
What is an algorithm?

Yiannis N. Moschovakis
UCLA and University of Athens

CSLI, May 31, 2014

36,500,000 Google hits and no definition

• Wikipedia: An algorithm is a step-by-step procedure for calculations

• Knuth: A computational method is . . . (computation model)
An algorithm is a computational method which terminates in
finitely many steps for all [inputs]

• Common: An algorithm is a program or An algorithm or program . . .
This approach takes algorithms to be syntactic objects

Frege: You cannot forbid the use of an arbitrarily
produced process or object as a sign for something else

• Common: Algorithms are Turing machines
or processes which can be simulated by Turing machines

Turing machines do not express faithfully low complexity algorithms
van Emde Boas: simulation . . . is hard to define as a
mathematical object

Yiannis N. Moschovakis: What is an algorithm? 1/19

How can there be no definition?
when algorithms have been studied extensively, deeply and
rigorously for (at least) eighty years?

I The Justice Potter Stewart argument: I know one when I see it

For rigorous analysis, algorithms are specified precisely by a
computation model or a recursive procedure

I In particular, complexity theory and (especially) the derivation
of lower bounds with respect to various complexity measures,
is always developed relative to fixed computation models

I Compare to: probability theory, which was developed intensively
(and rigorously) for some 300 years before random variables
were defined precisely in full generality (Kolmogorov 1933)

Yiannis N. Moschovakis: What is an algorithm? 2/19

Outline of the talk

• Three classical algorithms (4 slides)

• Least fixed point recursion (2 slides)

• Recursors, the set-theoretic objects which model algorithms (5 slides)

• Algorithms from specified primitives (2 slides)

• One application (if time permits) (2 slides)

Some references, all posted in www.math.ucla.edu/∼ynm

I The formal language of recursion (1989)
I A mathematical modeling of pure, recursive algorithms
I On founding the theory of algorithms (1998)
I What is an algorithm? (2001)
I Is the Euclidean algorithm optimal among its peers?,

with Lou van den Dries (2004)
I Elementary algorithms and their implementations,

with Vassilis Paschalis (2008)

Yiannis N. Moschovakis: What is an algorithm? 3/19

The Euclidean algorithm
For x , y ∈ N, x ≥ y ≥ 1,

(∗) gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))

where rem(x , y) is the remainder of the division of x by y ,

• (∗) expresses an algorithm ε from rem, =0 which computes gcd(x , y)

callsremε (x , y) = the number of calls to rem

required to compute gcd(x , y) by ε

≤ 2 log(y) (x ≥ y ≥ 2)

Conjecture (open): For every algorithm α which computes
gcd(x , y) (x , y ∈ N, x ≥ y > 0) from rem and =0,

there is a sequence (xn ≥ yn)n, such that yn →∞
and callsremε (xn, yn) ≤ callsremα (xn, yn)

• It assumes that “algorithm from rem, =0” and callsremα are defined

Yiannis N. Moschovakis: What is an algorithm? 4/19

The color of leaves
A (binary, colored) forest is a structure

F = (F , s, d , Leaf, Red, =) where Leaf, Red ⊆ F and s, d : F ½ F

A (maximal) path from x is any sequence p = (x0, . . .) of length
|p| ≤ ∞ such that

i < |p| =⇒ [¬Leaf(xi) & xi+1 ∈ {s(xi), d(xi)}]
• F is grounded if it has no infinite paths. On grounded F let

R(x) ⇐⇒ every path from x ends in a red leaf

(∗) R(x) ⇐⇒ if Leaf(x) then Red(x) else [R(s(x) & R(d(x))]

• (∗) expresses a recursive algorithm ρ which decides R(x) on F
I The Euclidean can be expressed by a while program from rem, =0

I (Tiuryn 1989) On some grounded forest, no algorithm
expressed by a while program of F decides R(x)

(F is the disjoint union of all finite, binary, colored trees)

