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L = L(K ): The typed λ-calculus with acyclic recursion
and propositional attitudes on the lexicon K

(the typed λ-calculus with two more constructs, where and that )

• L is an interpreted formal or programming language of terms

• A fragment of natural language is rendered in L:

natural language expression + context
render−−−→ formal expression of L [+state]

• K is partitioned into a denotational and an attitudinal part,

K = Kd ∪ Ka

(1) Syntax of L (7 slides)

(2) Denotational semantics of L(Kd) (3 slides)

(3) Intensional semantics of L(Kd) (12 slides)

(4) The interpretation of L into L(K ∗
d ) for some K ∗ ⊇ K (9 slides)
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The types and typed universes of L = L(K )
• Basic types: Entities : e Truth values : t States : s

• Types: σ :≡ e | t | s | (σ1 → σ2)

σ1 × σ2 → τ :≡ (σ1 → (σ2 → τ)),
σ1 × σ2 × σ3 → τ :≡ σ1 → (σ2 × σ3 → τ), etc.

• Uniquely, every non-basic σ ≡ σ1 × · · · × σn → b with basic b

• Interpretation (standard):
T(e) = a given set (or class) of people, objects, etc.

T(s) = a given set of states

{tt, ff, er} ⊆ T(t) = a given set of truth values ⊆ T(e) (er : error)

T(σ → τ) = (T(σ) → T(τ)) = the set of all functions f : T(σ) → T(τ)

• State a = (world(a), time(a), location(a), agent(a), δ)
where δ(He1) = . . . , δ(this) = . . . , etc.

• x : σ ⇐⇒ x ∈ T(σ) (x is an object of type σ)
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Pure and natural language types and objects

• Pure types: σ :≡ e | t | (σ1 → σ2) (for abstract objects)

• Basic natural language types:

t̃ :≡ (s → t) (Carnap intensions, propositions)

ẽ :≡ (s → e) (Carnap individual concepts)

• Natural language types: σ :≡ ẽ | t̃ | (σ1 → σ2)

boy : (ẽ → t̃), loves : ẽ× ẽ → t̃ ≡ (ẽ → (ẽ → t̃))

• Natural quantifier type: some(girl), every(boy) : q̃ :≡ ((ẽ → t̃) → t̃)

• If x : σ with a natural σ, then x : t̃, or x : ẽ, or x is a function

x : T(σ1)× · · ·T(σn) → T(b̃)

with natural σ1, . . . , σn and b ≡ e or b = t

? The terms which render natural language phrases are (hereditarily)
of natural language type
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Constants; a sample lexicon

Denotational empirical constants:

Entities 0, 1, 2,. . . , R, . . . , tt,ff, er e
Names, indexicals John, I, he, him ẽ
Common nouns man, unicorn, temperature ẽ → t̃
Adjectives, adverbs tall, young, rapidly (ẽ → t̃) → (ẽ → t̃)
Propositions it rains t̃
Intransitive verbs stand, run, rise ẽ → t̃
Transitive verbs find, love, be (ẽ× ẽ) → t̃
Description operator the (ẽ → t̃) → ẽ

Attitudinal constants: Known, Claims, Believes of : (ẽ× · · · × ẽ× t̃) → t̃

Pure type logical constants: Natural type logical constants
=σ : σ × σ → t
¬ : t → t

&,∨,⇒ : t× t → t
∀σ,∃σ : (σ → t) → t

not, ¤, in the future : t̃ → t̃
and, or, if .. then .. : t̃× t̃ → t̃

every, some : (ẽ → t̃) → q̃
the : (ẽ → t̃) → ẽ
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Typed variables

? Two kinds of typed variables

• Pure variables of type σ: vσ
0 , vσ

1 . . .

• Recursion variables or locations of type σ: Vσ
0 , Vσ

1 . . .

