
A theory of logical form, meaning and synonymy

(The logical form and meaning of attitudinal sentences)

Yiannis N. Moschovakis
University of California, Los Angeles

and University of Athens

Göteborg, October 24, 2014

L = L(K): The typed λ-calculus with acyclic recursion
and propositional attitudes on the lexicon K

(the typed λ-calculus with two more constructs, where and that)

• L is an interpreted formal or programming language of terms

• A fragment of natural language is rendered in L:

natural language expression + context
render−−−→ formal expression of L [+state]

• K is partitioned into a denotational and an attitudinal part,

K = Kd ∪ Ka

(1) Syntax of L (7 slides)

(2) Denotational semantics of L(Kd) (3 slides)

(3) Intensional semantics of L(Kd) (12 slides)

(4) The interpretation of L into L(K ∗
d) for some K ∗ ⊇ K (9 slides)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 1/32

The types and typed universes of L = L(K)
• Basic types: Entities : e Truth values : t States : s

• Types: σ :≡ e | t | s | (σ1 → σ2)

σ1 × σ2 → τ :≡ (σ1 → (σ2 → τ)),
σ1 × σ2 × σ3 → τ :≡ σ1 → (σ2 × σ3 → τ), etc.

• Uniquely, every non-basic σ ≡ σ1 × · · · × σn → b with basic b

• Interpretation (standard):
T(e) = a given set (or class) of people, objects, etc.

T(s) = a given set of states

{tt, ff, er} ⊆ T(t) = a given set of truth values ⊆ T(e) (er : error)

T(σ → τ) = (T(σ) → T(τ)) = the set of all functions f : T(σ) → T(τ)

• State a = (world(a), time(a), location(a), agent(a), δ)
where δ(He1) = . . . , δ(this) = . . . , etc.

• x : σ ⇐⇒ x ∈ T(σ) (x is an object of type σ)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 2/32

Pure and natural language types and objects

• Pure types: σ :≡ e | t | (σ1 → σ2) (for abstract objects)

• Basic natural language types:

t̃ :≡ (s → t) (Carnap intensions, propositions)

ẽ :≡ (s → e) (Carnap individual concepts)

• Natural language types: σ :≡ ẽ | t̃ | (σ1 → σ2)

boy : (ẽ → t̃), loves : ẽ× ẽ → t̃ ≡ (ẽ → (ẽ → t̃))

• Natural quantifier type: some(girl), every(boy) : q̃ :≡ ((ẽ → t̃) → t̃)

• If x : σ with a natural σ, then x : t̃, or x : ẽ, or x is a function

x : T(σ1)× · · ·T(σn) → T(b̃)

with natural σ1, . . . , σn and b ≡ e or b = t

? The terms which render natural language phrases are (hereditarily)
of natural language type

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 3/32

Constants; a sample lexicon

Denotational empirical constants:

Entities 0, 1, 2,. . . , R, . . . , tt,ff, er e
Names, indexicals John, I, he, him ẽ
Common nouns man, unicorn, temperature ẽ → t̃
Adjectives, adverbs tall, young, rapidly (ẽ → t̃) → (ẽ → t̃)
Propositions it rains t̃
Intransitive verbs stand, run, rise ẽ → t̃
Transitive verbs find, love, be (ẽ× ẽ) → t̃
Description operator the (ẽ → t̃) → ẽ

Attitudinal constants: Known, Claims, Believes of : (ẽ× · · · × ẽ× t̃) → t̃

Pure type logical constants: Natural type logical constants
=σ : σ × σ → t
¬ : t → t

&,∨,⇒ : t× t → t
∀σ,∃σ : (σ → t) → t

not, ¤, in the future : t̃ → t̃
and, or, if .. then .. : t̃× t̃ → t̃

every, some : (ẽ → t̃) → q̃
the : (ẽ → t̃) → ẽ

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 4/32

Typed variables

? Two kinds of typed variables

• Pure variables of type σ: vσ
0 , vσ

1 . . .

• Recursion variables or locations of type σ: Vσ
0 , Vσ

1 . . .

