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Introduction. Our main aim is to develop, explain and discuss some appli-
cations of the homomorphism method for establishing complexity lower bounds
for various complexity measures in arithmetic and algebra. The lower bounds
derived by the homomorphism method are provably robust with respect to the
choice of computation model, and plausibly absolute, i.e., they restrict all algo-
rithms which compute a given function from specified primitives.
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2 YIANNIS N. MOSCHOVAKIS

For a sample result which illustrates the kind of problems and algorithms with
which we will be concerned, suppose

A = (A,RA
1 , . . . , R

A
k , φ

A
1 , . . . , φ

A
l ) = (A,Φ)

is a first order structure on the vocabulary Φ = {R1, . . . , Rk, φ1, . . . , φl}, suppose
that P ⊆ An is an n-ary relation on A and let Φ0 ⊆ Φ. From these data, we will
define a function

callsΦ0(A, P ) : An → N ∪ {∞} = {0, 1, . . . ,∞},(1)

such that if α is any algorithm from (or relative to) Φ which decides P , then for
all ~x ∈ An,

(2) callsΦ0(A, P, ~x) ≤ the number of calls to primitives in Φ0

that α must execute to decide P (~x).

This will be a theorem if α is expressed by any one of many (deterministic or
non-deterministic) computation models for algorithms from specified primitives
Φ, so that, in particular, the complexity measure on the right is precisely defined.
It will be made plausible for all algorithms, by a brief conceptual analysis of what
it means (minimally) to compute from primitives.

Also, (2) will not be trivial if P is decided by some algorithm, i.e., we will not
just set callsΦ0(A, P, ~x) = 0 and go home: it yields some of the best lower bounds
that are known for arithmetic and algebraic problems, and in some cases it shows
that known algorithms are optimal on some infinite set of inputs, exactly or up
to a multiplicative constant.

For example, it implies the following two results, which we will make precise
in the body of the manuscript.

(A) The Stein (binary) algorithm is a competitor to the Euclidean algorithm:
it computes the greatest common divisor gcd(m,n) of two natural numbers and
so decides whether they are coprime using O(max(logm, log n)) calls to its prim-
itives, which are piecewise linear (Presburger) functions and relations on N.

Among algorithms from its primitives which decide coprimeness on N, the
Stein algorithm is optimal (up to a multiplicative constant) on an infinite set of
inputs.

(B) Let R be the field of real numbers, and for a0, . . . , an, x ∈ R, let

NR(a0, a1, . . . , an, x) ⇐⇒ a0 + a1x+ · · ·+ anx
n = 0.

This is the relation of polynomial nullity (or 0-testing) on R. The classical
Horner’s rule evaluates a0 + a1x+ · · ·+ anx

n and so decides NR in the real field
expanded by the equality relation

R = (R, 0, 1,+,−, ·,÷,=).

It makes n multiplication calls, n addition calls, and one call to =.
Among algorithms from the primitives of R which decide polynomial nul-

lity, Horner’s rule is optimal on algebraically independent inputs, for multiplica-
tions/divisions, for multiplications/divisions/equality tests and for additions/sub-
tractions. It is near-optimal for additions/subtractions/equality tests.
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ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 3

The second result can be expressed succinctly using the notation of (1): for
algebraically independent, a0, . . . , an, x,

calls{·,÷}(R, NR,~a, x) = n, calls{·,÷,=}(R, NR,~a, x) = n+ 1

calls{+,−}(R, NR,~a, x) = n− 1 (n > 1), calls{+,−,=}(R, NR,~a, x) = n.

Various versions of these results are known, though not in the generality in
which we will formulate them. (A) is proved for recursive programs (and inessen-
tial extensions of them) in van den Dries and Moschovakis [2004], which also
contains a much more interesting lower bound result for coprimeness from divi-
sion with remainder that we will also discuss. The results in (B) are equivalent
to theorems proved for algebraic decision trees in Bürgisser and Lickteig [1992]
and Bürgisser, Lickteig, and Shub [1992]. Our aim here is not to look for new re-
sults, but to develop, explain and justify the broad applicability and robustness
of the homomorphism method in at least two, quite different areas.

The motivation for this work came from analysing the derivations of lower
bounds for decision problems in van den Dries and Moschovakis [2004, 2009],
most of which are grounded on the fact that natural complexity measures on
recursive programs are preserved under (suitably defined) embeddings. One can
extract from these proofs three simple axioms, in the style of abstract model
theory, which imply those lower bound results and are plausibly true of all al-
gorithms from primitives. An attempt to apply the method to problems in
algebra revealed that when we axiomatize it in this way, the embedding method
of van den Dries and Moschovakis [2004, 2009] is very similar to the substitu-
tion method of Pan [1966] which has been widely used in algebraic complexity,
cf. Winograd [1967, 1970], the articles by Bürgisser and others cited above and
the textbook Bürgisser, Clausen, and Shokollahi [1997]. This common theory of
lower bounds for relative complexity is then our topic.

We have included an unusually long and tedious section on preliminaries, which
may be needed because it is important to formulate correctly the basic notions
of equational logic for partial functions and relations. Most readers will want to
skip through it quickly and return to it only when the use of some term seems
unfamiliar. The homomorphism method is developed in Section 2 for uniform
processes, which include algorithms, as they are usually specified by deterministic
or non-deterministic computation models; this is verified for many of the stan-
dard computation models in Section 5. Finally, in Sections 3 and 4 we discuss
some of the applications of uniform process theory, especially to coprimeness in
arithmetic and polynomial 0-testing in algebra.

§1. Preliminaries and notation. A partial function f : X ⇀ W on a
product X = X1 × · · · ×Xn to W is a (total) function f : Df → W , where the
set Df ⊆ X is the domain of convergence of f . We write as usual,

f(~x)↓ ⇐⇒ ~x ∈ Df (f converges at ~x),

f v g ⇐⇒ (∀~x)[f(~x)↓ =⇒ f(~x) = g(~x)] (f is a subfunction of g).
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4 YIANNIS N. MOSCHOVAKIS

Partial functions compose strictly, i.e.,

f(g1(~y), . . . , gn(~y)) = w

⇐⇒ (∃u1, . . . , un)[g1(~y) = u1 & · · · & gn(~y) = un & f(u1, . . . , un) = w].

A partial relation on X is a partial function R : X ⇀ {tt,ff} on X to the truth
set {tt,ff}, and we write synonymously

R(~x) ⇐⇒ R(~x) = tt, ¬R(~x) ⇐⇒ R(~x) = ff.

These definitions make sense for n = 0, by the usual convention: the nullary
product set is the singleton {( )} of “the empty tuple”, and so a nullary partial
function is any f : {( )}⇀W . It is identified with its unique value if it converges,
f = f(( )) ∈W .

(Many-sorted, partial) structures. A pair (S,Φ) is a signature if the set
of sorts S is not empty, containing in particular the boolean sort boole, and
the vocabulary Φ is a set of function symbols, each with an assigned type of the
form1

type(φ) ≡ 〈s1, . . . , sn, sort(φ)〉
with s1, . . . , sn ∈ S \ {boole} and sort(φ) ∈ S. A (partial) (S,Φ)-structure is a
pair

A = ({As}s∈S ,Φ) = ({As}s∈S , {φA}φ∈Φ),(3)

where each As is a set; Aboole is the set of truth values {tt,ff}; and for each
φ ∈ Φ,

if type(φ) = 〈s1, . . . , sn, s〉, then φA : As1 × · · · ×Asn
⇀ As.

The convergent objects φA with type(φ) = 〈s〉 are the distinguished elements of
sort s of A.

We will adopt the natural convention about the identity symbol: if =s occurs
in the vocabulary Φ, it is then interpreted in every (S,Φ)-structure A by some
subfunction =A

s v =As
of the (total) identity relation =As

: As → {tt,ff} on
As—not necessarily by =As

. We will also use the unary relations of identity
with a specific object w in some basic domain As,

eqw(x) ⇐⇒ x = w.

One-sorted, Φ-structures. Most often there is just one sort a (other than
boole) and Φ is finite: we describe these structures as usual, by identifying the
universe A = Aa, listing Φ, and letting the notation suggest

type(φ) ≡ 〈nφ, s〉 :≡ 〈a, . . . , a︸ ︷︷ ︸
nφ

, s〉

for every φ ∈ Φ. Typical are the basic structures of unary and binary arithmetic2

Nu = (N, 0, S,Pd, eq0), Nb = (N, 0,parity, iq2, em2, om2, eq0),(4)

1We use “≡” for the equality relation on syntactic objects like types, terms, etc.
2We use iq(x, y) and rem(x, y) for the integer quotient and remainder (partial) functions on

N, determined by the conditions

x = y iq(x, y) + rem(x, y), (x, y ∈ N, y 6= 0, 0 ≤ rem(x, y) < y).
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ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 5

where parity(x) = rem(x, 2), iq2(x) = iq(x, 2) and

em2(x) = 2x, om2(x) = 2x+ 1

are the operations of even and odd multiplication. More generally, for any k ≥ 2,
the structure of k-ary arithmetic is

Nk = (N, 0,mk,0, . . . ,mk,k−1, iqk, remk, eq0),(5)

where mk,i(x) = kx + i, iqk(x) = iq(x, k) and remk(x) = rem(x, k). These are
total structures, as is the standard structure of Peano arithmetic

N = (N, 0, 1,+, ·,=)(6)

An example of a genuinely partial structure is a field (with identity)

F = (F, 0, 1,+,−, ·,÷,=),

where the quotient x÷ y is defined only when y 6= 0.
There are many interesting examples of many-sorted structures, e.g., a vector

space V over a field F

V = (V, F, 0F , 1F ,+F , ·F , 0V ,+V , ·)
where · : F × V → V is scalar-vector multiplication and the other symbols have
their natural meanings. On the other hand, dealing directly with many sorts
is tedious, and we will work with one-sorted Φ-structures. The more general
versions follow by “identifying” a many-sorted A as in (3) with the single-sorted

(⊕s∈S′As, {As : s ∈ S′},Φ),(7)

where ⊕s∈S′As =
⋃
{〈s, x〉 : s ∈ S \ {boole} & x ∈ As} is the disjoint union of

the basic universes of A, As(x) ⇔ x ∈ As for s 6= boole, and the primitives in
Φ are as before, undefined on arguments not of the appropriate type.

Restrictions. If A = (A,Φ) is a Φ-structure and U ⊆ A = Aa, we set

A �U = (U, {φA �U}φ∈Φ),

where, for any f : An ⇀ As (s ∈ {a, boole}),
f �U(x1, . . . , xn) = w ⇐⇒ x1, . . . , xn ∈ U,w ∈ Us & f(x1, . . . , xn) = w.

Notice that we allow U = ∅, as well as non-empty U which may not contain all
the distinguished elements of A.

Expansions and reducts. An expansion of a Φ-structure A is obtained by
adding new primitives to A,

(A,Ψ) = (A,Φ ∪Ψ).

Conversely, the reduct A �Φ0 of a structure A = (A,Φ) to a subset Φ0 ⊆ Φ of
its vocabulary is defined by removing all the operations in Φ \Φ0. For example,
the reduct of the field of real numbers to {0,+,−} is the additive group on R,

(R, 0, 1,+,−, ·,÷) �{0,+,−} = (R, 0,+,−).

Two numbers are coprime if no number greater than 1 divides both of them, in symbols

x⊥⊥ y ⇐⇒ gcd(x, y) = 1 (x, y > 0).
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6 YIANNIS N. MOSCHOVAKIS

Diagrams. The (equational) diagram of a Φ-structure A is the set

eqdiag(A) = {(φ, ~x,w) : φ ∈ Φ, ~x ∈ An, w ∈ Asort(φ) and φA(~x) = w},

and its visible universe is the set of members of A which occur in eqdiag(A),

Avis = {x ∈ A :∃(φ, x0, . . . , xn−1, xn) ∈ eqdiag(A)(∃i)[x = xi]}.

It is sometimes convenient to specify a structure A by giving its equational
diagram, which (by convention then) means that A = Avis. For example, if we
set

U = {2 + 1 = 3, 2 + 3 = 5, 2 ≤ 5, ¬(5 ≤ 1)}(8)

with Φ = {0, S,+,≤}, then U = Uvis = {1, 2, 3, 5} and U is a finite structure
in which (among other things) S is interpreted by the empty partial function.
(And we have used here the obvious convention, to write φ(~x) = w,R(~x),¬R(~x)
rather than the more pedantic (φ, ~x,w), (R, ~x, tt), (R, ~x,ff) in diagrams.)

Substructures. A (partial) substructure U ⊆p A of a Φ-structure A is a
structure of the same vocabulary Φ, such that U ⊆ A and for every φ ∈ Φ,
φU v φA, i.e., (

~x ∈ Un & w ∈ Us & φU(~x) = w
)

=⇒φA(~x) = w.

A substructure U is strong (or induced) if in addition(
~x ∈ Un & w ∈ Us & φA(~x) = w

)
=⇒φU(~x) = w,

in which case U = A �U , the restriction of A to the universe of U. At the same
time, for every U , the structure U∅ in which all symbols of Φ are interpreted by
totally undefined partial functions and relations is also a substructure of A.

Notice that

U ⊆p A ⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A),

and if U = Uvis, then

U ⊆p A ⇐⇒ eqdiag(U) ⊆ eqdiag(A).

Homomorphisms and embeddings. A homomorphism π : U → V of one
Φ-structure into another is any mapping π : U → V such that

φU(x1, . . . , xn) = w=⇒φV(π(x1), . . . , π(xn)) = π(w).(9)

In reading this we extend π to {tt,ff} by π(tt) = tt, π(ff) = ff, so that for partial
relations it insures

RU(x1, . . . , xn) =⇒RV(π(x1), . . . , π(xn)),

¬RU(x1, . . . , xn) =⇒¬RV(π(x1), . . . , π(xn)).

A homomorphism is an embedding π : U � V if it is injective (one-to-one),
and it is an isomorphism π : U�→V if it is a surjective embedding and, in
addition, the inverse map π−1 : U �→V is also an embedding. Clearly

U ⊆p V ⇐⇒ U ⊆ V and the identity idU : U � V is an embedding.
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If π : U → A is a homomorphism, then π[U] is the substructure of A with
universe π[U ] and

eqdiag(π[U]) = {(φ, π(x1), . . . , π(xn), π(w)) : (φ, x1, . . . , xn), w) ∈ eqdiag(U)}.
This construction is especially useful when π : U � A is an embedding, in which
case π : U�→π[U] is an isomorphism.

Φ-terms (with conditionals). These are defined by the structural recursion

t :≡ tt | ff | vi | φ(t1, . . . , tnφ
) | if t1 then t2 else t3 (φ ∈ Φ),

where v0, v1, . . . is a fixed sequence of individual variables. The definition assigns
to each term a sort boole or a and sets type restrictions on the formation rules
in the obvious way; for the conditional it is required that sort(t1) ≡ boole and
sort(t2) ≡ sort(t3) and then sort(t) ≡ sort(t2). The conditional can be used to
define the propositional connectives on terms of boolean sort, e.g.,

s & t :≡ if s then t else ff, ¬ t :≡ if t then ff else tt.

A term t is algebraic if no conditional occurs in it, and closed if it has no
variables.

We will use the familiar notation

t(~v) ≡ t(v1, . . . , vn) :≡ (t, (v1, . . . , vn))

for a pair of a term and a sequence of distinct variables which includes all the
variables that occur in t, and by the usual, sloppy convention, we will also refer
to these pairs as “terms”. If A is any Φ-structure, then for any t(~v),

tA[~x] = t[A, ~x] = the value of t(~v) in A, when ~v := ~x.

