
Recursion and complexity
(Relative complexity in arithmetic and algebra)

Yiannis N. Moschovakis
UCLA and University of Athens

Logic and interactions 2012, CIRM Marseille
30 - 31 January, 2012

Motivating problem: the Euclidean algorithm
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where rem(a, b) is the remainder of the division of a by b,

a = bq + rem(a, b) (0 ≤ rem(a, b) < b)

callsε(a, b) = the number of divisions required to compute gcd(a, b)

by the Euclidean algorithm

≤ 2 log(b) = 2 log2(b) (a ≥ b ≥ 2)

I Is the Euclidean optimal for computing gcd(a, b) from rem?

I Is the Euclidean optimal for deciding coprimeness from rem?

a⊥⊥b ⇐⇒ gcd(a, b) = 1

• Most relevant complexity: number of required divisions
• Looking for absolute lower bounds, which restrict all all algorithms

Yiannis N. Moschovakis: Recursion and complexity 1/49

Outline

1.1. Recursive (McCarthy) Programs.
Preliminaries and notation. The Church-Turing Thesis.

1.2. Uniform processes (The main dish).
An axiomatic approach to the theory of algorithms from
specified primitives in the style of abstract model theory.

2.1. Lower bounds in arithmetic (arithmetic complexity).
Robust lower bounds for coprimeness (joint with van den Dries).

2.2. Lower bounds in algebra (algebraic complexity).
Robust lower bounds results for 0-testing of polynomials
over fields, extending results of Peter Bürgisser (with others).

Slogan: Absolute lower bound results
are the undecidability facts about decidable problems

Full proofs and references posted at http://www.math.ucla.edu/˜ynm

Yiannis N. Moschovakis: Recursion and complexity 2/49

Outline

• 1.1. Recursive (McCarthy) Programs.
Preliminaries and notation. The Church-Turing Thesis.

1.2. Uniform processes (The main dish).
An axiomatic approach to the theory of algorithms from
specified primitives in the style of abstract model theory.

2.1. Lower bounds in arithmetic (arithmetic complexity).
Robust lower bounds for coprimeness (joint with van den Dries).

2.2. Lower bounds in algebra (algebraic complexity).
Robust lower bounds results for 0-testing of polynomials
over fields, extending results of Peter Bürgisser (with others).

Yiannis N. Moschovakis: Recursion and complexity 3/49

(Partial) structures — sets with “given” primitives
I We identify a relation R ⊆ An with its characteristic function

R(~x) = if R holds at ~x then tt else ff

I A (partial) structure is a tuple A = (A,ΦA)

where Φ is a set of function (and relation) symbols

and ΦA = {φA}φ∈Φ. Here

φA : Anφ ⇀ As with s = sort(φ) = a or sort(φ) = boole

i.e., if nφ = arity(φ), then

φA : Anφ ⇀ A or φA : Anφ ⇀ {tt,ff}

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε �U = (U, rem �U,=0�U,=1�U) where U ⊆ N and

(f �U)(x , y) = w ⇐⇒ ~x ∈ Un,w ∈ Us & f (~x) = w

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 1/10 4/49

Equational logic of partial terms with conditionals
For a vocabulary Φ and a set A, the (Φ ∪ A)-terms are defined by

t :≡ tt | ff | x | vi | φ(t1, . . . , tnφ
) | if t1 then t2 else t3

where φ ∈ Φ, x ∈ A (viewed as a constant or parameter)
and v0, v1, . . . is a fixed sequence of individual variables

I Each term is assigned a sort, boole or a

I If t ≡ if t1 then t2 else t3, then sort(t1) ≡ boole
and sort(t2) ≡ sort(t3) ≡ sort(t)

I t is pure : no parameters (a Φ-term)
t is closed : no variables

I If t is closed and A is a Φ-structure, then

den(A, t) = the value of t in A (if t converges, t ↓)

