Recursion and complexity (Relative complexity in arithmetic and algebra)

Yiannis N. Moschovakis UCLA and University of Athens

Logic and interactions 2012, CIRM Marseille 30 - 31 January, 2012

Motivating problem: the Euclidean algorithm For $a, b \in \mathbb{N} = \{0, 1, ...\}, a \ge b \ge 1$,

(
$$\varepsilon$$
) $\operatorname{gcd}(a, b) = \operatorname{if}(\operatorname{rem}(a, b) = 0)$ then b else $\operatorname{gcd}(b, \operatorname{rem}(a, b))$

where rem(a, b) is the remainder of the division of a by b,

$$a = bq + \operatorname{rem}(a, b) \quad (0 \le \operatorname{rem}(a, b) < b)$$

 $\operatorname{calls}_{\varepsilon}(a, b) = \operatorname{the} \operatorname{number} \operatorname{of} \operatorname{divisions} \operatorname{required} \operatorname{to} \operatorname{compute} \operatorname{gcd}(a, b)$ by the Euclidean algorithm $\leq 2\log(b) = 2\log_2(b) \qquad (a \geq b \geq 2)$

- Is the Euclidean optimal for computing gcd(a, b) from rem?
- Is the Euclidean optimal for deciding coprimeness from rem?

$$a \bot b \iff \gcd(a, b) = 1$$

- Most relevant complexity: number of required divisions
- Looking for absolute lower bounds, which restrict all algorithms

Outline

1.1. Recursive (McCarthy) Programs.

Preliminaries and notation. The Church-Turing Thesis.

1.2. Uniform processes (The main dish).

An axiomatic approach to the theory of algorithms from specified primitives in the style of *abstract model theory*.

- **2.1. Lower bounds in arithmetic** (arithmetic complexity). Robust lower bounds for coprimeness (joint with van den Dries)
- **2.2. Lower bounds in algebra** (algebraic complexity). Robust lower bounds results for 0-testing of polynomials over fields, extending results of Peter Bürgisser (with others).
- Slogan: Absolute lower bound results are the undecidability facts about decidable problems

Full proofs and references posted at http://www.math.ucla.edu/~ynm

Outline

- 1.1. Recursive (McCarthy) Programs. Preliminaries and notation. The Church-Turing Thesis.
 - **1.2. Uniform processes** (The main dish). An axiomatic approach to the theory of algorithms from specified primitives in the style of *abstract model theory*.
 - **2.1. Lower bounds in arithmetic** (arithmetic complexity). Robust lower bounds for coprimeness (joint with van den Dries)
 - **2.2.** Lower bounds in algebra (algebraic complexity). Robust lower bounds results for 0-testing of polynomials over fields, extending results of Peter Bürgisser (with others).

(Partial) structures — sets with "given" primitives

• We identify a relation $R \subseteq A^n$ with its characteristic function

 $R(\vec{x}) = \text{if } R \text{ holds at } \vec{x} \text{ then } t t else ff$

• A (partial) structure is a tuple $\mathbf{A} = (A, \Phi^{\mathbf{A}})$

where Φ is a set of function (and relation) symbols and $\Phi^{\mathbf{A}} = \{\phi^{\mathbf{A}}\}_{\phi \in \Phi}$. Here

$$\left[\phi^{\mathbf{A}} : A^{n_{\phi}} \rightharpoonup A_{s} \right]$$
 with $s = \operatorname{sort}(\phi) = \operatorname{a} \operatorname{or} \operatorname{sort}(\phi) = \operatorname{boole}$

i.e., if $n_{\phi} = \operatorname{arity}(\phi)$, then

$$\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup A$$
 or $\phi^{\mathbf{A}}: A^{n_{\phi}} \rightharpoonup \{ \mathfrak{tt}, \mathsf{ff} \}$

N_ε = (N, rem, =₀, =₁), the Euclidean structure
N_ε ↾ U = (U, rem ↾ U, =₀↾ U, =₁↾ U) where U ⊆ N and (f ↾ U)(x, y) = w ⇔ x ∈ Uⁿ, w ∈ U_s & f(x) = w

Equational logic of partial terms with conditionals

For a vocabulary Φ and a set A, the $(\Phi \cup A)$ -terms are defined by

$$t :\equiv tt \mid ff \mid x \mid v_i \mid \phi(t_1, \dots, t_{n_\phi}) \mid if t_1 then t_2 else t_3$$

where $\phi \in \Phi$, $x \in A$ (viewed as a constant or parameter) and v_0, v_1, \ldots is a fixed sequence of individual variables

- Each term is assigned a sort, boole or a
- If t ≡ if t₁ then t₂ else t₃, then sort(t₁) ≡ boole and sort(t₂) ≡ sort(t₃) ≡ sort(t)
- t is pure : no parameters (a Φ-term)
 t is closed : no variables
- If t is closed and **A** is a Φ -structure, then

den(\mathbf{A}, t) = the value of t in \mathbf{A} (if t converges, $t \downarrow$)

$$ig \mathsf{A}\models t=s \Longleftrightarrow ig(\mathsf{den}(\mathsf{A},t) \uparrow \ \& \ \mathsf{den}(\mathsf{A},s) \uparrow ig) \ \mathsf{or} \ \mathsf{den}(\mathsf{A},t) = \mathsf{den}(\mathsf{A},s)$$

Recursive (McCarthy) programs — syntax

A Φ -recursive program E of arity n is a syntactic expression

$$E \equiv E_0(\vec{x}, \vec{p})$$
 where $\{p_1(\vec{v}_1) = E_1(\vec{v}_1, \vec{p}), \dots, p_k(\vec{v}_k) = E_k(\vec{v}_k, \vec{p})\}$

where

(RP1) $\vec{p} \equiv p_1, \dots, p_k$ is a sequence of (not necessarily distinct) fresh function symbols (not in Φ), the recursive variables of E

(RP2) For i = 0, ..., k, $E_i(\vec{v}_i, \vec{p})$ is a (pure) term in the vocabulary $\boxed{\text{voc}(E) = \Phi \cup \{p_1, ..., p_k\}}$ whose variables are in the list $\vec{v}_i \equiv v_1, ..., v_{k_i}$ (with $\vec{v}_0 \equiv \vec{x} \equiv x_1, ..., x_n$) (RP3) For i = 1, ..., k, $\text{sort}(p_i(\vec{v}_i)) = \text{sort}(E_i(\vec{v}_i, \vec{p}))$

- sort(E) = sort($E_0(\vec{x}, \vec{p})$)
- the free variables of E are x_1, \ldots, x_n
- the bound variables of *E* are those in the lists \vec{v}_i and the recursive variables p_1, \ldots, p_k
- ► A program is deterministic if its recursive variables are all distinct

