the equation by f1 we put the second factor in the form

f0z + x1 +
∑

2≤i≤n fixi + φ(y).(178)

Appealing to Lemma 9A.2 (with v = x1, ~u = z, x2, . . . , xn, y, φ1 = 1, φ2 =
0), choose some f ∈ F such that the substitution

ρ1(x1) := f − f0z −
∑

2≤i≤n fixi − φ(y)

induces an isomorphism

ρ1 : U½→ ρ1[U] = U1 ⊆p F(z, x2, . . . , xn, y).

Notice that ρ1 does not introduce any new non-trivial multiplication or
division (because it leaves F (y) fixed), and it turns the chosen operation
in U into a trivial one since

ρ1(f0z + x1 +
∑

2≤i≤n fixi + φ(y)) = f.
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9A. Horner’s rule is {·,÷}-optimal for nullity 151

So there are fewer than n− 1 {·,÷} in eqdiag(U1), and U1 is generated by
z, x2, . . . , xn, y and {f} ∪ (F ∩ U).

By Lemma 9A.2 again (with v = z, ~u = x2, . . . , xn, y, φ1 = 0, φ2 =
1

1+f0ψ1
), fix some g ∈ F such that the substitution

ρ2(z) :=
1

1 + f0ψ1

(
(f − φ)ψ1 + gz

)

induces an isomorphism

ρ2 : U1 ½→ ρ2[U1] = U2 ⊆p F(z, x2, . . . , xn, y).

This too does not introduce any non-trivial multiplications, and U2 is gen-
erated by z, x2, . . . , xn, y and F ∩U2. The required partial field homomor-
phism is the composition

π = σ ◦ ρ2 ◦ ρ1 : F (z, ~x, y) ⇀ F (~x, y)

of the three substitutions, where σ is guaranteed by the induction hypoth-
esis so that σ ¹ U2 : U2 ½ F(x2, . . . , xn, y) and

gσ(z) =
∑

2≤i≤n(ψi − fiψ1)σ(xi).

This exists because the functions
1
g
(ψi − fiψ1) (i = 2, . . . , n)

satisfy (2) in the theorem.
To see that this embedding has the required property, notice first that

π(z) = σ(ρ2(z))

because ρ1(z) = z. Using the corresponding properties of ρ2 and σ, we get:

π(x1)ψ1 +
∑

2≤i≤n π(xi)ψi

= σ(ρ2(f − φ(y)−∑
2≤i≤n fixi − f0z))ψ1 +

∑
2≤i≤n σ(xi)ψi

= σ
(
f − φ(y)−∑

2≤i≤n fixi − f0ρ2(z)
)
ψ1 +

∑
2≤i≤n σ(xi)ψi

= (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) +
∑

2≤i≤n(ψi − fiψ1)σ(xi)

= (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) + gσ(z).

So what we need to check is the equation

σ(ρ2(z)) = (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) + gσ(z)

equivalently (1 + f0ψ1)σ(ρ2(z)) = (f − φ(y))ψ1 + gσ(z)

equivalently (1 + f0ψ1)ρ2(z) = (f − φ(y))ψ1 + gz,

and the last is immediate from the definition of ρ2(z). (Note that we use
repeatedly the fact that σ is injective on U2 and the identity on F (y).)
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152 9. Polynomial evaluation and 0-testing

Case 2: f1 = · · · = fn = 0, f0 6= 0, and the first factor in (177) is not
in F . We may assume without loss of generality that f0 = 1, and so the
second factor has the form

z + φ(y).

By Lemma 9A.2, choose some f ∈ F such that the substitution

ρ1(z) := f − φ(y)

induces an isomorphism

ρ1 : U½→ ρ1[U] = U1 ⊆p F(~x, y).

There is one fewer non-trivial operation in eqdiag(U1), since ρ1 does not
introduce any new ones and ρ1(z + φ(y)) = f . Next, choose g ∈ F by
Lemma 9A.2 again, such that the substitution

ρ2(x1) :=
1
ψ1

(
f − φ(y)− gz

)

induces an isomorphism

ρ2 : U1 ½→ ρ2[U1] = U2 ⊆p F(z, x2, . . . , xn, y).