A |= t = s ⇐⇒
(
den(A, t) ↑ & den(A, s) ↑

)
or den(A, t) = den(A, s)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 2/10 5/49

Recursive (McCarthy) programs — syntax
A Φ-recursive program E of arity n is a syntactic expression

E ≡ E0(~x , ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~vk , ~p)}

where

(RP1) ~p ≡ p1, . . . , pk is a sequence of (not necessarily distinct) fresh
function symbols (not in Φ), the recursive variables of E

(RP2) For i = 0, . . . , k, Ei (~vi , ~p) is a (pure) term in the vocabulary

voc(E) = Φ ∪ {p1, . . . , pk} whose variables are in the list

~vi ≡ v1, . . . , vki
(with ~v0 ≡ ~x ≡ x1, . . . , xn)

(RP3) For i = 1, . . . , k, sort(pi (~vi)) = sort(Ei (~vi , ~p))

- sort(E) = sort(E0(~x , ~p))

- the free variables of E are x1, . . . , xn

- the bound variables of E are those in the lists ~vi and the
recursive variables p1, . . . , pk

I A program is deterministic if its recursive variables are all distinct

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 3/10 6/49

Recursive programs — (call-by-value) semantics

E ≡ E0(~x , ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~vk , ~p)}

ClTerms(E ,A) = the set of closed (voc(E) ∪ A)-terms

Need to define the relation

E ,A ` t = w ⇐⇒ t ∈ ClTerms(E ,A),w ∈ A ∪ {tt,ff}
& w is one of the values assigned to t by E in A

I (1) Least-fixed-point semantics (non-deterministic for all E):
t = w belongs to the least set S which contains all w = w
and is closed under the natural semantic conditions, e.g.,

t1 = u1, . . . , tnφ
= unφ

∈ S & φA(u1, . . . , unφ
) = w

=⇒ φ(t1, . . . , tnφ
) = w ∈ S

I (2) Implementations (many, deterministic if E is deterministic):
There is a computation t ↪→ s1 → · · · → sm # w

by E in A which assigns w to t (↪→ is input, # is output)
Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 4/10 7/49

The recursive (two stack) machine P(E ,A)

(pass) ~a x : ~b → ~a : x ~b (x ∈ A ∪ {tt, ff})

(e-call) ~a φ : ~x ~b → ~a : φA(~x) ~b

(i-call) ~a pi : ~u ~b → ~a Ei (~u, ~p) : ~b

(comp) ~a h(t1, . . . , tn) : ~b → ~a h t1 · · · tn : ~b

(br) ~a if t0 then t1 else t2 : ~b → ~a t1 t2 ? t0 : ~b

(br0) ~a t1 t2 ? : tt ~b → ~a t1 : ~b

(br1) ~a t1 t2 ? : ff ~b → ~a t2 : ~b

I States are sequences of the form ~L : ~R, where

~L is a tuple from ClTerms(E ,A) ∪ voc(E) ∪ {?} and ~R a tuple from A ∪ {tt, ff}
I Input t ↪→ t : Terminal states :w Output :w # w

I The underlined part is the trigger for the transition

I In the external call (e-call), φ ∈ Φ and arity(φ) = nφ = length of ~x

I In the internal call (i-call), pi (~u) = Ei (~u, ~p) is an equation of E
Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 5/10 8/49

A-recursive functions

E ≡ E0(~x , ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~vk , ~p)}

I A partial function f : An ⇀ As is computed by E in A if

f (~x) = w ⇐⇒ E ,A ` E0(~x , ~p) = w (~x ∈ An,w ∈ As)

I At most one partial function is computed by E in A

I rec(A) = {f : An ⇀ As : f is computed in A by a deterministic E}
I recnd(A) = {f : An ⇀ As : f is computed in A by some E}
I In general rec(A) (recnd(A)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 6/10 9/49

