What is an algorithm?

Yiannis N. Moschovakis
UCLA and University of Athens

CSLI, May 31, 2014

36,500,000 Google hits and no definition

e Wikipedia: An algorithm is a step-by-step procedure for calculations

e Knuth: A computational method is ... (computation model)
An algorithm is a computational method which terminates in
finitely many steps for all [inputs]
e Common: An algorithm is a program or An algorithm or program . ..
This approach takes algorithms to be syntactic objects

Frege: You cannot forbid the use of an arbitrarily
produced process or object as a sign for something else

e Common: Algorithms are Turing machines
or processes which can be simulated by Turing machines

Turing machines do not express faithfully low complexity algorithms
van Emde Boas: simulation ...is hard to define as a
mathematical object

Yiannis N. Moschovakis: What is an algorithm? 1/19

How can there be no definition?

when algorithms have been studied extensively, deeply and
rigorously for (at least) eighty years?

» The Justice Potter Stewart argument: | know one when | see it

For rigorous analysis, algorithms are specified precisely by a
computation model or a recursive procedure

» In particular, complexity theory and (especially) the derivation
of lower bounds with respect to various complexity measures,
is always developed relative to fixed computation models

» Compare to: probability theory, which was developed intensively
(and rigorously) for some 300 years before random variables
were defined precisely in full generality (Kolmogorov 1933)

Yiannis N. Moschovakis: What is an algorithm? 2/19

Outline of the talk

e Three classical algorithms (4 slides)

e Least fixed point recursion (2 slides)

e Recursors, the set-theoretic objects which model algorithms (5 slides)
e Algorithms from specified primitives (2 slides)

e One application (if time permits) (2 slides)

Some references, all posted in www.math.ucla.edu/~ynm

» The formal language of recursion (1989)

» A mathematical modeling of pure, recursive algorithms

» On founding the theory of algorithms (1998)

» What is an algorithm? (2001)

> Is the Euclidean algorithm optimal among its peers?,
with Lou van den Dries (2004)

» Elementary algorithms and their implementations,
with Vassilis Paschalis (2008)

Yiannis N. Moschovakis: What is an algorithm? 3/19

The Euclidean algorithm
For x,y e N, x>y >1,

(%) ‘gcd(x,y) = if (rem(x,y) = 0) then y else gcd(y, rem(x,y))‘

where rem(x, y) is the remainder of the division of x by y,

e (x) expresses an algorithm e from rem, =¢ which computes gcd(x, y)

calls®™(x, y) = the number of calls to rem

required to compute ged(x,y) by €
< 2log(y) (xzy=2)

Conjecture (open): For every algorithm o which computes
ged(x,y) (x,y € Nyx >y > 0) from rem and =g,

there is a sequence (x, > yn)n, such that y, — oo
rem

(Xn, yn) < callsg™ (Xn, ¥n)

rem

and calls

" rem

o are defined

e |t assumes that “algorithm from rem,=¢" and calls

Yiannis N. Moschovakis: What is an algorithm? 4/19

The color of leaves

A (binary, colored) forest is a structure

\F = (F,s, d, Leaf, Red, =) \ where Leaf,Red C F and s,d : F »— F

A (maximal) path from x is any sequence p = (xo, ...) of length
|p| < oo such that

i <|p| = [-Leaf(x) & xi+1 € {s(x;), d(xi)}]

e F is grounded if it has no infinite paths. On grounded F let
R(x) <= every path from x ends in a red leaf

(%) ‘R(x) <= if Leaf(x) then Red(x) else [R(s(x) & R(d(x))]‘

e (x) expresses a recursive algorithm p which decides R(x) on F
» The Euclidean can be expressed by a while program from rem, =g
» (Tiuryn 1989) On some grounded forest, no algorithm
expressed by a while program of F decides R(x)
(F is the disjoint union of all finite, binary, colored trees)

Yiannis N. Moschovakis: What is an algorithm? 5/19

The sieve of Eratosthenes
Primes = p(up) where
{uo ~(2,3,4,5,...),
p(u) = Print(head(u))” p(sieve(head(u), tail(v))),
sieve(x, v) = if (x | head(v)) then sieve(x, tail(v))

else head(v)/\sieve(x,tail(v))}

(S=(N—=N),u,u,veS,p:S—S,xeN;sieve: Nx §—5)

» A system of mutual recursive equations which expresses an
algorithm o from head, tail, | ,” and (the act) Print

» sieve(x, v) removes from v all numbers divisible by x

» p(u) prints head(u) and then calls itself on sieve(head(u), tail(u))

» o computes successively
up = (2,3,4,...), up = (3,5,7,...), upy = (5,7,11,...),...
and (as a side effect) “prints” the heads of these sequences

» Does the recursive system above “specify” o completely?

Yiannis N. Moschovakis: What is an algorithm? 6/19

The basic, practical problem — too many notions!

o |t seems like the basic notion should be that of
algorithm from (given) primitives

e Too many notions associated with an algorithm:
calls, recursive definitions, complexity functions, side effects (and
interaction, which is more complex), simulation, implementability, . ..