Recursive programs — (call-by-value) semantics

$$E \equiv E_0(\vec{x}, \vec{p})$$
 where $\{p_1(\vec{v}_1) = E_1(\vec{v}_1, \vec{p}), \dots, p_k(\vec{v}_k) = E_k(\vec{v}_k, \vec{p})\}$

 $CITerms(E, \mathbf{A}) =$ the set of closed ($voc(E) \cup A$)-terms Need to define the relation

$$E, \mathbf{A} \vdash t = w \iff t \in \mathsf{CITerms}(E, \mathbf{A}), w \in A \cup \{\texttt{tt}, \mathsf{ff}\}$$

& w is one of the values assigned to t by E in **A**

► (1) Least-fixed-point semantics (non-deterministic for all E): t = w belongs to the least set S which contains all w = w and is closed under the natural semantic conditions, e.g.,

$$t_1 = u_1, \dots, t_{n_{\phi}} = u_{n_{\phi}} \in S \& \phi^{\mathsf{A}}(u_1, \dots, u_{n_{\phi}}) = w$$
$$\implies \phi(t_1, \dots, t_{n_{\phi}}) = w \in S$$

 (2) Implementations (many, deterministic if E is deterministic): There is a computation t → s₁ → ··· → s_m ↔ w
 by E in A which assigns w to t (→ is input, ↔ is output)

The recursive (two stack) machine $\mathcal{P}(E, \mathbf{A})$

(pass)	$ec{a} \ \underline{x:} \ ec{b} \ o ec{a} \ \underline{:x} \ ec{b} \ (x \in \mathcal{A} \cup \{ extsf{t}, extsf{ff}\})$
(e-call)	$ec{a} \ \underline{\phi}: ec{x} \ ec{b} \ o \ ec{a} \ \underline{\dot{c}} \ \phi^{m{A}}(ec{x}) \ ec{b}$
(i-call)	$ec{a} \; \underline{p_i : ec{u}} \; ec{b} \; o ec{a} \; \underline{E_i(ec{u}, ec{p}):} \; ec{b}$
(comp)	$ec{a} \ \underline{h(t_1,\ldots,t_n):} \ ec{b} \ o ec{a} \ \underline{ht_1} \ \cdots \ \underline{t_n:} \ ec{b}$
(br)	$ec{a} \; \underline{if} \; t_0 \; then \; t_1 \; else \; t_2 \; : \; ec{b} \; o \; ec{a} \; \underline{t_1} \; t_2 \; ? \; t_0 \; : \; ec{b}$
(br0)	$ec{a} \ \underline{t_1} \ \underline{t_2} \ ?: \mathtt{tt} \ ec{b} \ o \ ec{a} \ \underline{t_1:} \ ec{b}$
(br1)	$ec{a} \ \underline{t_1} \ t_2 \ ?: ext{ff} \ ec{b} \ o \ ec{a} \ \underline{t_2}: \ ec{b}$

- States are sequences of the form $\vec{L} : \vec{R}$, where \vec{L} is a tuple from CITerms $(E, \mathbf{A}) \cup \text{voc}(E) \cup \{?\}$ and \vec{R} a tuple from $A \cup \{\texttt{tt}, \texttt{ff}\}$
- ▶ Input $t \hookrightarrow t$: Terminal states : w Output : w $\hookrightarrow w$
- The underlined part is the trigger for the transition
- ▶ In the external call (e-call), $\phi \in \Phi$ and $\operatorname{arity}(\phi) = n_{\phi} = \operatorname{length} \operatorname{of} \vec{x}$
- ▶ In the *internal call* (i-call), $p_i(\vec{u}) = E_i(\vec{u}, \vec{p})$ is an equation of E

A-recursive functions

$$E \equiv E_0(\vec{x}, \vec{p})$$
 where $\{p_1(\vec{v}_1) = E_1(\vec{v}_1, \vec{p}), \dots, p_k(\vec{v}_k) = E_k(\vec{v}_k, \vec{p})\}$

• A partial function $f : A^n \rightarrow A_s$ is computed by E in **A** if

$$f(\vec{x}) = w \iff E, \mathbf{A} \vdash E_0(\vec{x}, \vec{p}) = w \quad (\vec{x} \in A^n, w \in A_s)$$

At most one partial function is computed by E in A

- ► $|\mathbf{rec}(\mathbf{A}) = \{f : A^n \rightarrow A_s : f \text{ is computed in } \mathbf{A} \text{ by a deterministic } E\}$
- ▶ $\mathbf{rec}_{nd}(\mathbf{A}) = \{ f : A^n \rightarrow A_s : f \text{ is computed in } \mathbf{A} \text{ by some } E \}$

▶ In general
$$rec(A) \subsetneq rec_{nd}(A)$$

Recursive programs — complexity measures

$E \equiv E_0(\vec{x}, \vec{p})$ where $\{p_1(\vec{v}_1) = E_1(\vec{v}_1, \vec{p}), \dots, p_k(\vec{v}_k) = E_k(\vec{v}_k, \vec{p})\}$

- calls_{Φ0}(E, A)(t = w) = the least number of calls to the primitives in Φ0 ⊆ Φ that E must execute to prove t = w
- depth(E, A)(t = w) = the least number of calls to the primitives in Φ that E must execute in sequence to prove t = w

► size(E, A)(t = w) = the least number of points in A that E must see to prove t = w

- These are defined inductively or for each computation of t = w (and then the least of these numbers is selected)
- If *E* computes $f : A^n \rightharpoonup A_s$, they give complexity measures

 $\operatorname{calls}_{\Phi_0}(E, \mathbf{A}, \vec{x}), \operatorname{depth}(E, \mathbf{A}, \vec{x}), \operatorname{size}(E, \mathbf{A}, \vec{x}) \qquad (f(\vec{x}) \downarrow)$

▶ Thm. depth(
$$E, \mathbf{A}, \vec{x}$$
) ≤ size(E, \mathbf{A}, \vec{x}) ≤ calls_Φ(E, \mathbf{A}, \vec{x})

Recursive programs — special forms

$$E \equiv E_0(\vec{x}, \vec{p})$$
 where $\{p_1(\vec{v}_1) = E_1(\vec{v}_1, \vec{p}), \dots, p_k(\vec{v}_k) = E_k(\vec{v}_k, \vec{p})\}$

- Terms: k = 0, so $E \equiv E_0(\vec{x})$ is a Φ -term
- Finite algorithms with branching:

for each i = 1, ..., k, if p_j occurs in $E_i(\vec{v}_i, \vec{p})$, then j < i

Deterministic finite algorithms with or without conditionals include the standard computation models of algebraic complexity (*k*-step algorithms, computation sequences, algebraic decision trees, etc; Pan, Winograd, Strassen, Bürgisser)

► Tail recursive (or "while") programs,

 $E \equiv E_0(\vec{x}, p)$ where

 $\{p(\vec{u}) = \text{if test}(\vec{u}) \text{ then out}(\vec{u}) \text{ else } p(\tau_1(\vec{u}), \dots, \tau_m(\vec{u}))\}$

with Φ -terms test (\vec{u}) , out (\vec{u}) , $\tau_j(\vec{u})$

The standard models of computation are faithfully represented by tail recursions, once their natural primitives are identified

Abstract recursion — further topics

- The relation between rec(A), rec_{nd}(A) and the class tail(A) of tail recursive functions on arbitrary A (delicate results, Stolbouskin, Taitslin, Tiuryn, etc.)
- Deterministic and non-deterministic functionals, the First Recursion Theorem, etc.
- The Formal Language of Recursion (admits "where" as an unrestricted construct)
- Recursive programs as specifications of algorithms
 The meaning of a program is the algorithm it expresses
 Recursive vs. iterative (tail) algorithms
- Second and higher type recursion large field with applications to model theory, set theory, etc.