Generated structures. For a fixed Φ-structure A, each tuple ~x ∈ An and
each m ∈ N, set

Gm(A, ~x) = {tA[~x] : t is algebraic, sort(t) = a and depth(t(~v)) ≤ m},
G∞(A, ~x) =

⋃
mGm(A, ~x),

and for the corresponding induced substructures,

Gm(A, ~x) = A �Gm(A, ~x), G∞(A, ~x) = A �G∞(A, ~x).

Clearly, G∞(A, ~x) is the smallest subset S of A which satisfies

~x ∈ Sn & (∀~u ∈ Snφ , w)[φA(~u) = w=⇒w ∈ S].(10)

We will often prove that every u ∈ G∞(A, ~x) has some property P by “induction
on the generation of G∞”, i.e., by checking (10) with S = P .

A structure A is generated by ~x if A = G∞(A, ~x); if it is finite and generated
by ~x, then A = Gm(A, ~x) for somem. Most often we will use finite substructures
of some fixed A which are generated by a tuple of their elements, and we set

depth(U, ~x) = min{m : ~x ∈ Un,U = Gm(U, ~x)}.
The size of a finite U ⊆p A is the number of all visible elements of its universe,

(11) size(U) = |Uvis|

=
∣∣∣{v ∈ U : v occurs in some (φ, ~u,w) ∈ eqdiag(U)}

∣∣∣ ≤ |U |.
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8 YIANNIS N. MOSCHOVAKIS

We also need the depth of an element below a tuple,

depth(w;A, ~x) = min{m :w ∈ Gm(A, ~x)}, (w ∈ G∞(A, ~x)).(12)

Proposition 1.1. If U is a Φ-structure U, ~x ∈ Un and depth(w;U, ~x) = m
for some w ∈ U , then

m ≤ size(Gm(U, ~x)) ≤ |eqdiag(Gm(U, ~x))|.(13)

It follows that if U is finite and generated by ~x, then

depth(U, ~x) ≤ size(U) ≤ |eqdiag(U)|.(14)

Proof of (13) is by induction on m, the basis being trivial since all three
numbers in it are 0.

For the induction step in the first inequality, we are given some w with

depth(w;U, ~x) = m+ 1,

so that w = φU(u1, . . . , un) and for some i, depth(ui;U, ~x) = m. By the induc-
tion hypothesis,

m ≤ size(Gm(U, ~x)) ≤ size(Gm+1(U, ~x))− 1,

the latter because w occurs in the equation

(φ, u1, . . . , un, w) ∈ eqdiag(Gm+1(U, ~x))

and is not a member of Gm(U, ~x). So m+ 1 ≤ size(Gm+1(U, ~x)).
For the induction step in the proof of the second inequality, notice that (skip-

ping U and ~x which remain constant in the argument),

Gm+1 = Gm ∪ {φU(u1, . . . , uk) : u1, . . . , uk ∈ Gm & φU(u1, . . . , uk) /∈ Gm}.
The first of these two disjoint pieces has size ≤ |eqdiag(Gm)| by the induction
hypothesis, and to each w is the second piece we can associate in a one-to-one
way some equation (φ, ~u,w) in the diagram of Gm+1 which is not in the diagram
of Gm, because w /∈ Gm; so

size(Gm+1) ≤ |eqdiag(Gm)|+
(
|eqdiag(Gm+1)| − |eqdiag(Gm)|

)
= |eqdiag(Gm+1)|. a

§2. The homomorphism method. The key notions of this section (and
the manuscript) are those of a uniform process in 2C and certification in 2F,
and the main result is the Homomorphism Test, Lemma 2.4.

2A. Axioms which capture the uniformity of algorithms. Our basic
intuition is that an n-ary algorithm α of sort s ∈ {a, boole} of a structure
A = (A,Φ) computes (in some way) an n-ary partial function

α = αA : An ⇀ As (with Aboole = {tt,ff}, Aa = A)

using the primitives in Φ as oracles. We understand this to mean that in the
course of a computation of α(~x), the algorithm may request from the oracle for
any φA any particular value φA(u1, . . . , unφ

), where each ui either is given by
the input or has already been computed; and that if the oracles cooperate and
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ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 9

respond to all requests, then this computation of α(~x) is completed in a finite
number of steps.

The three axioms we formulate in this section capture part of this minimal
understanding of how algorithms from primitives operate.

The crucial first axiom expresses the possibility that the oracles may choose
not to respond to a request for φA(u1, . . . , unφ

) unless

u1, . . . , un ∈ U & φU(u1, . . . , un)↓
for some fixed substructure U ⊆p A: the algorithm will still compute a partial
function, which simply diverges on those inputs ~x for which no computation of
α(~x) by α can be executed “inside” U (as far as calls to the oracles are involved).

I. Locality Axiom. An n-ary algorithm α of sort s ∈ {a, boole} of a struc-
ture A assigns to each substructure U ⊆p A an n-ary partial function

αU : Un ⇀ Us.

We understand this axiom constructively, i.e., we claim that the localization
operation

(U 7→ αU) (where U ⊆p A and αU : Un ⇀ Us)(15)

is induced naturally by a specification of α. We set

U ` α(~x) = w ⇐⇒ ~x ∈ Un & αU(~x) = w (` is read “proves”),(16)

U ` α(~x)↓ ⇐⇒ (∃w)[U ` α(~x) = w],(17)

and we call αU the partial function on U computed by α.
In particular, α computes on A the partial function α = αA : An ⇀ As.
II. Homomorphism Axiom. If α is an algorithm of A and π : U → V is

a homomorphism of one substructure of A into another, then

U ` α(~x) = w=⇒V ` α(π(~x)) = π(w) (~x ∈ Un),
where π(x1, . . . , xn) = (π(x1), . . . , π(xn)). In particular, by applying this to the
identity embedding idU : U � A,

U ⊆p A=⇒αU v αA = α.

The idea here is that the oracle for each φA may consistently respond to each
request for φU(~u) by delivering φV(π(~u)). This transforms any computation
of αU(~x) into one of αV(π(~x)), which in the end delivers the value π(w) =
π(αU(~x)).

This argument is convincing for the identity embedding idU : U � V. It is
not quite that simple in the general case, because α may utilize in its compu-
tations complex data structures and rich primitives, e.g., stacks, queues, trees,
conditionals, the introduction of higher type objects by λ-abstraction and subse-
quent application of these objects to suitable arguments, etc. The claim is that
any homomorphism π : U → V lifts naturally to these data structures, and so
the image of a convergent computation of αU(~x) is a convergent computation
of αV(π(~x)). Put another way: if some π : U → V does not lift naturally to a
mapping of the relevant computations, then α is using essentially some hidden
primitives not included in A and so it is not an algorithm from {φA}φ∈Φ.
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10 YIANNIS N. MOSCHOVAKIS

It is clear, however, that the Homomorphism Axiom demands something more
of algorithms (and how they use oracles) than the Locality Axiom, and so it is
important that we verify it for the standard computation models. We will do
this in Section 5.

The Homomorphism Axiom is at the heart of this approach to the derivation
of lower bounds.

III. Finiteness Axiom. If α(~x) = w, then there is a finite U ⊆p A generated
by ~x such that U ` α(~x) = w.

This combines two ingredients of the basic intuition: first that in the course
of a computation, the algorithm may only request of the oracles values φA(~u)
for arguments ~u that it has already constructed from the input, and second,
that computations are finite. A suitable U is then determined by putting in
eqdiag(U) all the calls made by α in some computation of α(~x).

This axiom implies, in particular, that partial functions computed by an A-
algorithm take values in the substructure generated by the input,

αA(~x) = w=⇒w ∈ G∞(A, ~x) ∪ {tt,ff}.

This is a substantial restriction, but not for decision problems, when α is the
characteristic function of a relation and so for all ~x, α(~x) ∈ {tt,ff}.

It is useful to set

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x, and U ` α(~x) = w,(18)
U `c α(~x)↓ ⇐⇒ (∃w)[U `c α(~x) = w].(19)

In this notation, the Finiteness Axiom takes the form

α(~x) = w=⇒ (∃U ⊆p A)[U `c α(~x) = w].(20)

If we read “`c” as computes, then this form of the axiom suggests that the triples
(U, ~x, w) such that U `c α(~x) = w play the role of computations in this abstract
setting.

2B. Concrete algorithms and the Uniformity Thesis. We have been
using the word algorithm informally, and we will not attempt to define it precisely
in this manuscript. Rigorous results in complexity theory are established for
concrete algorithms, specified by computation models, e.g., Turing machines,
Random Access machines, recursive programs, . . . , and their non-deterministic
versions.

Axioms I – III are satisfied by all concrete algorithms which compute a partial
function f : An ⇀ A from specified primitives. This is plausible from the
motivation for the axioms above, but a complete proof is rather messy, as it
must specify rigorously and take into account the idiosyncracies of each model.
Part of the difficulty comes from the fact that many computation models have
some functions on the intended universe A “built-in”, so to speak: e.g., Turing
machines acting on N assume the successor and predecessor functions if we code
numbers by strings in unary or the primitives of binary arithmetic if we code
numbers in binary, and random access machines have the identity relation on N
built in, in addition to whatever functions on N are explicitly identified in their
definition. To see that these models satisfy the axioms, we must identify all the
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ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 11

non-logical primitives assumed—and then the result becomes basically obvious.
We leave this analysis for Section 5, where we will also establish some general
results which support the following claim:

Uniformity Thesis for algorithms. Every algorithm which computes a
partial function f : An ⇀ A or decides a relation R ⊆ An from the primitives of
a Φ-structure A satisfies axioms I, II and III.

This is a weak Church-Turing-type assumption about algorithms which, of
course, cannot be established rigorously absent a precise definition of algorithms.

2C. Uniform processes. An n-ary uniform process of sort s ∈ {a, boole}
of a Φ-structure A is any operation

α = (U 7→ αU) (U ⊆p A, αU : Un ⇀ Us)

on the substructures of A which satisfies the Homomorphism and Finiteness
Axioms. We say that α computes the partial function α : An ⇀ As, and we will
use for uniform processes the notations introduced in (16) – (19) of 2A.3

We have argued (briefly) that every algorithm induces a uniform process, and
we will prove this for many of the standard computation models in Section 5.
On the other hand, the converse is far from true: nothing in axioms II and III
suggests that functions computed by uniform processes are “computable” from
the primitives of A in any intuitive sense, and in general, they are not.

Proposition 2.1. If a Φ-structure A is generated by the empty tuple, then
every f : An ⇀ A is computed by some uniform process of A.

In particular, every f : Nn ⇀ N is computed by some uniform process of
A = (N, 0,ΦA) if ΦA includes either the successor function S or the primitives
of binary arithmetic em2(x) = 2x and om2(x) = 2x+ 1.

Proof. Let Gm = Gm(A, ( )) be the set generated in ≤ m steps by the empty
tuple, so that G0 = ∅, G1 comprises the distinguished elements of A, etc. Let

d(~x,w) = min{m : x1, . . . , xn, w ∈ Gm},

and define αU for each U ⊆p A by

αU(~x) = w ⇐⇒ f(~x) = w & Gd(~x,w) ⊆p U.

The Finiteness Axiom is immediate taking U = Gd(~x,w), and the Homomorphism
Axiom holds because if Gm ⊆p U, then every homomorphism π : U → V fixes
every u ∈ Gm. a

3In categorical terms, an n-ary uniform process α of A of sort s ∈ {boole, a} is a continuous
functor on the category HA to PA,s, where:

(1) the objects of HA are all pairs (U, ~x) where ~x ∈ Un and U is generated by ~x, and a
morphism φ : (U, ~x) → (V, ~y) is any homomorphism π : U→ V which carries ~x to ~y; and

(2) the objects of PA,s of all n-ary partial functions on A to As, and a morphism ψ : p→ q

is any partial function ψ : A ⇀ A such that

p(u1, . . . , un) = w=⇒ q(ψ(u1), . . . , ψ(un)) = ψ(w).
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12 YIANNIS N. MOSCHOVAKIS

The axioms aim to capture the uniformity of algorithms—that they compute
all their values following “the same procedure”— but surely do not capture their
effectiveness. They are not useful in establishing non-computability. At the same
time, uniform processes carry a rich complexity theory, which mirrors and has
implications for algorithmic complexity.

2D. Complexity measures on uniform processes. A substructure norm
on a Φ-structure A is a function µ which assigns to each ~x ∈ A and each finite
U ⊆p A which is generated by ~x a number µ(U, ~x), e.g.,

depth(U, ~x) = min{m :U = Gm(U, ~x)},
size(U, ~x) = |Uvis|,

callsΦ0(U, ~x) = |eqdiag(U �Φ0)| (Φ0 ⊆ Φ).

The complexity measure of a uniform process α relative to a substructure norm
µ is the partial function

Cµ(α, ~x) = min{µ(U, ~x) : U `c α(~x)↓},(21)

defined on the domain of convergence of αA.
By using the norms above, we get three complexity measures on uniform

processes,4

depth(α, ~x), size(α, ~x), callsΦ0(α, ~x).(22)

The first and last of these three correspond to familiar complexity measures
with roughly similar names for concrete algorithms. The middle one size(α, ~x)
measures “the least number of points in A that α must see to compute α(~x)” and
is not familiar, but it comes up naturally in some derivations of lower bounds
for the generally larger and most natural

calls(α, ~x) = callsΦ(α, ~x).

Lemma 2.2. For every uniform process α of a Φ-structure A and every ~x such
that α(~x)↓ ,

depth(α(~x);A, ~x) ≤ depth(α, ~x) ≤ size(α, ~x) ≤ calls(α, ~x).(23)

Proof. The first inequality is immediate, because if U `c α(~x) = w, then
w ∈ Us and so

depth(w;A, ~x) ≤ depth(w;U, ~x) ≤ depth(U, ~x).

For the third claimed inequality, suppose α(~x) = w and choose a substructure
U ⊆p A with least |eqdiag(U)| such that U `c α(~x) = w, so that calls(α, ~x) =
|eqdiag(U)|. Now size(U) ≤ |eqdiag(U)| by (13) in Proposition 1.1, and since
U is among the substructures considered in the definition of size(α, ~x), we have

size(α, ~x) ≤ |eqdiag(U)| = calls(α, ~x).

The second inequality is proved by a similar argument. a

4The depth measure can also be relativized to arbitrary Φ0 ⊆ Φ, but it is tedious and we
have no interesting results about it.
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ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 13

2E. The value-depth complexity of a function. Suppose α is a uniform
process of a Φ-structure A which computes f = α : An ⇀ A, so that if f(~x)↓ ,
then f(~x) ∈ G∞(A, ~x) by Axiom III. The first of the inequalities in (23) with
α = f takes the form

depth(f(~x);A, ~x) ≤ depth(α, ~x) (f(~x)↓),(24)

and so depth(f(~x);A, ~x) is a lower bound for all complexity measures of α that
we have considered. This should be true for any reasonable notion of algorithm
and any complexity measure which counts (among other things) the applications
of primitives that must be executed in sequence, simply because an algorithm
must (at least) construct from the input the value f(~x). It is well understood
and used extensively to derive lower bounds in arithmetic and algebra.5 The
more sophisticated complexity measure depth(α, ~x) is useful when f takes simple
values, e.g., when f = R is (the characteristic function of) a relation. In this
case depth(f(~x);A, ~x) = 0 and (24) does not give us any information.

2F. Forcing and certification. Suppose A is a Φ-structure, f : An ⇀ As
(with s ∈ {a, boole}), U ⊆p A, and f(~x) ↓ . A homomorphism π : U → A
respects f at ~x if

~x ∈ Un & f(~x) ∈ Us & π(f(~x)) = f(π(~x)).(25)

Next come forcing and certification, the two basic notions of this article:

U 
A f(~x) = w ⇐⇒ f(~x) = w

& every homomorphism π : U → A respects f at ~x,
U 
A

c f(~x) = w ⇐⇒ U is finite, generated by ~x & U 
A f(~x) = w,

U 
A
c f(~x)↓ ⇐⇒ (∃w)[U 
A

c f(~x) = w].