• Both vσ
i and Vσ

i range over arbitrary objects x : σ
. . . but they are treated differently in the syntax

? Pure variables are bound by λ (as in the typed λ-calculus)

? Locations are used for equations or (formal) assignments

P := A

and are bound by the recursion construct where

? There are no variables over entities in the natural language
fragment, variables over individual concepts are used instead
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Terms (defined recursively, with natural restrictions)

A :≡ x | c | A1(A2) | λ(u)(A1) (explicit, λ-calculus)

| A0 where {P1 := A1, . . . , Pn := An} (acyclic recursion)

| C (B1, . . . ,Bm, that A) (attitudinal application)

Restrictions, typing and binding (except for recursive terms)

• x is a variable of either kind and u is a pure variable

• c is a typed denotational constant

• Four formations rules: application, λ-abstraction
acyclic recursion (where) and attitudinal application (that)

• C is a typed attitudinal constant
• The obvious type restrictions are observed, and each term is

assigned a type, A : type(A)
- If B1, . . . , Bm : ẽ and A : t̃, then C (B1, . . . , Bm, that A) : t̃

• Free and bound occurrences of variables are specified in the
obvious way, with C not binding any variables

• A is explicit (a λ-calculus term) if there is no “where” or “ that” in it
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Acyclic recursion

A ≡ A0 where {P1 := A1, . . . , Pn := An}

• We allow n = 0, so that if A is a term, then so is A where { }
• The locations P1, . . . , Pn are distinct

and the system of equations (term assignments)

{P1 := A1, . . . , Pn := An}
is correctly typed and syntactically acyclic, i.e.,

type(Pi ) = type(Ai ) for i = 1, . . . , n,

and there are numbers rank(P1), . . . , rank(Pn), such that

if rank(Pj) ≤ rank(Pi ), then Pi does not occur free in Aj

• A : type(A0)
• All occurrences of P1, . . . , Pn are bound in A
• If a variable x is not in the list P1, . . . , Pn, then an occurrence

of in any Ai is free in A exactly if it is free in Ai
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John loves Mary and dislikes her husband

A ≡ P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)} : t̃

• A is closed, den(A) : T(s) → T(t), and we compute it as follows:

Stage 1: J := John : ẽ, M := Mary : ẽ

Stage 2: H := husband(M) := Mary’s husband : ẽ

P := loves(J, M) : t̃

Stage 3: Q := dislikes(J, H) : t̃

Stage 4: den(A) := P and Q : t̃

For any state u,
den(A)(u) = (P and Q)(u) = P(u) and Q(u)

= the truth value of John loves Mary and dislikes her husband
in state u

(= er if Mary does not have exactly one husband in state u)
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Congruence and extended terms

• Two terms are congruent if one can be obtained from the other
by alphabetic changes of bound variables, re-ordering of the
equations in recursive subterms and deleting empty systems. We write

A ≡c B ⇐⇒ A is congruent with B,

so in particular, A ≡c A where { }
• An extended term is a pair

A[x] ≡ (A, x)

of a term A and a sequence x ≡ x1, . . . , xk of distinct variables (of
both kinds) which includes all the free variables of A

• x is the list of putative free variables of A[x]

• Formal substitution: A[B1, . . . ,Bk ] :≡ A{xi :≡ Bi , i = 1, . . . k}
• Typing and congruence for extended terms: A[x] : type(A) and

A[x] ≡c B[y] ⇐⇒ A ≡c B & x ≡ y
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Denotational semantics for L(Kd)

• We assume given with each c : σ an object c : σ

• If A[x] is an extended term with x ≡ x1, . . . , xk and
x = (x1, . . . , xk) with xi : type(xi ) for i = 1, . . . , k, we define

A[x ] = the value of A when x = x

by the natural (structural) recursion on A:

• xi [x ] = xi , c[x ] = c,

• A(B)[x ] = A[x ](B[x ]),

• λ(x1)(A)[x2, . . . , xk ] = h : T(type(x1)) → T(type(A)),
where for each t : type(x1), h(t) = A[t, x2, . . . , xk ],

• A0 where {P1 := A1, . . . , Pn := An}[x ] = A0[P1(x), . . . , Pn(x), x ],

where P1(x), . . . , Pn(x) are the unique solutions of the system

Pi := Ai [P1, . . . , Pn, x ] (i = 1, . . . , n)

guaranteed by the acyclicity of the term
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The denotation of an extended term