• Both vσ
i and Vσ

i range over arbitrary objects x : σ
. . . but they are treated differently in the syntax

? Pure variables are bound by λ (as in the typed λ-calculus)

? Locations are used for equations or (formal) assignments

P := A

and are bound by the recursion construct where

? There are no variables over entities in the natural language
fragment, variables over individual concepts are used instead

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 5/32

Terms (defined recursively, with natural restrictions)

A :≡ x | c | A1(A2) | λ(u)(A1) (explicit, λ-calculus)

| A0 where {P1 := A1, . . . , Pn := An} (acyclic recursion)

| C (B1, . . . ,Bm, that A) (attitudinal application)

Restrictions, typing and binding (except for recursive terms)

• x is a variable of either kind and u is a pure variable

• c is a typed denotational constant

• Four formations rules: application, λ-abstraction
acyclic recursion (where) and attitudinal application (that)

• C is a typed attitudinal constant
• The obvious type restrictions are observed, and each term is

assigned a type, A : type(A)
- If B1, . . . , Bm : ẽ and A : t̃, then C (B1, . . . , Bm, that A) : t̃

• Free and bound occurrences of variables are specified in the
obvious way, with C not binding any variables

• A is explicit (a λ-calculus term) if there is no “where” or “ that” in it

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 6/32

Acyclic recursion

A ≡ A0 where {P1 := A1, . . . , Pn := An}

• We allow n = 0, so that if A is a term, then so is A where { }
• The locations P1, . . . , Pn are distinct

and the system of equations (term assignments)

{P1 := A1, . . . , Pn := An}
is correctly typed and syntactically acyclic, i.e.,

type(Pi) = type(Ai) for i = 1, . . . , n,

and there are numbers rank(P1), . . . , rank(Pn), such that

if rank(Pj) ≤ rank(Pi), then Pi does not occur free in Aj

• A : type(A0)
• All occurrences of P1, . . . , Pn are bound in A
• If a variable x is not in the list P1, . . . , Pn, then an occurrence

of in any Ai is free in A exactly if it is free in Ai

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 7/32

John loves Mary and dislikes her husband

A ≡ P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)} : t̃

• A is closed, den(A) : T(s) → T(t), and we compute it as follows:

Stage 1: J := John : ẽ, M := Mary : ẽ

Stage 2: H := husband(M) := Mary’s husband : ẽ

P := loves(J, M) : t̃

Stage 3: Q := dislikes(J, H) : t̃

Stage 4: den(A) := P and Q : t̃

For any state u,
den(A)(u) = (P and Q)(u) = P(u) and Q(u)

= the truth value of John loves Mary and dislikes her husband
in state u

(= er if Mary does not have exactly one husband in state u)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (1) Syntax of L 8/32

Congruence and extended terms

• Two terms are congruent if one can be obtained from the other
by alphabetic changes of bound variables, re-ordering of the
equations in recursive subterms and deleting empty systems. We write

A ≡c B ⇐⇒ A is congruent with B,

so in particular, A ≡c A where { }
• An extended term is a pair

A[x] ≡ (A, x)

of a term A and a sequence x ≡ x1, . . . , xk of distinct variables (of
both kinds) which includes all the free variables of A

• x is the list of putative free variables of A[x]

• Formal substitution: A[B1, . . . ,Bk] :≡ A{xi :≡ Bi , i = 1, . . . k}
• Typing and congruence for extended terms: A[x] : type(A) and

A[x] ≡c B[y] ⇐⇒ A ≡c B & x ≡ y

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (2) Denotational semantics of L(Kd) 9/32

Denotational semantics for L(Kd)

• We assume given with each c : σ an object c : σ

• If A[x] is an extended term with x ≡ x1, . . . , xk and
x = (x1, . . . , xk) with xi : type(xi) for i = 1, . . . , k, we define

A[x] = the value of A when x = x

by the natural (structural) recursion on A:

• xi [x] = xi , c[x] = c,

• A(B)[x] = A[x](B[x]),

• λ(x1)(A)[x2, . . . , xk] = h : T(type(x1)) → T(type(A)),
where for each t : type(x1), h(t) = A[t, x2, . . . , xk],