Recursive programs — complexity measures

E ≡ E0(~x , ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~vk , ~p)}

I callsΦ0(E ,A)(t = w) = the least number of calls to the
primitives in Φ0 ⊆ Φ that E must execute to prove t = w

I depth(E ,A)(t = w) = the least number of calls to the
primitives in Φ that E must execute in sequence to prove t = w

I size(E ,A)(t = w) = the least number of points in A
that E must see to prove t = w

I These are defined inductively or for each computation of
t = w (and then the least of these numbers is selected)

I If E computes f : An ⇀ As , they give complexity measures

callsΦ0(E ,A,~x), depth(E ,A,~x), size(E ,A,~x) (f (~x)↓)

I Thm. depth(E ,A,~x) ≤ size(E ,A,~x) ≤ callsΦ(E ,A,~x)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 7/10 10/49

Recursive programs — special forms

E ≡ E0(~x , ~p) where {p1(~v1) = E1(~v1, ~p), . . . , pk(~vk) = Ek(~vk , ~p)}
I Terms: k = 0, so E ≡ E0(~x) is a Φ-term
I Finite algorithms with branching:

for each i = 1, . . . , k, if pj occurs in Ei (~vi , ~p), then j < i

Deterministic finite algorithms with or without conditionals
include the standard computation models of algebraic
complexity (k-step algorithms, computation sequences,
algebraic decision trees, etc; Pan, Winograd, Strassen, Bürgisser)

I Tail recursive (or “while”) programs,

E ≡ E0(~x , p) where

{p(~u) = if test(~u) then out(~u) else p(τ1(~u), . . . , τm(~u))}

with Φ-terms test(~u), out(~u), τj(~u)

The standard models of computation are faithfully represented
by tail recursions, once their natural primitives are identified

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 8/10 11/49

Abstract recursion — further topics

I The relation between rec(A), recnd(A) and the class tail(A)
of tail recursive functions on arbitrary A

(delicate results, Stolbouskin, Taitslin, Tiuryn, etc.)

I Deterministic and non-deterministic functionals, the First
Recursion Theorem, etc.

I The Formal Language of Recursion

(admits “where” as an unrestricted construct)

I Recursive programs as specifications of algorithms

The meaning of a program is the algorithm it expresses

Recursive vs. iterative (tail) algorithms

I Second and higher type recursion
large field with applications to model theory, set theory, etc.

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 9/10 12/49

The Recursive Computability and Church-Turing Theses

• RCT: f : An ⇀ As is (recursively) computable from φ1, . . . , φm

⇐⇒ f ∈ rec(A, φ1, . . . , φm)

I RCT: The fundamental algorithmic constructs are

calling (composition), branching, and grounded self reference

I The definition of rec(A) does not involve any objects outside A

I A-recursion is a Tarski logical notion, preserved by permutations

• The natural numbers are the structure N = (N, 0,S ,=)

(Dedekind: up to isomorphism, . . . , the modern structuralist view)

•• f : N ⇀ Ns is recursive ⇐⇒ f ∈ rec(N, 0,S ,=)

Thm f ∈ rec(N, 0,S ,=) if and only if f is Turing computable

Turing computability on N = recursion + what the numbers are

Yiannis N. Moschovakis: Recursion and complexity 1.1. Recursive programs 10/10 13/49

Outline

1.1. Recursive (McCarthy) Programs.
Preliminaries and notation. The Church-Turing Thesis.

• 1.2. Uniform processes (The main dish).
An axiomatic approach to the theory of algorithms from
specified primitives in the style of abstract model theory.

2.1. Lower bounds in arithmetic (arithmetic complexity).
Robust lower bounds for coprimeness (joint with van den Dries).

2.2. Lower bounds in algebra (algebraic complexity).
Robust lower bounds results for 0-testing of polynomials
over fields, extending results of Peter Bürgisser (with others).