If U 
A
c f(~x)↓ , we call U a certificate for f at ~x in A.6

Notice that(
U1 ⊆p U2 & U1 
A f(~x) = w

)
=⇒U2 
A f(~x) = w,

so, in particular, if U1 certifies f(~x) = w, then every U2 ⊇p U1 forces f(~x) = w.
2G. Example: the Euclidean algorithm. To illustrate the notions we

use this most ancient method for computing the greatest common divisor using
iterated division. It can be specified succinctly by the recursive equation

ε : gcd(x, y) = if (rem(x, y) = 0) then y else gcd(y, rem(x, y)) (x, y 6= 0),(26)

5The most interesting result of this type that I know is Theorem 4.1 of van den Dries and

Moschovakis [2009], a
√

log log-lower bound for recursive programs on depth(gcd, a+1, b) from

+,−,÷ and · (multiplication) for Pell pairs (a, b). This is due to van den Dries, and it is the
largest lower bound known for the gcd from primitives that include multiplication. It is not
known whether it holds for coprimeness, for which the best result is a log log log-lower bound

for algebraic decision trees in Mansour, Schieber, and Tiwari [1991a].
6To the best of my knowledge, certificates were first introduced in Pratt [1975] in his proof

that primality is NP. The present notion is model theoretic and more abstract than Pratt’s,

but the idea is the same.
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14 YIANNIS N. MOSCHOVAKIS

so that it is an algorithm from rem and eq0.7 To decide whether two numbers
are coprime, we need to add to (26) a head equation

⊥⊥(x, y) = if (gcd(x, y) = 1) then tt else ff,(27)

so that as a decision process for coprimeness, ε is an algorithm of the structure

Nε = (N, rem, eq0, eq1).(28)

Given x, y ≥ 1, the Euclidean computes gcd(x, y) by successive divisions and
0-tests (calls to the rem- and eq0-oracles)

rem(x, y) = r1, r1 6= 0, rem(y, r1) = r2, r2 6= 0,

. . . , rn+1 6= 0, rem(rn, rn+1) = rn+2, rn+2 = 0

until the remainder 0 is obtained, at which time it is known that gcd(x, y) = rn+1;
and if it is asked to decide whether x⊥⊥y, it must then do one more check to test
whether rn+1 = 1. Suppose x⊥⊥y and collect all these calls into a substructure,
writing u 6= 0, u = 1 for eq0(u) = ff, eq1(u) = tt as above:

eqdiag(U0) = {rem(x, y) = r1, r1 6= 0, rem(y, r1) = r2, r2 6= 0,

. . . , rn+1 6= 0, rem(rn, rn+1) = rn+2, rn+2 = 0, rn+1 = 1};
it follows that

U0 
Nε
c x⊥⊥y,

because if π : U0 → Nε, then the homomorphism property guarantees that

(29) rem(π(x), π(y)) = π(r1), π(r1) 6= 0, rem(π(y), π(r1)) = π(r2), π(r2) 6= 0,

. . . , π(rn+1) 6= 0, rem(π(rn), π(rn+1)) = π(rn+2), π(rn+2) = 0, π(rn+1) = 1,

and this in turn guarantees that π(x)⊥⊥π(y), so that π respects the coprime-
ness relation at x, y. This is how certificates for functions and relations can be
constructed from computations, and it is the basic method of applying uniform
process theory to the derivation of lower bounds for concrete algorithms.

On the other hand, U0 is not a smallest substructure of Nε which certifies
that x⊥⊥y. Let

U1 = {rem(x, y) = r1, rem(y, r1) = r2, . . . , rem(rn, rn+1) = rn+2, rn+1 = 1},
the substructure of U0 with all the 0-tests deleted. We claim that U1 is also a
certificate for x⊥⊥y, and to see this suppose that π : U1 → Nε is a homomor-
phism. To verify that π respects x⊥⊥y, check first that if i = 1, . . . , n + 1, then
π(ri) 6= 0; otherwise rem(π(ri−1, π(ri)) would not be defined (with r0 = y), since
rem requires its second argument to be non-zero, and so π would not be totally
defined in U1. So the homomorphism property guarantees that

rem(π(x), π(y)) = π(r1), π(r1) 6= 0, rem(π(y), π(r1)) = π(r2), π(r2) 6= 0,

. . . , π(rn+1) 6= 0, rem(π(rn), π(rn+1)) = π(rn+2), π(rn+1) = 1.

7The Euclidean is viewed as an algorithm from rem alone in van den Dries and Moschovakis

[2004], because eq0 is built-in the recursive programs used in that paper. The setup we use
here is somewhat more “fastidious” in separating logical from essential primitives, but there is

little practical difference in arithmetic.

Absolute lower bounds for uniform processes (first draft)

Rough, incomplete, full of errors January 25, 2012, 12:09 p. 14



ABSOLUTE LOWER BOUNDS FOR UNIFORM PROCESSES 15

The last two of these equations mean that for some q,

π(rn) = q · 1 + π(rn+2), 0 ≤ π(rn+2) < 1

so that we must have π(rn+2) = 0; and then all the equations in (29) hold and
we have the required π(x)⊥⊥π(y).8 This is the same feature of uniform processes
exploited in Proposition 2.1, and it is typical: i.e., although computations of
concrete algorithms define certificates, they generally do not give least-in-size
certificates—which is why the lower bounds for uniform processes are typically
not the best (largest) lower bounds that one might be able to prove for concrete
algorithms using other methods.

2H. The best uniform process. Is there a “best algorithm” which com-
putes a given f : An ⇀ A from specified primitives on A? The question is vague,
of course—and the answer is probably negative in the general case, no matter
how you make it precise. The corresponding question about uniform processes
has a positive (and very simple) answer.

For given f : An ⇀ A, set

β
U

f,A(~x) = w ⇐⇒ U 
A f(~x) = w (U ⊆p A).(30)

Theorem 2.3. The following are equivalent for any Φ-structure A and any
partial function f : An ⇀ As, s ∈ {a, boole}.

(i) Some uniform process α of A computes f .
(ii) (∀~x)

(
f(~x)↓ =⇒ (∃U ⊆p A)[U 
A

c f(~x)↓ ]
)
.

(iii) βf,A is a uniform process of A which computes f .
Moreover, if these conditions hold, then for every uniform process α which

computes f in A and for every complexity measure Cµ defined on A by a sub-
structure norm as in (21),

Cµ(βf,A, ~x) ≤ Cµ(α, ~x) (f(~x)↓).(31)

Proof. (iii) =⇒ (i) is immediate and (i) =⇒ (ii) follows from

U `c α(~x) = w=⇒U 
A
c f(~x) = w,(32)

which is an immediate consequence of the definitions.

(ii) =⇒ (iii). The operation (U 7→ β
U

f,A) satisfies the Finiteness Axiom III
by (ii). To verify the Homomorphism Axiom II, suppose

U 
A f(~x) = w & π : U → V

so that π(~x) ∈ V n, π(w) ∈ Vs, and (since π : U → V is a homomorphism),
f(π(~x)) = π(w). Let ρ : V → A be a homomorphism. The composition ρ ◦ π :
U � A is also a homomorphism, and so it respects f at ~x, i.e.,

f(ρ(π(~x)) = ρ(π(f(~x)) = ρ(π(w)) = ρ(f(π(~x))).

So ρ respects f at π(~x), and since it is arbitrary, we have the required

V 
A f(π(~x)) = π(w).

8It can also be verified that no proper substructure of U1 certifies x⊥⊥y; for example, if we
delete the last equation rn+1 = 1, then the function π(u) = 2u defines a homomorphism on

the resulting substructure such that gcd(π(x), π(y)) = 2.
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The second claim follows from the definition of βf,A and (32). a

The key point here is that the uniform process βf,A is defined directly from
f and A, independently of any notion of algorithm. If we set9

Cµ(A, f, ~x) = Cµ(βf,A, ~x) = min{µ(U, ~x) : U 
A
c f(~x)↓}(33)

for any substructure norm on A, then Cµ(A, f, ~x) is a lower bound for the µ-
complexity of any uniform process which computes f from the primitives of A.
It is in this sense that βf,A is the best uniform process which computes f . The
results in Section 5 imply then that this is a lower bound for the µ-complexity
of any standard computation model which computes f in A, and the discussion
in Section 2A suggests that it is, in fact, an absolute (logical) lower bound which
restricts all algorithms that compute f from the primitives of A.

Moreover, the definitions yield a purely algebraic method for deriving these
lower bounds:

Lemma 2.4 (The Homomorphism Test). Suppose µ is a substructure norm on
a Φ-structure A, f : An ⇀ As, f(~x)↓ , and

(34) for every finite U ⊆p A which is generated by ~x,(
f(~x) ∈ Us & µ(U, ~x) < m

)
=⇒ (∃π : U → A)[f(π(~x)) 6= π(f(~x))];

then Cµ(f,A, ~x) ≥ m.

2I. Intrinsic complexities. For lack of a better name, we will call Cµ(A, f, ~x)
the intrinsic µ-complexity of f (at ~x in A). It records the µ-smallest “piece of
A” that is needed to determine the value f(~x)—not necessarily to compute it
effectively; and it is most useful when it agrees (absolutely or up to some multi-
plicative constant) with the µ-complexity of some known algorithm.

Most of the examples in the next two sections will be about the most impor-
tant special cases of intrinsic complexity for which we have lower bounds, when
µ(U, ~x) is depth(U, ~x), size(U) or calls(U �Φ0), in symbols

depth(A, f, ~x) = min{depth(U, ~x) :U 
A
c f(~x)↓},

size(A, f, ~x) = min{size(U) :U 
A
c f(~x)↓},

callsΦ0(A, f, ~x) = min{calls(U �Φ0) :U 
A
c f(~x)↓}.

We set calls(A, f, ~x) = callsΦ(U, f, ~x) and note that by Lemma 2.2,

depth(A, f, ~x) ≤ size(A, f, ~x) ≤ calls(A, f, ~x).

9This defines Cµ(A, f, ~x) only when f has a certificate at ~x. To simplify things in the
Introduction, we set Cµ(A, f, ~x) = ∞ in the alternative, but these values are, of course,

irrelevant for anything we do with these complexity measures.
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2J. Deterministic uniform processes. An n-ary uniform process of a
structure A is deterministic if it satisfies the following, stronger form of the
Finiteness Axiom as expressed in (20):

(35) α(~x) = w=⇒ (∃U ⊆p A)
(
U `c α(~x) = w]

& (for all V ⊆p A)[V `c α(~x) = w=⇒U ⊆p V]
)
,

i.e., if whenever α(~x)↓ , then there is a unique, ⊆p-least “abstract computation”
of α(~x) by α. The notion is natural, and we will note in Section 5 that every con-
crete deterministic algorithm induces a deterministic uniform process. We put it
down here for completeness, but we have no real understanding of deterministic
uniform processes and no methods for deriving lower bounds for them which are
better (larger) that the lower bounds for all uniform processes which compute
the same function. For example, we will note in Section 5 that there is no best
deterministic uniform A-process for every f : An ⇀ A, simply because there
may be two deterministic algorithms which compute the same function from the
same primitives in essentially different ways.

§3. Coprimeness in N. We discuss here four results on the intrinsic com-
plexity of coprimeness (and related problems), from various primitives, which
include division with remainder but not multiplication. Three of them are some-
what more abstract versions of results in van den Dries and Moschovakis [2004,
2009], and the fourth is in Pratt’s unpublished [2008].10

3A. The binary (Stein) algorithm. This well-known algorithm computes
the greatest common divisor gcd(x, y) from relatively simple primitives, based
on the following, easy fact:

Proposition 3.1 (Stein [1967], Knuth [1973], Vol. 2, Sect. 4.5.2). The gcd sat-
isfies the following recursive equation for x, y ≥ 1, using which it can be computed
using O(max{log x, log y}) calls to its primitives:

gcd(x, y) =



x if x = y,

2 gcd(iq2(x), iq2(y)) ow., if Parity(x) = Parity(y) = 0,
gcd(iq2(x), y) ow., if Parity(x) = 0,Parity(y) = 1,
gcd(x, iq2(y)) ow., if Parity(x) = 1,Parity(y) = 0,
gcd(x−· y, y) ow., if x > y,

gcd(x, y−· x) otherwise.

Here x−· y is arithmetic subtraction (set = 0 if x < y), and the complete list
of primitives of the Stein algorithm is

StPrim = {0, 1,=, <,parity, em2, iq2,−· }.(36)

We set

Nst = (N,StPrim).

10The relation of these results to the earlier Mansour, Schieber, and Tiwari [1991a, 1991b]
and Meidânis [1991] is discussed in van den Dries and Moschovakis [2004, 2009].
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The Stein algorithm decides the coprimeness relation in O(max(log x, log y)),
steps, by computing d = gcd(x, y) and then testing whether d = 1. The key to
its optimality is the following11

Lemma 3.2. If b > 2, a = b2 − 1 and m < 1
10 log b, then every member x of

Gm(Nst, a, b) can be expressed uniquely in the form

x =
x0 + x1a+ x2b

2m
with xi ∈ Z, |xi| ≤ 22m for i ≤ 2.

Proof. The fact that every x ∈ Gm(Nst, a, b) can be expressed in this form
needs none of the hypotheses and can be checked by a simple induction. For
the uniqueness, check the result for m = 0, verify (easily) that if m > 0, then
m < 1

10 log b=⇒ 22m+3 < b, and then use this version of the hypothesis to derive
a contradiction from the assumption

(x0 − x1) + x1b
2 + x2b = (x′0 − x′1) + x′1b

2 + x′2b but xi 6= x′i for some i. a

Theorem 3.3 (van den Dries and Moschovakis [2004]). If b > 2 and a = b2 − 1,
then

depth(Nst,⊥⊥, a, b) ≥
1
10

log a.(37)

It follows that if αst is the Stein algorithm for coprimeness, then for some K
and all b > 2, a = b2 − 1,

calls(αst, a, b) ≤ Kdepth(Nst,⊥⊥, a, b) ≤ Kcalls(Nst,⊥⊥, a, b).(38)

Proof. Notice first that a⊥⊥b, because 1 = b · b− a. Since

depth(U, a, b) ≤ m=⇒U ⊆p Gm(Nst, a, b),

to infer the conclusion of the theorem by the Homomorphism Test, it is enough to
show that ifm < 1

10 log a, then there is a homomorphism π : Gm(Nst, a, b) → Nst

such that π(a) and π(b) are not coprime.
Define π : Gm(Nst, a, b) → Q by

π
(x0 + x1a+ x2b

2m
)

=
x0 + x1λa+ x2λb

2m
where λ = 1 + 2m

using the unique representation of each x in the domain given by the Lemma,
which applies because m < 1

10 log a=⇒ 22m+3 < b. This is well defined, the
choice of λ insures that π(x) ∈ N if x ∈ N, and π easily preserves all the
primitives in StPrim. So it is a homomorphism of Gm(Nst, a, b) into Nst and
π(a) = λa, π(b) = λb, so π does not respect coprimeness as required by the
Homomorphism Test.

The second claim follows by combining (37) with the main property of the
Stein algorithm, Proposition 3.1. a

In fact, π : Gm(Nst, a, b) � Nst is an embedding, since it respects the iden-
tity relation, as were all the homomorphisms constructed in van den Dries and
Moschovakis [2004, 2009].

