Intrinsic complexity in arithmetic and algebra

Yiannis N. Moschovakis UCLA and University of Athens

Limits and Scope of Mathematical Knowledge, Workshop #2 March 30, 2013

(Flimsy) relevance to the theme of the conference

- (1) Absolutely undecidable propositions
 - Require some metaphysical speculation to make precise
- (2) Absolutely undecidable relations
 - Their existence can be proved rigorously, granting the Church-Turing Thesis
 - and it is relevant to (1) (by some interpretation of it)
- (3) Absolute lower complexity bounds for functions and relations
 - "Quantitative" versions of (2)
 - Not immediate how to make precise
 - Demonstrable lack of efficient algorithms indicates some "limits" to possible mathematical knowledge

Main aim: to introduce a precise notion of absolute lower complexity bounds from specified primitives for functions and relations, justify it, and apply it to some simple problems in arithmetic and algebra

The value complexities I

• A classical method for establishing lower bounds that restrict all algorithms assuming practically nothing about "what algorithms are":

Horner's rule: For any field F and $n \ge 1$, the value of a polynomial of degree n can be computed using no more than n multiplications and n additions in F:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = a_0 + x \left(a_1 + a_2 x + \dots + a_n x^{n-1} \right)$$

Theorem (Pan 1966, (Winograd 1967, 1970))

Every algorithm from the complex field operations requires at least n multiplications/divisions and at least n additions/subtractions to compute $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ when \vec{a}, x are algebraically independent complex numbers (the generic case)

... because it takes that many applications of the field operations to construct the value $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ from a_0, \ldots, a_n, x

The value complexities II

Theorem (van den Dries)

If an algorithm lpha computes $\gcd(x,y)$ from $0,1,+,-, \mathrm{iq}, \mathrm{rem},\cdot,<$ and

$$\operatorname{calls}(\alpha, x, y) = \text{ the number of calls to the primitives}$$
 $\alpha \text{ makes to compute } \gcd(x, y),$

then for all a
$$>$$
 b such that $a^2=1+2b^2$ (Pell pairs),
$${\sf calls}(\alpha,a+1,b)\geq \frac{1}{4}\sqrt{\log\log b}$$

... because it takes at least that many applications of the primitives to construct the value gcd(a+1,b) when (a,b) is a Pell pair

- ► This method cannot yield lower bounds for decision problems (because their output (t or ff) is available with no computation)
- ▶ and it is open whether algorithms that decide coprimeness from these primitives (which include multiplication) must execute $O(\sqrt{\log\log\max(x,y)})$ operations on an infinite set of inputs

Algorithms from primitives — the Euclidean algorithm

For $a, b \in \mathbb{N} = \{0, 1, ...\}, \ a \ge b \ge 1$,

$$(\varepsilon)$$
 $\gcd(a,b)=if (rem(a,b)=0) then b else $\gcd(b,rem(a,b))$$

where
$$a = iq(a, b)b + rem(a, b)$$
 $(0 \le rem(a, b) < b)$

 $\operatorname{calls}_{\{\operatorname{rem}\}}(\varepsilon, a, b) = \operatorname{the number of divisions } \varepsilon \operatorname{needs to compute } \gcd(a, b)$ $< 2\log(b) \qquad (x \ge y \ge 2)$

- Is ε optimal for computing gcd(a, b) from $\{rem, =_0\}$?
- $ightharpoonup a \bot b \iff \gcd(a,b) = 1$

Is ε optimal for deciding coprimeness from $\{\text{rem}, =_0, =_1\}$?

▶ And is this true for all algorithms from $\{\text{rem}, =_0, =_1\}$?

Conjecture: For every algorithm α which decides coprimeness from $\{\text{rem}, =_0, =_1\}$

 $(\exists r > 0)$ (for infinitely many $a \ge b$, calls_{rem} $(\alpha, a, b) \ge r \log(a)$

(Partial) structures

▶ A (partial) structure is a tuple $\mathbf{A} = (A, \Phi^{\mathbf{A}})$ where Φ is a set of function and relation symbols and $\Phi^{\mathbf{A}} = \{\phi^{\mathbf{A}}\}_{\phi \in \Phi}$, where with $s_{\phi} \in \{\text{a,boole}\}$, $A_{\text{a}} = A, A_{\text{boole}} = \{\text{tt,ff}\}$,

$$\boxed{\phi^{\mathbf{A}}:A^{n_{\phi}} \rightharpoonup A_{\mathbf{s}_{\phi}} \text{ i.e., } \boxed{\phi^{\mathbf{A}}:A^{n_{\phi}} \rightharpoonup A} \text{ or } \boxed{\phi^{\mathbf{A}}:A^{n_{\phi}} \rightharpoonup \{\mathsf{tt},\mathsf{ff}\}}$$