Yiannis N. Moschovakis: Recursion and complexity 14/49

More about structures
I Reducts: for every Φ0 ⊆ Φ,

A �Φ0 = (A, {φA :φ ∈ Φ0})

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(A) = {(φ,~x ,w) : φ ∈ Φ, φA(~x) = w}

I A homomorphism π : U → V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φV(πx1, . . . , πxn) = πw

I π is an embedding if it is injective
π is an isomorphism if it is a surjective embedding and the
inverse map π−1 : V → U is also an embedding

I The homomorphic image π[U] has universe π[U] and

eqdiag(π[U]) = {(φ, π(~x), π(w)) : (φ,~x ,w) ∈ eqdiag(U)}

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 1/12 15/49

Substructures, generation

I Substructures:

U ⊆p A ⇐⇒ U ⊆ A

& the identity I : U → A is an embedding

⇐⇒ U ⊆ A & eqdiag(U) ⊆ eqdiag(A)

G0(U,~x) = {x1, . . . , xn},
Gm+1(U,~x) = Gm(U,~x) ∪ {φU(u1, . . . , unφ

) : u1, . . . , unφ
∈ Gm(U,~x)}

Gm(U,~x) = U �Gm(U,~x)

I U ⊆p A is generated by ~x ∈ Un if U = G∞(U,~x) =
⋃

mGm(U,~x)

depth(U,~x) = min{m :U = Gm(U,~x)} (U finite, generated by ~x)

I We use finite U ⊆p A generated by the input ~x to represent
calls to the primitives executed during a computation in A

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 2/12 16/49

Algorithms from primitives – the basic intuition

An n-ary algorithm α of A = (A,Φ) (or from Φ) of sort s
“computes” some n-ary partial function

α = αA : An ⇀ As (As = A or As = {tt,ff})

using the primitives in Φ as oracles

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φA any
particular value φA(~u), for arguments ~u which it has already
computed, and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally these aspects of algorithms from primitives

I It does not capture their effectiveness, but their uniformity,
that an algorithm applies “the same procedure” to all arguments

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 3/12 17/49

I The Locality (or relativization) Axiom
A uniform process α of arity n and sort s of a structure
A = (A,ΦA) assigns to each U ⊆p A an n-ary partial function

αU : Un ⇀ Us

It computes the partial function αA : An ⇀ As

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ ~x ∈ Un,w ∈ Us and αU(~x) = w

• True for a program E which computes some f = E : An ⇀ As in A by

E
U
(~x) = w ⇐⇒ E ,U ` E0(~x , ~p) = w

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 4/12 18/49

II The Homomorphism Axiom

If α is an n-ary uniform process of A, U,V ⊆p A, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U,w ∈ Us)

In particular, if U ⊆p A, then αU v αA

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U � V, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)

• True for a program E which computes some f = E : An ⇀ As in A

(and so for the standard, deterministic and non-deterministic
models of computation once their natural primitives are identified)

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 5/12 19/49

III The Finiteness Axiom

If α is an n-ary uniform process of A, then

A ` α(~x) = w

=⇒ there is a finite U ⊆p A generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u , and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w

and we think of (U,~x ,w) as a computation of α on the input ~x

• True for a program E which computes some f = E : An ⇀ As in A

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 6/12 20/49

Uniform processes need not be effective

Thm If a Φ-structure A is generated by the empty tuple, then
every f : An → As is computed by some uniform process of A

So every f : Nn → N is computed by a uniform process of (N, 0,S)

Proof
Let d(~x) = min{m :~x , f (~x) ∈ Gm(A, ∅) ∪ {tt,ff}} and define α by

αU(~x) = w ⇐⇒ f (~x) = w & Gd(~x)(A, ∅) ⊆p U

The Homomorphism Axiom holds because if Gd(~x)(A, ∅) ⊆p U,
then every homomorphism π : U → V is the identity on Gd(~x)(A, ∅)

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 7/12 21/49

Complexity measures for uniform processes

I A substructure norm on A assigns to each ~x ∈ An and each
finite U ⊆p A generated by ~x a number µ(U,~x) ∈ N