• If A[x] is an extended term with x ≡ x1, . . . , xk , let

X = T(type(x1)× · · · × T(type(xn))

be the space associated with the sequence of putative free
variables x and define

den(A[x]) : X → T(type(A)) by den(A[x])(x) = A[x ]

• Notice that if A is in the natural fragment of L, then den(A[x]) is
always a function; for example, with empty x

den(likes(the(blond), John)) : T(s) → T(t),

so that for each state u, den(likes(the(blond), John))(u) is a truth value

• Every A[x] is denotationally equal to some λ-calculus term A∗[x]
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Some (oversimplified) remarks on Montague semantics

• In Montague’s Language of Intensional Logic LIL, every sentence
of the fragment of English that he studies is rendered by a closed
term A of truth-value type t and interpreted by a Carnap intension

CIMon(A) : T(s) → {tt, ff}

The slogan (not Montague’s) is that all language is situated

• Montague calls CIMon(A) the sense of A; which then implies that
all true mathematical sentences are Montague synonymous

• Gallin interpreted LIL into the typed λ-calculus and hence into L;
and we can use this embedding to derive non-trivial referential
intensions for the sentences in the fragment of English that is
rended in LIL—e.g., mathematical sentences

• However: These meanings derived by mapping English into L via
LIL and Gallin are rarely in the spirit of the work of Montague,
whose renderings disregarded meaning and were often eccentric
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The route not taken

• The intensional semantics of L(Kd) associates with each
extended term A[x] its referential intension, an acyclic recursor

int(A[x]) : X Ã T(type(A))

which computes the denotation of A[x]; i.e.,

X = T(type(x1)× · · · × T(type(xn))

is the space associated with the list of putative free variables x, and

int(A[x])(x) = den(A[x])(x) (x ∈ X )

• int(A[x]) can be defined by a direct recursion on A just like
den(A[x]); but we follow a circuitous route which is technically
simpler and in the end more illuminating
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? Immediate and direct reference

? Variables have no meaning, they denote immediately

and the same is true of immediate terms defined by

Im :≡ u | P | P(u1, . . . , un) | λ(u)Im

• Immediate terms act like generalized variables

• Terms which are not immediate are proper

? Denotational constants are proper and denote directly
i.e., their meaning is exhausted by their reference

They are the simplest directly referring proper terms, which include

λ(u)love(u, v), λ(u)love(u, u), etc

• We will characterize syntactically all directly denoting terms

• The distinctions between immediate, direct and complex
reference (via a non-trivial meaning) are basic to this theory
—and they come up in various ways in every theory of meaning
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?The Reduction Calculus for L(Kd)
We define a reduction relation between terms so that intuitively

A ⇒ B ⇐⇒ A ≡c B (A is congruent with B)

or A and B have the same meaning

and B expresses that meaning “more directly”

• For L(Kd), A ⇒ B is defined by ten rules, like a proof system

• Compositionality: C1 ⇒ C2 =⇒ A{u :≡ C1} ⇒ A{u :≡ C2}
• Reduction respects free occurrences of variables,

and so it extends trivially to extended terms,

A[x] ⇒ B[y] ⇐⇒ A ⇒ B & x ≡ y

• ⇒ respects den: A[x] ⇒ B[x] =⇒ den(A[x]) = den(B[x)],

? but it only compiles terms, it does not compute any values

? A term A is irreducible if A ⇒ B =⇒ A ≡c B
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?Canonical and logical forms

Canonical Form Theorem. For each term A, there is a unique
(up to congruence) recursive, irreducible term

cf(A) ≡ A0 where {P1 := A1, . . . , Pn := An}

such that A ⇒ cf(A). Each Ai is explicit and irreducible

? cf(A) models the logical form of A

? The parts A0, A1, . . . , An of A act like truth conditions for A

• cf(A) can be computed effectively by applying (successively, in
any order) the reduction rules to subterms of A, using compositionality

• Notation: A ⇒cf B ⇐⇒ B ≡c cf(A)