Yiannis N. Moschovakis: What is an algorithm? 5/19

The sieve of Eratosthenes
Primes = p(u0) where{

u0 = (2, 3, 4, 5, . . .),

p(u) = Print(head(u))̂p(sieve(head(u), tail(u))),

sieve(x , v) = if (x | head(v)) then sieve(x , tail(v))

else head(v)̂sieve(x , tail(v))
}

(S = (N→ N), u0, u, v ∈ S , p : S → S , x ∈ N, sieve : N× S → S)

I A system of mutual recursive equations which expresses an
algorithm σ from head, tail, | , ̂ and (the act) Print

I sieve(x , v) removes from v all numbers divisible by x

I p(u) prints head(u) and then calls itself on sieve(head(u), tail(u))

I σ computes successively
u0 = (2, 3, 4, . . .), u1 = (3, 5, 7, . . .), u2 = (5, 7, 11, . . .), . . .
and (as a side effect) “prints” the heads of these sequences

I Does the recursive system above “specify” σ completely?

Yiannis N. Moschovakis: What is an algorithm? 6/19

The basic, practical problem — too many notions!

• It seems like the basic notion should be that of
algorithm from (given) primitives

• Too many notions associated with an algorithm:
calls, recursive definitions, complexity functions, side effects (and
interaction, which is more complex), simulation, implementability, . . .

For specific algorithms many of these are natural and simple, but a
general theory might be excessively complex

• The lesson from probability theory: it is even more complex, but
there is a useful and fairly simple basic notion:

A random variable is a measurable function X : M → R on a
sample space (a measure space of total measure 1)

• For algorithms, the background mathematical theory is
fixed point recursion on complete posets

Yiannis N. Moschovakis: What is an algorithm? 7/19

Complete posets

• A poset is a pair (D,≤D) where ≤D is a partial ordering of D

• A poset D is (directed or chain) complete if every linearly
ordered subset X ⊆ D (a chain) has a least upper bound sup(X).
Every complete poset has a least element, sup(∅) = ⊥
• A set A is identified with the flat poset A⊥ = A ∪ {⊥}, where

x ≤A⊥ y ⇐⇒ x = ⊥ ∨ x = y

• The (naturally defined, cartesian) product D1 × · · · × Dn of
complete posets is complete

• A function f : D → E is monotone if

x ≤D y =⇒ f (x) ≤E f (y),

and strict if in addition f (x) 6= ⊥ =⇒ x is total (maximal) in D

• Mon(D, E), Strict(D, E) are the posets of monotone and strict
functions ordered pointwise. They are complete, if D,E are complete

Yiannis N. Moschovakis: What is an algorithm? 8/19

Least fixed point recursion

• A function f : D → E on complete posets is (Scott) continuous if

supE{f (x) | x ∈ D} = f (supD X) (for every chain X ⊆ D)

• The poset Cont(D, E) of all continuous functions is complete and

Strict(D,E) ⊆ Cont(D, E) ⊆ Mon(D, E)

Theorem (classical)

Every monotone function f : D → D on a complete poset has a
least fixed point d = min(d ∈ D)[f (d) = d], characterized by

f (d) = d , (∀d)[f (d) ≤ d =⇒ d ≤ d]

Moreover: if f : X × D → D is monotone, then the function

g(x) = min(d ∈ D)[f (x , d) = d] (x ∈ X)

is also monotone, and if f is continuous, then so is g

Yiannis N. Moschovakis: What is an algorithm? 9/19

? (Monotone) recursors

• A recursor α : X Ã W on one complete poset to another is a tuple

α = (α0, α1, . . . , αk),

such that for suitable, complete posets D1, . . . ,Dk :

(1) Each part αi : X × D1 × · · ·Dk → Di , (i = 1, . . . , k) is monotone
(2) The output part α0 : X × D1 × · · · × Dk → W is also monotone

• α0 is the head of α; (α1, . . . , αk) its body; Dα = D1× · · ·×Dk is
its solution poset, and its transition mapping τα : X × Dα → Dα is