11We use real logarithms to the base 2, i.e.,

log x = the unique y ∈ R such that 2y = x (x > 0).
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Generalizations. Simple adaptations of this method of constructing embed-
dings give r log a lower bounds for depth(Nst, R, a) on infinite sets, for many
unary relations R ⊂ N which are “spoiled” when their argument is multiplied by
a suitable λ ∈ N, including

a is a prime, a is square-free, a is a perfect square.

See Section 3 of van den Dries and Moschovakis [2004] and especially Sections
6, 7 and 12 of van den Dries and Moschovakis [2009], where these results are ex-
tended to Presburger structures Ap = (N,Φ) with Φ any finite set of Presburger
functions and relations. A small but interesting variation of the method also
yields that for every Presburger structure Ap, some r > 0 and infinitely many
(a, b),

depth(Ap, |, a, b) ≥ r log b,

where a | b ⇐⇒ a is a factor of b. In another direction, Busch [2007, 2009]
derives by the same methods lower bounds for substantially more complex arith-
metic relations and functions. Although not stated in this form, the proofs of
these extensions and generalizations are also grounded on suitable versions of
the Homomorphism Test, Lemma 2.4, and they establish log lower bounds for
depth(A, f,~a) for the relevant f on an infinite number of inputs.

3B. Coprimeness from division. As we specified it in 2G, the Euclidean
algorithm ε computes the greater common divisor function and decides the co-
primeness relation in the structure Nε = (N, rem, eq0, eq1). Its complexity has
been extensively analyzed, but for our purposes here it is enough to mention
two, simple facts. First,

for all x ≥ y ≥ 2, calls{rem}(ε, x, y) ≤ 2 log y ≤ 2 log x.

Second,

for all k ≥ 2, calls{rem}(ε, Fk+1, Fk) = k − 1,(39)

where {Fk}k is the Fibonacci sequence defined by the recursion

F0 = 0, F1 = 1, Fk+2 = Fk + Fk+1;(40)

in fact by Lamé’s Theorem,

if y ≤ Fk and k ≥ 2, then for all x ≥ y, calls{rem}(ε, x, y) ≤ k − 1,

i.e., the Euclidean exhibits its least efficient behavior on successive Fibonacci
numbers. Combining this with standard properties of the Fibonacci sequence
(Vol. 2, Sect. 1.2.8 of Knuth [1973]), it is easy to compute a positive rational rε
such that

calls{rem}(ε, Fk+1, Fk) ≥ rε logFk+1 (k ≥ 2).(41)

This suggests the following, weak version of the (worst case) optimality of the
Euclidean up to a multiplicative constant, among all uniform processes which
decide coprimeness in Nε:

Conjecture 3.4 (Suboptimality of ε). There is a rational number r > 0,
such that for infinitely many a ≥ b ≥ 1,

calls{rem}(Nε,⊥⊥, a, b) ≥ r log a.
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This was formulated (for algorithms) in van den Dries and Moschovakis [2004].
It is open and most likely requires some non-trivial arithmetic for its proof—if
it is true. The main result of van den Dries and Moschovakis [2004] was a much
weaker log log lower bound in the expansion of Nε by the primitives of Nst, +
and division with remainder,

Nst[÷] = (Nst,+, rem, iq) = (N, 0, 1,=, <,parity, em2, iq2,+,−· , rem, iq).

We need three classical, elementary results from number theory, cf. Theorems
185, 191 and 177 of Hardy and Wright [1938].

(A) For every irrational real number ξ > 0, there are infinitely many coprime
numbers a, b such that ∣∣∣ξ − a

b

∣∣∣ < 1
b2
.

We call such pairs (a, b) good approximations of ξ.
(B) Liouville’s Theorem for degree 2: For every quadratic irrational ξ, there

is a number C > 0 such that for all x, y ∈ Z,∣∣∣ξ − x

y

∣∣∣ > 1
Cy2

,

where an irrational number is quadratic if it is a root of a quadratic equation
with integer coefficients.

(C) If ξ > 1 is a quadratic irrational, then there is a number c = c(ξ) > 1
such that every number interval (2k, 2ck) contains a good approximation (a, b) of
ξ, i.e., 2k < a, b < 2ck.12

The restriction ξ > 1 is certainly not needed here or further on, but it simplifies
some of the statements we want to make: it insures, for example, that for all but
finitely many good approximations (a, b) of ξ, a > b.

Theorem 3.5 (van den Dries and Moschovakis [2004, 2009]). If ξ > 1 is a
quadratic irrational, then there is a rational number r > 0 such that for all but
finitely many good approximations (a, b) of ξ,

depth(N[÷],⊥⊥, a, b) ≥ r log log a.(42)

Specifically, (42) holds for all (a, b) which satisfy Pell’s equation a2 = 2b2 + 1
taking ξ =

√
2, and for all successive Fibonacci pairs (Fk+1, Fk) with k ≥ 3

taking ξ = 1+
√

5
2 , both with the same constant r = 1

10 .

For the proof we need an analog of Lemma 3.2:

Lemma 3.6. For every quadratic irrational ξ > 1, there is a number ` = `(ξ)
such that for all but finitely many good approximations (a, b) of ξ and every
m < 1

2` log log a, every number in Gm(N[÷], a, b) can be expressed uniquely in
the form

x =
x0 + x1a+ x2b

x3
with xi ∈ Z, |xi| < 22`m

for i ≤ 3.

12This follows easily from the fact that the continued fraction expansion of a quadratic
irrational is periodic, Theorem 177 of Hardy and Wright [1938].
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The proof is by induction on m and it involves a considerable amount of
computation—but no serious number theory beyond Liouville’s Theorem, which
supplies the relevant `. Two somewhat different arrangements of the computa-
tions are given in detail in van den Dries and Moschovakis [2004, 2009] for the
specific case ξ =

√
2, but they can be extended routinely to arbitrary ξ.

Outline of proof of the Theorem. The argument has the same struc-
ture as that for Theorem 3.3, based on Lemma 3.6 rather than 3.2. We define
π : Gm(Nst[÷], a, b) → N by

π(x) =
x0 + x1λa+ x2λb

x3
where λ = 1 + a!,

using the unique representation supplied by the Lemma, check (by applying the
Lemma again) that it is an embedding on Gm(Nst[÷], a, b) to Nst[÷] which does
not respect a⊥⊥b, and then appeal to the Homomorphism Test, which yields the
required conclusion with r = 1

2` . a
Generalizations. As with the simpler Nst, the method extends easily to yield

log log lower bounds on depth(Nst[÷], R, a) for many unary relations, including
a is a prime, a is square-free, a is a perfect square. (In fact, the proofs are
substantially easier for unary relations and do not require applications of Liou-
ville’s Theorem.) It also holds for expansions of Nst[÷] by arbitrary Presburger
primitives, and it can be extended to apply to substantially more inputs than
good approximations of a quadratic irrational, cf. Theorems 3.9, 9.1 and (ii) of
Theorem 12.2 in van den Dries and Moschovakis [2009]. On the other hand, the
occurrence of the same constant r = 1

10 in the theorem for both Pell pairs and
successive Fibonacci numbers (and even Theorem 3.3!) is entirely an artifact of
the proofs: it is not at all clear how one would compute “the least” r for which
the theorem holds for a given ξ, although it might be possible and interesting
to determine the best way that gives a relevant r from a constant C supplied by
Liouville’s Theorem for ξ.

3C. Pratt’s non-deterministic algorithm for the gcd. The key facts
about Pratts’ nuclid (non-deterministic Euclidean) algorithm are that it is from
the primitives of the Euclidean; it is no less efficient than the Euclidean ε on all
inputs; and it realizes the lower bound predicted by Theorem 3.5 on successive
Fibonacci numbers, beating the Euclidean on its worse behavior:

Theorem 3.7 (Pratt [2008]). There is a non-deterministic version ν (nuclid)
of the Euclidean algorithm with the following two properties:

(1) For all a ≥ b ≥ 1, calls(ν, a, b) ≤ calls(ε, a, b).
(2) For some K and all k ≥ 3, calls(ν, Fk+1, Fk) ≤ K log logFk+1.

Outline of proof. Nuclid is specified by a non-deterministic sequential ma-
chine with the following components:

(i) The states are all quadruples (a, b,m, n) ∈ N4.
(ii) The input function is input(a, b) = (a, b, a, b).
(iii) The terminal states are those of the form (a, b,m, 0).
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(iv) There are three transition functions, as follows for i ≤ 2:

τi(a, b,m, n) = if (n 6= 0) then (a, b, n, σi(a, b,m, n))
else if (n = 0 & rem(a,m) 6= 0) then (a, b,m, rem(a,m))
else if (n = 0 & rem(b,m) 6= 0) then (a, b,m, rem(b,m)),

where

σ0(a, b,m, n) = rem(m,n), σ1(a, b,m, n) = rem(a,m), σ2(a, b,m, n) = rem(b,m).

A computation of ν with input (a, b) is a maximal finite or infinite sequence of
states

C : s0 = (a, b, a, b) → s1 = (a, b,m1, n1) → s2 = (a, b,m2, n2) → · · · ,

such that for each k, sk+1 = τi(sk) for some i ≤ 2.
It is quite easy to check that every computation is finite with final state

(a, b,m, 0) for some m, and (with a little more work, using the last two clauses
in the transition functions) that m = gcd(a, b); and then this computation of
nuclid outputs m, if it is asked to compute gcd(a, b) or checks whether m = 1
and gives the correct answer if it is asked to decide whether a⊥⊥b. It is clear
that ν is an algorithm from the primitives of Nε = (N, rem, eq0, eq1), i.e., the
input, output and all three transition functions are defined by terms of Nε and
the terminal states are similarly decided by an Nε-term. Each computation C
determines a certain number of calls to the primitives calls(ν, C, a, b), and as
usual with non-deterministic algorithms, we set

calls(ν, a, b) = min{calls(ν, C, a, b) :C is a computation}.

If a computation chooses τ0 at every step, then it is exactly the computation
that the deterministic Euclidean would produce, and so nuclid is certainly no
less efficient than ε, on all inputs.

The main content of the theorem is that for some K, and every k ≥ 3, there
is a computation C such that

calls(ν, C, Fk+1, Fk) ≤ K log logFk+1.

This requires some thinking and extensive use of the basic equations satisfied by
the Fibonacci sequence, cf. Knuth [1973] as above. a

Corollary 3.8. For some K and all k ≥ 3,

depth(Nst[÷],⊥⊥, Fk+1, Fk) ≤ calls(Nst[÷],⊥⊥, Fk+1, Fk) ≤ K log logFk+1.

Proof. We view ν as an algorithm of Nst[÷] which is an expansion of Nε. Let
C be a nuclid computation on the input (Fk+1, Fk) with a least number of calls
to the primitives, so that calls(ν, C, Fk+1, Fk) ≤ K log logFk+1 by the theorem,
and then construct from C a finite U0 ⊆p Nst[÷] exactly as we constructed U0

from a computation of the Euclidean in 2G. It follows by the same argument
we gave in 2G that U0 
Nst[÷]

c Fk+1⊥⊥Fk; and then the Corollary follows by the
definition of calls(Nst[÷],⊥⊥, Fk+1, Fk). a
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Notes. The corollary implies that the conclusion of Theorem 3.5 is best pos-
sible from its hypotheses. It does not contradict Conjecture 3.4, because there
may well be an r > 0 and infinitely many a ≥ b ≥ 1 such that

calls{rem}(ν, a, b) ≥ r log a,

and for all we know this may be true of all Pell pairs! The analysis of nuclid
for arbitrary (a, b) appears to be quite difficult, and we do not know now any
non-trivial results about it.

So there could be an entirely different approach to proving Conjecture 3.4
which does not involve the Fibonacci pairs. Another possibility is that the
conjecture only holds for deterministic uniform processes, as we defined these
in 2J:

Conjecture 3.9 (Deterministic suboptimality of ε). There is a rational num-
ber r > 0, such that for every deterministic uniform process α of Nε which
decides coprimeness and for infinitely many a ≥ b ≥ 1,

calls(α, a, b) ≥ r log a.

This would be very interesting, especially if Conjecture 3.4 is false, so that the
classical difference between determinism and non-determinism shows up at this
very fundamental (and very low) complexity level. As we mentioned in 2J, we
have no methods now for attacking this sort of problem.

3D. Non-uniform complexity on N. When we look for robust lower bounds
for deciding a given number theoretic relation R, it is natural to restrict the prob-
lem to some finite set of inputs, typically the N -bit numbers

[0, 2N ) = {x ∈ N :x < 2N} (N > 0).

This “non-uniform” approach, allows us in effect to use a different algorithm
to decide R on distinct initial segments of N: the important questions are not
about the behavior of algorithms which decide R on all of N on specific inputs,
but about the behavior of algorithms which decide R only on N -bit numbers, as
N becomes large. The basic definition of intrinsic complexities make sense on
finite structures and so they can be used to derive lower bounds for non-uniform
complexity—but there is “less room” to exploit the Homomorphism Test and so
the specific applications pose problems. We will review here just two examples
which illustrate the situation.

For each structure A = (N,Φ) on N, each relation R ⊆ Nn and each substruc-
ture norm µ on A, let

Cµ(A, R, 2N ) = max{Cµ(A �[0, 2N ), R, ~x) :x1, . . . , xn < 2N}.(43)

Mostly we are interested in depth(A, R, 2N ), size(A, R, 2N ) and calls(A, R, 2N ),
cf. 2I.

The results about Nst hold basically as before:

Theorem 3.10 (van den Dries and Moschovakis [2009]). For some r > 0 and
all sufficiently large N ,

depth(Nst,⊥⊥, 2N ) ≥ rN.(44)
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Proof. To infer this from the Homomorphism Test 2.4 by adapting the proof
of Theorem 3.3, we need to find an r > 0 such that for all sufficiently large N ,
there is a b > 2 and an m > 0 satisfying the inequalities

22m+3 < b < 2N , a = b2 − 1 < 2N ,
x0 + x1λa+ x2λb

2m
< 2N (|xi| ≤ 22m)

and
1
10

log b > rN

with λ = 1 + 2m. The first three of these allow us to repeat the argument in
Theorem 3.3 within Nst �[0, 2N ) and construct an embedding

π : Gm(Nst �[0, 2N ), a, b) → Nst �[0, 2N )

such that π(a) = λa, π(b) = λb; π then does not respect a⊥⊥b, and so

depth(Nst,⊥⊥, 2N ) ≥ depth(Nst �[0, 2N ),⊥⊥, a, b) ≥ 1
10

log b.

The last inequality insures that 1
10 log b > rN as required.

It is quite easy to check that these conditions are satisfied if we take

N > 16, m = max{k : 16k < N}, a = 26m, r =
11
170

,

but these specific constants are artifacts of one way to do the computation and
there are surely better ways, probably leading to better values. The key idea is
that if a is “substantially smaller” than 2N (but not too small), then b, λ and the
values of π are all below 2N ; we then choose the largest a which is “substantially
smaller” than 2N , which allows us to express the derived lower bound in terms
of N . a

All the lower bounds in Nst listed in 3A have similar, non-uniform versions
with a linear lower bound for depth(Nst, R, 2N ) and by the same, mild modifica-
tion of their proofs. In particular, no non-trivial results from number theory are
needed—except, minimally, for primality: to show that for any set Φ of Pres-
burger primitives depth((N,Φ),Prime, 2N ) ≥ rN for some r and all sufficiently
large N , we need to use some estimate about the distribution of the primes not
being “too thin”. Every interval (l, 2l) with l ≥ 3 contains a prime (Bertrand’s
postulate, Theorem 418 of Hardy and Wright [1938]) suffices.