• Jos Tellings is nearly done writing an implementation of the
reduction calculus for L which computes the canonical forms of L-terms
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?Referential intensions

• Notation convention: to interpret λ(V) with a location V, we set

λ(V)A :≡ λ(v)A{V :≡ v}
where v is a fresh pure variable of type(V)

? Let x ≡ x1, . . . , xk and P ≡ P1, . . . , Pn. If A[x] is proper and

A[x] ⇒cf A0[x, P] where {P1 := A1[x, P], . . . , Pn := An[x, P]},
then the referential intension of A[x] is the acyclic recursor

α(x) = A0[x , P] where {P1 := A1[x , P], . . . , Pn := An[x , P]},
and it computes den(A[x]). As a tuple of functions,

int(A[x]) =
(
den(λ(x)λ(P)A0), . . . , den(λ(x)λ(P)An)

)

? If A[x] is explicit and irreducible, then it denotes directly, because

A[x] ⇒cf A[x] where { }, and so int(A[x]) =
(
den(A[x])

)
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John loves Mary and (he) dislikes her husband

Coindexing “he” with “John” and “her” with “Mary”, we render this by

A ≡ loves(J, M) and dislikes(J, husband(M))

where {J := John, M := Mary}
⇒cf P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)}

int(A) = P and Q where {J := John, M := Mary, H := husband(M),

P := loves(J, M), Q := dislikes(J, H)}

or, as a tuple of functions, with u ≡ (j, m, h, p, q),

int(A) =
(
den(λu (p and q)), den(λu John), den(λuMary),

den(λu husband(m)), den(λu loves(j, m)), den(λu dislikes(j, h))
)
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?Referential synonymy

• Two proper extended terms are referentially synonymous if their
referential intensions are equal (naturally isomorphic) recursors,

A[x] ≈ B[x] ⇐⇒ int(A[x]) = int(B[x])

Referential Synonymy Theorem. Two proper extended terms

A[x],B[x] are referentially synonymous if and only if

A ⇒cf A∗ ≡ A0 where {P1 := A1, . . . , Pn := An}
B ⇒cf B∗ ≡ B0 where {P1 := B1, . . . , Pn := Bn}

for suitable A∗,B∗ so that for i = 0, . . . , n,

den(λ(x)λ(P1, . . . , Pn)Ai ) = den(λ(x)λ(P1, . . . , Pn)Bi )

? A[x] ≈ B[x] is determined by their logical forms and denotational
equality on their explicit, irreducible parts — their truth conditions

• Conjecture: If Kd is finite, then referential synonymy is decidable
on terms of L(Kd) This is a problem in the typed λ-calculus
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Reduction Calculus: the basic rules

Congruence, Transitivity, Compositionality

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)
(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {P1 := A1, . . . , Pn := An}
⇒ B0 where {P1 := B1, . . . , Pn := Bn}

• These do not produce any non-trivial reductions
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Reduction Calculus: the rules for recursion
For distinct locations P1, . . . , Pn and Q1, . . . , Qm, and terms Ai ,Bj , set

~P := ~A for P1 := A1, . . . , Pn := An,

~Q := ~B for Q1 := B1, . . . , Qm := Bm,

(head)
(
A0 where {~P := ~A}

)
where {~Q := ~B}

⇒ A0 where {~P := ~A,~Q := ~B}
(B-S) A0 where {R :=

(
B0 where {~Q := ~B}

)
,~P := ~A}

⇒ A0 where {R := B0,~Q := ~B,~P := ~A}
• These just allow the “parallel” combination of assignments

(recap)
(
A0 where {~P := ~A}

)
(B) ⇒ A0(B) where {~P := ~A}

provided no Pi is free in B

• (recap) is one the two main rules that produce non-trivial reductions
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Reduction Calculus: the proper application rule

(ap) A(B) ⇒ A(B) where {B := B} (B proper, B fresh)

• John is tall
render−−−→ tall(John) ⇒cf tall(J) where {J := John}

• The blond likes John
render−−−→ likes(the(blond))(John)