- ▶ $\mathbf{N} = (\mathbb{N}, 0, 1, +, \cdot, =)$, the standard structure of arithmetic
- ▶ $\mathbf{N}_{\varepsilon} = (\mathbb{N}, \text{rem}, =_0, =_1)$, the Euclidean structure
- ▶ $\mathbf{N}_{\varepsilon} \upharpoonright U = (U, \text{rem} \upharpoonright U, =_0 \upharpoonright U, =_1 \upharpoonright U)$ where $U \subseteq \mathbb{N}$ and

$$(f \upharpoonright U)(x,y) = w \iff \vec{x} \in U^n, w \in U_s \& f(\vec{x}) = w$$

 The (equational) diagram of a Φ-structure is the set of its basic equations,

eqdiag(
$$\mathbf{A}$$
) = { (ϕ, \vec{x}, w) : $\vec{x} \in A^{n_{\phi}}, w \in A_{s_{\phi}}$, and $\phi^{\mathbf{A}}(\vec{x}) = w$ }

▶ We may assume that **A** is completely determined by eqdiag(**A**)

Sample result: the intrinsic calls complexity

With each structure $\mathbf{A} = (A, \mathbf{\Phi})$, each $\Phi_0 \subseteq \Phi$ and each (partial) function or relation $f : A^n \rightharpoonup A_s$ we will associate a partial function

$$ec{x}\mapsto \mathsf{calls}_{\Phi_0}(\mathbf{A},f,ec{x})\in\mathbb{N} \qquad (f(ec{x})\downarrow)$$

such that:

 (\star) If α is any algorithm from Φ which computes f, then

$$\mathsf{calls}_{\Phi_0}(\mathbf{A}, f, \vec{x}) \le \mathsf{calls}_{\Phi_0}(\alpha, \vec{x}) \quad (f(\vec{x}) \downarrow)$$

- ▶ (*) is not trivial: in some important examples in arithmetic and algebra it yields the best known lower bound results
- ▶ (*) is a theorem for concrete algorithms specified by the usual computation models; it is plausible for all algorithms from Φ
- The results are about several natural complexity measures on algorithms from primitives not only "the number of calls to Φ₀"
- The methods are from abstract model theory

Slogan: Absolute lower bound results are the undecidability facts about decidable problems

- (1) Preliminaries
- (2) Uniform processes
- (3) Comprimeness in ℕ
- (4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004) Arithmetic complexity (with van Den Dries, 2009) Recursion and complexity (notes) www.math.ucla.edu/~ynm (currently under repair)

- Y. Mansour, B. Schieber, and P. Tiwari (1991)

 A lower bound for integer greatest common divisor computations

 Lower bounds for computations with the floor operation
- J. Meidânis (1991): Lower bounds for arithmetic problems
- P. Bürgisser and T. Lickteig (1992) Verification complexity of linear prime ideals
- P. Bürgisser, T. Lickteig, and M. Shub (1992), Test complexity of generic polynomials

Substructures and homomorphisms

Substructures (pieces):

$$\mathbf{U} \subseteq_{\rho} \mathbf{A} = (A, \mathbf{\Phi}) \iff U \subseteq A \& \operatorname{eqdiag}(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{A})$$
$$\iff U \subseteq A \& (\forall \phi \in \Phi)[\phi^{\mathbf{U}} \sqsubseteq \phi^{\mathbf{A}}]$$

Substructures may be finite and not closed under Φ

▶ A homomorphism $\pi: \mathbf{U} \rightarrow \mathbf{V}$ is any $\pi: U \rightarrow V$ such that for all $\phi \in \Phi, x_1, \dots, x_n \in U, w \in U_s$, (with $\pi(\mathsf{tt}) = \mathsf{tt}, \pi(\mathsf{ff}) = \mathsf{ff}$)

$$\phi^{\mathbf{U}}(x_1,\ldots,x_n)=w \implies \phi^{\mathbf{V}}(\pi x_1,\ldots,\pi x_n)=\pi w$$

- May have $x \neq y, \pi(x) = \pi(y)$, unless $(=, x, y, ff) \in eqdiag(\mathbf{U})$
- π is an embedding if it is injective (in which case it preserves \neq)

▶ We use finite substructures $U \subseteq_p A$ to represent calls to the primitives executed during a computation in A