The Recursive Computability and Church-Turing Theses

• RCT: $f : A^n \rightarrow A_s$ is (recursively) computable from ϕ_1, \dots, ϕ_m $\iff f \in \operatorname{rec}(A, \phi_1, \dots, \phi_m)$

- RCT: The fundamental algorithmic constructs are calling (composition), branching, and grounded self reference
- ► The definition of **rec**(**A**) does not involve any objects outside **A**
- A-recursion is a Tarski logical notion, preserved by permutations
- The natural numbers are the structure $N = (\mathbb{N}, 0, S, =)$

(Dedekind: up to isomorphism, ..., the modern structuralist view)

••
$$f : \mathbb{N} \to \mathbb{N}_s$$
 is recursive $\iff f \in \operatorname{rec}(\mathbb{N}, 0, S, =)$

Thm $f \in rec(\mathbb{N}, 0, S, =)$ if and only if f is Turing computable

Turing computability on $\mathbb{N}=\mbox{recursion}+\mbox{what}$ the numbers are

Outline

1.1. Recursive (McCarthy) Programs. Preliminaries and notation. The Church-Turing Thesis.

- 1.2. Uniform processes (The main dish). An axiomatic approach to the theory of algorithms from specified primitives in the style of *abstract model theory*.
 - **2.1. Lower bounds in arithmetic** (arithmetic complexity). Robust lower bounds for coprimeness (joint with van den Dries).
 - **2.2. Lower bounds in algebra** (algebraic complexity). Robust lower bounds results for 0-testing of polynomials over fields, extending results of Peter Bürgisser (with others).

More about structures

• Reducts: for every $\Phi_0 \subseteq \Phi$,

$$\mathbf{A} \upharpoonright \Phi_{\mathbf{0}} = (A, \{\phi^{\mathbf{A}} : \phi \in \Phi_{\mathbf{0}}\})$$

 The (equational) diagram of a Φ-structure is the set of its basic equations,

$$\mathsf{eqdiag}(\mathbf{A}) = \{(\phi, \vec{x}, w) : \phi \in \Phi, \phi^{\mathbf{A}}(\vec{x}) = w\}$$

- ► A homomorphism $\pi : \mathbf{U} \to \mathbf{V}$ is any $\pi : U \to V$ such that for all $\phi \in \Phi, x_1, \dots, x_n \in U, w \in U_s$, (with $\pi(\mathfrak{t}) = \mathfrak{t}, \pi(\mathfrak{f}) = \mathfrak{f}$) $\phi^{\mathbf{U}}(x_1, \dots, x_n) = w \implies \phi^{\mathbf{V}}(\pi x_1, \dots, \pi x_n) = \pi w$
- π is an embedding if it is injective π is an isomorphism if it is a surjective embedding and the inverse map $\pi^{-1}: V \to U$ is also an embedding
- The homomorphic image $\pi[\mathbf{U}]$ has universe $\pi[U]$ and

 $\mathsf{eqdiag}(\pi[\mathbf{U}]) = \{(\phi, \pi(\vec{x}), \pi(w)) \colon (\phi, \vec{x}, w) \in \mathsf{eqdiag}(\mathbf{U})\}$

Substructures, generation

Substructures:

$$\begin{split} \mathbf{U} &\subseteq_{p} \mathbf{A} \iff U \subseteq A \\ &\& \text{ the identity } I : \mathbf{U} \to \mathbf{A} \text{ is an embedding} \\ &\iff U \subseteq A \And \text{eqdiag}(\mathbf{U}) \subseteq \text{eqdiag}(\mathbf{A}) \end{split}$$

$$G_0(\mathbf{U}, \vec{x}) = \{x_1, \dots, x_n\},\$$

$$G_{m+1}(\mathbf{U}, \vec{x}) = G_m(\mathbf{U}, \vec{x}) \cup \{\phi^{\mathbf{U}}(u_1, \dots, u_{n_{\phi}}) : u_1, \dots, u_{n_{\phi}} \in G_m(\mathbf{U}, \vec{x})\}$$

$$\mathbf{G}_m(\mathbf{U}, \vec{x}) = \mathbf{U} \upharpoonright G_m(\mathbf{U}, \vec{x})$$

▶ **U** ⊆_p **A** is generated by $\vec{x} \in U^n$ if $U = G_\infty(\mathbf{U}, \vec{x}) = \bigcup_m G_m(\mathbf{U}, \vec{x})$ depth(\mathbf{U}, \vec{x}) = min{ $m: U = G_m(\mathbf{U}, \vec{x})$ } (**U** finite, generated by \vec{x})

We use finite U ⊆_p A generated by the input x to represent calls to the primitives executed during a computation in A

Algorithms from primitives - the basic intuition

An *n*-ary algorithm α of $\mathbf{A} = (A, \Phi)$ (or from Φ) of sort *s* "computes" some *n*-ary partial function

$$\overline{\alpha} = \overline{\alpha}^{\mathbf{A}} : A^n \rightharpoonup A_s \quad (A_s = A \text{ or } A_s = \{ \mathtt{t}, \mathtt{ff} \})$$

using the primitives in $\boldsymbol{\Phi}$ as oracles

We understand this to mean that in the course of a "computation" of $\overline{\alpha}(\vec{x})$, the algorithm may request from the oracle for any $\phi^{\mathbf{A}}$ any particular value $\phi^{\mathbf{A}}(\vec{u})$, for arguments \vec{u} which it has already computed, and that if the oracles cooperate, then "the computation" of $\overline{\alpha}(\vec{x})$ is completed in a finite number of "steps"

- The notion of a uniform process attempts to capture minimally these aspects of algorithms from primitives
- It does not capture their effectiveness, but their uniformity, that an algorithm applies "the same procedure" to all arguments

I The Locality (or relativization) Axiom

A uniform process α of arity n and sort s of a structure $\mathbf{A} = (A, \Phi^{\mathbf{A}})$ assigns to each $\mathbf{U} \subseteq_{p} \mathbf{A}$ an n-ary partial function

$$\overline{\alpha}^{\mathsf{U}}: U^{n}
ightarrow U_{s}$$

It computes the partial function $\overline{\alpha}^{\mathbf{A}}: A^n \rightarrow A_s$