⇒ likes(the(blond))(J) where {J := John} (ap)

⇒
(
likes(B) where {B := the(blond}

)
(J) where {J := John} (ap)

⇒ likes(B)(J) where {B := the(blond), J := John} (recap)

⇒ likes(B)(J) where {B := the(B1) where {B1 := blond}, J :=John}
⇒ likes(B)(J) where {B := the(B1), B1 := blond, J := John}

• The real work is done by the application rules (ap) and (recap)
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The Reduction Calculus (minus the λ-rule) – summary

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)
(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {~P := ~A} ⇒ B0 where {~P := ~B}
(head)

(
A0 where {~P := ~A}

)
where {~Q := ~B} ⇒ A0 where {~P := ~A,~Q := ~B}

(B-S) A0 where {R :=
(
B0 where {~Q := ~B}

)
,~P := ~A}

⇒ A0 where {R := B0,~Q := ~B,~P := ~A}

(recap)
(
A0 where {~P := ~A}

)
(B) ⇒ A0(B) where {~P := ~A} (no Pi free in B)

(ap) A(B) ⇒ A(B) where {B := B} (B proper, B fresh)

(λ-rule) λ(u)(A0 where {~P := ~A}) ⇒ λ(u)A′0 where {−→P′ :=
−−−−→
λ(u)A′}
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?Utterances, local meanings and local synonymy

• For each state u, we add to L(Kd) a parameter ū which names u
State parameters are treated in the syntax like free pure

variables, e.g., ū, P(ū) are immediate terms;
. . . and they can be avoided, at some cost in notational complexity

• An extended utterance is a pair (A[x], u), where A[x] : t̃ is an
extended Carnap intension and u is a state; it is expressed in L by
the extended term A(ū)[x] : t

• The local meaning of A[x] at a state u is int(A(ū)[x]), and

A[x] ≈u B[x] ⇐⇒ int(A(ū)[x]) = int(B(ū)[x]) ⇐⇒ A(ū)[x] ≈ B(ū)[x]

• Local synonymy ≈u is a a very strong equivalence relation, very
close to global synonymy

• Basic principle: The objects of belief are local meanings

For closed A, John believes in state u that A
means that in state u, John believes the utterance A(ū)
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Is he Scott? (Scott-Soames, after Russell, Quine, Church, . . . )

In the state u of a book presentation, Sir Walter Scott is disguised and

George IV does not believe that He is Scott,

but certainly

George IV believes that Scott is Scott

which appears to be a paradox. However, He is Scott 6≈u Scott is Scott:

(He is Scott, u)
render−−−→ eq(He, Scott)(ū)

⇒cf eq(H, S)(ū) where {H := He, S := Scott}
(Scott is Scott, u)

render−−−→ eq(Scott,Scott)(ū)

⇒cf eq(S1, S2)(ū) where {S1 := Scott, S2 := Scott}

• These are obviously not synonymous, and so the good king can
believe one and not the other; he is muddled but not incoherent

• The paradox is more complex if the king has a de re belief about him
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Believing a closed utterance

George believes that the blond likes John
render−−−→ Believes(George, that A)

where the belief of George is the closed term

A :≡ likes(the(blond), John))

⇒cf likes(B, J) where {B := the(B1), B1 := blond, J := John}
)

• By Frege, Believes operates on the meaning of A, i.e., int(A)
. . . which is a quadruple of functions
. . . and whose formal version is the quadruple of closed terms

fint(A) ≡
(
λBB1J likes(B, J), λBB1J the(B1), λBB1J blond, λBB1J John

)

? We add a new, denotational constant BelievesA and the reduction

Believes(George, that A) ⇒ BelievesA(George, fint(A))

≡ BelievesA(George, λPBB1 likes(B, J),

λBB1J the(B1), λBB1J blond, λBB1J John)

• What is the denotation of BelievesA?
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Coindexing (and quantifying) in

