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(I) A bit of history (3 slides)

(II) The basic notions (7 slides)

(III) Some characteristic effective results (6 slides)

(IV) HYP isomorphism and reducibility (Gregoriades) (3 slides)

I Descriptive set theory, ynm, 1980, Second Edition 2009

I Classical descriptive set theory as a refinement of effective
descriptive set theory, ynm, 2010

I Kleene’s amazing second recursion theorem, ynm, 2010

I Notes on effective descriptive set theory,
ynm and Vassilios Gregoriades, in preparation

(The first three are posted on www.math.ucla.edu/∼ynm)
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The arithmetical hierarchy

• Kleene [1943]: The arithmetical hierarchy on subsets of N

recursive ( Σ0
1 (rec. enumerable) ( Σ0

2 ( · · · (¬Σ = Π, Σ∩Π = ∆)

I Tool for giving easy (semantic) proofs of Gödel’s First
Incompleteness Theorem, Tarski’s Theorem on the
arithmetical undefinability of arithmetical truth, etc.

• Mostowski [1947]: Reinvents the arithmetical hierarchy, using
as a model the classical projective hierarchy on sets of real numbers

Borel ( Σ1
1 (analytic) ( Σ1

2 ( · · · (¬Σ = Π, Σ ∩Π = ∆)

I He grounds the analogy on the two basic results

Kleene: ∆0
1 = recursive, Suslin: ∆1

1 = Borel

I Mostowski is unaware of Kleene [1943]: the only post 1939
paper he cites is Post [1944]
(He refers to Kleene [1943] in a Postscript added “in press”
saying that it “just became available in Poland”)
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Mostowski’s definition of HYP on N
• Mostowski [1951] introduces the hyperarithmetical hierarchy
I In modern notation, roughly, he defines for each constructive

ordinal ξ < ωCK
1 a universal set for a class Pξ of subsets of N

I The analogy now is between HYP and the Borel sets of reals.
M. mimics closely Lebesgue’s classical definition of Σ0

ξ sets,
replacing countable unions by projection along N and using
effective diagonalization at limit ordinals

I There are technical difficulties with the effective version.
M. does not give detailed proofs and refers to the need for

“a rather developed technique which we do not wish
to presuppose here”

To make the definition precise, one needs effective transfinite
recursion on ordinal notations.
This depends on the 2nd Recursion Theorem and was introduced
in the literature by Kleene [1938], not cited in this paper.

Most likely, Mostowski is referring to a version of this method
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The definition of HYP on N by Kleene and Davis

• Kleene 1955a: HYP = recursive in some Ha, a ∈ O Crucial case:

|a| = |b|+ 1 =⇒ Ha = H ′
b (the jump of Hb)

I Kleene outlines the details needed to make Mostowski’s
definition rigorous and establishes the relation between the
two definitions Roughly, for ω ≤ ξ < ωCK

1 ,

Pξ = the class of sets recursively reducible to Ha (|a| = ξ+1)

I Kleene credits Martin Davis who introduced essentially the
same definition and at the same time in his Thesis

I He alludes to Kleene [1955b] in which he proves the basic result

∆1
1 = HYP : compare to Suslin’s Theorem ∆1

1 = Borel

• Kleene 1950: The “analogy” Σ0
1 ∼ Σ1

1 fails, because there exist
recursively inseparable r.e., sets Does not mention Σ0

1 ∼ Π1
1

r.e. = Σ0
1 ∼ Π1

1 open = Σ0
1 ∼ Π1

1 HYP ∼ Borel

• John Addison established these analogies firmly
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Recursive Polish metric spaces

I A metric space (X , d) is Polish if it is separable and complete

I A presentation of X is any pair (d , r) where r : N→ X and
r[N] = {r0, r1, . . .} is dense in X

I A presentation (d , r) is recursive if the relations

Pd ,r(i , j , k) ⇐⇒ d(ri , rj) ≤ qk , Qd ,r(i , j , k) ⇐⇒ d(ri , rj) < qk ,

are recursive, where qk = (k)0
(k)1+1

I Recursive Polish metric space: (X , d , r) with recursive (d , r)

I N = {0, 1, . . .} as a discrete space;
the reals R and Baire space N = NN with their standard metrics;
products of recursive Polish metric spaces, etc.