There are fewer than n − 1 non-trivial {·,÷} in U2, and so the induction
hypothesis gives us an embedding

σ : U2 ½ F(z, x2, . . . , xn, y)

such that

gσ(z) =
∑

2≤i≤n σ(xi)ψi.

The required embedding is the composition π = σ ◦ ρ2 ◦ ρ1. To check this,
note first that

π(z) = σ(ρ2(ρ1(z))) = σ(ρ2(f − φ(y))) = f − φ(y).

On the other hand,

π(x1)ψ1 +
∑

2≤i≤n π(xi)ψi = σ(ρ2(x1))ψ1 +
∑

2≤i≤n σ(xi)ψi

= σ
( 1

ψ1

(
f − φ(y)− gz

)
ψ1

)
+

∑
2≤i≤n σ(xi)ψi

= f − φ(y)− gσ(z) + gσ(z) = π(z).

Cases 3 and 4: Cases 1 and 2 do not apply, some f ′i 6= 0, and the second
factor in (177) is not in F—which means that it is in F (y) \F . These are
handled exactly like Cases 1 and 2.

This completes the proof, because if none of these cases apply, then both
factors of (177) are in F (y), and so the operation is trivial. a
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9B. Counting identity tests along with {·,÷}

We outline here a proof of the following theorem, which is also implicit
in Bürgisser and Lickteig [1992] for algebraic decision trees.

Theorem 9B.1. If F is a field of characteristic 0, n ≥ 1, and a0, . . . , an, b ∈
F are algebraically independent (over the prime field Q), then

calls{·,÷,=}(F, NF , a0, . . . , an, b) = n + 1.(179)

In particular, (179) holds for the reals R and the complexes C with alge-
braically independent a0, a1, . . . , an, b.

This will follow from the following lemma, exactly as in the preceding
section.

We define trivial =-tests exactly as for the multiplication and division
operations: i.e., an entry (=, a, b, w) ∈ eqdiag(U) with U ⊆p F(z, ~x, y) is
trivial if a ∈ F , or b ∈ F , or a, b ∈ F (y).

Lemma 9B.2. Suppose F is an infinite field, n ≥ 1, z, ~x = x1, . . . , xn,
y are distinct indeterminates,

U ⊆p F(z, ~x, y) = (F (z, x1, . . . , xn, y), 0, 1, +,−, ·,÷, =)

is finite, and ψ1, . . . , ψn ∈ F (y) so that the following conditions hold:
(1) U is generated by (F ∩ U) ∪ {z, ~x, y}.
(2) For any f1, . . . , fn ∈ F , if f1ψ1 + · · · + fnψn ∈ F , then f1 = · · · =

fn = 0.
(3) There are no more than n non-trivial {·,÷, =} entries in eqdiag(U).
Then there is a partial field homomorphism π : F (z, ~x, y) ⇀ F (~x, y)

which is the identity on F (y) and satisfies

π(z) = π(x1)ψ1 + · · ·+ π(xn)ψn.(180)

Moreover, π is total on U and so π ¹ U : U → F(~x, y) is a homomorphism
which satisfies (180).

Outline of the proof. If U has at least one non-trivial = - test, then
it has no more than n − 1 non-trivial {·,÷} and the lemma follows from
Lemma 9A.3, since the π produced by it is injective on U (an embedding)
and so it respects all equalities and inequalities among members of U ,
including those in eqdiag(U). Similarly, if U has fewer than n non-trivial
{·,÷}, no matter how many = - tests it has. This leaves only one case to
consider:

(∗) There are exactly n non-trivial {·,÷} and no non-trivial = - tests in
eqdiag(U).
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154 9. Polynomial evaluation and 0-testing

This would be the case, for example, it eqdiag(U) comprises all the calls
made to compute the polynomial by the Horner Rule without any = - test
to verify that the value is or is not 0.

We define the (non-trivial) U-rank of an element w ∈ U by the recursion
below, where for any X ⊆ U ,

C(X) = the closure of X under trivial operations in U.