For an algorithm α, intuitively, α^U is the restriction to U of the partial function computed by α when the oracles respond only to questions with answers in eqdiag(U)

We write

$$\mathbf{U}\vdash \alpha(\vec{x})=w\iff \vec{x}\in U^n, w\in U_s \text{ and } \overline{\alpha}^{\mathbf{U}}(\vec{x})=w$$

• True for a program E which computes some $f = \overline{E} : A^n \rightharpoonup A_s$ in **A** by

$$\overline{E}^{\mathsf{U}}(\vec{x}) = w \iff E, \mathsf{U} \vdash E_0(\vec{x}, \vec{p}) = w$$

II The Homomorphism Axiom

If α is an n-ary uniform process of \mathbf{A} , $\mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{A}$, and $\pi : \mathbf{U} \to \mathbf{V}$ is a homomorphism, then

$$\mathbf{U}\vdash\alpha(\vec{x})=\mathbf{w}\implies\mathbf{V}\vdash\alpha(\pi\vec{x})=\pi\mathbf{w}\quad(x_1,\ldots,x_n\in U,\mathbf{w}\in U_s)$$

In particular, if $\mathbf{U} \subseteq_{p} \mathbf{A}$, then $\overline{\alpha}^{\mathbf{U}} \sqsubseteq \overline{\alpha}^{\mathbf{A}}$

- For algorithms: when asked for φ^U(x), the oracle for φ may consistently provide φ^V(πx), if π is a homomorphism
- ► This is obvious for the identity embedding *I* : U → V, but it is a strong restriction for algorithms from rich primitives (stacks, higher type constructs, etc.)
- True for a program E which computes some f = E : Aⁿ → A_s in A (and so for the standard, deterministic and non-deterministic models of computation once their natural primitives are identified)

III The Finiteness Axiom

If α is an n-ary uniform process of ${\bf A},$ then

$$\mathbf{A} \vdash \alpha(\vec{x}) = \mathbf{w}$$

 \implies there is a finite **U** \subseteq_p **A** generated by \vec{x} such that **U** $\vdash \alpha(\vec{x}) = w$

For every call \(\vec{a}\) to the primitives, the algorithm must construct the arguments \(\vec{u}\) , and so the entire computation takes place within a finite substructure generated by the input \(\vec{x}\)

We write

 $\mathbf{U} \vdash_{c} \alpha(\vec{x}) = w \iff \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \vdash \alpha(\vec{x}) = w$

and we think of (\mathbf{U}, \vec{x}, w) as a computation of α on the input \vec{x}

• True for a program E which computes some $f = \overline{E} : A^n \rightarrow A_s$ in **A**

Uniform processes need not be effective

Thm If a Φ -structure **A** is generated by the empty tuple, then every $f : A^n \to A_s$ is computed by some uniform process of **A** So every $f : \mathbb{N}^n \to \mathbb{N}$ is computed by a uniform process of $(\mathbb{N}, 0, S)$ Proof Let $d(\vec{x}) = \min\{m : \vec{x}, f(\vec{x}) \in G_m(\mathbf{A}, \emptyset) \cup \{tt, ff\}\}$ and define α by

$$\overline{\alpha}^{\mathsf{U}}(\vec{x}) = w \iff f(\vec{x}) = w \And \mathsf{G}_{d(\vec{x})}(\mathsf{A}, \emptyset) \subseteq_{\rho} \mathsf{U}$$

The Homomorphism Axiom holds because if $\mathbf{G}_{d(\vec{x})}(\mathbf{A}, \emptyset) \subseteq_{p} \mathbf{U}$, then every homomorphism $\pi : \mathbf{U} \to \mathbf{V}$ is the identity on $\mathbf{G}_{d(\vec{x})}(\mathbf{A}, \emptyset)$

Complexity measures for uniform processes

A substructure norm on A assigns to each x ∈ Aⁿ and each finite U ⊆_p A generated by x a number μ(U, x) ∈ N

$$| C_{\mu}(\alpha, \vec{x}) = \min\{\mu(\mathbf{U}, \vec{x}) : \mathbf{U} \vdash_{c} \alpha(\vec{x}) = w\}$$

- calls_{Φ0}(α, x) = min{|eqdiag(U ↾Φ0)| : U ⊢_c α(x) = w}
 (the least number of calls to φ ∈ Φ0 α must do to compute α^A(x))
- size(α, x) = min{|U| : U ⊢_c α(x) = w} (the least number of elements of A that α must see)
- depth(α, x) = min{depth(U, x) : U ⊢_c α(x) = w} (the least number of calls α must execute in sequence)

$$\mathsf{Thm} \left| \mathsf{depth}(\alpha, \vec{x}) \leq \mathsf{size}(\alpha, \vec{x}) \leq \mathsf{calls}(\alpha, \vec{x}) \quad (= \mathsf{calls}_{\Phi}(\alpha, \vec{x})) \right|$$

These measures are \leq the standard measures for programs (they count only distinct calls)

Yiannis N. Moschovakis: Recursion and complexity

1.2. Uniform processes 8/12

 \star The forcing and certification relations

Suppose $f : A^n \to A_s$, $f(\vec{x}) \downarrow$, $\mathbf{U} \subseteq_p \mathbf{A}$.

• A homomorphism $\pi: \mathbf{U} \to \mathbf{A}$ respects f at \vec{x} if

$$\vec{x} \in U^n \& f(\vec{x}) \in U_s \& \pi(f(\vec{x})) = f(\pi(\vec{x}))$$

 $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) = w \iff$ every homomorphism $\pi : \mathbf{U} \to \mathbf{A}$ respects f at \vec{x} $\mathbf{U} \Vdash^{\mathbf{A}}_{c} f(\vec{x}) = w \iff \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) = w$

Thm If α is a uniform process of **A** which computes $f : A^n \rightarrow A_s$, then

$$\mathbf{U} \vdash_{c} \alpha(\vec{x}) = w \implies \mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) = w$$

Proof is immediate by the Homomorphism Axiom

★ Intrinsic (certification) complexities

Suppose $f : A^n \rightarrow A_s$ is computed by some uniform process of **A** and μ is a substructure norm on **A**

 $\mathbf{U} \Vdash_c^{\mathbf{A}} f(\vec{x}) = w \iff \mathbf{U}$ is finite, generated by \vec{x} and $\mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) = w$

•
$$C_{\mu}(\mathbf{A}, f, \vec{x}) = \min\{\mu(\mathbf{U}, \vec{x}) : \mathbf{U} \Vdash_{c}^{\mathbf{A}} f(\vec{x}) = w\} \quad (f(\vec{x})\downarrow)$$

► calls_{Φ_0}(**A**, f, \vec{x}) = min{|eqdiag(**U** | Φ_0)| : **U** $\Vdash_c^{\mathbf{A}} f(\vec{x}) = w$ }