τα(x , d) = (α1(x , d), . . . , αn(x , d)) (x ∈ X , d ∈ Dα)

• The function α : X → W computed by α is

α(x) = α0(x , dx), where dx = min(d ∈ Dα)[τα(x , d) = d]

• We express all this succinctly by writing

α(x) = α0(x , d) where {d = τα(x , d)}, (recursor)

(function) α(x) = α0(x , d) where {d = τα(x , d)}
Yiannis N. Moschovakis: What is an algorithm? 10/19

The importance of the solution poset

α(x) = α0(x , d) where {d = τα(x , d)}, (x ∈ X , d ∈ Dα = D1×· · ·×Dk)

• The Morris example (Manna 1975)

p(s, t) = if (s = 0) then 0 else p(s − 1, p(s, t)) (s, t ∈ N)

• The “official” associated recursor is

α(s, t) = p(s, t)

where {p = λ(s, t)(if (s = 0) then 0 else p(s − 1, p(s, t)))}
Solutions of the Morris recursive equation:

• If p varies over Strict(N2,N) (call by value),

p(s, t) = if (s = 0) then 0 else ⊥

• If p varies over Cont(N2,N) or Mon(N2,N) (call by name), p(s, t) = 0

• In the recursor representing the sieve of Eratosthenes we should
use streams and continuous function spaces to insure “implementability”

Yiannis N. Moschovakis: What is an algorithm? 11/19

?Recursor isomorphism (identity)
Suppose α, β : X Ã W are recursors

α(x) = α0(x , d) where {d = τα(x , d)}, D = D1 × · · · , Dk

β(x) = β0(x , e) where {e = τβ(x , e)}, E = E1 × · · · × El

• A recursor does not change if we replace its posets by isomorphic
copies and permute the order of the parts in its body

We say that α is naturally isomorphic (equal) with β, α ∼= β, if

• k = l , i.e., α and β have the same number of parts

• There is a permutation π : {1, . . . , n}½→{1, . . . , n} and for each
i = 1, . . . , k, a poset isomorphism ρi : Di ½→Eπ(i), such that the
induced isomorphism ρπ : D ½→E preserves the parts, i.e.,

α0(x , d) = β0(x , ρπ(d)),

ρi (αi (x , d)) = βi (x , ρπ(d)) (i = 1, . . . , k)

• Natural recursor isomorphism is a very fine notion—perhaps too fine

Yiannis N. Moschovakis: What is an algorithm? 12/19

Operations on recursors, I

• Degenerate recursors. Each function f : X → W can be viewed
as a degenerate recursor (f) with empty body,

δf (x) = f (x) where { }
• Composition of a recursor with a function. For β : Y Ã W and
g : X → Y a monotone function, put

α(x) = β(g(x)) = β0(g(x), d) where {d = τβ(g(x), d)};

then α(x) = β(g(x))

• Recursor composition. For γ : X Ã V and β : V × Z Ã W , put

α(x , z) = β(γ(x), z)

= β0(v , z , d) where {v = γ0(x , e), e = τγ(x , e), d = τβ(v , z , d)};

then α(x , z) = β(γ(x), z)

• δf (g(x)) = f (g(x)) where { } 6= δf (δg (x)) = f (v) where {v = g(x)}
Yiannis N. Moschovakis: What is an algorithm? 13/19

Operations on recursors, II

• λ-substitution. For given β, γ, put

α(x) = β(λuγ(x , u)) = β0(r , e) where {e = τβ(r , e),

r = λuγ0(x , u, d(u)), d = λuτγ(x , u, d(u))};
then α(x) = β(λuγ(x , u))

• Recursor recursion. For given recursors β0, . . . , βk , put

α(x) = β0(x , d) where {d1 = β1(x , d), . . . , dk = βk(x , d)}
= β0

0(x , d , e0) where {d1 = β1
0(x , d , e1), . . . , dk = βk

0 (x , d , ek),

e0 = τβ0(x , d , e0),

e1 = τβ1(x , d , e1),

...