This can be defined precisely as ∪iCi(X) where

C0(X) = X, Ci+i(X) = Ci(X) ∪ {φ(~u) : ~u ∈ Ci(X) & φ is trivial},
meaning +,−, multiplication/division by an element of F ∩ U or multipli-
cation/division of elements in F (y). Now

R0 = C(F ∩ U),

Rm+1 = C({uv,
u

v
: this is a non-trivial {·,÷} with u, v ∈ Rm}

rank(w) = min{m : w ∈ Rm}.
Let w be an element with maximum rank(w) in U. We may assume that

w = uv or w =
u

v
in eqdiag(U),

with a non-trivial {·,÷}, since these are the only operations which increase
rank. We assume division wlog.

Case 1. There is a non-trivial (÷, a, w, b) ∈ eqdiag(U), or similarly with
multiplication.

Choose one such entry and let U1 have universe U and

eqdiag(U1) = eqdiag(U) \ {(÷, a, w, b)}.
Keep in mind that a may involve w also, e.g., it might be a rational func-
tion of elements of smaller or equal rank to rank(w). Also, w 6= 0, since
rank(0) = 0.

Since rank(b) ≤ rank(w), there must be some entry in eqdiag(U) which
introduces b using elements of smaller ranks; so U1 is generated by z, ~x, y.
It has n − 1 non-trivial {·,÷}, and so by Lemma 9A.3, there is a partial
field homomorphism π : F (z, ~x, y) ⇀ F (~x) which is total and injective on
U = U1 and satisfies the relevant equation. In particular, this implies that
π(w) 6= 0, and so

π(b) = π
( a

w

)
=

π(a)
π(w)

,

since π is a partial field homomorphism whose domain is a subfield of
F (z, ~x, y) that already contains a and w, and so it contains a

w since π(w) 6=
0. So π ¹ U is total on U1, as required.

Recursion and complexity, Version 1.2, June 18, 2012, 10:27. 154

Preliminary draft, incomplete and full or errors.



9B. Counting identity tests along with {·,÷} 155

Case 2 : w does not occur in an argument for a non-trivial operation, so
all we know about it is from entries like

w =
u

v
,w = u1v1, . . . with u, v of smaller rank.

We now define U1 by removing from eqdiag(U) all of these from U as well
as all the trivial entries in which w occurs as an argument, and taking as
universe those elements of U which occur in one of the remaining entries. In
particular, w /∈ U1. Now U1 is a structure with one less non-trivial {·,÷},
and we can apply Lemma 9A.3 again to get a partial field homomorphism
which is injective on it. Notice that v 6= 0, since it occurs as a denominator
in an entry of eqdiag(U), and so π(v) 6= 0. So π(w) is defined by any of
the defining equations for w, e.g.,

π(w) =
π(u)
π(v)

.

By the same token, π is also defined on all the elements of U which are
introduced by trivial operations that involve w, even if π(w) = 0: because
w does not occur as a denominator in any one of these. Finally, π is total
on U and still satisfies the relevant equation, which completes the proof.a

Note that Case 2 arises if U is constructed by using Horner’s Rule to
compute

a0 + a1x + · · ·+ anxn = a0 + w where w = xv = x(a1 + a2x + · · · anxn−1)

with w the element of largest rank introduced in U by a non-trivial multi-
plication. Now U1 = U \ {w, a0 + w} and

eqdiag(U1) = eqdiag(U) \ {xv = w, v = a0 + w}
The partial field homomorphism defined on U1 and so on U satisfies

π(a0) + π(a1)x + · · ·+ π(an)xn = 0, π(v) = π(a1 + a2x + · · ·+ anxn−1)

and since it is a homomorphism with x, a0, . . . , an in its domain, all the
terms aix

i are also in its domain and so it satisfies

π(v) = π(a1) + π(a2)x + · · ·+ π(an)xn−1.

Hence

π(w) = π(xv) = π(x)π(v) = π(a1)x + π(a2)x2 + · · ·+ π(an)xn

π(v) = π(a0 + w) = π(a0) + π(w) = 0.

So this is a case where π is not an embedding, because v 6= 0 but π(v) = 0.
The point is that although U can compute v, it does not check that it is
6= 0, and so the restriction of π to U is a structure homomorphism.
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156 9. Polynomial evaluation and 0-testing

9C. Horner’s rule is {+,−}-optimal for nullity in C

Notice first that we can test whether a0 + a1w = 0 by executing three
multiplications, equality tests and no {+,−} (additions/subtractions): first
check if any of a0, a1, w is 0 and give the correct answer for these cases,
and if none applies, set

f(a0, a1, w) = if a2
0 6= (a1w)2 then ff else if a0 = a1w then ff else tt.