• A0 where {P1 := A1, . . . , Pn := An}[x] = A0[P1(x), . . . , Pn(x), x],

where P1(x), . . . , Pn(x) are the unique solutions of the system

Pi := Ai [P1, . . . , Pn, x] (i = 1, . . . , n)

guaranteed by the acyclicity of the term

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (2) Denotational semantics of L(Kd) 10/32

The denotation of an extended term

• If A[x] is an extended term with x ≡ x1, . . . , xk , let

X = T(type(x1)× · · · × T(type(xn))

be the space associated with the sequence of putative free
variables x and define

den(A[x]) : X → T(type(A)) by den(A[x])(x) = A[x]

• Notice that if A is in the natural fragment of L, then den(A[x]) is
always a function; for example, with empty x

den(likes(the(blond), John)) : T(s) → T(t),

so that for each state u, den(likes(the(blond), John))(u) is a truth value

• Every A[x] is denotationally equal to some λ-calculus term A∗[x]

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (2) Denotational semantics of L(Kd) 11/32

Some (oversimplified) remarks on Montague semantics

• In Montague’s Language of Intensional Logic LIL, every sentence
of the fragment of English that he studies is rendered by a closed
term A of truth-value type t and interpreted by a Carnap intension

CIMon(A) : T(s) → {tt, ff}

The slogan (not Montague’s) is that all language is situated

• Montague calls CIMon(A) the sense of A; which then implies that
all true mathematical sentences are Montague synonymous

• Gallin interpreted LIL into the typed λ-calculus and hence into L;
and we can use this embedding to derive non-trivial referential
intensions for the sentences in the fragment of English that is
rended in LIL—e.g., mathematical sentences

• However: These meanings derived by mapping English into L via
LIL and Gallin are rarely in the spirit of the work of Montague,
whose renderings disregarded meaning and were often eccentric

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 12/32

The route not taken

• The intensional semantics of L(Kd) associates with each
extended term A[x] its referential intension, an acyclic recursor

int(A[x]) : X Ã T(type(A))

which computes the denotation of A[x]; i.e.,

X = T(type(x1)× · · · × T(type(xn))

is the space associated with the list of putative free variables x, and

int(A[x])(x) = den(A[x])(x) (x ∈ X)

• int(A[x]) can be defined by a direct recursion on A just like
den(A[x]); but we follow a circuitous route which is technically
simpler and in the end more illuminating

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 13/32

? Immediate and direct reference

? Variables have no meaning, they denote immediately

and the same is true of immediate terms defined by

Im :≡ u | P | P(u1, . . . , un) | λ(u)Im

• Immediate terms act like generalized variables

• Terms which are not immediate are proper

? Denotational constants are proper and denote directly
i.e., their meaning is exhausted by their reference

They are the simplest directly referring proper terms, which include

λ(u)love(u, v), λ(u)love(u, u), etc

• We will characterize syntactically all directly denoting terms

• The distinctions between immediate, direct and complex
reference (via a non-trivial meaning) are basic to this theory
—and they come up in various ways in every theory of meaning

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 14/32

?The Reduction Calculus for L(Kd)
We define a reduction relation between terms so that intuitively

A ⇒ B ⇐⇒ A ≡c B (A is congruent with B)

or A and B have the same meaning

and B expresses that meaning “more directly”

• For L(Kd), A ⇒ B is defined by ten rules, like a proof system

• Compositionality: C1 ⇒ C2 =⇒ A{u :≡ C1} ⇒ A{u :≡ C2}
• Reduction respects free occurrences of variables,

and so it extends trivially to extended terms,

A[x] ⇒ B[y] ⇐⇒ A ⇒ B & x ≡ y

• ⇒ respects den: A[x] ⇒ B[x] =⇒ den(A[x]) = den(B[x)],

? but it only compiles terms, it does not compute any values

? A term A is irreducible if A ⇒ B =⇒ A ≡c B

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 15/32

?Canonical and logical forms

Canonical Form Theorem. For each term A, there is a unique
(up to congruence) recursive, irreducible term

cf(A) ≡ A0 where {P1 := A1, . . . , Pn := An}

such that A ⇒ cf(A). Each Ai is explicit and irreducible

? cf(A) models the logical form of A

? The parts A0, A1, . . . , An of A act like truth conditions for A

• cf(A) can be computed effectively by applying (successively, in
any order) the reduction rules to subterms of A, using compositionality