► size(
$$\mathbf{A}, f, \vec{x}$$
) = min{ $|U| : \mathbf{U} \Vdash_c^{\mathbf{A}} f(\vec{x}) = w$ }

- depth(\mathbf{A}, f, \vec{x}) = min{depth(\mathbf{U}, \vec{x}) : $\mathbf{U} \Vdash_c^{\mathbf{A}} f(\vec{x}) = w$ }
- ▶ For every uniform process of **A** which computes *f*

$$C_{\mu}(\mathbf{A}, f, \vec{x}) \leq C_{\mu}(\alpha, \vec{x}) \quad (f(\vec{x}) \downarrow)$$

The Homomorphism Test

Lemma

Suppose μ is a substructure norm (calls $_{\Phi_0}$, size, depth) on a Φ -structure **A**, $f : A^n \rightarrow A_s$, $f(\vec{x}) \downarrow$, and

for every finite
$$\mathbf{U} \subseteq_{p} \mathbf{A}$$
 which is generated by \vec{x} ,
 $\left(f(\vec{x}) \in U_{s} \& \mu(\mathbf{U}, \vec{x}) < m\right) \implies (\exists \pi : \mathbf{U} \to \mathbf{A})[f(\pi(\vec{x})) \neq \pi(f(\vec{x}))];$

then $C_{\mu}(\mathbf{A}, f, \vec{x}) \geq m$.

The best uniform process for $f : A^n \rightharpoonup A_s$ in **A** Define $\beta_{f,\mathbf{A}}$ by

$$\overline{\beta}_{f,\mathbf{A}}^{\mathbf{U}}(\vec{x}) = w \iff \mathbf{U} \Vdash^{\mathbf{A}} f(\vec{x}) = w \quad (\mathbf{U} \subseteq_{\rho} \mathbf{A})$$

Theorem

The following are equivalent for a Φ -structure **A** and $f : A^n \rightarrow A_s$:

(i) Some uniform process α of A computes f.
(ii) (∀x, w)(f(x) = w ⇒ (∃U ⊆_p A)[U ⊩_c^A f(x) = w]).
(iii) β_{f,A} is a uniform process of A which computes f.
Moreover, if these conditions hold, then for every uniform process α which computes f in A and all complexity measures C_μ as above,

$$C_{\mu}(\mathbf{A}, f, \vec{x}) = C_{\mu}(\beta_{f, \mathbf{A}}, \vec{x}) \le C_{\mu}(\alpha, \vec{x}) \qquad (f(\vec{x}) \downarrow).$$

Outline

1.1. Recursive (McCarthy) Programs. Preliminaries and notation. The Church-Turing Thesis.

- **1.2. Uniform processes (The main dish)**. An axiomatic approach to the theory of algorithms from specified primitives in the style of *abstract model theory*.
- **2.1. Lower bounds in arithmetic** (arithmetic complexity). Robust lower bounds for coprimeness (joint with van den Dries).
 - **2.2. Lower bounds in algebra** (algebraic complexity). Robust lower bounds results for 0-testing of polynomials over fields, extending results of Peter Bürgisser (with others).

Recall the method

- (Partial) Φ -structure $\mathbf{A} = (A, \{\phi^{\mathbf{A}}\}_{\phi \in \Phi}), f : A^n \rightharpoonup A_s$
- Homomorphism $\pi: \mathbf{U} \to \mathbf{V}$
- ► For each substructure norm μ (calls_{Φ0}, size, depth) we defined the intrinsic complexity measure $\vec{x} \mapsto C_{\mu}(\mathbf{A}, f, \vec{x}) \in \mathbb{N} \cup \{\infty\}$
- If α computes f in **A**, then

$$C_{\mu}(\mathbf{A}, f, \vec{x}) \leq C_{\mu}(\alpha, \vec{x}) \qquad (f(\vec{x}) \downarrow)$$

Lemma (The Homomorphism Test)

Suppose μ is a substructure norm (calls $_{\Phi_0}$, size, depth) on a Φ -structure **A**, $f : A^n \rightharpoonup A_s$, $f(\vec{x}) \downarrow$, and

for every finite $\mathbf{U} \subseteq_{p} \mathbf{A}$ which is generated by \vec{x} , $(f(\vec{x}) \in U_{s} \& \mu(\mathbf{U}, \vec{x}) < m) \implies (\exists \pi : \mathbf{U} \to \mathbf{A})[f(\pi(\vec{x})) \neq \pi(f(\vec{x}))];$

then $C_{\mu}(\mathbf{A}, f, \vec{x}) \geq m$.

The motivating conjecture

The Euclidean algorithm for coprimeness:

▶ Tail recursion in $N_{\varepsilon} = (\mathbb{N}, eq_0, eq_1, rem)$

$$\mathsf{calls}_{\mathsf{\{rem\}}}(\varepsilon, a, b) \leq 2 \log b \qquad (a \geq b \geq 2)$$

• Conjecture: For some r > 0 and infinitely many $a \ge b \ge 1$,

$$\mathsf{calls}_{\mathsf{\{rem\}}}(\mathsf{N}_{\varepsilon}, \mathbb{L}, a, b) \ge r \log a$$

We will discuss four relevant results

Yiannis N. Moschovakis: Recursion and complexity

(a) Stein's binary algorithm α_{st} for the gcd and \bot

Thm The gcd satisfies the following recursive equation for $x, y \ge 1$:

$$gcd(x,y) = \begin{cases} x & \text{if } x = y, \\ 2 gcd(iq_2(x), iq_2(y)) & \text{ow., if } parity(x) = parity(y) = 0, \\ gcd(iq_2(x), y) & \text{ow., if } parity(x) = 0, parity(y) = 1, \\ gcd(x, iq_2(y)) & \text{ow., if } parity(x) = 1, parity(y) = 0, \\ gcd(x - y, y) & \text{ow., if } x > y, \\ gcd(x, y - x) & \text{otherwise.} \end{cases}$$

where x - y = if x < y then 0 else x - y, $\text{iq}_2(x) = \text{iq}(x, 2)$

• $\alpha_{\rm st}$ is a tail recursive program of the structure

$$\boldsymbol{\mathsf{N}}_{\mathsf{st}} = (\mathbb{N}, 0, 1, =, <, \mathsf{parity}, \mathsf{em}, \mathsf{iq}_2, \ \dot{-} \)$$

with em(x) = 2x, and for some C,

 $\mathsf{calls}(\alpha_{\mathsf{st}}, x, y) \leq C \max\{\log x, \log y\} \quad (x, y \geq 2)$

Stein is suboptimal from its primitives

Thm (van den Dries-ynm, 2004, 2009) If b > 2 and $a = b^2 - 1$ then $a \perp b$ and

$$\mathsf{depth}(\mathbf{N}_{\mathsf{st}}, \mathbb{L}, a, b) \geq \frac{1}{10} \log a$$