I Every Polish metric space is recursive in some ε ∈ N
I Computable space: assume only that Pd ,r and Qd ,r are r.e.

There is a computable metric space which does not admit a
recursive presentation
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Open and effectively open (Σ0
1) pointsets

Fix a recursive Polish metric space (X , d , {r0, r1, . . .})
I Codes of nbhds: For each s ∈ N, let

Ns = N(X , s) =
{

x ∈ X : d(x , r(s)0) < q(s)1

}

I A pointset G ⊆ X is open if G =
⋃

n Nε(n) =
⋃

n N
(X , ε(n)

)
with some ε ∈ N Any such ε is a code of G

I G is semirecursive or Σ0
1 if it has a recursive code

Lemma (Normal Form for Σ0
1)

P ⊆ X , Q ⊆ X × Y are Σ0
1 if and only if

P(x) ⇐⇒ (∃s)[x ∈ N(X , s) & P∗(s)]
Q(x , y) ⇐⇒ (∃s)(∃t)[x ∈ N(X , s) & y ∈ N(Y, t) & Q∗(s, t)]

with semirecursive P∗, Q∗ relations on N
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Recursive Polish spaces
Def A topological space (X , T ) is Polish if there is a d such that
(X , d) is a Polish metric space which induces T

Def A recursive Polish space is a set X together with a family
R = R(X ) of subsets of N×X such that for some
d : X × X → R and r : N→ X the following conditions hold:

(RP1) (X , d , r) is a recursive Polish metric space, and

(RP2) the frame R of X is the family of semirecursive subsets of
N×X

I Every recursive Polish metric space (X , d , r) determines a
recursive Polish space (X ,R(X )) by setting

R(X ) = the family of semirecursive subsets of N×X
I If (RP1), (RP2) hold: (d , r) is a compatible pair for X
I Every Polish space is recursive in some ε ∈ N
I Every (naturally defined) computable Polish space is recursive
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The analogies between the classical and the effective theory
I A pointset is any subset P ⊆ X of a recursive Polish space,

formally a pair (P,X )
I A pointclass is any collection Γ of pointsets, e.g.,

Σ0
1 = the semirecursive pointsets, Π0

1 = {X \ P : P ∈ Σ0
1},

Σ0
1 = the open pointsets ⊇ Σ0

1, Π0
1 = all closed pointsets ⊇ Π0

1

I The arithmetical and analytical pointclasses

Π0
k = ¬Σ0

k , Σ0
k+1 = ∃NΠ0

k , ∆0
k = Σ0

k ∩ Π0
k

Σ1
1 = ∃NΠ0

1, Π1
k = ¬Σ0

k , Σ1
k+1 = ∃NΠ1

k , ∆1
k = Σ1

k ∩ Π1
k

I The finite Borel and projective pointclasses

Π0
k = ¬Σ0

k , Σ0
k+1 = ∃NΠ0

k , ∆0
k = Σ0

k ∩Π0
k

Σ1
1 = ∃NΠ0

1, Π1
k = ¬Σ1

k , Σ1
k+1 = ∃NΠ1

k , ∆1
k = Σ1

k ∩Π1
k

I Missing analogy: Hyperarithmetical ∼ Borel

Yiannis N. Moschovakis: Effective descriptive set theory II. The basic effective notions 4/7 8/20



From the classical to the effective – coding

I A coding (in N ) of a set A is any surjection π : C →→A, C ⊆ N
I The pointclasses Σi

k ,Πi
k ,∆i

k are all (naturally) coded, and

G ∈ Σi
k ⇐⇒ G ∈ Σi

k with a recursive code

I The Borel pointclasses: starting with Σ0
1 = the open sets, set

A ∈ Σ0
ξ ⇐⇒ A =

⋃
i∈ω(X \ Ai )

with each Ai in
⋃

η<ξ Σ0
η (A ⊆ X , ξ > 1)

B =
⋃

ξ<ℵ1
Σ0

ξ = the Borel sets

I α∗(i) = α(i + 1); (β)i (j) = β(〈i , j〉)
I Borel codes: starting with K1 = {α ∈ N : α(0) = 0}, set for ξ > 1