The method works for any field with characteristic 6= 2 and combines with
Horner’s rule to decide whether a0 + a1x + · · · + anxn = 0 using (n − 1)
additions (and (n + 2) multiplications) along with equality tests: apply
Horner’s rule to compute w = a1 + · · ·+anxn−1 using n−1 multiplications
and additions and then use the subroutine above with this w. This gives

calls{+,−}(F, NF , a0, . . . , an, b) ≤ n− 1 (char(F ) ≥ 2, n ≥ 1)

with F defined by (170), and the correct lower bound for the number of
{+,−} required to test nullity with unlimited calls to ·,÷, = is n− 1.23

Theorem 9C.1. If n ≥ 2, and a0, a1, . . . , an, b ∈ C are algebraically
independent (over Q) complex numbers, then

calls{+,−}(C, NC, a0, a1, . . . , an, b) = n− 1.(181)

This will follow as in 9A, from a much stronger lemma which has the
appropriate induction hypotheses.

For any v1, . . . , vn ∈ C \ {0}, let24

Roots(v1, . . . , vn) = {vb
i | i = 1, . . . , n, b ∈ Q}.

Let K be the field of (complex) algebraic numbers, and for any two tuples
of complex numbers ~u = (u1, . . . , uk), ~v = (v1, . . . , vn), let

K∗(~u;~v) = K({u1, . . . , uk} ∪ Roots(v1, . . . , vn))
= the rational functions of algebraic numbers,

u1, . . . , uk and rational powers of v1, . . . , vn.

23I do not know if Horner rule’s 2n is the correct lower bound for the combined
number of operations with unlimited equality tests in the generic case. The current
results give a possibly too low total lower bound of 2n− 1.

24Pedantically,

Roots(v1, . . . , vn) = {wk : for some m and some i = 1, . . . , n, vm
i = w}.

We will be quite sloppy (and on occasion formally wrong) in pretending that the power
vb is uniquely determined for each v 6= 0, b ∈ Q and in such a way that for any ho-
momorphism π : K → C of a subfield K ⊆ C, π(wb) = π(w)b. We will also omit
explicitly invoking the (standard) “homomorphism extension” theorems that we need.
These morally dubious practices help to understand the ideas, and it is not difficult to
rephrase the arguments so that they are formally correct.
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9C. Horner’s rule is {+,−}-optimal for nullity in C 157

By the basic notational convention (170),

K∗(~u;~v) = (K∗(~u;~v), 0, 1, +,−, ·,÷,=),

the expansion of the field structure of K∗(~u;~v) by the equality relation.
Suppose U ⊆p K∗(y; z, x1, . . . , xn). An addition or subtraction u±v = w

in eqdiag(U) is trivial if u, v ∈ K(y).

Lemma 9C.2. Suppose n ≥ 2, g ∈ K, g 6= 0, z, x1, . . . , xn, y are alge-
braically independent complex numbers, and U is a finite substructure of
K∗(y; z, x1, . . . , xn) generated by

(U ∩K) ∪ {y} ∪ (U ∩ Roots(z, x1, . . . , xn))

which has < (n− 1) non-trivial additions and subtractions.
Then there is a partial field homomorphism

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; x1, . . . , xn)

such that:
(a) π is the identity on K(y);
(b) π is total and injective on U , and so it induces an embedding

π ¹ U : U ½ K∗(y; x1, . . . , xn) ⊆p C;

and
(c) π(z) + g

(
π(x1)y1 + · · ·+ π(xn)yn

)
= 0.

Theorem 9C.1 is an immediate corollary of this lemma (with g = 1) and
the Homomorphism Test 4F.2.

Proof of Lemma 9C.2 is by induction on n ≥ 2, starting with a pre-
liminary case which will also cover the basis of the induction.

Sublemma 9C.2.1 (Preliminary case). There are no non-trivial {+,−} in
U.