ek = τβk (x , d , ek)};

then α(x) = β
0
(x , d) where {d1 = β

1
(x , d), . . . , dk = β

k
(x , d)}

Yiannis N. Moschovakis: What is an algorithm? 14/19

Monotone and strict structures

• A monotone structure is a pair M = (D,F), where

(1) D is a set of complete posets which contains the (flat)
Boolean poset {tt, ff}⊥

(2) Each f ∈ F is a monotone function

f : D1 × · · · × Dn → D (D1, . . . , Dk ,D ∈ D)

• With each (first order) structure

A = (A, {φA}φ∈Φ) (Φ a set of function and relation symbols)

we associate the strict monotone (in fact continuous) structure

As = ({A⊥, {tt,ff}⊥}, {φA
s }φ∈Φ), where

if φ is a k-ary function symbol, then φA
s : Ak

⊥ → A⊥ is the strict
extension of φA,
and if φ is a k-ary relation symbol, then φs : Ak

⊥ → {tt, ff}⊥ is the
strict extension of the characteristic function of φA

• We do not assume that =A is one of the primitives of A

Yiannis N. Moschovakis: What is an algorithm? 15/19

?Algorithms from specified primitives
Slogan: an algorithm of M is a recursor which is
explicitly definable from the primitives of M

• An algorithm of a monotone structure M = (D,F) (or from F)
is a recursor which belongs to every collection of recursors R with
the following properties:

(A1) R contains all the (degenerate) recursors δf with f ∈ F
(A2) R contains δf for every“relevant” call or conditional function

evD,W (p, x) = p(x) (p : D1 × · · · × Dn → E with Di , W ∈ D)

condW (r , x , y) = if r then x else y (r ∈ {tt, ff}⊥, x , y ∈ W ∈ D)

(A3) R is closed under composition with the functions evD,W and
every projection πi (x1, . . . , xn) = xi (1 ≤ i ≤ n)

(A4) R is closed under recursor composition, λ-substitution and
recursor recursion

• For a first order structure A, the algorithms of A (i.e., As) compute
the (call-by-value, McCarthy) A-recursive partial functions on A

Yiannis N. Moschovakis: What is an algorithm? 16/19

The most important thing missing is an account of
implementations and the connection between an implementable
algorithm and its implementations. A very little of this has been
worked out.

Yiannis N. Moschovakis: What is an algorithm? 17/19

Intrinsic complexities in a structure A = (A, {φA}φ∈Φ)

• Calls complexity. For each algorithm α : An Ã {tt, ff}⊥ of A and
each Φ0 ⊆ Φ, we can define

callsΦ0
α (x) = the number of calls to primitives φA with φ ∈ Φ0

made by α in the computation of α(x) (α(x)↓)

This agrees with the usual calls-complexity for “concrete algorithms”

Theorem
With each relation R ⊆ An which is decidable by some algorithm
of A and each Φ0 ⊆ Φ, there is a function callsΦ0

R : An → N such
that for every algorithm α of A which decides R,

callsΦ0
R (~x) ≤ callsΦ0

α (~x) (~x ∈ AN)

• The intrinsic calls-complexity callsΦ0
R is usually not trivial (next page)

• There are similar results for a large variety of complexity
measures which can be defined for A-algorithms

Yiannis N. Moschovakis: What is an algorithm? 18/19

An example

• Coprimeness, x ⊥⊥ y ⇐⇒ gcd(x , y) = 1

Theorem (van den Dries, ynm)

Suppose A = (N, {φA}φ∈Φ)) is a structure on N whose primitives
are Presburger (piecewise linear) functions and relations. There is
a rational r > 0, such that

callsΦ⊥⊥ (a, a2 − 1) ≥ r log(a) (a > 2)

In particular, the binary (Stein) algorithm is “suboptimal” up to a
multiplicative constant for deciding coprimeness from Presburger
primitives.

Yiannis N. Moschovakis: What is an algorithm? 19/19