Algorithms from primitives – the basic intuition

An *n*-ary algorithm α of $\mathbf{A} = (A, \mathbf{\Phi})$ (or from $\mathbf{\Phi}$) "computes" some *n*-ary partial function or relation

$$\overline{\alpha} = \overline{\alpha}^{\mathbf{A}} : A^n \rightharpoonup A_s$$

using the primitives in Φ as oracles and nothing else about A

We understand this to mean that in the course of a "computation" of $\overline{\alpha}(\vec{x})$, the algorithm may request from the oracle for any $\phi^{\bf A}$ any particular value $\phi^{\bf A}(\vec{u})$, for arguments \vec{u} which it has already computed from \vec{x} , and that if the oracles cooperate, then "the computation" of $\overline{\alpha}(\vec{x})$ is completed in a finite number of "steps"

- ► The notion of a uniform process attempts to capture minimally (in the style of abstract model theory) these aspects of algorithms from primitives
- ▶ It does not capture their effectiveness, but their uniformity —that an algorithm applies "the same procedure" to all arguments in its domain

Uniform processes: I The Locality Axiom

A uniform process α of arity n and sort s of a structure $\mathbf{A} = (A, \Phi^{\mathbf{A}})$ assigns to each substructure $\mathbf{U} \subseteq_p \mathbf{A}$ an n-ary partial function

$$\overline{\alpha}^{\mathsf{U}}: U^n \rightharpoonup U_s$$

It computes the partial function or relation $\overline{\alpha}^{\mathbf{A}}: A^n \rightharpoonup A_s$

▶ For an algorithm α , intuitively, $\overline{\alpha}^{\mathbf{U}}$ is the restriction to U of the partial function computed by α when the oracles respond only to questions with answers in eqdiag(\mathbf{U})

We write

$$\mathbf{U} \vdash \alpha(\vec{x}) = w \iff \overline{\alpha}^{\mathbf{U}}(\vec{x}) = w,$$
$$\mathbf{U} \vdash \alpha(\vec{x}) \downarrow \iff (\exists w) [\overline{\alpha}^{\mathbf{U}}(\vec{x}) = w]$$

Uniform processes: II The Homomorphism Axiom

If α is an n-ary uniform process of \mathbf{A} , $\mathbf{U}, \mathbf{V} \subseteq_p \mathbf{A}$, and $\pi : \mathbf{U} \to \mathbf{V}$ is a homomorphism, then

$$\mathbf{U} \vdash \alpha(\vec{x}) = \mathbf{w} \implies \mathbf{V} \vdash \alpha(\pi\vec{x}) = \pi\mathbf{w} \quad (\mathbf{x}_1, \dots, \mathbf{x}_n \in U, \mathbf{w} \in U_s)$$

In particular, if $\mathbf{U} \subseteq_{p} \mathbf{A}$, then $\overline{\alpha}^{\mathbf{U}} \sqsubseteq \overline{\alpha}^{\mathbf{A}}$

- ▶ For algorithms: when asked for $\phi^{\mathbf{U}}(\vec{x})$, the oracle for ϕ may consistently provide $\phi^{\mathbf{V}}(\pi\vec{x})$, if π is a homomorphism
- ► This is obvious for the identity embedding I: U → A, but it is a strong restriction for algorithms from rich primitives (stacks, higher type constructs, etc.)
- It can be verified for the standard computation models (deterministic and non-deterministic)
 provided all their primitives are included in Φ

Uniform processes: III The Finiteness Axiom

If α is an n-ary uniform process of ${\bf A}$, then

$$\mathbf{A} \vdash \alpha(\vec{x}) = w$$
 \implies there is a finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ generated by \vec{x} such that $\mathbf{U} \vdash \alpha(\vec{x}) = w$

▶ For every call $\phi(\vec{u})$ to the primitives, the algorithm must construct the arguments \vec{u} , and so the entire computation takes place within a finite substructure generated by the input \vec{x}

We write

$$\mathbf{U} \vdash_{c} \alpha(\vec{x}) = w \iff \mathbf{U}$$
 is finite, generated by \vec{x} and $\mathbf{U} \vdash \alpha(\vec{x}) = w$, $\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow \iff (\exists w)[\mathbf{U} \vdash_{c} \alpha(\vec{x}) = w]$

and we think of (\mathbf{U}, \vec{x}, w) as a computation of α on the input \vec{x}

Uniform processes, summary

▶ I The Locality Axiom:

A uniform process α of arity n and sort s of a structure $\mathbf{A} = (A, \Phi^{\mathbf{A}})$ assigns to each substructure $\mathbf{U} \subseteq_p \mathbf{A}$ an n-ary partial function

$$\overline{\alpha}^{\mathsf{U}}:U^{n}\rightharpoonup U_{s}$$

It computes the partial function or relation $\overline{\alpha}^{\mathbf{A}}:A^n \rightharpoonup A_s$

$$\mathbf{U} \vdash \alpha(\vec{x}) \downarrow \iff \alpha^{\mathbf{U}}(\vec{x}) \downarrow$$

► II The Homomorphism Axiom:

If $\mathbf{U}, \mathbf{V} \subseteq_p \mathbf{A}$ and $\pi : \mathbf{U} \to \mathbf{V}$ is a homomorphism, then

$$\overline{\alpha}^{\mathbf{U}}(\vec{x}) = w \implies \overline{\alpha}^{\mathbf{V}}(\pi \vec{x}) = \pi w$$

$$\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow \iff \mathbf{U}$$
 is finite, generated by \vec{x} and $\overline{\alpha}^{\mathbf{U}}(\vec{x}) \downarrow$

III The Finiteness Axiom:

$$\mathbf{A} \vdash \alpha(\vec{x}) \downarrow \implies (\exists \mathbf{U} \subseteq_{p} \mathbf{A}) [\mathbf{U} \vdash_{c} \alpha(\vec{x}) \downarrow]$$

Complexity measures for uniform processes

- ▶ A substructure norm μ of **A** assigns to each finite **U** \subseteq_p **A** generated by $\vec{x} \in U^n$ a number $\mu(\mathbf{U}, \vec{x})$
- ▶ calls_{Φ_0} $(\alpha, \vec{x}) = \min\{|\text{eqdiag}(\mathbf{U} \upharpoonright \Phi_0)| : \mathbf{U} \vdash_c \alpha(\vec{x}) \downarrow\} \quad (\Phi_0 \subseteq \Phi)$ (the least number of calls to $\phi \in \Phi_0$ α must do to compute $\overline{\alpha}^{\mathbf{A}}(\vec{x})$)
- ▶ size $(\alpha, \vec{x}) = \min\{|U| : \mathbf{U} \vdash_c \alpha(\vec{x})\downarrow\}$ (the least number of elements of **A** that α must see)
- ▶ depth $(\alpha, \vec{x}) = \min\{\text{depth}(\mathbf{U}, \vec{x}) : \mathbf{U} \vdash_{c} \alpha(\vec{x})\downarrow\}$ (the least number of calls α must execute in sequence)

Thm depth
$$(\alpha, \vec{x}) \leq \text{size}(\alpha, \vec{x}) \leq \text{calls}(\alpha, \vec{x})$$
 (= calls $_{\Phi}(\alpha, \vec{x})$)

These are not larger than standard definitions for concrete algorithms

★ The forcing and certification relations

Suppose $f: A^n \to A_s$, $f(\vec{x}) \downarrow$, $\mathbf{U} \subseteq_p \mathbf{A}$.

▶ A homomorphism $\pi: \mathbf{U} \to \mathbf{A}$ respects f at \vec{x} if

$$\vec{x} \in U^n \& f(\vec{x}) \in U_s \& \pi(f(\vec{x})) = f(\pi(\vec{x}))$$

so for relations
$$|\vec{x} \in U^n \& (R(\vec{x}) \iff R(\pi(\vec{x})))$$

 $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow \iff$ every homomorphism $\pi : \mathbf{U} \to \mathbf{A}$ respects f at \vec{x}

$$\mathbf{U} \Vdash_c^{\mathbf{A}} f(\vec{x}) \downarrow \iff \mathbf{U}$$
 is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) \downarrow$

The intrinsic complexities of f in \mathbf{A}

- $C_{\mu}(\mathbf{A}, f, \vec{x}) = \min\{\mu(\mathbf{U}, \vec{x}) : \mathbf{U} \Vdash_{c} f(\vec{x}) \downarrow\} \in \mathbb{N} \cup \{\infty\}$
- ightharpoonup calls $_{\Phi_0}(\mathbf{A}, f, \vec{x}) = \min\{|\operatorname{eqdiag}(\mathbf{U} \upharpoonright \Phi_0)| : \mathbf{U} \Vdash_{\epsilon}^{\mathbf{A}} f(\vec{x}) \downarrow \}$
- \blacktriangleright size(\mathbf{A}, f, \vec{x}) = min{ $|U| : \mathbf{U} \Vdash_{\mathbf{C}}^{\mathbf{A}} f(\vec{x}) \downarrow$ }
- ▶ depth(\mathbf{A}, f, \vec{x}) = min{depth(\mathbf{U}, \vec{x}) : $\mathbf{U} \Vdash_{\mathbf{A}}^{\mathbf{A}} f(\vec{x}) \downarrow$ }