Proof. It follows that every member of U is uniquely of the form

M = xb1
1 · · ·xbn

n zcp(y)(182)

where b1, . . . , bn, c ∈ Q and p(y) ∈ K(y) ∩ U . Define

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; x1, . . . , xn)

by the substitution

z 7→ −g
(
x1y

1 + · · ·+ xnyn
)
,

It is enough to show that this is total and injective on the set of all numbers
of the form (182), so that in particular it is total and injective on U. We
skip the argument that π(M) 6= 0 for every M 6= 0 of the form (182), as
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158 9. Polynomial evaluation and 0-testing

it is similar to (and much simpler) than the argument for injectivity which
follows. It implies that π is total on U .

Suppose then that

xb1
1 · · ·xbn

n π(z)cp(y) = x
b′1
1 · · ·xb′n

n π(z)c′p′(y)

where p(y), p′(y) ∈ K(y). By clearing the denominators of the rational
functions p(y), p′(y) and the negative powers by cross-multiplying and then
the denominators in the exponents of x1, . . . , xn, z by raising both sides to
suitable integer powers, we may assume that all exponents in this equation
are in N, bib

′
i = 0 for i = 1, . . . , n, cc′ = 0, and p(y), p′(y) are polynomials

in K[y]. The hypothesis now takes the form

xb1
1 · · ·xbn

n

(
− g(x1y

1 + · · ·+ xnyn)
)c

p(y)

= x
b′1
1 · · ·xb′n

n

(
− g(x1y

1 + · · ·+ xnyn)
)c′

p′(y).

If we expand these two polynomials in powers of x1, the leading terms must
be equal so we have

(−g)cxb2
2 · · ·xbn

n ycp(y)xb1+c
1 = (−g)cx

b′2
2 · · ·xb′n

n yc′p′(y)xb′1+c′

1

so that xb2
2 · · ·xbn

n = x
b′2
2 · · ·xbn

n , hence bi = b′i for i = 2, . . . , n; and since
bib

′
i = 0, all these numbers are 0. If we repeat this argument25 using xn

rather than x1, we get that b1 = b′1 = 0 also, so that the original assumption
takes the simpler form

(
− g(x1y

1 + · · ·+ xnyn)
)c

p(y) =
(
− g(x1y

1 + · · ·+ xnyn)
)c′

p′(y);

and if we expand again in powers of x1 and equate the leading terms we
get

(−g)cycp(y)xc
1 = (−g)c′yc′p′(y)xc′

1 ,

which yields c = c′ and finally p(y) = p′(y), completing the argument.
a (Sublemma 9C.2.1)

The basis of the induction n = 2 is covered by the preliminary case.
In the induction step with n > 2, if the preliminary case does not apply,

then there must exist a “least complex” non-trivial addition or subtraction
in U of the form

w = xb1
1 · · ·xbn

n zcp(y)± x
b′1
1 · · ·xb′n

n zc′p′(y)(183)

where p(y), p′(y) ∈ K(y) and the component parts

u = xb1
1 · · ·xbn

n zcp(y), v = x
b′1
1 · · ·xb′n

n zc′p′(y)

25This is the part of the proof where n ≥ 2 is used.
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are also in U . We may, in fact, assume that this is an addition, by replacing
p′(y) by −p′(y) if necessary.

Sublemma 9C.2.2. We may assume that in (183), b′i = 0 for i = 1, . . . , n,
c′ = 0, and p(y), p′(y) are polynomials, i.e., (183) is of the form

w = xb1
1 xb2

2 · · ·xbn
n zcp(y) + p′(y)(184)

with p(y), p′(y) ∈ K[y, z].

Proof . Let

W = x
−b′1
1 x

−b′2
2 · · ·x−b′n

n z−c′d(p(y))d(p′(y))

where d(p(y)), d(p′(y)) are the denominators of p(y), p′(y) and replace (183)
in eqdiag(U) by the operations

u1 = Wu, v1 = Wv, w1 = u1 + v1, w =
w1

W

along with all the multiplications, divisions and trivial additions and sub-
tractions required to compute W . If U′ is the resulting structure, then
clearly U ⊆ U ′ and the fixed, non-trivial addition in U has been replaced
by one of the form (184). It is not quite true that U ⊆p U′, because the
equation w = u + v is in eqdiag(U) but not in eqdiag(U′). On the other
hand, if

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; x1, . . . , xn)

is a partial field homomorphism which is total and injective on U ′, then
π ¹ U : U ½ K∗(y; x1, . . . , xn) is an embedding, because it preserves
all the other entries in eqdiag(U) and π(u + v) = π(u1)+π(v1)

π(W ) = π(w1)
π(W ) =

π(w). a (Sublemma 9C.2.2)

Now, either c 6= 0 or some bi 6= 0 in (184), otherwise the chosen addition is
trivial. We consider cases on which if these two possibilities occur, starting
with the second one.