The corresponding generalizations of the results for Nst[÷] are not quite that
simple, because the constant λ = 1+a! that we used in the proof of Theorem 3.5
is too large: a direct adaptation of that proof to the non-uniform case leads to
a log logN lower bound for depth(Nst[÷],⊥⊥, 2N ) which is way too low. In fact,
it does not seem possible to get a decent lower bound for depth(Nst[÷],⊥⊥, 2N )
with this method, but a small adjustment yields a lower bound for the size- and
hence the calls- intrinsic complexities:

Theorem 3.11 (van den Dries and Moschovakis [2009]). For some rational num-
ber r > 0 and all sufficiently large N ,

calls(Nst[÷],⊥⊥, 2N ) ≥ size(Nst[÷],⊥⊥, 2N ) ≥ r logN.(45)
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Outline of proof. Fix a quadratic irrational ξ > 1 (for simplicity), e.g.,
ξ =

√
2, choose c = c(ξ) by (C) in 3B and set

N > 4c, k = max{s : cs <
N

2
}, 2k < b < a < 2ck,(46)

where (a, b) is a good approximation of ξ. Note that by the definition of k,

c(k + 1) ≥ N

2
and so k >

1
4c
N(47)

using the hypothesis on N .
Fix any U ⊆p A = Nst[÷] �[0, 2N ) such that U 
A

c a⊥⊥b and set

ν = size(U, a, b) = |Uvis|, m = depth(U, a, b).

It is enough to find some r > 0 independent of U such that ν ≥ r logN .
Let ` = `(ξ) be as in Lemma 3.6.

Case 1, 222`m

≥ a. By the hypothesis on a, we have 222`m ≥ a > 2k, and so
22`m > k > 1

4cN , from which we get

ν ≥ m > r1 logN (for sufficiently large N)(48)

with a suitable r1 = r1(`, k) = r1(ξ).

Case 2, 222`m

< a. In this case Lemma 3.6 applies, and every x ∈ Gm(Nst[÷], a, b)
can be written uniquely in the form

x =
x0 + x1a+ x2b

x3
with xi ∈ Z, |xi| < 22`m

for i ≤ 3.(49)

In particular, this holds for all x ∈ U ⊆ Gm(Nst[÷], a, b), and we can use it to
define functions πλ : U → Q (the rational numbers) by

πλ(x) =
x0 + x1λa+ x2λb

x3
.

For most λ, the values π(x) will not be natural numbers; this was the point of
choosing λ = 1 + a! in the proof of Theorem 3.5, which, however, will now give
values outside [0, 2N ). Instead of this, we use the uniqueness in (49), we set

denom(x) = x3 (x ∈ U), λ = 1 +
∏
x∈U denom(x)

and it follows easily that π(x) ∈ N for every x ∈ U . Moreover, π : U → Nst[÷]
is a homomorphism by Theorem 3.5, and λ is not too big,

λ = 1 +
(
22`m

)ν
= 1 + 2ν2

`m

< 222`ν+1
.

We can also compute an upper bound on π(x) for each x ∈ U :

π(x) ≤
∣∣∣x0 + x1λa+ x2λb

∣∣∣ ≤ 22`m

+ 22`m

λa+ 22`m

λb

≤ 22`ν

+ 2 · 22`ν

· 222`ν+1
· 2ck ≤ 3 · 22`ν+2`ν+1+ N

2 ≤ 223`ν+1+ N
2 +2 ≤ 224`ν+ N

2 +2.

If this last bound is < 2N , then π : U → Nst[÷] � [0, 2N ) is a homomorphism
which does not respect a⊥⊥b, contrary to our assumption about U; it follows that
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24`ν + N
2 + 2 ≥ N , and so 4`ν ≥ log(N2 − 2) from which we can easily find some

r2 > 0 such that

ν ≥ r2 logN (for sufficiently large N).

The required r for the proof is the lesser of r1 and r2. a
Non-uniform versions of the other intrinsic lower bounds mentioned above can

be checked by the same method, e.g., for some r > 0 and all sufficiently large N ,
size(Nst[÷],Prime, 2N ) ≥ r logN .

§4. Polynomial nullity (0-testing). In this section we will prove four re-
sults on the intrinsic complexity of evaluation and 0-testing of polynomials, all
of them establishing the optimality or “near-optimality” of Horner’s rule from
various primitives for “generic” inputs. Polynomial evaluation is perhaps the
simplest problem in algebraic complexity, and it has been much studied since its
formulation as a complexity problem by Ostrowski [1954]; here we are concerned
with 0-testing, a plausibly easier problem which has received considerably less
attention.

For any field F , Horner’s rule computes the value

χ(b) =
∑
i≤n aib

i = a0 + a1b+ · · ·+ anb
n

of a polynomial χ(x) using no more than n multiplications and n additions in F
as follows:

χ0(b) = an,

χ1(b) = an−1 + bχ0(b) = an−1 + anb

...

χj(b) = an−j + bχj−1(b) = an−j + an−j+1b+ · · ·+ anb
j

...

χ(b) = χn(b) = a0 + bχn−1(b) = a0 + a1b+ · · ·+ anb
n.

For certain values of the coefficients, using division and subtraction might lead
to a more efficient computation because of identities like

1 + x+ x2 + · · ·+ xn =
xn+1 − 1
x− 1

,

and we also need the equality relation when we want to decide whether χ(b) = 0;
so it is natural to consider the optimality of Horner’s rule from the primitives of
the expansion

F = (F, 0, 1,+,−, ·,÷,=)(50)

of the field structure by =. We will use throughout the standard notation

NF (a0, a1, . . . , an, b) ⇐⇒ a0 + a1b+ · · ·+ anb
n = 0,

where F is a field and n ≥ 1.
A partial field homomorphism

π : F1 ⇀ F2
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on one field to another is a partial function whose domain of convergence is a
subfield F ′1 ⊆ F1 and which respects (as usual) the field operations.

For any field F and indeterminates ~u = u1, . . . , uk, F [~u] is the ring of all
polynomials with coefficients in F and F (~u) is the field of all rational functions
in ~u with coefficients in F . If ψ(v, ~u) ∈ F (v, ~u) is a rational function, then the
substitution v := ψ(v, ~u) induces a partial field homomorphism

π
(χn(v, ~u)
χd(v, ~u)

)
=
χn(ψ(v, ~u), ~u)
χd(ψ(v, ~u), ~u)

(χn(v, ~u)
χd(v, ~u)

∈ F (v, ~u)
)

(51)

whose domain of convergence is the field{χn(v, ~u)
χd(v, ~u)

:χd(ψ(v, ~u), ~u) 6= 0
}
⊆ F (v, ~u).

We will refer to π as “the substitution” v := ψ(v, ~u), and the only partial field
homomorphisms we will need are compositions of such substitutions.

4A. Horner’s rule is {·,÷}-optimal for nullity. The {·,÷}-optimality of
Horner’s rule for polynomial evaluation was proved by Pan [1966]. Pan worked
with computation sequences (which we will define in Section 5) and introduced
the method of substitution, i.e., the use of partial field homomorphisms induced
by substitutions as above.

By Horner’s rule, for all fields F and all ~a ∈ Fn,

calls{·,÷}(F, NF ,~a) ≤ n.

Theorem 4.1 (Bürgisser and Lickteig [1992]13). If F is a field of characteris-
tic 0, n ≥ 1, and a0, . . . , an, b ∈ F are algebraically independent (over the prime
field Q), then

calls{·,÷}(F, NF , a0, . . . , an, b) = n.(52)

In particular, (52) holds for the reals R and the complexes C with algebraically
independent a0, a1, . . . , an, b.

To show the needed inequality calls{·,÷}(F, NF , a0, . . . , an, b) ≥ n by the Ho-
momorphism Test 2.4, we must construct for every algebraically independent tu-
ple ~a, b ∈ Fn+2 and every finite substructure U ⊆p F such that U 
F

c ¬NF (~a, b)
and calls{·,÷}(U,~a, b) < n a homomorphism π : U → F which does not re-
spect NF (~a, b); and since eqdiag(U) may contain all true non-equalities u 6= v
for u, v ∈ U , we must make sure that π is an embedding. The construction is
by induction on n, but we need a very strong “induction loading device” for
it to go through. The appropriate lemma is an elaboration of the construction
in Winograd [1967, 1970], which extends and generalizes Pan’s results.

We will need a simple, preliminary fact.

Lemma 4.2. If F is infinite, φ1(~u), φ2(~u), φ(~u) ∈ F (~u) with φ1(~u) 6= 0 or
φ2(~u) 6= 0 and U is any finite subset of F (v, ~u), then there is some f ∈ F such

13The proof in Bürgisser and Lickteig [1992] is for algebraic decision trees, i.e., (branching)
computation sequences with equality tests.
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that the (partial field homomorphism ρf induced by the) substitution

v := ρf (v) = f
(
φ1(~u) + φ2(~u)v

)
+ φ(~u)

is totally defined and injective on U .

Proof. It is convenient to prove first a

Sublemma 4.2.1. If U ′ ⊂ F [v, ~u] is any finite set of polynomials, then there is
some f ∈ F such that(

χ(v, ~u) ∈ U ′ and χ(v, ~u) 6= 0
)

=⇒χ(ρf (v), ~u) 6= 0.

Proof of the Sublemma. Write each χ(v, ~u) ∈ U ′ as a polynomial in v,

χ(v, ~u) = χ0(~u) + χ1(~u)v + · · ·+ χl(~u)vl,

let F (~u) be the algebraic closure of F (~u) and consider the complete factorization

χ(v, ~u) = χl(~u)(v − α1) · · · (v − αl)

of χ(v, ~u) in F (~u)[v]. Now

χ(ρf (v), ~u) = χl(~u)(fφ1(~u) + fφ2(~u)v + φ(~u)− α1)

· · · (fφ1(~u) + fφ2(~u)v + φ(~u)− αl)

with each αi ∈ F (~u). A factor in this product vanishes only if

fφ1(~u) + φ(~u)− αi = 0 and fφ2(~u) = 0,

and if we choose any f 6= 0, this can only happen if φ2(~u) = 0. But then the
hypothesis implies that φ1(~u) 6= 0 and so fφ1(~u) + φ(~u) − αi = 0 can happen
for at most one value of f . The conclusion is then satisfied by any (non-zero)
f which is different from the (at most) one value determined from each αi, for
each of the χ(v, ~u) ∈ U ′. a (Sublemma)

We now fix a specific representation of the form

χ(~u) =
χn(~u)
χd(~u)

(χd(~u) 6= 0)(53)

for each χ(v, ~u) ∈ U , and we apply this Sublemma to the finite set U ′ comprising
all polynomials in one of the forms

(i) χd(v, ~u), (ii) χn(v, ~u)χ′d(v, ~u)− χ′n(v, ~u)χd(v, ~u)

with χ(v, ~u), χ′(v, ~u) ∈ U . Clearly ρf (χ(v, ~u)) is defined for every χ(v, ~u) ∈ U

because we put in U ′ the polys in (i), and so it is enough to check that it is
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injective on U ; and this is true because

ρf

(χn(v, ~u)
χd(v, ~u)

)
= ρf

(χ′n(v, ~u)
χ′d(v, ~u)

)
=⇒ ρf

(
χn(v, ~u)χ′d(v, ~u)− χd(v, ~u)χ′n(v, ~u)

)
= 0

=⇒χn(v, ~u)χ′d(v, ~u)− χd(v, ~u)χ′n(v, ~u) = 0

=⇒ χn(v, ~u)
χd(v, ~u)

=
χ′n(v, ~u)
χ′d(v, ~u)

where the inclusion in U ′ of all the polys in (ii) and the the fact that ρf is
injective (guaranteed by the Sublemma) are used in the second implication. a

We write {·,÷} for multiplications and divisions, and we define the trivial
{·,÷} (relative to z, ~x, y) by14

a · b = c is trivial if a ∈ F or b ∈ F or a, b ∈ F (y);
a÷ b = c is trivial if b ∈ F or a, b ∈ F (y).

Lemma 4.3. Suppose F is an infinite field, n ≥ 1, z, ~x = x1, . . . , xn, y are
distinct indeterminates,

U ⊆p F(z, ~x, y) = (F (z, x1, . . . , xn, y), 0, 1,+,−, ·,÷,=)

is finite, and ψ1, . . . , ψn ∈ F (y) so that the following conditions hold:
(1) U is generated by (F ∩ U) ∪ {z, ~x, y}.
(2) For any f1, . . . , fn ∈ F , if f1ψ1 + · · ·+ fnψn ∈ F , then f1 = · · · = fn = 0.
(3) There are no more than n− 1 non-trivial {·,÷} in eqdiag(U).
Then there is a partial field homomorphism

π : F (z, ~x, y) ⇀ F (~x, y)

which is the identity on F (y) and satisfies

π(z) = π(x1)ψ1 + · · ·+ π(xn)ψn.(54)

Moreover, π is total and injective on U , so that its restriction to U defines an
embedding π �U : U � F(~x, y).

Proof of Theorem 4.1 from Lemma 4.3. The hypothesis implies that

a0 + a1b+ · · ·+ anb
n 6= 0,

and so by the Homomorphism Test 2.4 it is enough to show that for every finite
U ⊆p F which is generated by a0,~a = a1, . . . , an, b, if |eqdiag(U �{·,÷})| < n,
then there is an embedding π : U � F such that

π(a0) + π(a1)π(b) + · · ·+ π(an)π(b)n = 0.(55)

We may assume that 0−a0 = −a0, 0−(−a0) = a0 ∈ eqdiag(U), by adding them if
necessary, so that U is also generated by −a0,~a, b. Moreover, U ⊆p Q(−a0,~a, b)
and Q(−a0,~a, b) is isomorphic with Q(z, ~x, y) by the “relabelling” isomorphism
ρ generated by −a0 7→ z, ai 7→ xi, b 7→ y. The required π is now constructed by
applying Lemma 4.3 to U′ = ρ[U] and ψ1 = y, ψ2 = y2, . . . , ψn = yn, carrying

14We are following closely the terminology and notation of Winograd [1967].
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the embedding it gives back to an embedding π : U � F(~a, b) and noticing that
π(b) = b. a

Proof of Lemma 4.3 is by induction on n, but it is useful to consider first
a case which covers the basis and also arises in the induction step.

Preliminary case: there are no non-trivial {·,÷} in U. It follows that every
X ∈ U is uniquely of the form

X = f0z +
∑

1≤i≤n fixi + φ(y)(56)

with fi ∈ F, φ(y) ∈ F (y). If π is the partial field homomorphism induced by the
substitution

z 7→
∑

1≤i≤n xiψi,

then π is the identity on F (~x, y) and it is total on U , because the only {·,÷}
in U are with both arguments in F (y) or one of them in F . So it is enough to
check that it is injective on the set of all elements of the form (56) and that it
satisfies (54). To check injectivity, suppose that

π(X) = f0

( ∑
1≤i≤n xiψi

)
+

∑
1≤i≤n fixi + φ(y)

= f ′0

( ∑
1≤i≤n xiψi

)
+

∑
1≤i≤n f

′
ixi + φ′(y) = π(X ′)

so that

(f0 − f ′0)
∑

1≤i≤n xiψi +
∑

1≤i≤n(fi − f ′i)xi + (φ(y)− φ′(y))

=
∑

1≤i≤n

(
(f0 − f ′0)ψi + (fi − f ′i)

)
xi + (φ(y)− φ′(y)) = 0.

This yields φ(y) = φ′(y) and for each i, (f0 − f ′0)ψi + (fi − f ′i) = 0; and since no
ψi is a constant by (2) in the hypothesis, this implies that f0 = f ′0, and finally
that fi − f ′i for each i.

