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What it is about

• An operator Φ : P(X ) → P(X ) on the powerset of a set X is
monotone if

S ⊆ T =⇒ Φ(S) ⊆ Φ(T ) (S ⊆ T ⊆ X );

and every monotone Φ has a least fixed point Φ characterized by

Φ(Φ) = Φ, (∀S ⊆ X )[Φ(S) ⊆ S =⇒ Φ ⊆ S ]

• This set Φ built up by Φ is defined explicitly by

Φ =
⋂{S ⊆ X | Φ(S) ⊆ S}, (Exp)

and inductively by the ordinal recursion

Φ =
⋃

ξ Φξ, where Φξ = Φ(
⋃

η<ξ Φη). (Ind)

• The Normed Induction Theorem gives simple—often best
possible—classifications of Φ, especially in Descriptive Set Theory
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Outline

• The arithmetical and analytical hierarchies on ω and N (3 slides)

• Borel sets and their codings (2 slides)

• Norms and the prewellordering property (2 slides)

• The main result and some of its consequences (5 slides)

• The story of O (2 slides)

• Results by several people will be discussed

• The basic references for proofs are the Second Edition of my
Descriptive Set Theory book and the article Kleene’s amazing 2nd
Recursion Theorem, both posted on www.math.ucla.edu/∼ynm

Yiannis N. Moschovakis: The Normed Induction Theorem 2/16



Notation and terminology

• ω = {0, 1, . . . , }, s, t ∈ ω, N = (ω → ω), the Baire space, α, β ∈ N
• A space is a product X = X1 × · · · ×Xk where each Xi is ω or N
• A pointset is any P ⊆ X = X1 × · · · × Xk and we write synonymously

x ∈ P ⇐⇒ P(x) ⇐⇒ P(x1, . . . , xk)

• A pointclass is any collection Γ of pointsets

• Restriction: For each X , Γ¹X = {P ⊆ X | P ∈ Γ}
• Relativization: Γ(α) = {Pα | P ∈ Γ} where Pα(x) ⇐⇒ P(α, x)

〈t0, . . . , tn−1〉 = 2t0+13t1+1 · · · ptn−1+1
n−1

α(t) = 〈α(0), . . . α(t − 1)〉, n(t) = n

if x = (x1, . . . , xk) ∈ X , then x(t) = 〈x1(t), . . . , xk(t)〉
α′ = λtα(t + 1) (α)i = λsα(〈i , s〉)

• The results we will discuss hold for all recursive Polish spaces
—and “boldface versions” of them hold for all Polish spaces
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The arithmetical and analytical pointclasses
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• Σ0
1, semirecursive: P(x) ⇐⇒ (∃s)R(x(s)) with recursive R ⊆ ωk

• Π1
1 : P(x) ⇐⇒ (∀α)Q(x , α) with Q in Σ0

1

⇐⇒ (∀α)(∃t)R(x(t), α(t)) with recursive R ⊆ ωk+1

• Σ1
2 : P(x) ⇐⇒ (∃α)Q(x , α) with Q in Π1

1

⇐⇒ (∃α)(∀β)(∃)R(x(t), α1(t), α2(t)) with recursive R

• The relativized pointclasses: Σ1
n(α), Π1

n(α), ∆1
n(α) = Σ1

n(α) ∩ Π1
n(α)

• The boldface pointclasses: Σe 1
n =

⋃
α Σ1

n(α), etc.
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Closure properties and ω-parametrization

• A function f : X → ω is recursive if {(x , w) | f (x) = w} is Σ0
1

• f : X → N is recursive if f (x) = λtg(x , t) with a recursive g

• f : X → Y1 × · · · × Yl is recursive if f (x) = (f1(x), . . . , fl(x))
with recursive components f1, . . . , fl

• The sequence-coding and projection functions are recursive

? All Σi
n, Π

i
n,∆

i
n are closed under recursive substitutions &,∨ and

bounded number quantification (∃s ≤ t), (∀s ≤ t)
Σ0

n is closed under (∃s ∈ ω); Π0
n is closed under (∀s ∈ ω)

Σ1
n, Π

1
n are closed under (∃s ∈ ω), (∀s ∈ ω)

Σ1
n is closed under (∃y ∈ Y ); Π1

n is closed under (∀y ∈ Y )

• The pointclasses Σi
n, Π

i
n are not closed under ¬

? Γ is ω-parametrized if for each X , there is a G ⊆ ω × X
in Γ such that Γ¹X = {Ge | G (e, x)}, where Ge(x) ⇐⇒ G (e, x)