It follows that for some K and all b > 2, $a = b^2 - 1$,

$$\begin{split} \mathsf{depth}(\alpha_{\mathsf{st}}, a, b) &\leq K \mathsf{depth}(\mathsf{N}_{\mathsf{st}}, \bot, a, b), \\ \mathsf{calls}(\alpha_{\mathsf{st}}, a, b) &\leq K \mathsf{calls}(\mathsf{N}_{\mathsf{st}}, \bot, a, b) \end{split}$$

A uniform process α of a Φ-structure A is suboptimal for
 f : Aⁿ → A_s relative to a substructure norm μ, if for some K > 0,

for infinitely many
$$\vec{a}, C_{\mu}(\alpha, \vec{a}) \leq \mathcal{K}C_{\mu}(\mathbf{A}, f, \vec{a})$$

• α_{st} is suboptimal for gcd and $oldsymbol{\mathbb{L}}$ relative to both depth and calls

Proof of the suboptimality of Stein's algorithm

$$\begin{array}{l} \text{For } \mathbf{N}_{\mathsf{st}} = (\mathbb{N}, 0, 1, =, <, \mathsf{parity}, \mathsf{em}, \mathsf{iq}_2, \dot{-}), \quad b > 2, a = b^2 - 1, \\\\ \text{show} \boxed{\mathsf{depth}(\mathbf{N}_{\mathsf{st}}, \bot, a, b) \geq \frac{1}{10} \log a} \end{array}$$

Must prove that for every finite $\mathbf{U} \subseteq_{p} \mathbf{N}_{st}$, generated by a, b,

$$\mathsf{depth}(\mathsf{U},a,b) < \frac{1}{10} \log a \implies (\exists \pi : \mathsf{U} \to \mathsf{N}_{\mathsf{st}}) \Big(\pi(a), \pi(b) \text{ not coprime} \Big)$$

Lemma (Very easy) If $2^{2m+3} < b$, then every $x \in G_m(\mathbf{N}_{st}, a, b)$ can be expressed uniquely in the form

$$\begin{aligned} x &= \frac{x_0 + x_1 a + x_2 b}{2^m} \quad \text{with } x_i \in \mathbb{Z}, |x_i| \leq 2^{2m} \text{ for } i \leq 2 \end{aligned}$$
Proof of Thm Set $\pi(x) = \frac{x_0 + x_1 \lambda a + x_2 \lambda b}{2^m} \text{ with } \lambda = 1 + 2^m. \text{ Then } \pi: \mathbf{G}_m(\mathbf{N}_{\text{st}}, a, b) \rightarrow \mathbf{N}_{\text{st}} \text{ is an embedding and } \pi(a) = \lambda a, \pi(b) = \lambda b \end{aligned}$

7

Additional and related results about Presburger primitives

- ► The primitives of N_{st} are (piecewise linear) Presburger functions, elementarily definable in the additive semigroup (N, 0, 1, +, =)
- For every Presburger structure A = (N, Φ), there is an r > 0 such that for all b > 2, a = b² − 1,

$$\mathsf{depth}(\mathsf{A}, \mathbb{L}, a, b) \geq r \log a$$

For each of the unary relations

x is prime, x is a perfect square, x is square free

and every Presburger structure **A**, there is some r > 0 such that for infinitely many a, R(a) and depth(**A**, R, a) $\geq r \log a$

▶ Divisibility. Let x | y ⇔ x divides y. For every Presburger structure A, there is an r > 0 such that for infinitely many a, b,

$$a \mid b \& \operatorname{depth}(\mathbf{A}, \mid , a, b) \geq r \log b$$

(b) A lower bound for coprimeness on \mathbb{N} from rem Let $\mathbf{A} = (\mathbb{N}, iq, rem, \Psi)$, with Ψ a finite set of *Presburger functions* Theorem (van den Dries-ynm, 2004, 2009) If $\xi > 1$ is quadratic irrational, then for some r > 0 and all sufficiently large coprime (a, b),

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{b^2} \implies \operatorname{depth}(\mathbf{A}, \mathbb{L}, a, b) \ge r \log \log a.$$
 (*)

In particular, the conclusion of (\star) holds with some r

- for all solutions (a, b) of Pell's equation $a^2 = 2b^2 + 1$, and
- for all successive Fibonacci pairs (F_{k+1}, F_k) with $k \ge 3$.
- ▶ ξ is irrational and $a\xi^2 + b\xi + c = 0$ with some $a, b, c \in \mathbb{Z}$
- Infinitely many (a, b) satisfy the hypothesis of (*)
- Pell pairs: infinitely many, hyp. of (*) holds with $\xi = \sqrt{2}$

►
$$F_0 = 0, F_1 = 1, F_{k+2} = F_k + F_{k+1}$$

(F_{k+1}, F_k) satisfies the hyp. of (*) with $\xi = \frac{1}{2}$

How much number theory is needed?

• For every irrational real number $\xi > 0$, there are infinitely many coprime pairs (a, b) such that

$$\left|\xi-\frac{a}{b}\right|<\frac{1}{b^2}.$$

These are the good approximations of ξ .

• Liouville's Theorem for degree 2: For every quadratic irrational ξ , there is a number C > 0 such that for all $x, y \in \mathbb{Z}$,

$$\left|\xi-\frac{x}{y}\right|>\frac{1}{Cy^2}.$$

• If $\xi > 1$ is a quadratic irrational, then there is a number $c = c(\xi) > 1$ such that every interval $(2^k, 2^{ck})$ contains a good approximation (a, b) of ξ , i.e., $2^k < a, b < 2^{ck}$.

• For the specific examples, we also need the quoted basic facts about Pell pairs and Fibonacci numbers

The gist of the proof

Let $\textbf{A}=(\mathbb{N},\mathsf{iq},\mathsf{rem},\Psi),$ with Ψ a finite set of Presburger functions

Theorem (van den Dries-ynm, 2004, 2009)

If $\xi > 1$ is quadratic irrational, then for some r > 0 and all sufficiently large coprime (a, b),

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{b^2} \implies \operatorname{depth}(\mathbf{A}, \mathbb{L}, a, b) \ge r \log \log a.$$
 (*)

Lemma (Not so easy)

For every quadratic irrational $\xi > 1$, there is a number $\ell = \ell(\xi)$ such that for all but finitely many good approximations (a, b) of ξ and every $m < \frac{1}{2\ell} \log \log a$, every number in $G_m(\mathbf{A}, a, b)$ can be expressed uniquely in the form

$$x = \frac{x_0 + x_1 a + x_2 b}{x_3} \quad \text{with } x_i \in \mathbb{Z}, |x_i| < 2^{2^{\ell m}} \text{ for } i \leq 3.$$

Set $\pi : \mathbf{G}_m(\mathbf{A}, a, b) \rightarrow \mathbf{A}$ by $\pi(x) = \frac{x_0 + x_1 \lambda a + x_2 \lambda b}{x_3}$, with $\lambda = 1 + a!$

(c) How much off are we?