The identity (54) is trivial because π(z) = x1ψ1 + · · ·+ xnψn and π(xi) = xi.
Basis, n = 1. This is covered by the preliminary case.
Induction Step, n > 1. If the preliminary case does not apply, then there

is at least one non-trivial {·,÷} in eqdiag(U); so there is a least m > 0 such
that some χ ∈ Gm(U, z, ~x, y) is a non-trivial product or quotient of elements
of Gm−1(U, z, ~x, y) in which all {·,÷} are trivial; and so there is at least one
non-trivial {·,÷} in eqdiag(U) of the form

(f ′0z +
∑

1≤i≤n f
′
ixi + φ′(y)) ◦ (f0z +

∑
1≤i≤n fixi + φ(y)) = χ(57)

where ◦ is · or ÷. We consider cases of how this can arise.
Case 1: There is some i ≥ 1 such that fi 6= 0, and the first factor in (57) is

not in F . We assume without loss of generality that f1 6= 0, and then dividing
the equation by f1 we put the second factor in the form

f0z + x1 +
∑

2≤i≤n fixi + φ(y).(58)

Appealing to Lemma 4.2 (with v = x1, ~u = z, x2, . . . , xn, y, φ1 = 1, φ2 = 0),
choose some f ∈ F such that the substitution

ρ1(x1) := f − f0z −
∑

2≤i≤n fixi − φ(y)
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induces an isomorphism

ρ1 : U�→ ρ1[U] = U1 ⊆p F(z, x2, . . . , xn, y).

Notice that ρ1 does not introduce any new non-trivial multiplication or division
(because it leaves F (y) fixed), and it turns the chosen operation in U into a
trivial one since

ρ1(f0z + x1 +
∑

2≤i≤n fixi + φ(y)) = f.

So there are fewer than n − 1 {·,÷} in eqdiag(U1), and U1 is generated by
z, x2, . . . , xn, y and {f} ∪ (F ∩ U).

By Lemma 4.2 again (with v = z, ~u = x2, . . . , xn, y, φ1 = 0, φ2 = 1
1+f0ψ1

), fix
some g ∈ F such that the substitution

ρ2(z) :=
1

1 + f0ψ1

(
(f − φ)ψ1 + gz

)
induces an isomorphism

ρ2 : U1 �→ ρ2[U1] = U2 ⊆p F(z, x2, . . . , xn, y).

This too does not introduce any non-trivial multiplications, and U2 is generated
by z, x2, . . . , xn, y and F ∩ U2. The required partial field homomorphism is the
composition

π = σ ◦ ρ2 ◦ ρ1 : F (z, ~x, y) ⇀ F (~x, y)

of the three substitutions, where σ is guaranteed by the induction hypothesis so
that σ �U2 : U2 � F(x2, . . . , xn, y) and

gσ(z) =
∑

2≤i≤n(ψi − fiψ1)σ(xi).

This exists because the functions
1
g
(ψi − fiψ1) (i = 2, . . . , n)

satisfy (2) in the theorem.
To see that this embedding has the required property, notice first that

π(z) = σ(ρ2(z))

because ρ1(z) = z. Using the corresponding properties of ρ2 and σ, we get:

π(x1)ψ1 +
∑

2≤i≤n π(xi)ψi

= σ(ρ2(f − φ(y)−
∑

2≤i≤n fixi − f0z))ψ1 +
∑

2≤i≤n σ(xi)ψi

= σ
(
f − φ(y)−

∑
2≤i≤n fixi − f0ρ2(z)

)
ψ1 +

∑
2≤i≤n σ(xi)ψi

= (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) +
∑

2≤i≤n(ψi − fiψ1)σ(xi)

= (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) + gσ(z).

So what we need to check is the equation

σ(ρ2(z)) = (f − φ(y))ψ1 − f0ψ1σ(ρ2(z)) + gσ(z)

equivalently (1 + f0ψ1)σ(ρ2(z)) = (f − φ(y))ψ1 + gσ(z)

equivalently (1 + f0ψ1)ρ2(z) = (f − φ(y))ψ1 + gz,
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and the last is immediate from the definition of ρ2(z). (Note that we use repeat-
edly the fact that σ is injective on U2 and the identity on F (y).)

Case 2: f1 = · · · = fn = 0, f0 6= 0, and the first factor in (57) is not in F .
We may assume without loss of generality that f0 = 1, and so the second factor
has the form

z + φ(y).

By Lemma 4.2, choose some f ∈ F such that the substitution

ρ1(z) := f − φ(y)

induces an isomorphism

ρ1 : U�→ ρ1[U] = U1 ⊆p F(~x, y).

There is one fewer non-trivial operation in eqdiag(U1), since ρ1 does not intro-
duce any new ones and ρ1(z + φ(y)) = f . Next, choose g ∈ F by Lemma 4.2
again, such that the substitution

ρ2(x1) :=
1
ψ1

(
f − φ(y)− gz

)
induces an isomorphism

ρ2 : U1 �→ ρ2[U1] = U2 ⊆p F(z, x2, . . . , xn, y).

There are fewer than n − 1 non-trivial {·,÷} in U2, and so the induction hy-
pothesis gives us an embedding

σ : U2 � F(z, x2, . . . , xn, y)

such that

gσ(z) =
∑

2≤i≤n σ(xi)ψi.

The required embedding is the composition π = σ ◦ ρ2 ◦ ρ1. To check this, note
first that

π(z) = σ(ρ2(ρ1(z))) = σ(ρ2(f − φ(y))) = f − φ(y).

On the other hand,

π(x1)ψ1 +
∑

2≤i≤n π(xi)ψi = σ(ρ2(x1))ψ1 +
∑

2≤i≤n σ(xi)ψi

= σ
( 1
ψ1

(
f − φ(y)− gz

)
ψ1

)
+

∑
2≤i≤n σ(xi)ψi

= f − φ(y)− gσ(z) + gσ(z) = π(z).

Cases 3 and 4: Cases 1 and 2 do not apply, some f ′i 6= 0, and the second factor
in (57) is not in F—which means that it is in F (y)\F . These are handled exactly
like Cases 1 and 2.

This completes the proof, because if none of these cases apply, then both
factors of (57) are in F (y), and so the operation is trivial. a
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4B. Counting identity tests along with {·,÷}. We outline here a proof
of the following theorem, which is also implicit in Bürgisser and Lickteig [1992]
for algebraic decision trees.

Theorem 4.4. If F is a field of characteristic 0, n ≥ 1, and a0, . . . , an, b ∈ F
are algebraically independent (over the prime field Q), then

calls{·,÷,=}(F, NF , a0, . . . , an, b) = n+ 1.(59)

In particular, (59) holds for the reals R and the complexes C with algebraically
independent a0, a1, . . . , an, b.

This will follow from the following lemma, exactly as in the preceding section.
We define trivial =-tests exactly as for the multiplication and division oper-

ations: i.e., an entry (=, a, b, w) ∈ eqdiag(U) with U ⊆p F(z, ~x, y) is trivial if
a ∈ F , or b ∈ F , or a, b ∈ F (y).

Lemma 4.5. Suppose F is an infinite field, n ≥ 1, z, ~x = x1, . . . , xn, y are
distinct indeterminates,

U ⊆p F(z, ~x, y) = (F (z, x1, . . . , xn, y), 0, 1,+,−, ·,÷,=)

is finite, and ψ1, . . . , ψn ∈ F (y) so that the following conditions hold:
(1) U is generated by (F ∩ U) ∪ {z, ~x, y}.
(2) For any f1, . . . , fn ∈ F , if f1ψ1 + · · ·+ fnψn ∈ F , then f1 = · · · = fn = 0.
(3) There are no more than n non-trivial {·,÷,=} entries in eqdiag(U).
Then there is a partial field homomorphism π : F (z, ~x, y) ⇀ F (~x, y) which is

the identity on F (y) and satisfies

π(z) = π(x1)ψ1 + · · ·+ π(xn)ψn.(60)

Moreover, π is total on U and so π �U : U → F(~x, y) is a homomorphism
which satisfies (60).

Outline of the proof. If U has at least one non-trivial = - test, then it
has no more than n−1 non-trivial {·,÷} and the lemma follows from Lemma 4.3,
since the π produced by it is injective on U (an embedding) and so it respects all
equalities and inequalities among members of U , including those in eqdiag(U).
Similarly, if U has fewer than n non-trivial {·,÷}, no matter how many = - tests
it has. This leaves only one case to consider:

(∗) There are exactly n non-trivial {·,÷} and no non-trivial = - tests in
eqdiag(U).

This would be the case, for example, it eqdiag(U) comprises all the calls made
to compute the polynomial by the Horner Rule without any = - test to verify
that the value is or is not 0.

We define the (non-trivial) U-rank of an element w ∈ U by the recursion
below, where for any X ⊆ U ,

C(X) = the closure of X under trivial operations in U.

This can be defined precisely as ∪iCi(X) where

C0(X) = X, Ci+i(X) = Ci(X) ∪ {φ(~u) : ~u ∈ Ci(X) & φ is trivial},
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meaning +,−, multiplication/division by an element of F ∩ U or multiplica-
tion/division of elements in F (y). Now

R0 = C(F ∩ U),

Rm+1 = C({uv, u
v

: this is a non-trivial {·,÷} with u, v ∈ Rm}

rank(w) = min{m :w ∈ Rm}.
Let w be an element with maximum rank(w) in U. We may assume that

w = uv or w =
u

v
in eqdiag(U),

with a non-trivial {·,÷}, since these are the only operations which increase rank.
We assume division wlog.

Case 1. There is a non-trivial (÷, a, w, b) ∈ eqdiag(U), or similarly with
multiplication.

Choose one such entry and let U1 have universe U and

eqdiag(U1) = eqdiag(U) \ {(÷, a, w, b)}.
Keep in mind that a may involve w also, e.g., it might be a rational function of
elements of smaller or equal rank to rank(w). Also, w 6= 0, since rank(0) = 0.

Since rank(b) ≤ rank(w), there must be some entry in eqdiag(U) which intro-
duces b using elements of smaller ranks; so U1 is generated by z, ~x, y. It has n−1
non-trivial {·,÷}, and so by Lemma 4.3, there is a partial field homomorphism
π : F (z, ~x, y) ⇀ F (~x) which is total and injective on U = U1 and satisfies the
relevant equation. In particular, this implies that π(w) 6= 0, and so

π(b) = π
( a
w

)
=
π(a)
π(w)

,

since π is a partial field homomorphism whose domain is a subfield of F (z, ~x, y)
that already contains a and w, and so it contains a

w since π(w) 6= 0. So π �U is
total on U1, as required.

Case 2 : w does not occur in an argument for a non-trivial operation, so all
we know about it is from entries like

w =
u

v
,w = u1v1, . . .with u, v of smaller rank.

We now define U1 by removing from eqdiag(U) all of these from U as well as
all the trivial entries in which w occurs as an argument, and taking as universe
those elements of U which occur in one of the remaining entries. In particular,
w /∈ U1. Now U1 is a structure with one less non-trivial {·,÷}, and we can apply
Lemma 4.3 again to get a partial field homomorphism which is injective on it.
Notice that v 6= 0, since it occurs as a denominator in an entry of eqdiag(U),
and so π(v) 6= 0. So π(w) is defined by any of the defining equations for w, e.g.,

π(w) =
π(u)
π(v)

.

By the same token, π is also defined on all the elements of U which are introduced
by trivial operations that involve w, even if π(w) = 0: because w does not occur
as a denominator in any one of these. Finally, π is total on U and still satisfies
the relevant equation, which completes the proof. a
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Note that Case 2 arises if U is constructed by using Horner’s Rule to compute

a0 + a1x+ · · ·+ anx
n = a0 + w where w = xv = x(a1 + a2x+ · · · anxn−1)

with w the element of largest rank introduced in U by a non-trivial multiplica-
tion. Now U1 = U \ {w, a0 + w} and

eqdiag(U1) = eqdiag(U) \ {xv = w, v = a0 + w}

The partial field homomorphism defined on U1 and so on U satisfies

π(a0) + π(a1)x+ · · ·+ π(an)xn = 0, π(v) = π(a1 + a2x+ · · ·+ anx
n−1)

and since it is a homomorphism with x, a0, . . . , an in its domain, all the terms
aix

i are also in its domain and so it satisfies

π(v) = π(a1) + π(a2)x+ · · ·+ π(an)xn−1.

Hence

π(w) = π(xv) = π(x)π(v) = π(a1)x+ π(a2)x2 + · · ·+ π(an)xn

π(v) = π(a0 + w) = π(a0) + π(w) = 0.

So this is a case where π is not an embedding, because v 6= 0 but π(v) = 0. The
point is that although U can compute v, it does not check that it is 6= 0, and so
the restriction of π to U is a structure homomorphism.

4C. Horner’s rule is {+,−}-optimal for nullity. Notice first that we can
test whether a0 + a1w = 0 by executing three multiplications, equality tests and
no {+,−} (additions/subtractions): first check if any of a0, a1, w is 0 and give
the correct answer for these cases, and if none applies, set

f(a0, a1, w) = if a2
0 6= (a1w)2 then ff else if a0 = a1w then ff else tt.

The method works for any field with characteristic 6= 2 and combines with
Horner’s rule to decide whether a0 + a1x + · · · + anx

n = 0 using (n − 1) ad-
ditions (and (n + 2) multiplications) along with equality tests: apply Horner’s
rule to compute w = a1 + · · ·+anx

n−1 using n−1 multiplications and additions
and then use the subroutine above with this w. This gives

calls{+,−}(F, NF , a0, . . . , an, b) ≤ n− 1 (char(F ) ≥ 2, n ≥ 1)

with F defined by (50), and the correct lower bound for the number of {+,−}
required to test nullity with unlimited calls to ·,÷,= is n− 1.15

Theorem 4.6. If n ≥ 2, F = R or C and a0, a1, . . . , an, b ∈ F are alge-
braically independent (over Q), then

calls{+,−}(F, NF , a0, a1, . . . , an, b) = n− 1.(61)

15I do not know if Horner rule’s 2n is the correct lower bound for the combined number of
operations with unlimited equality tests in the generic case. The current results give a possibly

too low total lower bound of 2n− 1.
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This will follow for R as in 4A, from a much stronger lemma which has the
appropriate induction hypotheses. The proof for C is similar and we will skip it.

For any natural number k > 0 and any w ∈ R+ = {u ∈ R :u ≥ 0}, let w
1
k

be the positive k’th root of w; for any fraction b = m
k 6= 0 and w ∈ R+, set

wb = (w
1
k )m; and for positive v1, . . . , vn, let

Roots(v1, . . . , vn) = {vib | i = 1, . . . , n, b ∈ Q, b 6= 0}.
Let K be the field of algebraic real numbers, and for any two tuples of real
numbers ~u = (u1, . . . , uk), ~v = (v1, . . . , vn) with v1, . . . , vn > 0, let

K∗(~u;~v) = K({u1, . . . , uk} ∪ Roots(v1, . . . , vn))
= the rational functions of algebraic numbers,

u1, . . . , uk and rational powers of v1, . . . , vn.

By the basic notational convention (50),

K∗(~u;~v) = (K∗(~u;~v), 0, 1,+,−, ·,÷,=),

the expansion of the field structure of K∗(~u;~v) by the equality relation.
Suppose U ⊆p K∗(y, z;x1, . . . , xn). An addition or subtraction u± v = w in

eqdiag(U) is trivial if u, v ∈ K(y, z).

Lemma 4.7. Suppose n ≥ 2, g ∈ K, g 6= 0, z, x1, . . . , xn, y are algebraically
independent real numbers with x1, . . . , xn > 0, and U is a finite substructure of
K∗(y, z;x1, . . . , xn) generated by

(U ∩K) ∪ {y, z} ∪ (U ∩ Roots(x1, . . . , xn))

which has < (n− 1) non-trivial additions and subtractions.
Then there is a partial field homomorphism

π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y;x1, . . . , xn)

such that:
(a) π(a) = a for every a ∈ K and π(y) = y;
(b) π is total and injective on U , and so it induces an embedding

π �U : U � K∗(y;x1, . . . , xn) ⊆p R;

and
(c) π(z) + g

(
π(x1)y1 + · · ·+ π(xn)yn

)
= 0.