Kξ = K1∪{α : α(0) = 1 & (∀i)[(α∗)i ∈
⋃

η<ξ Kη]}, K =
⋃

1≤ξ<ℵ1
Kξ

α(0) = 0 : BXα =
⋃

i N(X , α∗(i)), α(0) > 0 : BXα =
⋃

i (X \ BX(α∗)i )
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Hyperarithmetical as effective Borel

For A ⊆ X :

I Def α is a Kξ-code of A : α ∈ Kξ & A = BXα
• A ∈ Σ0

ξ ⇐⇒ A has a Kξ-code

I Def α is a Borel code of A : α ∈ K & A = BXα
• A is Borel ⇐⇒ A has a Borel code

I Def A is HYP ⇐⇒ A has a recursive Borel code

I Def f : X → Y is HYP if {(x , s) : f (x) ∈ N(Y, s)} ∈ HYP

I Def (Louveau 1980) A ∈ Σ0
ξ ⇐⇒ A has a recursive Kξ-code

• For X = Y = N, these definitions of HYP agree with the classical ones

• The pointclasses Σ0
ξ stabilize for ξ ≥ ωCK

1 , and for ξ < ωCK
1 on N

they are (essentially) those defined by Mostowski and Kleene

• A ⊆ X is Borel exactly when it is HYP(α) for some α ∈ N
• f : X → Y is Borel (measurable) exactly when it is HYP(α) for
some α ∈ N
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Partial functions and potential recursion
• A partial function f : X ⇀ Y is potentially recursive if there is a
Σ0

1 pointset P ⊆ X × N which computes f on its domain, i.e.,

f (x)↓ =⇒
(
f (x) ∈ N(Y, s) ⇐⇒ P(x , s)

)
(∗)

Canonical Extension Theorem (Eff. version of classical fact)

Every potentially recursive f : X ⇀ Y has a potentially recursive
extension f ⊇ f whose domain is Π0

2

Refined Embedding Theorem (Eff. version of classical fact)

For every recursive Polish X , there is a (total) recursive surjection

π : N →→X
and a Π0

1 set A ⊆ N such that π is injective on A and π[A] = X
• If f : N ⇀ N and f (α)↓ , then f (α) is recursive in α
• Every potentially recursive function is continuous on its domain;
and every f : X ⇀ Y which is continuous on its domain is
potentially ε-recursive for some ε ∈ N
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The Suslin-Kleene Theorem

Theorem
(a) Every Borel pointset is ∆1

1, uniformly
(b) Every ∆1

1 pointset is Borel, uniformly

The precise version of (b): For some potentially recursive u : N ⇀ N ,

if α is a ∆1
1-code of some A ⊆ X ,

then u(α)↓ and u(α) is a Borel code of A

I Suslin’s Theorem: ∆1
1 = Borel

I Kleene’s Theorem: On N, ∆1
1 = HYP

I Both proofs use effective transfinite recursion and (a) is routine
(b) uses the fact that a classical proof of Suslin’s Theorem (in
Kuratowski) is constructive (cf. Kleene’s realizability theory)

I Classical version of (b): replace “potentially recursive” by
“defined and continuous on a Gδ subset of N”

• Is there a “classical” proof of the classical version of (b)?
• Does the classical version of (b) have any classical applications?
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The effective Perfect Set Theorem

Theorem (Harrison)

If A ⊆ X is Σ1
1 and has a a member x ∈ A which is not HYP, then

A has a perfect subset

Corollary (Suslin)

Every uncountable Σ1
1 pointset has a perfect subset

I Suslin’s Perfect Set Theorem followed earlier results of
Hausdorff and Alexandrov for Borel sets and was very
important for the classical theory: it implies that the
Continuum Hypothesis holds for Σ1

1 (analytic) sets

I The (relativized) effective version “explains” the theorem of Suslin

I It also has many effective applications, some of them with
further classical applications
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The HYP Uniformization Criterion

P

P∗

ª

ª

Px

x
P∗ uniformizes P .