For specific algorithms many of these are natural and simple, but a
general theory might be excessively complex

e The lesson from probability theory: it is even more complex, but
there is a useful and fairly simple basic notion:

A random variable is a measurable function X : M — R on a
sample space (a measure space of total measure 1)

e For algorithms, the background mathematical theory is
fixed point recursion on complete posets

Yiannis N. Moschovakis: What is an algorithm? 7/19

Complete posets

e A poset is a pair (D, <p) where <p is a partial ordering of D

e A poset D is (directed or chain) complete if every linearly
ordered subset X C D (a chain) has a least upper bound sup(X).
Every complete poset has a least element, sup(f)) = L

e A set A is identified with the flat poset Ay = AU {L}, where
XxX<a, Yy &= x=1lVx=y

e The (naturally defined, cartesian) product Dy X --- x D, of
complete posets is complete

e A function f : D — E is monotone if
x<py = f(x) <g f(y),

and strict if in addition f(x) # L == x is total (maximal) in D

e Mon(D, E), Strict(D, E) are the posets of monotone and strict
functions ordered pointwise. They are complete, if D, E are complete

Yiannis N. Moschovakis: What is an algorithm? 8/19

Least fixed point recursion
e A function f : D — E on complete posets is (Scott) continuous if
supe{f(x) | x € D} = f(supp X) (for every chain X C D)
e The poset Cont(D, E) of all continuous functions is complete and

Strict(D, E) C Cont(D, E) C Mon(D, E)

Theorem (classical)

Every monotone function f : D — D on a complete poset has a
least fixed point d = min(d € D)[f(d) = d], characterized by

f(a) =d, (Vd)[f(d) <d = d< d]
Moreover: if f : X x D — D is monotone, then the function
g(x) =min(d € D)[f(x,d) =d] (x € X)

is also monotone, and if f is continuous, then so is g

Yiannis N. Moschovakis: What is an algorithm? 9/19

* (Monotone) recursors
e A recursor a : X ~» W on one complete poset to another is a tuple
a=(ap,a1,...,0k),

such that for suitable, complete posets D, ..., Dg:
(1) Each part aj : X x Dy x -+ Dy — Dy, (i = 1,..., k) is monotone
(2) The output part ag : X X Dy X -+ x Dy — W is also monotone

e ag is the head of «; (aq,...,ak) its body; Dy = Dy x -+ X Dy is
its solution poset, and its transition mapping 7o : X X Dy — D, is

Ta(x,d) = (a1(x,d),...,an(x,d)) (x€ X,d € D,)
e The function @ : X — W computed by « is
a(x) = ap(x, dx), where dx = min(d € Dy)[7a(x, d) = d]

e We express all this succinctly by writing
a(x) = ap(x, d) where {d = 7,(x, d)}, (recursor)
(function) @(x) = ap(x, d) where {d = 7,(x, d)}

Yiannis N. Moschovakis: What is an algorithm? 10/19

The importance of the solution poset
a(x) = ag(x, d) where {d = 7,(x,d)}, (x € X,d € Dy = D1 x---xDy)

e The Morris example (Manna 1975)

‘p(s, t) = if (s = 0) then 0 else p(s — 1, p(s, t))‘ (s,t €N)

e The “official” associated recursor is
a(s,t) = p(s,t)
where {p = A(s, t)(if (s = 0) then 0 else p(s — 1, p(s, t)))}
Solutions of the Morris recursive equation:

e If p varies over Strict(N?, N) (call by value),
p(s,t) =if (s =0) then 0 else L

e If p varies over Cont(N?,N) or Mon(N?,N) (call by name), p(s, t) = 0

e In the recursor representing the sieve of Eratosthenes we should
use streams and continuous function spaces to insure “implementability”

Yiannis N. Moschovakis: What is an algorithm? 11/19

* Recursor isomorphism (identity)

Suppose a, 3 : X ~» W are recursors

a(x) = ap(x, d) where {d = 7,(x,d)}, D=D; x---,Dx

B(x) = Bo(x, €) where {e = 15(x,€)}, E=E x---XE
e A recursor does not change if we replace its posets by isomorphic
copies and permute the order of the parts in its body
We say that « is naturally isomorphic (equal) with 3, o = 3, if
e k=1, i.e., o and § have the same number of parts
e There is a permutation 7 : {1,...,n} —»{1,...,n} and for each
i=1,...,k, a poset isomorphism p; : D; — E;;), such that the
induced isomorphism p, : D —» E preserves the parts, i.e.,

aO(X’ d) = ﬁO(X’ pﬂ(d))’
pilai(x, d)) = Bi(x,px(d)) (i =1,....K)

e Natural recursor isomorphism is a very fine notion—perhaps too fine

Yiannis N. Moschovakis: What is an algorithm? 12/19

Operations on recursors, |

e Degenerate recursors. Each function f : X — W can be viewed
as a degenerate recursor (f) with empty body,