• Theorem A. Σ0
n, Π

0
n, Σ

1
n, Π

1
n are all ω-parametrized

Yiannis N. Moschovakis: The Normed Induction Theorem 5/16



The Borel pointsets

• B¹X = the smallest σ-algebra of subsets of X which includes Σe 0
1¹X

• Codes for Borel sets: B =
⋃

ξ Bξ, where by ordinal recursion,

α ∈ Bξ ⇐⇒ α(0) = 0 ∨ [α(0) 6= 0 & (∀i)[(α′)i ∈ ∪η<ξBη]]

i.e., B is the least fixed point of the monotone operator

Φ(S) = {α | α(0) = 0 ∨ [α(0) 6= 0 & (∀i)[(α′)i ∈ S ]]} (S ⊆ N )

• For each space X and each α ∈ B we define B(α) = BX (α) by
an (easy) ordinal recursion, so that

if α(0) = 0,B(α) = {x ∈ X | (∃t)[α′(x , t) = 0]},
if α(0) 6= 0,B(α) =

⋃
i (X \ B((α′)i ))

Basic (easy) fact. For each X , B¹X = {BX (α) | α ∈ B}
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How complex are B and the operation α 7→ BX (α)?

• The explicit definition of B = Φ gives no useful complexity bound

• The inductive definition of B = Φ gives (easily) that B is Σ1
2

Theorem 1. B is Π1
1

Theorem 2. For each X , the relation

MX (α, x , w) ⇐⇒ α ∈ B

&
(
[w = 1 & x ∈ BX (α)] ∨ [w = 0 & x /∈ BX (α)]

)

is Π1
1; and so each BX (α) is uniformly ∆1

1(α)

• Theorem 2 is old (not trivial) but Theorem 1 had not been noticed

• Getting (easy) proofs of these was a motivation for this work
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Norms and the prewellordering property

• A norm on a pointset P ⊆ X is any function σ : P → Ordinals

and it is a Γ-norm if the following two relations on X × X are in Γ:

x ≤∗σ y ⇐⇒ P(x) &
(
¬P(y) ∨ σ(x) ≤ σ(y)

)

x <∗
σ y ⇐⇒ P(x) &

(
¬P(y) ∨ σ(x) < σ(y)

)

? A pointclass Γ is normed (or has the prewellordering property)
if every pointset in Γ admits a Γ-norm

• Σ0
1 is normed: if P(x) ⇐⇒ (∃t)R(x(t)), put σ(x) = µtR(x(t))

• Π1
1 and Σ1

2 are normed

—and various versions of this fact were used in the early 20th
century to derive much of the structure theory for these pointclasses
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Normed pointclasses

• Σ0
n is normed for every n (same proof as for Σ0

1)

• If the Axiom of Costructibility holds, then every Σ1
n+1 is normed

• If the Axiom of Projective Determinacy holds, then
Π1

2n+1 and Σ1
2n are normed for every n

Fact: If Γ is closed under recursive substitutions, ω-parametrized
and normed, then the dual pointclass ¬Γ is not normed

This is proved by Kleene’s construction of recursively inseparable
disjoint r.e. sets and implies that the three results above identify all
the arithmetical and analytical pointclasses which are normed,
under either of the conflicting hypotheses of constructibility or
projective determinacy

• There are many interesting pointclasses which are

closed under recursive substitutions, ω-parametrized and normed
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?The main result

• Let Γ be a pointclass. An operator Φ : P(X ) → P(X ) is Γ on Γ,
if for every relation P ⊆ Y × X in Γ, the relation

Q(x , y) ⇐⇒ x ∈ Φ({x ′ | P(y , x ′)})
is also in Γ.

Theorem (The Normed Induction Theorem, ynm 1974)

Suppose Γ is closed under recursive substitutions, ω-parametrized
and normed:

If Φ : P(X ) → P(X ) is monotone and Γ on Γ, then Φ is in Γ

• In most applications, the hypotheses are either known or trivial

• The theorem is proved by a simple 2nd Recursion Theorem argument

? Once you prove it, you almost never need to use again the 2nd
Recursion Theorem in Descriptive Set Theory
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Borel sets and their codes

The set B of Borel codes is the least fixed point of

Φ(S) = {α | α(0) = 0 ∨ [α(0) 6= 0 & (∀i)[(α′)i ∈ S ]]} (S ⊆ N )