• Notation: A ⇒cf B ⇐⇒ B ≡c cf(A)

• Jos Tellings is nearly done writing an implementation of the
reduction calculus for L which computes the canonical forms of L-terms

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 16/32

?Referential intensions

• Notation convention: to interpret λ(V) with a location V, we set

λ(V)A :≡ λ(v)A{V :≡ v}
where v is a fresh pure variable of type(V)

? Let x ≡ x1, . . . , xk and P ≡ P1, . . . , Pn. If A[x] is proper and

A[x] ⇒cf A0[x, P] where {P1 := A1[x, P], . . . , Pn := An[x, P]},
then the referential intension of A[x] is the acyclic recursor

α(x) = A0[x , P] where {P1 := A1[x , P], . . . , Pn := An[x , P]},
and it computes den(A[x]). As a tuple of functions,

int(A[x]) =
(
den(λ(x)λ(P)A0), . . . , den(λ(x)λ(P)An)

)

? If A[x] is explicit and irreducible, then it denotes directly, because

A[x] ⇒cf A[x] where { }, and so int(A[x]) =
(
den(A[x])

)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 17/32

John loves Mary and (he) dislikes her husband

Coindexing “he” with “John” and “her” with “Mary”, we render this by

A ≡ loves(J, M) and dislikes(J, husband(M))

where {J := John, M := Mary}
⇒cf P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)}

int(A) = P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)}

or, as a tuple of functions, with u ≡ (j, m, h, p, q),

int(A) =
(
den(λu (p and q)), den(λu John), den(λuMary),

den(λu husband(m)), den(λu loves(j, m)), den(λu dislikes(j, h))
)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 18/32

?Referential synonymy

• Two proper extended terms are referentially synonymous if their
referential intensions are equal (naturally isomorphic) recursors,

A[x] ≈ B[x] ⇐⇒ int(A[x]) = int(B[x])

Referential Synonymy Theorem. Two proper extended terms

A[x],B[x] are referentially synonymous if and only if

A ⇒cf A∗ ≡ A0 where {P1 := A1, . . . , Pn := An}
B ⇒cf B∗ ≡ B0 where {P1 := B1, . . . , Pn := Bn}

for suitable A∗,B∗ so that for i = 0, . . . , n,

den(λ(x)λ(P1, . . . , Pn)Ai) = den(λ(x)λ(P1, . . . , Pn)Bi)

? A[x] ≈ B[x] is determined by their logical forms and denotational
equality on their explicit, irreducible parts — their truth conditions

• Conjecture: If Kd is finite, then referential synonymy is decidable
on terms of L(Kd) This is a problem in the typed λ-calculus

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 19/32

Reduction Calculus: the basic rules

Congruence, Transitivity, Compositionality

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)
(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {P1 := A1, . . . , Pn := An}
⇒ B0 where {P1 := B1, . . . , Pn := Bn}

• These do not produce any non-trivial reductions

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 20/32

Reduction Calculus: the rules for recursion
For distinct locations P1, . . . , Pn and Q1, . . . , Qm, and terms Ai ,Bj , set

~P := ~A for P1 := A1, . . . , Pn := An,

~Q := ~B for Q1 := B1, . . . , Qm := Bm,

(head)
(
A0 where {~P := ~A}

)
where {~Q := ~B}

⇒ A0 where {~P := ~A,~Q := ~B}
(B-S) A0 where {R :=

(
B0 where {~Q := ~B}

)
,~P := ~A}

⇒ A0 where {R := B0,~Q := ~B,~P := ~A}
• These just allow the “parallel” combination of assignments

(recap)
(
A0 where {~P := ~A}

)
(B) ⇒ A0(B) where {~P := ~A}

provided no Pi is free in B

• (recap) is one the two main rules that produce non-trivial reductions

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 21/32

Reduction Calculus: the proper application rule

(ap) A(B) ⇒ A(B) where {B := B} (B proper, B fresh)

• John is tall
render−−−→ tall(John) ⇒cf tall(J) where {J := John}

• The blond likes John
render−−−→ likes(the(blond))(John)

⇒ likes(the(blond))(J) where {J := John} (ap)