Case 1, some bi 6= 0 in (184).
We assume to simplify notation that b1 6= 0, and for each non-zero f ∈ Q,

we set

ρf : K∗(y; z, x1, . . . , xn, z) ⇀ K∗(y; z, x2, . . . , xn, z)

be the partial field homomorphism induced by the substitution

ρf (x1) :=
( f

xb2
2 · · ·xbn

n zc

) 1
b1

.(185)

Sublemma 9C.2.3. For all but finitely many f ∈ Q+, ρf is total and
injective on U .
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160 9. Polynomial evaluation and 0-testing

This is proved very much like Lemma 9A.2 and we will not repeat the
argument. We fix one such f and we let

ρ1 = ρf .

Since the restriction of ρ1 to U is injective, ρ1 defines an isomorphism

ρ1 ¹ U : U½→ ρ1[U] = U′

of U with its image U1, which is generated by

(U ∩K) ∪ {f
1

b1 } ∪ {y} ∪ (U ′ ∩ Roots(z, x2, . . . , xn)).

Also, ρ1 takes trivial {+,−} to trivial ones, because it is the identity on
K(y), and it transforms the non-trivial addition in (184) into a trivial one
since

ρ1(xb1
1 xb2

2 · · ·xbn
n zcp(y)) = fp(y).

So there are fewer than n− 2 non-trivial {+,−} in U1. Let

X = ρ1(x1) = f
1

b1 x
− b2

b1
2 · · ·x−

bn
b1

n z−
c

b1

and for any h ∈ Q, h > 0, define ρ2 : K∗(y; z, x2, . . . , xn) ⇀ K∗(y; z, x2, . . . , xn)
by the substitution

ρ2(z) := g(
y

h
z −Xy).

Sublemma 9C.2.4. For all but finitely many h ∈ Q+, the partial field
homomorphism ρ2 is total and injective on U1.

This, too, is easily checked as before. We fix one such h and note that
the ρ2 defined by it takes trivial operations to trivial ones, since it is the
identity on K(y), and so the image structure U2 = ρ[U1] has fewer than
n − 2 {+,−}. We invoke the induction hypothesis on U2 to get a partial
field homomorphism

σ : K∗(y; z, x2, . . . , xn) ⇀ K∗(y; x2, . . . , xn)

which fixes K and y, is total and injective on U2 and satisfies

σ(z) + h
(
σ(x2)y + · · ·+ σ(xn)yn−1

)
= 0.

We claim that the required partial field homomorphism is the composition

π = σ ◦ ρ2 ◦ ρ1 : K∗(y; z, x1, x2, . . . , xn) ⇀ K∗(y; x2, . . . , xn).

This is certainly total and injective on U , as the composition of three
injections. To check that it has the required property, we compute, using
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9C. Horner’s rule is {+,−}-optimal for nullity in C 161

the properties of the three embeddings involved—i.e., that ρ1 fixes all the
generators of K∗(y; z, x1, x2, . . . , xn) except for x1 and ρ2 affects only z:

g
(
π(x1)y + π(x2)y2+ · · ·π(xn)yn

)

= g
(
σ(ρ2(ρ1(x1))y + σ(x2)y2 + · · ·+ σ(xn)yn

)

= g
(
σ(X)y + y

(
σ(x2)y + · · ·σ(xn)yn−1

))

= g
(
σ(X)y − y

h
σ(z)

)

= σ
(
g
(
Xy − y

h
z
))

= σ(−ρ2(z)) (by the definition of ρ2)

= −σ(ρ2(ρ1(z))) = −π(z).