John hopes that the blond likes him
render−−−→ Hopes(John, that Likes(the(blond), him))

coindex−−−→ Hopes(J, that likes(the(blond), J)) where {J := John}
⇒ Hopes(J, that A[J]) where {J := John}

with A ⇒cf Likes(B, J) where {B := the(B1), B1 := blond}
fint(A[J]) =

(
λBB1J Likes(B, J), λBB1J the(B1), λBB1J blond

)

J is bound in fint(A[J]), but int(A[J]) needs its argument; so we set

Hopes(J, that A[J]) ⇒ HopesA[J](J, J, fint(A[J]))

with a new denotational constant HopesA[J]

where the first argument J refers to the hopeful person,
. . . the second refers to the argument of the algorithm int(A[J]),
. . . and both are set to John (in this example)
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?The reduction rule (attap) for attitudinal application

• Suppose A[x] is a proper, extended term, with x ≡ x1, . . . , xk ,

A ⇒cf A0 where {P1 := A1, . . . , Pn := An},

let P ≡ P1, . . . , Pn and let the (n + 1)-tuple of closed terms

fint(A([x]) ≡
(
λxλPA0, . . . , λxλPAn

)

be the formal referential intension of A[x]

(attap) If C (B1, . . . ,Bm, that A) is an attitudinal term whose free
variables are all in the list x, then

C (B1, . . . ,Bm, that A)[x] ⇒ CA[x](B1, . . . , Bm, x, fint(A[x]))[x]

where CA[x] is a denotational constant associated with C and A[x]
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Look at all these constants; what do they all denote?

• We assume given c : σ for every denotational constant c : σ,
including red, good, loves, . . ., not entirely without controversy or
philosophical argument—which, however, is not a matter of logic

• We need to assume similarly that we are given an interpretation
C for every attitudinal constant C , including Believes,Claims, . . .
—not as a matter of logic but of language

• These interpretations are not objects in the typed universe of L:
they are operators on this universe and its acyclic recursors, and
there is a (small but fussy) technical problem in specifying exactly
what kind of objects they are
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The (acyclic) L-recursors
If α(x) = α0(x) where {d1 := α1(x , d), . . . , dn := αn(x , d)} : X Ã T(̃t),

set α(x)(u) = α0(x)(u) where {d1 := α1(x , d), . . . , dn := αn(x , d)}
• T∗ =

(⋃
σ T(σ)

)∗
= the set of all finite sequences of typed objects

• A = the collection of all acyclic recursors α : Z Ã T(̃t) with Z ⊂ T∗
? An attitudinal constant C : ẽm × t̃ → t̃ is interpreted by some

C : T∗ ×A → T(̃t)

such that for all ~y ∈ T(ẽ)m,~z ∈ T∗ and α, β : Z Ã T(̃t) in A

α(~z)(u) = β(~z)(u) =⇒ C (~y ,~z , α)(u) = C (~y ,~z , β)(u)

? C (B1, . . . ,Bm, that A)[x] ⇒ CA[x](B1, . . . , Bm, x, fint(A[x]))[x], with

C
A[x]

(y1, . . . , ym, x1, . . . , xk , α) = C (y1, . . . , ym, x1, . . . , xk , α)
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What would be nice to do

• The logic allows True(that A), True(x, that A[x]) as propositional
attitudes (and in more than one ways), but also “unusual”
constructs like

Direct(that A) ⇐⇒ A denotes directly,

Even(that A) ⇐⇒ the number of parts in int(A) is even

• Find natural conditions for the attitudinal operations which
actually occur in natural language

• . . . and these should be such that they would make it possible to
prove the Decidability of Synonymy Conjecture for the full
language, not just its denotational part
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Back to the confused king George IV

Suppose u is the state of Scott’s book signing, and set

A :≡ The king believes of Scott that he is Scott

B :≡ The king does not believe of him that he is Scott

• With the correct rendering, we have

Scott is Scott ≈u He is Scott (in the context of a de re belief)

and so B ≡ ¬A and they cannot both be true
We assume that A is true and so B is false

• Why do we see a paradox in this? Most likely because

• the king claims, believes, swears . . . that A and also that B
. . . but A 6≈u B, and so the king may claim, believe, swear . . .
that A and also that B without causing a formal contradiction
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