• Conjecture: For some r > 0 and infinitely many $a \ge b \ge 1$,

$$\mathsf{calls}_{\{\mathsf{rem}\}}(\mathsf{N}_arepsilon, \mathbb{L}, a, b) \geq r \log a$$

• We have: For some r > 0 and all (F_{k+1}, F_k) with $k \ge 3$,

$$\mathsf{depth}_{\{\mathsf{rem}\}}(\mathsf{N}_{\varepsilon}, \mathbb{L}, F_{k+1}, F_k) \geq r \log \log F_{k+1}$$

Theorem (Pratt, unpublished)

There is a non-deterministic \mathbf{N}_{ε} -program of ε_{nd} which decides coprimeness, is not less effective than the Euclidean for all inputs and

$$\operatorname{calls}(\varepsilon_{nd}, F_{k+1}, F_k) \leq K \log \log F_{k+1}$$

- The conclusion of our theorem is best possible for its hypotheses
- The Conjecture may still be true—for some infinite set of inputs other than the successive Fibonacci numbers
- Pratt's proof depends on classical (but not easy) properties of the Fibonacci numbers

(d) Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for n-bit numbers?

 $\mathbf{A} = (\mathbb{N}, iq, rem, \Psi)$ with Presburger Ψ as before. For any N, and any one of the intrinsic complexities as above, let

$$C_{\mu}(\mathbf{A}, f, N) = \max\{C_{\mu}(\mathbf{A} \upharpoonright [0, 2^{N}), f, a, b) : a, b < 2^{N}\}$$

Theorem (van den Dries-ynm 2009)

For some rational number r > 0 and all sufficiently large N,

$$\mathsf{calls}(\mathbf{A}, \bot, 2^N) \ge \mathsf{size}(\mathbf{A}, \bot, 2^N) \ge r \log N.$$

- The proof requires a simple new idea (which introduces the size measure) but no more number theory
- We do not know how to derive a non-uniform lower bound for depth(A, ⊥, 2^N).

Outline

1.1. Recursive (McCarthy) Programs. Preliminaries and notation. The Church-Turing Thesis.

- **1.2. Uniform processes** (The main dish). An axiomatic approach to the theory of algorithms from specified primitives in the style of *abstract model theory*.
- **2.1. Lower bounds in arithmetic** (arithmetic complexity). Robust lower bounds for coprimeness (joint with van den Dries).
- 2.2. Lower bounds in algebra (algebraic complexity). Robust lower bounds results for 0-testing of polynomials over fields, extending results of Peter Bürgisser (with others).

Horner's rule for polynomial evaluation

For any field F and $n \ge 1$, the value of an n'th degree polynomial can be computed from the coefficients and x using no more than n multiplications and n additions in F:

 $a_0 + a_1 x \quad (1 \text{ multiplication and } 1 \text{ addition})$ $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n = a_0 + x \left(a_1 + a_2 x + \dots + a_n x^{n-1}\right)$

Subtractions and divisions might help, e.g., using

$$1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

Theorem (Pan 1966, (Winograd 1967, 1970))

Every computation sequence in the real field $(\mathbb{R}, 0, 1, +, -, \cdot, \div)$ requires at least n multiplications/divisions and at least n additions/subtractions to compute $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$ if \vec{a}, x are algebraically independent real numbers The optimality of Horner's rule for polynomial 0-testing

The nullity relation on a field F (0-testing):

$$N_F(a_0,\ldots,a_n,x) \iff a_0+a_1x+a_2x^2+\cdots+a_nx^n=0$$

Decide using Horner's Rule: n multiplications, n additions, one = - test

Theorem

Let
$$\mathbf{R} = (\mathbb{R}, 0, 1, +, -, \cdot, \div, =)$$
. If $n \ge 1$ and a_0, \ldots, a_n, x are algebraically independent (the generic case), then:

(1)
$$\operatorname{calls}_{\{\cdot, \div\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n$$

(2) $\operatorname{calls}_{\{\cdot, \div, =\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n + 1$
(3) $\operatorname{calls}_{\{+, -\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n - 1$ (Somewhat unexpected)
(4) $\operatorname{calls}_{\{+, -, =\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n$ (Horner's Rule not optimal)

For algebraic decision trees, (1) is due to Bürgisser and Lickteig (1992) and results like (2) - (4) are due to Bürgisser, Lickteig and Shub (1992)

Proof. Using Horner's rule and $\leq (n-1)$ additions, compute

$$w = a_1 + a_2 x + \dots + a_n x^{n-1}$$

and then follow the following steps to check if $a_0 + wx = 0$ using only multiplications and equality tests:

• Give the correct answer if w = 0 or $a_0 = 0$

• Ow., if
$$a_0^2 \neq (xw)^2$$
, give output ff

- Ow., $a_0 = \pm xw$, so if $a_0 = xw$, give output ff
- Ow., give output tt

(The algorithm works in every field of characteristic \neq 2)

Lemma. If $n \ge 1$ and \vec{a}, x are algebraically independent, then calls_{+,-,=}($\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x$) $\le n$

(Horner's rule requires $\text{calls}_{\{+,-,=\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n + 1$ in this case) Proof for the case n = 1. If a_0, a_1, x are algebraically independent real numbers, $\mathbf{U} \subseteq_p \mathbf{R}$ and

eqdiag(**U**) = {
$$a_1x = u, \overline{a_0 + u = w}, \frac{x}{w} = v$$
},

then every homomorphism $\pi: \mathbf{U} \to \mathbf{R}$ must be defined on v and satisfy

$$\pi(\mathbf{v})=\frac{\pi(\mathbf{b})}{\pi(\mathbf{w})},$$

so $\pi(w) = \pi(a_0) + \pi(a_1)\pi(x) \neq 0$; Hence $\mathbf{U} \Vdash_c^{\mathbf{R}} a_0 + a_1x \neq 0$, and so $\mathsf{calls}_{\{+,-,=\}}(\mathbf{R}, N_{\mathbb{R}}, a_1, a_2, b) \leq 1.$

▶ Used division rather than = - test. Not an algorithm of **R**

Thm. If $n \ge 1$ and \vec{a}, x are algebraically independent, then $\operatorname{calls}_{\{+,-,=\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) \ge n$

By the hypothesis, $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n \neq 0$;

so to appeal to the Homomorphism Test, we need to prove that Lemma If $\mathbf{U} \subseteq_p \mathbf{R}$ is finite, generated by \vec{a}, x , and

$$|\mathsf{eqdiag}(\mathsf{U} \upharpoonright \{+, -, =\})| < n,$$

then there exists a homomorphism $\pi: \mathbf{U} \to \mathbf{R}$ such that

$$\pi(a_0)+\pi(a_1)\pi(x)+\ldots+\pi(a_n)\pi(x)^n=0$$

▶ Follows from a much stronger lemma, proved by induction on *n*

How much field theory is needed? (Very little)