Deriving lower bounds by constructing homomorphisms

• The following two facts are immediate from the definitions:

Lemma

If α is a uniform process which computes $f: A^n \rightharpoonup A_s$ in \mathbf{A} , then

$$C_{\mu}(\mathbf{A}, f, \vec{x}) \leq C_{\mu}(\alpha, \vec{x}) \qquad (f(\vec{x})\downarrow)$$

Lemma (The homomorphism test)

Suppose μ is a substructure norm (e.g., calls $_{\Phi_0}$, size, depth) on a Φ -structure \mathbf{A} , $f: A^n \rightharpoonup A_s$, $f(\vec{x}) \downarrow$, and

for every finite $\mathbf{U} \subseteq_p \mathbf{A}$ which is generated by \vec{x} ,

$$\Big(f(\vec{x}) \in U_s \ \& \ \mu(\mathbf{U}, \vec{x}) < m\Big) \implies (\exists \pi: \mathbf{U} \to \mathbf{A})[f(\pi(\vec{x})) \neq \pi(f(\vec{x}))];$$

then
$$C_{\mu}(\mathbf{A}, f, \vec{x}) \geq m$$
.

A lower bound for coprimeness on $\mathbb N$

 $\mathbf{A} = (\mathbb{N}, 0, 1, +, \dot{-}, \text{iq}, \text{rem}, =, <, \mathbf{\Psi}), \mathbf{\Psi} \text{ a finite set of } Presburger functions }$ Theorem (van den Dries, ynm, 2004, 2009)

If $\xi > 1$ is quadratic irrational, then for some r > 0 and all sufficiently large coprime (a,b),

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{b^2} \implies \operatorname{depth}(\mathbf{A}, \perp, a, b) \ge r \log \log a.$$
 (1)

In particular, the conclusion of (1) holds with some r

- for positive Pell pairs (a, b) satsfying $a^2=2b^2+1$ $(\xi=\sqrt{2})$
- for Fibonacci pairs (F_{k+1}, F_k) with $k \ge 3$ $(\xi = \frac{1}{2}(1 + \sqrt{5}))$

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm ε_{nd} of \mathbf{N}_{ε} which decides coprimeness, is at least as effective as the Euclidean everywhere and

$$\operatorname{calls}(\varepsilon_{nd}, F_{k+1}, F_k) \leq K \log \log F_{k+1}$$

▶ The theorem is best possible from its hypotheses

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for and uses only N-bit numbers?

 $\mathbf{A}=(\mathbb{N},0,1,+,\dot{-},\mathsf{iq},\mathsf{rem},=,<,\mathbf{\Psi})$ as before. For any N, and any one of the intrinsic complexities as above, let

$$C_{\mu}(\mathbf{A}, f, 2^{N}) = \max\{C_{\mu}(\mathbf{A} \upharpoonright [0, 2^{N}), f, \vec{x}) : x_{1}, \dots, x_{n} < 2^{N}\}$$

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

$$calls(\mathbf{A}, \perp, 2^N) \ge size(\mathbf{A}, \perp, 2^N) \ge r \log N.$$

▶ Non-uniform lower bound for depth($\mathbf{A}, \perp, 2^N$)?

The optimality of Horner's rule for polynomial 0-testing

The nullity relation on a field F:

$$N_F(a_0,...,a_n,x) \iff a_0 + a_1x + a_2x^2 + \cdots + a_nx^n = 0$$

Theorem

Let F be the field of real or complex numbers.

If $n \ge 1$ and a_0, \ldots, a_n, x are algebraically independent in F, then:

- (1) calls_{·,÷} $(F, N_F, \vec{a}, x) = n$
- (2) $calls_{\{\cdot, \div, =\}}(F, N_F, \vec{a}, x) = n + 1$
 - ► The method for constructing the required homomorphsms is an elaboration of Winograd's proof of the optimality of Horner's rule for poly evaluation
 - ▶ It is quite different from the method used in arithmetic and requires a homomorphism which is not an embedding in (2)
 - ▶ Due to Bürgisser and Lickteig (1992) for algebraic decision trees, along with much stronger results