Theorem 1. B is Π1
1

Proof. Since Π1
1 is closed under recursive substitutions,

ω-parametrized and normed, it is enough to prove that Φ is Π1
1 on

Π1
1, i.e., to verify that if P(y , α) is Π1

1 and

Q(α, y) ⇐⇒ α(0) = 0 ∨ [α(0) 6= 0 & (∀i)P(y , (α′)i )],

then Q(α, y) is also Π1
1; but this is obvious from the closure

properties of Π1
1

• The NIT gives an equally trivial proof of Theorem 2, that every
B(α) is ∆1

1(α), uniformly for α ∈ B

• The Suslin-Kleene Theorem. Every ∆e 1
1 pointset is uniformly Borel

This can also be proved using NIT on Σ0
1, but not quite trivially
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The original motivation for the theorem

• Γ is a Spector pointclass if it is ω-parametrized, normed and
closed under recursive substitutions, &,∨, (∃s ∈ ω) and (∀s ∈ ω)

• Π1
1 is the smallest Spector pointclass

• Σ1
2 is the smallest Spector pointclass closed under (∃α ∈ N )

• The pointclass IND of all (positive, elementary) inductive
pointsets is the smallest Spector pointclass closed under both
(∀α ∈ N ) and (∃α ∈ N )

• The pointclass Envelope(3E) of all sets Kleene-semirecursive in
the type-3 object which embodies existential quantifier 3E over N
is the smallest Spector pointclass which is closed under 3E

• A pointset is inductive if it is Σ1-definable over the smallest
admissible set which contains N
• Envelope(3E) is closed under (∀α ∈ N ), but it is not closed

under (∃α ∈ N ), and so
⋃

n Σ1
n ( Envelope(3E) ( IND
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Largest fixed points

• Every monotone operator Φ : P(X ) → P(X ) has a largest fixed
point Φ characterized by

Φ(Φ) = Φ, (∀S ⊆ X )[S ⊆ Φ(S) =⇒ S ⊆ Φ],

in fact
Φ = X \ (the least fixed point of Φ̆),

where Φ̆ is the operator dual to Φ,

Φ̆(S) = X \ Φ(X \ S),

Corollary (to the Normed Induction Theorem)

If Γ is ω-parametrized and closed under recursive substitutions, the
dual pointclass ¬Γ is normed and Φ : P(X ) → P(X ) is Γ on Γ,
then the largest fixed point Φ of Φ is in Γ
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The effective Cantor-Bendixson Theorem

Theorem 3 (Kreisel, 1959). If F ⊆ X is a closed, Σ1
1 set and

F = k(F ) ∪ s(F )

is the unique decomposition of F into a perfect set k(F ) and a
countable set s(F ), then the kernel k(F ) is Σ1

1

Proof k(F ) is the largest fixed point of the Cantor derivative

ΦF (S) = {x ∈ S | x is a limit point of S ∩ F} (S ⊆ X )

which is easily Σ1
1 on Σ1

1, and ¬Σ1
1 = Π1

1 is normed

• Kreisel proved much more, including the fact that this
complexity result is best possible: there is a Π0

1 set F ⊆ N whose
kernel is Σ1

1 but not Π1
1.
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The story of O

• O is a set of numbers, a canonical notation system for countable
ordinals that Kleene introduced in 1938, following Church. Kleene
used O extensively throughout his life, as the basic tool in the
study of hyperarithmetical sets

• In 1944, Kleene published a proof that O is Π0
2 . . .

• . . . and in 1955, he published a proof that O is Π1
1 and not Σ1

1

which this time was correct!

• Kleene’s 1944 error is due to a misunderstanding(!) of inductive
definitions with “non-constructive” clauses and it is easy to
understand it using the Normed Induction Theorem

• Since the inductive definition of O is quite complex, we will
illustrate the point using a set A which is much easier to define
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The story of A

• Let ϕe(t) = U(µyT1(e, t, y) be the recursive partial function
with code e, and let A = Φ ⊆ ω be the least fixed point of

Φ(S) = {m | m = 1 ∨ (∃e)[m = 2e & (∀t)[ϕe(t)↓ & ϕe(t) ∈ S ]]}
so that

m ∈ Φ(S) ⇐⇒ m = 1∨(∃e ≤ m)
(
m = 2e & (∀t)(∃y)T1(e, t, y)

& (∀t)(∀y)[T1(e, t, y) =⇒ U(y) ∈ S ]
)

• Φ is Π1
1 on Π1

1, so its least fixed point A = Φ is Π1
1, since Π1

1 is normed

• Φ is Π0
2 on Π0

2, so its largest fixed point Φ is Π0
2, since Σ0

2 is normed

• In the 1944 paper, Kleene does the similar (somewhat more
complex) computation for the operator Ψ for which Ψ = O, and
naively assumes that Ψ has only one fixed point, i.e., O—which
then must be Π0

2
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