• For a field F and indeterminates $\vec{u} = u_1, \ldots, u_k$,

• $F[\vec{u}]$ is the polynomial ring of all finite sums (finite X)

$$\chi(\vec{u}) = \sum f_{b_1,\ldots,b_k} u_1^{b_1} \cdots u_k^{b_k} \quad (b_1,\ldots,b_k \in X \subset \mathbb{N}, f_{b_1,\ldots,b_k} \in F)$$

• $F(\vec{u})$ is the field of rational functions

$$\chi = \frac{\chi_n(\vec{u})}{\chi_d(\vec{u})} \quad (\chi_n(\vec{u}), \chi_d(\vec{u}) \in F[\vec{u}], \chi_d(\vec{u}) \neq 0)$$

A partial field homomorphism π : F₁ → F₂ is a field homomorphism π : F'₁ → F₂ on some subfield F'₁ ⊆ F₂.

It is proper on $U\subseteq F_1'$, if $\left(x\in U\ \&\ \pi(x)=0
ight)\implies x=0$

A substitution v → ψ(v, u) defines a partial field homomorphism π : F(v, u) → F(v, u)

$$\pi\Big(\frac{\chi_n(\mathbf{v},\vec{u})}{\chi_d(\mathbf{v},\vec{u})}\Big) = \frac{\chi_n(\psi(\mathbf{v},\vec{u}),\vec{u})}{\chi_d(\psi(\mathbf{v},\vec{u}),\vec{u})}$$

defined when $\chi_d(\psi(v, \vec{u}), \vec{u}) \neq 0$ (a subfield of $F(v, \vec{u})$)

Algebraic independence in \mathbb{R}

▶ a_1, \ldots, a_k in \mathbb{R} are algebraically independent, if there is no $\chi(u_1, \ldots, u_k) \in \mathbb{Q}[\vec{u}]$ such that

$$\chi(a_1,\ldots,x_a)=0$$

- ▶ K is the field of algebraic real numbers, satisfying $q_0 + q_1x + \cdots + q_nx^n = 0$ with some $q_0, \ldots, q_n \in \mathbb{Q}$
- ▶ For positive real numbers a₁,..., a_n,

$$\mathsf{Roots}(\vec{a}) = \{a_i^b \mid i = 1, \dots, n, b \in \mathbb{Q}\}$$

• For reals $\vec{u} = u_1, \ldots, u_k$ and positive reals \vec{a} ,

 $\mathbb{K}^*(\vec{u}; \vec{a}) = \mathbb{K}(\{u_1, \dots, u_k\} \cup \text{Roots}(a_1, \dots, a_n))$ = the rational functions of algebraic numbers, u_1, \dots, u_k and rational powers of a_1, \dots, a_n

•
$$\mathbf{K}^{*}(\vec{u}; \vec{a}) = (\mathbb{K}^{*}(\vec{u}; \vec{a}), 0, 1, +, -, \cdot, \div, =)$$

The lemma for calls $_{\{+,-,=\}}(\mathbf{R}, \mathit{N}_{\mathbb{R}}, \vec{a}, x) \geq n$

► For
$$\mathbf{U} \subseteq_{p} \mathbf{K}^{*}(x, z; \vec{a})$$
 and $\phi \in \{+, -, =\}$,

 $(\phi, u, v, w) \in \mathsf{eqdiag}(\mathbf{U})$ is trivial if $u, v \in \mathbb{K}(x, z)$

- Suppose
 - $n \in \mathbb{N}, \ \overline{g} \in \mathbb{K}, \ \overline{g} \neq 0$,
 - x, z, a_1, \ldots, a_n are algebraically independent with $a_1, \ldots, a_n > 0$,
 - $\mathbf{U} \subseteq_{p} \mathbf{K}^{*}(x, z; \vec{a})$ is finite, generated by

 $(U \cap \mathbb{K}) \cup \{x, z\} \cup (U \cap \operatorname{Roots}(a_1, \ldots, a_n))$

- eqdiag(**U**) has < n non-trivial {+, -, =}-entries;
- <u>Then</u> there is a partial field homomorphism

$$\pi : \mathbb{K}^*(x, z; \vec{a}) \to \mathbb{K}^*(x; \vec{a}) \text{ such that:}$$
(a) π is total and proper on U ;
(b) π is the identity on $\mathbb{K}(x)$; and
(c) $\pi(z) + \overline{g}(\pi(a_1)x + \dots + \pi(a_n)x^n) = 0.$

Proof is by induction on *n*, using a sequence of substitutions

The good news

- Recursive programs on first order structures $\mathbf{A} = (A, \mathbf{\Phi})$
 - Simulate faithfully "all" models of relative computation
 - Much complexity theory can be studied directly for them
 - Express faithfully all relative algorithms?

• Uniform processes on first order structures $\mathbf{A} = (A, \mathbf{\Phi})$

- Definition motivated by properties of recursive programs
- They capture the uniformity, not the effectiveness of algorithms
- The carry a rich theory of complexity
- They suggest the definition of intrinsic complexity measures for functions and relations
- They justify the Homomorphism Test which can ground the derivation of robust (absolute) lower bounds
- Applications to arithmetic and algebraic complexity
 - Coprimeness on \mathbb{N} , from various primitives
 - Testing polynomials for 0

The bad news

The structure of binary numbers

 $\mathbf{N}_{b} = (\mathbb{N}, 0, \mathsf{parity}, \mathsf{iq}_{2}, \mathsf{em}, \mathsf{om}, \mathsf{eq}_{0}),$

where $\operatorname{em}(x) = 2x$, $\operatorname{om}(x) = 2x + 1$

- |x| = the length of the binary expansion of x, $\sim \log x$
- ▶ Thm For every unary relation $R : \mathbb{N} \to {\texttt{tt}, \texttt{ff}}$ (e.g., Prime(x))

$$\mathsf{calls}(\mathbf{N}_b, R, x) \le |x| - 1$$

• Proof If $x = x_0 + 2x_1 + 2^2x_2 + \dots + 2^mx_m$ with |x| = m + 1 and

eqdiag(**U**) =
$$\{2x_m + x_{m-1} = u_1, 2u_1 + x_{m-2} = u_2, \dots, 2u_{m-1} + x_0 = u_m\},\$$

then every $\pi: \mathbf{U} \to \mathbf{N}_b$ fixes x, so $\mathbf{U} \Vdash_c^{\mathbf{N}_b} R(x) = w$ (correct w)

- Cannot prove by the Homomorphism Method that for all \mathbf{N}_{b} -algorithms α and some r > 0, calls $(\alpha, \text{Prime}, p) \ge r(\log p)^{2}$
- Ultimately, we need to analyze algorithms (recursive programs?)