0f(x) = f(x) where { }
e Composition of a recursor with a function. For 3:Y ~~ W and
g : X — Y a monotone function, put

a(x) = B(g(x)) = Fo(g(x), d) where {d = 75(g(x), d)};

then | a(x) = B(g(x))
e Recursor composition. For y: X ~» Vand B: V x Z ~ W, put

O‘(sz) = ﬁ('V(X)aZ)
= Bo(v, z,d) where {v =(x,e),e = 7y(x,€),d = 73(v,z,d) };

then |ai(x, 2) = B(7(x).2) |

o 0r(g(x)) = f(g(x)) where { } # dr(dg(x)) = f(v) where {v = g(x)}

Yiannis N. Moschovakis: What is an algorithm? 13/19

Operations on recursors, |l

e \-substitution. For given ,~, put
a(x) = B(Auy(x, u)) = Bo(r, e) where {e = 75(r, €),
r = Auyo(x,u,d(u)),d = Aury(x, u,d(u))};

then |a(x) = B(Auv7y(x, v))
e Recursor recursion. For given recursors 39, ..., 3%, put

a(x) = [%x,d) where {d; = 8Y(x,d),...,dx = 3"(x,d)}
= B3(x,d,e°) where {d; = B3(x,d,e),...,dk = B&(x, d,e"),
e? = 7'Bo(x,d,e0)7

el :Tﬁl(X,d,el)7

ek = T/Bk(X, d, ek)};

then |@(x) = B°(x, d) Whete {di = B (x,d), ..., dx = B (x,d)}

Yiannis N. Moschovakis: What is an algorithm? 14/19

Monotone and strict structures

e A monotone structure is a pair M = (D, F), where

(1) D is a set of complete posets which contains the (flat)
Boolean poset {t, ff}

(2) Each f € F is a monotone function

fiDyx-xDy—D (Di,...,Di,D € D)
e With each (first order) structure
A = (A {¢"}sco) (@ a set of function and relation symbols)
we associate the strict monotone (in fact continuous) structure

As = ({AJ-7 {tt, fF}J-}v {¢?}¢€¢)7 where

if ¢ is a k-ary function symbol, then ¢2 : Aﬁ‘_ — A is the strict
extension of A,

and if ¢ is a k-ary relation symbol, then ¢; : Aj‘_ — {tt, ff} | is the
strict extension of the characteristic function of ¢

e We do not assume that =4 is one of the primitives of A

Yiannis N. Moschovakis: What is an algorithm? 15/19

* Algorithms from specified primitives

Slogan: an algorithm of M is a recursor which is

explicitly definable from the primitives of M
e An algorithm of a monotone structure M = (D, F) (or from F)
is a recursor which belongs to every collection of recursors R with
the following properties:
(A1) R contains all the (degenerate) recursors df with f € F
(A2) R contains 0 for every “relevant” call or conditional function

ev?W(p,x) = p(x) (p:Dyx - x Dy — E with D;, W € D)

cond(r,x,y) =if r then x else y (r € {tt,ff},,x,y € W € D)
(A3) R is closed under composition with the functions ev®*" and
every projection mi(x1,...,x,) =% (1 <i<n)
(A4) R is closed under recursor composition, A-substitution and
recursor recursion

e For a first order structure A, the algorithms of A (i.e., As) compute
the (call-by-value, McCarthy) A-recursive partial functions on A

Yiannis N. Moschovakis: What is an algorithm? 16/19

The most important thing missing is an account of
implementations and the connection between an implementable
algorithm and its implementations. A very little of this has been
worked out.

Yiannis N. Moschovakis: What is an algorithm? 17/19

Intrinsic complexities in a structure A = (A, {¢*}sco)

e Calls complexity. For each algorithm « : A" ~ {tt,ff} | of A and
each ®¢ C ¢, we can define

calls®o(x) = the number of calls to primitives ¢* with ¢ € d

made by « in the computation of @(x) (a(x)|)

This agrees with the usual calls-complexity for “concrete algorithms”

Theorem

With each relation R C A" which is decidable by some algorithm
of A and each ¢ C ®, there is a function callsg0 : A" — N such
that for every algorithm o of A which decides R,

callsgo(%) < calls?(x) (X e AV)
e The intrinsic calls-complexity callsqlé0 is usually not trivial (next page)

e There are similar results for a large variety of complexity
measures which can be defined for A-algorithms

Yiannis N. Moschovakis: What is an algorithm? 18/19

An example
e Coprimeness, x Iy <= gcd(x,y) =1

Theorem (van den Dries, ynm)

Suppose A = (N, {¢*} sc0)) is a structure on N whose primitives
are Presburger (piecewise linear) functions and relations. There is
a rational r > 0, such that

callsdjj_ (a,a®> —1) > rlog(a) (a>2)

In particular, the binary (Stein) algorithm is “suboptimal” up to a
multiplicative constant for deciding coprimeness from Presburger
primitives.

Yiannis N. Moschovakis: What is an algorithm? 19/19