⇒
(
likes(B) where {B := the(blond}

)
(J) where {J := John} (ap)

⇒ likes(B)(J) where {B := the(blond), J := John} (recap)

⇒ likes(B)(J) where {B := the(B1) where {B1 := blond}, J :=John}
⇒ likes(B)(J) where {B := the(B1), B1 := blond, J := John}

• The real work is done by the application rules (ap) and (recap)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 22/32

The Reduction Calculus (minus the λ-rule) – summary

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)
(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {~P := ~A} ⇒ B0 where {~P := ~B}
(head)

(
A0 where {~P := ~A}

)
where {~Q := ~B} ⇒ A0 where {~P := ~A,~Q := ~B}

(B-S) A0 where {R :=
(
B0 where {~Q := ~B}

)
,~P := ~A}

⇒ A0 where {R := B0,~Q := ~B,~P := ~A}

(recap)
(
A0 where {~P := ~A}

)
(B) ⇒ A0(B) where {~P := ~A} (no Pi free in B)

(ap) A(B) ⇒ A(B) where {B := B} (B proper, B fresh)

(λ-rule) λ(u)(A0 where {~P := ~A}) ⇒ λ(u)A′0 where {−→P′ :=
−−−−→
λ(u)A′}

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (3) Intensional semantics of L(Kd) 23/32

?Utterances, local meanings and local synonymy

• For each state u, we add to L(Kd) a parameter ū which names u
State parameters are treated in the syntax like free pure

variables, e.g., ū, P(ū) are immediate terms;
. . . and they can be avoided, at some cost in notational complexity

• An extended utterance is a pair (A[x], u), where A[x] : t̃ is an
extended Carnap intension and u is a state; it is expressed in L by
the extended term A(ū)[x] : t

• The local meaning of A[x] at a state u is int(A(ū)[x]), and

A[x] ≈u B[x] ⇐⇒ int(A(ū)[x]) = int(B(ū)[x]) ⇐⇒ A(ū)[x] ≈ B(ū)[x]

• Local synonymy ≈u is a a very strong equivalence relation, very
close to global synonymy

• Basic principle: The objects of belief are local meanings

For closed A, John believes in state u that A
means that in state u, John believes the utterance A(ū)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 24/32

Is he Scott? (Scott-Soames, after Russell, Quine, Church, . . .)

In the state u of a book presentation, Sir Walter Scott is disguised and

George IV does not believe that He is Scott,

but certainly

George IV believes that Scott is Scott

which appears to be a paradox. However, He is Scott 6≈u Scott is Scott:

(He is Scott, u)
render−−−→ eq(He, Scott)(ū)

⇒cf eq(H, S)(ū) where {H := He, S := Scott}
(Scott is Scott, u)

render−−−→ eq(Scott,Scott)(ū)

⇒cf eq(S1, S2)(ū) where {S1 := Scott, S2 := Scott}

• These are obviously not synonymous, and so the good king can
believe one and not the other; he is muddled but not incoherent

• The paradox is more complex if the king has a de re belief about him

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 25/32

Believing a closed utterance

George believes that the blond likes John
render−−−→ Believes(George, that A)

where the belief of George is the closed term

A :≡ likes(the(blond), John))

⇒cf likes(B, J) where {B := the(B1), B1 := blond, J := John}
)

• By Frege, Believes operates on the meaning of A, i.e., int(A)
. . . which is a quadruple of functions
. . . and whose formal version is the quadruple of closed terms

fint(A) ≡
(
λBB1J likes(B, J), λBB1J the(B1), λBB1J blond, λBB1J John

)

? We add a new, denotational constant BelievesA and the reduction

Believes(George, that A) ⇒ BelievesA(George, fint(A))

≡ BelievesA(George, λPBB1 likes(B, J),

λBB1J the(B1), λBB1J blond, λBB1J John)

• What is the denotation of BelievesA?
Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 26/32

Coindexing (and quantifying) in

John hopes that the blond likes him
render−−−→ Hopes(John, that Likes(the(blond), him))

coindex−−−→ Hopes(J, that likes(the(blond), J)) where {J := John}
⇒ Hopes(J, that A[J]) where {J := John}

with A ⇒cf Likes(B, J) where {B := the(B1), B1 := blond}
fint(A[J]) =

(
λBB1J Likes(B, J), λBB1J the(B1), λBB1J blond

)