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x) = w}

I callsΦ0(α,~x) = min{|eqdiag(U �Φ0)| : U `c α(~x) = w}
(the least number of calls to φ ∈ Φ0 α must do to compute αA(~x))

I size(α,~x) = min{|U| : U `c α(~x) = w}
(the least number of elements of A that α must see)

I depth(α,~x) = min{depth(U,~x) : U `c α(~x) = w}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These measures are ≤ the standard measures for programs
(they count only distinct calls)

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 8/12 22/49

? The forcing and certification relations

Suppose f : An → As , f (~x)↓ , U ⊆p A.

I A homomorphism π : U → A respects f at ~x if

~x ∈ Un & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

U A f (~x) = w ⇐⇒ every homomorphism π : U → A respects f at ~x

U A
c f (~x) = w ⇐⇒ U is finite, generated by ~x and U A f (~x) = w

Thm If α is a uniform process of A which computes f : An ⇀ As , then

U `c α(~x) = w =⇒ U A
c f (~x) = w

Proof is immediate by the Homomorphism Axiom

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 9/12 23/49

? Intrinsic (certification) complexities

Suppose f : An ⇀ As is computed by some uniform process of A
and µ is a substructure norm on A

U A
c f (~x) = w ⇐⇒ U is finite, generated by ~x and U A f (~x) = w

I Cµ(A, f ,~x) = min{µ(U,~x) : U A
c f (~x) = w} (f (~x)↓)

I callsΦ0(A, f ,~x) = min{|eqdiag(U �Φ0)| : U A
c f (~x) = w}

I size(A, f ,~x) = min{|U| : U A
c f (~x) = w}

I depth(A, f ,~x) = min{depth(U,~x) : U A
c f (~x) = w}

I For every uniform process of A which computes f

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 10/12 24/49

The Homomorphism Test

Lemma
Suppose µ is a substructure norm (callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 11/12 25/49

The best uniform process for f : An ⇀ As in A

Define βf ,A by

β
U
f ,A(~x) = w ⇐⇒ U A f (~x) = w (U ⊆p A)

Theorem
The following are equivalent for a Φ-structure A and f : An ⇀ As :

(i) Some uniform process α of A computes f .

(ii) (∀~x ,w)
(
f (~x) = w =⇒ (∃U ⊆p A)[U A

c f (~x) = w]
)
.

(iii) βf ,A is a uniform process of A which computes f .

Moreover, if these conditions hold, then for every uniform process
α which computes f in A and all complexity measures Cµ as above,

Cµ(A, f ,~x) = Cµ(βf ,A,~x) ≤ Cµ(α,~x) (f (~x)↓).

Yiannis N. Moschovakis: Recursion and complexity 1.2. Uniform processes 12/12 26/49

Outline

1.1. Recursive (McCarthy) Programs.
Preliminaries and notation. The Church-Turing Thesis.

1.2. Uniform processes (The main dish).
An axiomatic approach to the theory of algorithms from
specified primitives in the style of abstract model theory.

• 2.1. Lower bounds in arithmetic (arithmetic complexity).
Robust lower bounds for coprimeness (joint with van den Dries).

2.2. Lower bounds in algebra (algebraic complexity).
Robust lower bounds results for 0-testing of polynomials
over fields, extending results of Peter Bürgisser (with others).

Yiannis N. Moschovakis: Recursion and complexity 27/49

Recall the method

I (Partial) Φ-structure A = (A, {φA}φ∈Φ), f : An ⇀ As

I Homomorphism π : U → V

I For each substructure norm µ (callsΦ0 , size, depth) we defined

the intrinsic complexity measure ~x 7→ Cµ(A, f ,~x) ∈ N ∪ {∞}
I If α computes f in A, then

Cµ(A, f ,~x) ≤ Cµ(α,~x) (f (~x)↓)

Lemma (The Homomorphism Test)

Suppose µ is a substructure norm (callsΦ0 , size, depth) on a
Φ-structure A, f : An ⇀ As , f (~x)↓ , and

for every finite U ⊆p A which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → A)[f (π(~x)) 6= π(f (~x))];

then Cµ(A, f ,~x) ≥ m.