Theorem
A pointset P ⊆ X × Y in HYP can be uniformized by a HYP set
P∗ if and only if for every x ∈ X ,

(∃y)P(x , y) ⇐⇒ (∃y ∈ HYP(x))P(x , y)

• (Classical) If every section of a Borel set P ⊆ X × Y is
countable, then P has a Borel uniformization
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Louveau’s Theorem

Theorem (Louveau 1980)

For every X , every P ⊆ X and every recursive ordinal ξ

P ∈ (HYP ∩Σ0
ξ) ⇐⇒ P ∈ Σ0

ξ(α) for some α ∈ HYP

• This is a basic result about the (relativized) effective hierarchies
Σ0

ξ(α) and has many classical and effective applications (including
some more detailed versions of the results in the last three slides)

• The proof uses ramified versions of the Harrington-Gandy
topology generated by the Σ1

1 subsets of a recursive X This is a
basic tool of the effective theory, also used in the next result
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The Harrington-Kechris-Louveau Theorem
• For equivalence relations E ⊆ X × X , F ⊆ Y × Y:

f : X → Y is a reduction if x E y ⇐⇒ f (x) F f (y)

E ≤
HYP

F ⇐⇒ there is a HYP reduction f : X → Y,

E ≤Borel F ⇐⇒ there is a Borel reduction f : X → Y
• α ∆ β ⇐⇒ α = β (α, β ∈ N )

• α E0 β ⇐⇒ (∃m)(∀n ≥ m)[α(m) = β(m)] (α, β ∈ N )

Dichotomy Theorem (HKL 1990)

For every HYP equivalence relation E on a recursive Polish space X :

Either E ≤
HYP

∆ or E0 ≤Borel E

I The relativized version with HYP replaced by Borel extends
the classical Glimm-Effros Dichotomy Theorem

I It was the beginning of a rich and developing structure theory
for Borel equivalence relations and graphs with many applications
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Luzin’s favorite characterization of the Borel sets

Theorem
A set A ⊆ X is HYP if and only if A is the recursive, injective
image of a Π0

1 subset of N
Corollary (Luzin)

A set A ⊆ X is Borel if and only if A is the continuous, injective
image of a closed subset of N
• Luzin’s proof is not difficult, so the effective version does not
contribute much beyond the stronger statement However, by its proof:

Theorem (ynm 1973)

Assume Σ1
2-determinacy A set A ⊆ X is ∆1

3 if and only if A is the
recursive, injective image of a Π1

2 subset of N
• The effective theory is indispensable in the study of projective
sets under strong, set theoretic hypotheses

—and it was developed partly for these applications
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HYP-recursive (eff. Borel) functions and isomorphisms

• Every uncountable Polish space X is Borel isomorphic with N
• Thm [G] There exist uncountable recursive Polish spaces

which are not HYP-isomorphic with N
• A (total) function f : X → Y is HYP(ε)-recursive if it is
computed by a HYP(ε) relation, i.e.,

{(x , s) : f (x) ∈ N(Y, s)} ∈ HYP(ε)

• The local space parameter For any space X , put

PX = {s ∈ N : N(X , s) is uncountable}
I PX is Σ1

1;
it is recursive if X perfect;
and for some X it is Σ1

1-complete

• Every uncountable recursive X is HYP(PX )-isomorphic with N
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The spaces N T

· · ·
...

...
...

...

T

[T ]

• [G] For each recursive tree T on N set

NT = T ∪ [T ]

with the natural metric, so that limn(α(0), . . . , α(n)) = α

Thm[G] Every recursive Polish space is HYP-isomorphic with some NT

• The structure of NT reflects combinatorial properties of T

Thm[G] If [T ] is non-empty with no HYP branches, then NT is
not HYP-isomorphic with N
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Recursive Polish spaces under ¹
HYP

• X ¹
HYP

Y if there exists a HYP injection f : X ½ Y
• X ∼

HYP
Y ⇐⇒ X ¹

HYP
Y & Y ¹

HYP
X

⇐⇒ X is HYP-isomorphic with Y

• NT is a Kleene space if [T ] is not empty and has no HYP branches

Theorem (G)

(a) Every Kleene space occurs in an infinite ¹
HYP

-antichain of
Kleene spaces

(b) Every Kleene space is the first element of an infinite strictly
≺

HYP
-increasing and an infinite strictly ≺

HYP
-decreasing sequence

of Kleene spaces

. . . many more results on the structure of the partial preorder ¹
HYP
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