Proof of Theorem 4.6 from Lemma 4.7. Towards an application of the
Homomorphism Test 2.4, suppose n ≥ 2 and U ⊆p R is finite, generated by
algebraically independent

a0, a1, . . . , ak, ak+1, . . . , an, b (a1, . . . , ak > 0, ak+1, . . . , an < 0)

which we have split in two lists according to the sign. Clearly

a0 + a1b+ · · ·+ anb
n 6= 0.(62)

Let ρ : U � R be the embedding defined by the “relabelling”

ρ(ak+1) = −ak+1, . . . , ρ(an) = −an
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of the negative ai’s, which is an isomorphism of U with U1 = ρ[U]. If U has
< n − 1 additions and subtractions, then U1 satisfies all the hypotheses of the
Lemma with z = ρ(a0) = a0, y = ρ(b) = b, x1 = ρ(a1), . . . , xn = ρ(an), and so
there is an embedding π1 : U1 � R such that

π1(ρ(a0)) + π1(ρ(a1))b+ · · ·+ π1(ρ(an))bn = 0.

The composition π = π1 ◦ ρ : U � R then does not respect (62), and so the
Homomorphism Test gives the conclusion of the theorem. a

Proof of Lemma 4.7 is by induction on n ≥ 2, starting with a preliminary
case which will also cover the basis of the induction.

Sublemma 4.7.1 (Preliminary case). There are no non-trivial {+,−} in U.

Proof. It follows that every member of U is uniquely of the form

M = xb11 · · ·xbn
n p(y, z)(63)

where b1, . . . , bn ∈ Q and p(y, z) ∈ K(y, z) ∩ U . Define

π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y;x1, . . . , xn)

by the substitution

z 7→ −g
(
x1y

1 + · · ·+ xny
n
)
,

It is enough to show that this is total and injective on the set of all numbers of
the form (63), so that in particular it is total and injective on U. We skip the
argument that π(M) is defined for all M in the form (63), as it is similar to (and
a bit simpler) than the argument for injectivity which follows.

Suppose then that

xb11 · · ·xbn
n p(y,−g(x1y

1 + · · ·+ xny
n)) = x

b′1
1 · · ·xb

′
n
n p

′(y,−g(x1y
1 + · · ·+ xny

n))

where p(y, z), p′(y, z) ∈ K(y, z). By clearing the denominators of the rational
functions p(y, z), p′(y, z) and the negative powers by cross-multiplying and then
the denominators in the exponents of x1, . . . , xn by raising both sides to suitable
integer powers, we may assume that all exponents in this equation are in N,
bib

′
i = 0 for i = 1, . . . , n, and p(y, z), p′(y, z) are polynomials in K[y, z]. We then

expand these polynomials in powers of z, so that the assumed equation takes the
form

xb11 · · ·xbn
n [A0(y) +A1(y)(−g)(x1y

1 + · · ·+ xny
n) + · · ·

+Ak(y)(−g)k(x1y
1 + · · ·+ xny

n)k]

= x
b′1
1 · · ·xb

′
n
n [B0(y) +B1(y)(−g)(x1y

1 + · · ·+ xny
n) + · · ·

+Bl(y)(−g)l(x1y
1 + · · ·+ xny

n)l]

where Ak(y), Bl(y) 6= 0. The terms with the highest powers of x1 on the (fully
expanded) two sides of this equation must be equal, and so we have

xb11 · · ·xbnAk(y)(−g)kxk1yk = x
b′1
1 · · ·xb

′
nBl(y)(−g)lxl1yl
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from which we get immediately

xb22 · · ·xbn
n = x

b′2
2 · · ·xbn

n ,

so that bi = b′i for i = 2, . . . , n; and since bib′i = 0, all these numbers are 0. If we
repeat this argument16 using xn rather than x1, we get that b1 = b′1 = 0 also, so
that the original equation takes the simpler form

(64) A0(y) +A1(y)(−g)(x1y
1 + · · ·+ xny

n) + · · ·

+Ak(y)(−g)k(x1y
1 + · · ·+ xny

n)k

= B0(y)+B1(y)(−g)(x1y
1+ · · ·+xnyn)+ · · ·+Bl(y)(−g)l(x1y

1+ · · ·+xnyn)l.
If we now equate again the terms with the highest powers of x1 in this equation,
we get

Ak(y)(−g)kykxk1 = Bl(y)(−g)lylxl1;
which gives immediately that k = l and Ak(y) = Bl(y). Finally, we can cancel
these terms from (64) and then repeat the argument to show that Ai(y) = Bi(y)
for all i ≤ k, completing the proof. a (Sublemma 4.7.1)

The basis of the induction n = 2 is covered by the preliminary case.
In the induction step with n > 2, if the preliminary case does not apply, then

there must exist a “least complex” non-trivial addition or subtraction in U of
the form

w = xb11 · · ·xbn
n p(y, z)± x

b′1
1 · · ·xb

′
n
n p

′(y, z)(65)

where p(y, z), p′(y, z) ∈ K(y, z) and the component parts

u = xb11 · · ·xbn
n p(y, z), v = x

b′1
1 · · ·xb

′
n
n p

′(y, z)

are also in U . We may, in fact, assume that this is an addition, by replacing
p′(y, z) by −p′(y, z) if necessary.

Sublemma 4.7.2. We may assume that in (65), b′i = 0 for i = 1, . . . , n and
p(y, z), p′(y, z) are polynomials, i.e., (65) is of the form

w = xb11 x
b2
2 · · ·xbn

n p(y, z) + p′(y, z)(66)

in which p(y, z), p′(y, z) ∈ K[y, z].

Proof . Let

W = x
−b′1
1 x

−b′2
2 · · ·x−b

′
n

n d(p(y, z))d(p′(y, z))

where d(p(y, z)), d(p′(y, z) are the denominators of p(y, z), p′(y, z) and replace (65)
in eqdiag(U) by the operations

u1 = Wu, v1 = Wv, w1 = u1 + v1, w =
w1

W

along with all the multiplications, divisions and trivial additions and subtractions
required to compute W . If U′ is the resulting structure, then clearly U ⊆ U ′ and
the fixed, non-trivial addition in U has been replaced by one of the form (66).

16This is the part of the proof where n ≥ 2 is used.
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It is not quite true that U ⊆p U′, because the basic equation w = u + v is in
eqdiag(U) but not in eqdiag(U′). On the other hand, if

π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y;x1, . . . , xn)

is a partial field homomorphism which is total and injective on U ′, then π �U :
U � K∗(y;x1, . . . , xn) is an embedding, because it preserves all the other entries
in eqdiag(U) and π(u+ v) = π(u1)+π(v1)

π(W ) = π(w1)
π(W ) = π(w). a (Sublemma 4.7.2)

It must be the case that some bi 6= 0 in (66), otherwise the chosen addition is
trivial, and we may assume to simplify notation that this happens for i = 1. For
each strictly positive f ∈ Q, let

ρf : K∗(y, z;x1, . . . , xn, z) ⇀ K∗(y, z;x2, . . . , xn, z)

be the partial field homomorphism induced by the substitution

ρf (x1) :=
( f

xb22 · · ·xbn
n

) 1
b1
.(67)

Sublemma 4.7.3. For all but finitely many f ∈ Q+, ρf is total and injective
on U .

This is proved very much like Lemma 4.2 and we will not repeat the argument.
We fix one such f and we let

ρ1 = ρf .

Since the restriction of ρ1 to U is injective, ρ1 defines an isomorphism

ρ1 �U : U�→ ρ1[U] = U′

of U with its image U′, which is generated by

(U ∩K) ∪ {f
1

b1 } ∪ {y, z} ∪ (U ′ ∩ Roots(x2, . . . , xn)).

Also, ρ1 takes trivial {+,−} to trivial ones, because it is the identity on K(y, z),
and it transforms the non-trivial addition in (66) into a trivial one since

ρ1(xb11 x
b2
2 · · ·xbn

n p(y, z)) = fp(y, z).

So there are fewer than n − 2 non-trivial {+,−} in U′, and we can apply the
induction hypothesis to it, further down. Let

X = ρ1(x1) = f
1

b1 x
− b2

b1
2 · · ·x

− bn
b1

n

and for any h ∈ Q, h > 0, define ρ2 : K∗(y, z;x2, . . . , xn) ⇀ K∗(y, z;x2, . . . , xn)
by the substitution

ρ2(z) := g(
y

h
z −Xy).

Sublemma 4.7.4. For all but finitely many h ∈ Q+, the homomorphism ρ2 is
injective on U ′.
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This, too is easily checked as before. We fix one such h and we invoke the
induction hypothesis to get a partial field homomorphism

σ : K∗(y, z;x2, . . . , xn) ⇀ K∗(y;x2, . . . , xn)

which fixes K and y, is total and injective on U′ and satisfies

σ(z) + h
(
σ(x2)y + · · ·+ σ(xn)yn−1

)
= 0.

We claim that the required partial field homomorphism is the composition

π = σ ◦ ρ2 ◦ ρ1 : K∗(y, z;x1, x2, . . . , xn) ⇀ K∗(y;x2, . . . , xn).

This is certainly total and injective on U , as the composition of three injections.
To check that it has the required property, we compute, using the properties
of the three homomorphisms involved—i.e., that ρ1 fixes all the generators of
K∗(y, z;x1, x2, . . . , xn) except for x1 and ρ2 affects only z:

g
(
π(x1)y + π(x2)y2+ · · ·π(xn)yn

)
= g

(
σ(ρ2(ρ1(x1))y + σ(x2)y2 + · · ·+ σ(xn)yn

)
= g

(
σ(X)y + y

(
σ(x2)y + · · ·σ(xn)yn−1

))
= g

(
σ(X)y − y

h
σ(z)

)
= σ

(
g
(
Xy − y

h
z
))

= σ(−ρ2(z)) (by the definition of ρ2)

= −σ(ρ2(ρ1(z))) = −π(z)

as required. a

4D. Counting identity tests along with {+,−}. If we also count calls
to the equality relation, then Horner’s rule clearly requires n additions and one
equality test to decide the nullity relation, for a total of n + 1. This may well
be the correct lower bound for calls{+,−,=}(R, NR,~a, b) on an infinite number of
tuples ~a, b, but we do not know how to prove this now. In any case, it fails for
algebraically independent inputs:

Lemma 4.8. If a0, a1, b are algebraically independent real numbers, U ⊆p R
and

eqdiag(U) = {u = a1b, w = a0 + u, v =
b

w
},

then U 
R
c a0 + a1b 6= 0, and so

calls{+,−,=}(R, NR, a1, a2, b) ≤ 1.

Proof. Every homomorphism π : U → R must be defined on v and satisfy

π(v) =
π(b)
π(w)

,

so that π(w) = π(a0) + π(a1)π(b) 6= 0. a
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The trick here is to use division (which we are not counting) in place of the
natural identity test, so one might think that allowing only multiplications would
enforce at least two +,− or = - tests to certify a0 + a1b 6= 0, but this does not
work either: if the single equality test a2

0 = (a1b)2 is in eqdiag(U), then, easily,
U 
 a0 + a1b 6= 0. We prove the best result for the generic case and leave
open the possibility that Horner’s rule is optimal on infinitely many non-generic
inputs.

Theorem 4.9.17 If n ∈ N, F = R or C and a0, a1, . . . , an, b ∈ F are alge-
braically independent (over Q), then

calls{+,−,=}(F, NF , a0, a1, . . . , an, b) = n.(68)

A partial field homomorphism π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y, z;x1, . . . , xn)
is proper on a set U if its kernel does not intersect U \ {0}, i.e.,

v ∈ U & v 6= 0 =⇒π(v) 6= 0.

This insures that if u÷ v = w ∈ eqdiag(U), then π(w) is defined.
Suppose U ⊆p K∗(y, z;x1, . . . , xn). An addition u + v, subtraction u − v or

inequality test u 6= v18 in eqdiag(U) is trivial if u, v ∈ K(y, z).
The theorem follows as before from the following lemma—and the general

version of Lemma 4.8 for the upper bound.

Lemma 4.10. Suppose n ≥ 1, g ∈ K, g 6= 0, z, x1, . . . , xn, y are algebraically
independent real numbers with x1, . . . , xn > 0, and U is a finite substructure of
K∗(y, z;x1, . . . , xn) generated by

(U ∩K) ∪ {y, z} ∪ (U ∩ Roots(x1, . . . , xn))

which has < n non-trivial additions, subtractions and equality tests.
Then there is a partial field homomorphism

π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y;x1, . . . , xn)

such that:
(a) π(a) = a for every a ∈ K and π(y) = y;
(b) π is proper on U , and so it induces a homomorphism

π �U = π : U → K∗(y;x1, . . . , xn);

and
(c) π(z) + g

(
π(x1)y1 + · · ·+ π(xn)yn

)
= 0.

Proof is by induction on n ≥ 1. It is almost exactly (and a bit simpler)
than the proof of Lemma 4.7, and we will only describe the necessary changes,
mostly in the Sublemma corresponding to 4.7.1 and in the mild modification of
the statements of the other Sublemmas, to include inequations.

17A differently formulated but equivalent result is proved for algebraic decision trees in

Bürgisser, Lickteig, and Shub [1992].
18There is no need to include entries of the form (=, u, v, tt) in eqdiag(U), because every

homomorphism on U automatically respects them. So the number of significant = - tests is

the number of entries (=, u, v,ff) in eqdiag(U).
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Sublemma 4.10.1 (Preliminary case). There are no non-trivial {+,−, 6=} in U.

Proof. The members of U are uniquely of the form

M = xb11 · xbn
n p(y, z)(69)

with b1, . . . , bn ∈ Q and p(y, z) ∈ K(y, z) ∩ U , and we define

π : K∗(y, z;x1, . . . , xn) ⇀ K∗(y;x1, . . . , xn)

by the substitution

z 7→ −g
(
x1y

1 + · · ·+ xny
n
)
,

exactly as before. The difference is that we need not prove that π is an injection
on elements of the form (69), which may, in fact, be false—this was the part
where we used n ≥ 2 while now n may be 1. We only need show that π is
proper, i.e., that

xb11 · xbn
n p(y,−g(x1y

1 + · · ·+ xny
n)) = 0 =⇒xb11 · xbn

n p(y, z) = 0,

which is practically trivial by just the first part of the argument for Sublemma
4.7.1 which does not need the hypothesis n > 1. a (Sublemma 4.10.1)

A counterexample to the injectivity of π when n = 1 is given by the distinct
polynomials z and x1(−y) with g = 1, for which

π(z) = −x1y = π(x1(−y)).

This Sublemma covers the basis of the induction n = 1. Suppose then that
n > 1 and there is at least one entry in eqdiag(U), and hence a least-complex
entry of the form

w = xb11 · · ·xbn
n p(y, z) ◦ x

b′1
1 · · ·xb

′
n
n p

′(y, z)(70)

where ◦ is +,− or 6=, p(y, z), p′(y, z) ∈ K(y, z) and the component parts

u = xb11 · · ·xbn
n p(y, z), v = x

b′1
1 · · ·xb

′
n
n p

′(y, z)

are also in U .

Sublemma 4.10.2. We may assume that in (70), b′i = 0 for i = 1, . . . , n and
p(y, z), p′(y, z) are polynomials, i.e., (70) is of the form

w = xb11 x
b2
2 · · ·xbn

n p(y, z) ◦ p′(y, z)(71)

in which p(y, z), p′(y, z) ∈ K[y, z].