J is bound in fint(A[J]), but int(A[J]) needs its argument; so we set

Hopes(J, that A[J]) ⇒ HopesA[J](J, J, fint(A[J]))

with a new denotational constant HopesA[J]

where the first argument J refers to the hopeful person,
. . . the second refers to the argument of the algorithm int(A[J]),
. . . and both are set to John (in this example)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 27/32

?The reduction rule (attap) for attitudinal application

• Suppose A[x] is a proper, extended term, with x ≡ x1, . . . , xk ,

A ⇒cf A0 where {P1 := A1, . . . , Pn := An},

let P ≡ P1, . . . , Pn and let the (n + 1)-tuple of closed terms

fint(A([x]) ≡
(
λxλPA0, . . . , λxλPAn

)

be the formal referential intension of A[x]

(attap) If C (B1, . . . ,Bm, that A) is an attitudinal term whose free
variables are all in the list x, then

C (B1, . . . ,Bm, that A)[x] ⇒ CA[x](B1, . . . , Bm, x, fint(A[x]))[x]

where CA[x] is a denotational constant associated with C and A[x]

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 28/32

Look at all these constants; what do they all denote?

• We assume given c : σ for every denotational constant c : σ,
including red, good, loves, . . ., not entirely without controversy or
philosophical argument—which, however, is not a matter of logic

• We need to assume similarly that we are given an interpretation
C for every attitudinal constant C , including Believes,Claims, . . .
—not as a matter of logic but of language

• These interpretations are not objects in the typed universe of L:
they are operators on this universe and its acyclic recursors, and
there is a (small but fussy) technical problem in specifying exactly
what kind of objects they are

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 29/32

The (acyclic) L-recursors
If α(x) = α0(x) where {d1 := α1(x , d), . . . , dn := αn(x , d)} : X Ã T(̃t),

set α(x)(u) = α0(x)(u) where {d1 := α1(x , d), . . . , dn := αn(x , d)}
• T∗ =

(⋃
σ T(σ)

)∗
= the set of all finite sequences of typed objects

• A = the collection of all acyclic recursors α : Z Ã T(̃t) with Z ⊂ T∗
? An attitudinal constant C : ẽm × t̃ → t̃ is interpreted by some

C : T∗ ×A → T(̃t)

such that for all ~y ∈ T(ẽ)m,~z ∈ T∗ and α, β : Z Ã T(̃t) in A

α(~z)(u) = β(~z)(u) =⇒ C (~y ,~z , α)(u) = C (~y ,~z , β)(u)

? C (B1, . . . ,Bm, that A)[x] ⇒ CA[x](B1, . . . , Bm, x, fint(A[x]))[x], with

C
A[x]

(y1, . . . , ym, x1, . . . , xk , α) = C (y1, . . . , ym, x1, . . . , xk , α)

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 30/32

What would be nice to do

• The logic allows True(that A), True(x, that A[x]) as propositional
attitudes (and in more than one ways), but also “unusual”
constructs like

Direct(that A) ⇐⇒ A denotes directly,

Even(that A) ⇐⇒ the number of parts in int(A) is even

• Find natural conditions for the attitudinal operations which
actually occur in natural language

• . . . and these should be such that they would make it possible to
prove the Decidability of Synonymy Conjecture for the full
language, not just its denotational part

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 31/32

Back to the confused king George IV

Suppose u is the state of Scott’s book signing, and set

A :≡ The king believes of Scott that he is Scott

B :≡ The king does not believe of him that he is Scott

• With the correct rendering, we have

Scott is Scott ≈u He is Scott (in the context of a de re belief)

and so B ≡ ¬A and they cannot both be true
We assume that A is true and so B is false

• Why do we see a paradox in this? Most likely because

• the king claims, believes, swears . . . that A and also that B
. . . but A 6≈u B, and so the king may claim, believe, swear . . .
that A and also that B without causing a formal contradiction

Yiannis N. Moschovakis: A theory of logical form, meaning and synonymy (4) Interpreting L in L(K∗d) 32/32