This completes the argument in Case 1.
Case 2, b1 = · · · = bn = 0 in (184), which now takes the form

w = zcp(y) + p′(y) with c =
m

k
6= 0.(186)

We will define the required partial field homomorphism π in three steps,
as in Case 1, but they are considerably simpler in this case.

Sublemma 9C.2.5. For all but finitely many f ∈ Q, the partial field
homomorphism induced by the substitution

ρ1(z) = f
k
m

is total and injective on U .

This follows from Lemma 9A.2, and we fix one such f . The image struct-
ure U1 = ρ1[U] has fewer than n− 2 non-trivial {+,−}, since ρ1(zcp(y) =
fp(y). We note that U1 is generated by {y}∪Roots(x1, . . . , xn) and some

constants in K, including f
k
m .

Sublemma 9C.2.6. For all but finitely many h ∈ Q, the partial homo-
morphism

ρ2(x1) =
x1

h
− f

k
m

gy

is total and injective on U2.

This, too follows from Lemma 9A.2. We fix one such h, we set U2 =
ρ2[U1], and we note that U2 has fewer than n−2 non-trivial {+,−} because
ρ2 preserves triviality. It is generated by the algebraically independent
y, x1, . . . , xn (and their roots) as was U1, and some constants, including
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162 9. Polynomial evaluation and 0-testing

now h. We now apply the induction hypothesis on this U2, thinking of x1

as the z in the statement of the Lemma:

Sublemma 9C.2.7. There is a partial field homomorphism

σ : K∗(y; x1, . . . , xn) ⇀ K∗(y; x2, . . . , xn)

which is the identity on K(y), total and injective on U2 and satisfies

σ(x1) + h
(
σ(x2)y + · · ·+ σ(xn)yn−1

)
= 0.

The composition π = σ ◦ ρ2 ◦ ρ1 is total and injective on U. To see
that it satisfies the required equation, we compute as in Case 1, using the
properties of the three factors of π:

g
(
π(x1)y + π(x2)y2+ · · ·+ π(xn)yn

)

= g
(
σ(ρ2(x1))y + y(σ(x2)y + · · ·+ σ(xn)yn−1

)

= g
(
σ
(x1

h
− f

k
m

gy

)
y + y(− 1

h
σ(x1)

)

= gσ(x1)
y

h
− g

f
k
m

g
− g

1
h

σ(x1)y

= −f
k
m = −π(z).

This completes the proof in Case 2 of the induction step and so the proof
of the lemma. a

9D. Counting identity tests along with {+,−}

If we also count calls to the equality relation, then Horner’s rule clearly
requires n additions and one equality test to decide the nullity relation, for
a total of n+1. This may well be a lower bound for calls{+,−,=}(R, NR,~a, b)
on an infinite number of tuples ~a, b, but we do not know how to prove this
now. In any case, it fails for algebraically independent inputs:

Lemma 9D.1. If a0, a1, b ∈ R are algebraically independent, U ⊆p C and

eqdiag(U) = {u = a1b, w = a0 + u, v =
b

w
},

then U °R
c a0 + a1b 6= 0, and so

calls{+,−,=}(C, NC, a1, a2, b) ≤ 1.
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9D. Counting identity tests along with {+,−} 163

Proof. Every homomorphism π : U → C must be defined on v and
satisfy

π(v) =
π(b)
π(w)

,

so that π(w) = π(a0) + π(a1)π(b) 6= 0. a
The trick here is to use division (which we are not counting) in place of

the natural identity test, so one might think that allowing only multiplica-
tions would enforce at least two +,− or = - tests to certify a0 + a1b 6= 0,
but this does not work either: if the single inequality a2

0 6= (a1b)2 is in
eqdiag(U), then, easily, U ° a0 +a1b 6= 0. We prove the best result for the
generic case and leave open the possibility that Horner’s rule is optimal on
infinitely many non-generic inputs.

Theorem 9D.2.26 If n ∈ N and a0, a1, . . . , an, b ∈ C are algebraically
independent, then

calls{+,−,=}(C, NC, a0, a1, . . . , an, b) = n.(187)

A partial field homomorphism

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; z, x1, . . . , xn)

is proper on a set U if its kernel does not intersect U \ {0}, i.e.,

v ∈ U & v 6= 0 =⇒π(v) 6= 0.