The argument here is exactly like that of 4.7.2, with the extra case when ◦ is
6= causing no problem. In fact, the rest of the proof of Lemma 4.7 goes through
essentially word-for-word, as long as we change “injective” to “proper”. We skip
the details. a
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§5. Recursive programs and computation models. Most computation
models which have been used to derive lower bounds in arithmetic and alge-
braic complexity can be viewed as recursive programs with various restrictions.
We will establish here this representation of concrete algorithms from specified
primitives and derive from it the connection between some of the natural, con-
crete complexity measures and the abstract measures induced by substructure
norms that we have been studying. The results are very simple, natural gen-
eralizations of the construction in Section 2G, and the only subtle points are
the need to identify and take account of “hidden primitives” often assumed but
not explicitly identified in the specification of computation models and the use
of additional “data types”. These issues are especially important for the most
common models of Turing and Random Access Machines (with oracles), which
we will take up last.

5A. Recursive programs—syntax.19 Let Φ be a vocabulary as in Sec-
tion 1. An n-ary recursive program E in the signature Φ is a syntactic expression

E ≡ E0(~x, ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~uk, ~p)}(72)

where the following conditions hold:

(RP1) ~p ≡ p1, . . . , pk is a sequence of (not necessarily distinct) function symbols,
each with an assigned type

type(pi) ≡ 〈ki, si〉 ≡ 〈a, . . . , a︸ ︷︷ ︸
ki

, s〉 (i = 1, . . . , k).

(RP2) For i = 0, . . . , k, Ei(~vi, ~p) is a term in the vocabulary Φ ∪ {p1, . . . , pk}
whose free variables are in the list ~vi, with

~v0 ≡ ~x ≡ x1, . . . , xn.

(RP3) For i = 1, . . . , k, sort(pi(~vi)) = sort(Ei(~vi, ~p)).

The sort of E is the sort of its head E0(~x, ~p); the free variables of E are
x1, . . . , xn; and its bound variables are those in the lists ~vi and the recursive
variables p1, . . . , pk. We identify programs which differ only by a relabelling of
their bound variables.

The program E is deterministic if its recursive variables are all distinct, so
that the body of E (within the braces) is a system of mutual recursive equations.

It is well known that a deterministic, n-ary Φ-program defines on every Φ-
structure A an n-ary partial function

fE : An ⇀ As,

19Deterministic recursive programs were introduced by McCarthy [1963], who used them, in
particular, to develop clean foundations for call-by-value computability from arbitrary, speci-

fied primitives. Especially significant was McCarthy’s explicit identification of the conditional
(branching) as an essential ingredient of computation: he used it to give an elegant character-

ization of the general recursive functions on N which avoids the non-determinism inherent in
the Herbrand-Gödel-Kleene systems of Kleene [1952]. Van den Dries and Moschovakis [2004]
outlines briefly their applications to complexity theory, which we take up more generally (and
in a different way) here.
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which is determined by the least solutions of the recursive equations in its body.
These least solutions and fE can also be computed by various standard imple-
mentations, which also apply to non-deterministic programs and yield a suitable
fE computed by E on some Φ-structures—this, too is well known. In the next
section we will outline a (very abstract) approach to their semantics which justi-
fies the following identifications of several standard computation models obtained
by placing syntactic restrictions on the form of E in (72).

(1) Terms: k = 0 in (72), i.e., the body of E is empty. In this case E ≡ E0(~x)
is just a Φ-term.

(2) Finite algorithms (with branching): for each i = 1, . . . , k, if pj occurs
in Ei(~vi, ~p), then j < i.

Among these are the k-step algorithms of Pan [1966] and Winograd [1967]
in the vocabulary Φ (or computation sequences in Strassen [1990]) which are
deterministic recursive programs that satisfy the following additional restrictions:

(2.1) All the bound variable lists ~vi have the same length n, equivalently: for
some fixed ~v ≡ v1, . . . , vn and each i = 1, . . . , k, ~vi ≡ ~v.

(2.2) For each i = 1, . . . , k, Ei(~v, ~p) is in one of the three forms,

c, vj , or φ(pj1(~v), . . . , pjm(~v)),

where 1 ≤ j ≤ n, c is a distinguished constant (a nullary function symbol)
in Φ, φ ∈ Φ with arity nφ = m and j1, . . . , jm < i.

In particular, there are no conditionals in these programs. If we also allow

(2.3) Ei(~v, ~p) ≡ if pj1(~v) then pj2(~v) else pj3(~v) (with j1, j2, j3 < i),

we get what Strassen [1990] and Mansour, Schieber, and Tiwari [1991a, 1991b]
call computation trees. These have also been called algebraic computation trees
in the literature, or just decision trees when pj1 is restricted to be the equality
symbol =.

(3) Iterative (while) programs: k = 1 and E1 is a tail recursion,

E1(~v, p) ≡ if test(~v) then out(~v) else p(τ(~v))(73)

where ~v ≡ v1, . . . , vm, test(~v), out(~v) are Φ-terms and

τ(~v) ≡ (τ1(~v), . . . , τm(~v))

is an m-tuple of Φ-terms which defines a transition function. These are “logi-
cal”, recursive specifications of the classical, deterministic computation models
with their test, output and transition functions defined by Φ-terms. Their non-
deterministic versions are obtained by allowing arbitrary k ≥ 1 but only one
recursive variable p, so that every Ei(~v, p) is a conditional of the form (73) with
varying choices of test, out and τ .

Many more interesting classes of algorithms can be similarly specified by plac-
ing restrictions on the form of recursive programs, but these suffice for our pur-
poses here.
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5B. Recursive programs—semantics. For each recursive program E in
the vocabulary Φ as in (72) and for each Φ-structure A, let

ClTerms(E,A) = {t : t is a closed
(
Φ ∪ {p1, . . . , pk} ∪A

)
-term},

where each u ∈ A is viewed as a nullary function symbol. We define the relation

E,A ` t = w ⇐⇒ E proves that t = w in A

(t ∈ ClTerms(E,A), w ∈ A ∪ {tt,ff}, sort(t) = sort(w))

by the following generalized induction, i.e., {(t, w) :E,A ` t = w} is the small-
est set which satisfies the induction clauses, as in the definition of generated
substructions in (10):20

(RP1) For each w ∈ A, E,A ` w = w.
(RC2) If E,A ` t1 = u1, . . . , E,A ` tn = un and φA(u1, . . . , un) = w, then

E,A ` φ(t1, . . . , tn) = w.
(RP3) If E,A ` t1 = tt and E,A ` t2 = w, then E,A ` if t1 then t2 else t3 = w.

If E,A ` t1 = ff and E,A ` t3 = w, then E,A ` if t1 then t2 else t3 = w.
(RP4) If E,A ` t1 = u1, . . . , E,A ` tn = un and E,A ` Ei(u1, . . . , un, ~p) = w

for some i such that p ≡ pi, then E,A ` p(t1, . . . , tn) = w.
Notice that if E is non-deterministic, we may well have

E,A ` t = w1 and E,A ` t = w2 with w1 6= w2.

A partial function f : An ⇀ As is computed by E in A if it satisfies the
equivalence

f(~x) = w ⇐⇒ E,A ` E0(~x, ~p) = w (~x ∈ An, w ∈ As).(74)

The definition insures that each E computes at most one partial function in each
Φ-structure A, and it does that if for all ~x,w,w′ ∈ A,(

E,A ` E0(~x, ~p) = w & E,A ` E0(~x, ~p) = w′
)

=⇒w = w′.(75)

Lemma 5.1. Suppose A is a Φ-structure and E is an n-ary Φ-recursive pro-
gram.

(1) If U ⊆p A, then

E,U ` t = w=⇒E,A ` t = w.

(2) If E computes a partial function in A, then it computes a partial function
in every U ⊆p A.

(3) If E is deterministic, then E computes a partial function in A.

20There are various ways to define a notion of “computation” by E in A, but the crucial

property that any such notion must have is that

E,A ` t = w ⇐⇒ there is a computation of t by E in A which outputs w,

For non-deterministic programs with which we are working here, it may be that E computes
two different values w1 and w2 of t, and so it is easier to work with this more abstract notion
of “provability”.
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Proof. (1) is immediate by induction on the definition of E,U ` t = w. The
same kind of induction verifies (75) for deterministic programs, which proves
(3): the key observation is that in the deterministic case, an equation t = w is
provable from E,A in at most one way which can be read from the form of t.

(2) follows from (1), because if E computes f : An ⇀ As in A, then for all
~x ∈ Un and w ∈ U ,

E,U ` E0(~x, ~p) = w=⇒E,A ` E0(~x, ~p) = w=⇒ f(~x) = w,

and so {(~x,w) ∈ Un+1 :E,U ` E0(~x, ~p) = w} is the graph of a partial function
f ′ v f . a

By a similar inductive definition, we assign to each equation t = w such that
E,A ` t = w the three basic complexity measures of recursive programs,

callsΦ0(E,A)(t = w) (with Φ0 ⊆ Φ),

size(E,A)(t = w) = |space(E,A)(t = w)|,
depth(E,A)(t = w).

We skip in the definition most references to E,A, which remain constant:

(RC1) callsΦ0(w = w) = depth(w = w) = 0 and space(w = w) = {w} (w ∈ A).
(RC2) If E,A ` t1 = tt and E,A ` t2 = w, then

- callsΦ0(if t1 then t2 else t3 = w) = callsΦ0(t1 = tt) + callsΦ0(t2 = w),
- space(if t1 then t2 else t3 = w) = space(t1 = tt) ∪ space(t2 = w),
- depth(if t1 then t2 else t3 = w) = max(depth(t1 = tt),depth(t2 = w)),

and similarly if E,A ` t1 = ff.
(RC3) If E,A ` tj = uj for j = 1, . . . , n and φA(u1, . . . , un) = w, then

- callsΦ0(φ(t1, . . . , tn) = w) =
∑
j=1,... ,n calls(tj = uj) +m,

where m = 1 if φ ∈ Φ0 and m = 0 otherwise,
- space(φ(t1, . . . , tn) = w) =

⋃
j=1,... ,nspace(tj = wj) ∪ S,

where S = {φA(u1, . . . , un)} if w ∈ A and S = ∅ if w ∈ {tt,ff},
- depth(φ(t1, . . . , tn) = w) = maxj=1,... ,n(depth(tj = uj)) + 1.

(RC4) If E,A ` tj = uj for j = 1, . . . , n and E,A ` Ei(u1, . . . , un, ~p) = w for
some i such that p ≡ pi, then

- callsΦ0(p(t1, . . . , tn) = w) =
∑
j=1,... ,n callsΦ0(tj = uj)

+min
{

callsΦ0(Ei(u1, . . . , un, ~p) = w) : p(~v) = Ei(~v, ~p) is in E
}

,
- space(p(t1, . . . , tn) = w) =

⋃
j=1,... ,nspace(tj = uj) ∪ S where

S = space(Ei(u1, . . . , un, ~p) = w) for some p(~v) = Ei(~v, ~p) in E
such that |

⋃
j=1,... ,nspace(tj = uj) ∪ S| is least,

- depth(p(t1, . . . , un) = w) = maxj=1,... ,n(depth(tj = uj))
+min(depth(Ei(u1, . . . , un, ~p) = w) : p(~v) = Ei(~v, ~p) is in E).

Clauses (RC1) – (RC3) are quite direct, only mildly complicated by the cir-
cumstance that we do not have variables over {tt,ff}. The last clause (RC4)
is substantially more complex because we are working with non-deterministic
programs: it, too, is very simple (without the “min” operation) for determinis-
tic programs in which the recursive variables p1 . . . , pk are all distinct. In any
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case, we will assume that these conditions are satisfied by all reasonable imple-
mentations of non-deterministic recursive programs and their associated, nat-
ural complexity measures—and a fortiori, that they are satisfied by the concrete
computation models whose characterization as restricted recursive programs was
explained in (1) – (3) of Section 5A.

Lemma 5.2. Suppose all the constants from A in a term t occur in the list
~x = (x1, . . . , xn), E,A ` t = w, Φ0 ⊆ Φ and C = callsΦ0 , size or depth; then
there is a finite U ⊆ A generated by ~x such that E,U ` t = w and

C(U, ~x) ≤ C(E,A)(~x).(76)

Outline of proof. We need to prove the lemma separately for each com-
plexity measure, since a different U may be needed in each case. The argument
is by induction on the definition of E,A ` t = w, again, and it is trivial in the
base: if w = w is an axiom, take U to be the structure with universe {w} and
eqdiag(U) = ∅.

We consider two of the cases in the induction step.
Suppose t ≡ φ(t1, . . . , tn), so that for suitable u1, . . . , un, E,A ` tj = uj for

j = 1, . . . , un and φA(u1, . . . , un) = w. The induction hypotheses gives us for
each j a substructure Uj ⊆p A generated by ~x such that E,Uj ` tj = ui and
the relevant complexity inequality is satisfied. Define U by

U = U1 ∪ · · · ∪ Un ∪ S (where S = {w} if w ∈ A and S = ∅ otherwise),

eqdiag(U) = eqdiag(U1) ∪ · · · eqdiag(Un) ∪ {φ(u1, . . . , un) = w},
so that U is generated by ~x and E,U ` t = w by (1) of Lemma 5.1. The
complexity claim follows directly from the definitions.

Suppose t ≡ p(t1, . . . , tki
). The induction hypothesis gives us again for each j

a suitable Uj ⊆p A satisfying the conclusion of the lemma, and for each i such
that p ≡ pi and E,A ` Ei(~u, ~p) = w a substructure UEi

which is generated
by ~u such that E,UEi

` Ei(~u, ~p) = w and the relevant complexity inequality is
satisfied. We choose one i for which this measure is least and define U by

U = U1 ∪ · · · ∪ Uki
∪ UEi

,

eqdiag(U) = eqdiag(U1) ∪ · · · eqdiag(Un) ∪ eqdiag(UEi
).

The required complexity inequality must be checked separately for each com-
plexity measure, but it is quite easy. a

Theorem 5.3. Suppose E is an n-ary Φ-recursive program which computes a
partial function f : An ⇀ As in the Φ-structure A, and for each U ⊆p A set

αU
E (~x) = w ⇐⇒ E,U ` E0(~x, ~p) = w.(77)

The operation U 7→ αU
E is a uniform process of A which computes f , and for

each of the complexity measure C = callsΦ0 , size or depth,

C(αU, ~x) ≤ C(E,A)(t = w),

so that the same inequality holds for the intrinsic complexities,

C(A, f, ~x) ≤ C(E,A)(t = w).
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Proof. The equivalence (77) defines a partial function αU
E : Un ⇀ Us by (2)

of Lemma 5.1, and the argument that this operation satisfies the Homomorphism
Axiom II is a simple extension of the argument for (1) of that lemma: given
π : U → V, define tπ for every closed

(
Φ ∪ {p1, . . . , pk} ∪A

)
-term by replacing

each u ∈ U which occurs in t by π(u) and then verify by an easy induction on
(RC1) – (RC4) that

E,U ` t = w=⇒E,V ` tπ = π(w).

It follows that

αU
E (~x) = w=⇒E,U ` E0(~x, ~p) = w

=⇒E,V ` E0(~π(~x), ~p) = π(w)=⇒αV
E (~π(x)) = π(w)

as required.
Axiom III and the complexity inequalities follow immediately from Lemma 5.2,

because the constants in E0(x1, . . . , xn, ~p) all occur in the list (x1, . . . , xn). a
The upshot is that a lower bound result for the intrinsic complexities defined

in Section 2I applies to all recursive programs, and so also to all the computation
models identified with restricted recursive programs in Section 5A.

5C. Turing machines with oracles (missing in this draft).
5D. Random access machines (missing in this draft).

§6. Concluding remarks (missing in this draft).
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