This insures that if u÷ v = w ∈ eqdiag(U), then π(w) is defined.
Suppose U ⊆p K∗(y; z, x1, . . . , xn). An addition u+ v, subtraction u− v

or inequality27 u 6= v in eqdiag(U) is trivial if u, v ∈ K(y).
The theorem follows as before from the following lemma—and the general

version of Lemma 9D.1 for the upper bound.

Lemma 9D.3. Suppose n ≥ 1, g ∈ K, g 6= 0, z, x1, . . . , xn, y are alge-
braically independent complex numbers, and U is a finite substructure of
K∗(y; z, x1, . . . , xn) generated by

(U ∩K) ∪ {y} ∪ (U ∩ Roots(z, x1, . . . , xn))

which has < n non-trivial additions, subtractions and equality tests.
Then there is a partial field homomorphism

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; x1, . . . , xn)

such that:

26A differently formulated but equivalent result is proved for algebraic decision trees
in Bürgisser, Lickteig, and Shub [1992].

27There is no need to include entries of the form (=, u, v, tt) in eqdiag(U), because
every homomorphism on U automatically respects them. So the number of significant
= - tests is the number of entries (=, u, v, ff) in eqdiag(U).
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164 9. Polynomial evaluation and 0-testing

(a) π is the identity on K(y);
(b) π is total and proper on U , and so it induces a homomorphism

π ¹ U : U → K∗(y;x1, . . . , xn);

and
(c) π(z) + g

(
π(x1)y1 + · · ·+ π(xn)yn

)
= 0.

Proof is by induction on n ≥ 1. It is almost exactly (and a bit simpler)
than the proof of Lemma 9C.2, and we will only describe the necessary
changes, mostly in the Sublemma corresponding to 9C.2.1 and in the mild
modification of the statements of the other Sublemmas, to include inequa-
tions.

Sublemma 9D.3.1 (Preliminary case). There are no non-trivial {+,−, 6=}
in U.

Proof. The members of U are uniquely of the form

M = xb1
1 · · ·xbn

n zcp(y)(188)

with b1, . . . , bn, c ∈ Q and p(y) ∈ K(y) ∩ U , and we define

π : K∗(y; z, x1, . . . , xn) ⇀ K∗(y; x1, . . . , xn)

by the substitution

z 7→ −g
(
x1y

1 + · · ·+ xnyn
)
,

exactly as before. The difference is that we need not prove that π is an
injection on elements of the form (188), which may, in fact, be false—this
was the part where we used n ≥ 2 while now n may be 1. We only need
show that π is proper, i.e., that

xb1
1 · xbn

n (−g(x1y
1 + · · ·+ xnyn))cp(y) = 0 =⇒xb1

1 · xbn
n zcp(y) = 0,

which is easy by just the first part of the argument for Sublemma 9C.2.1
which does not need the hypothesis n > 1. a (Sublemma 9D.3.1)

A counterexample to the injectivity of π when n = 1 is given by the
distinct polynomials z and x1(−y) with g = 1, for which

π(z) = −x1y = π(x1(−y)).

This Sublemma covers the basis of the induction n = 1. Suppose then
that n > 1 and there is at least one entry in eqdiag(U), and hence a
least-complex entry of the form

w = xb1
1 · · ·xbn

n zcp(y) ◦ x
b′1
1 · · ·xb′n

n zc′p′(y)(189)

where ◦ is +,− or 6=, p(y), p′(y) ∈ K(y, z) and the component parts

u = xb1
1 · · ·xbn

n zcp(y), v = x
b′1
1 · · ·xb′n

n zc′p′(y)
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9D. Counting identity tests along with {+,−} 165

are also in U .

Sublemma 9D.3.2. We may assume that in (189), b′i = 0 for i = 1, . . . , n,
c′ = 0 and p(y), p′(y) are polynomials, i.e., (189) is of the form

w = xb1
1 xb2

2 · · ·xbn
n zcp(y) ◦ p′(y)(190)

in which p(y), p′(y) ∈ K[y].

The argument here is exactly like that of 9C.2.2, with the extra case when
◦ is 6= causing no problem. In fact, the rest of the proof of Lemma 9C.2
goes through essentially word-for-word, as long as we change “injective” to
“proper”. We skip the details. a
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