Yiannis N. Moschovakis: Recursion and complexity 28/49

The motivating conjecture

The Euclidean algorithm for coprimeness:

⊥⊥(x , y) = eq1(gcd(x , y))

where {gcd(x , y) = if eq0(rem(x , y)) then y else gcd(y , rem(x , y))

I Tail recursion in Nε = (N, eq0, eq1, rem)

calls{rem}(ε, a, b) ≤ 2 log b (a ≥ b ≥ 2)

I Conjecture: For some r > 0 and infinitely many a ≥ b ≥ 1,

calls{rem}(Nε,⊥⊥, a, b) ≥ r log a

We will discuss four relevant results

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 1/10 29/49

(a) Stein’s binary algorithm αst for the gcd and ⊥⊥
Thm The gcd satisfies the following recursive equation for x , y ≥ 1:

gcd(x , y) =

x if x = y ,

2 gcd(iq2(x), iq2(y)) ow., if parity(x) = parity(y) = 0,

gcd(iq2(x), y) ow., if parity(x) = 0, parity(y) = 1,

gcd(x , iq2(y)) ow., if parity(x) = 1, parity(y) = 0,

gcd(x −· y , y) ow., if x > y ,

gcd(x , y −· x) otherwise.

where x −· y = if x < y then 0 else x − y , iq2(x) = iq(x , 2)

I αst is a tail recursive program of the structure

Nst = (N, 0, 1,=, <, parity, em, iq2, −·)

with em(x) = 2x , and for some C ,

calls(αst, x , y) ≤ C max{log x , log y} (x , y ≥ 2)

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 2/10 30/49

Stein is suboptimal from its primitives
Thm (van den Dries-ynm, 2004, 2009) If b > 2 and a = b2 − 1
then a⊥⊥b and

depth(Nst,⊥⊥, a, b) ≥ 1

10
log a

It follows that for some K and all b > 2, a = b2 − 1,

depth(αst, a, b) ≤ Kdepth(Nst,⊥⊥, a, b),

calls(αst, a, b) ≤ Kcalls(Nst,⊥⊥, a, b)

I A uniform process α of a Φ-structure A is suboptimal for
f : An → As relative to a substructure norm µ, if for some K > 0,

for infinitely many ~a,Cµ(α,~a) ≤ KCµ(A, f ,~a)

I αst is suboptimal for gcd and ⊥⊥ relative to both depth and calls

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 3/10 31/49

Proof of the suboptimality of Stein’s algorithm

For Nst = (N, 0, 1,=, <, parity, em, iq2,−·), b > 2, a = b2 − 1,

show depth(Nst,⊥⊥, a, b) ≥ 1

10
log a

Must prove that for every finite U ⊆p Nst, generated by a, b,

depth(U, a, b) <
1

10
log a =⇒ (∃π : U → Nst)

(
π(a), π(b) not coprime

)
Lemma (Very easy)

If 22m+3 < b, then every x ∈ Gm(Nst, a, b) can be expressed
uniquely in the form

x =
x0 + x1a + x2b

2m
with xi ∈ Z, |xi | ≤ 22m for i ≤ 2

Proof of Thm Set π(x) =
x0 + x1λa + x2λb

2m
with λ = 1 + 2m. Then

π : Gm(Nst, a, b) � Nst is an embedding and π(a) = λa, π(b) = λb

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 4/10 32/49

Additional and related results about Presburger primitives

I The primitives of Nst are (piecewise linear) Presburger functions,
elementarily definable in the additive semigroup (N, 0, 1,+,=)

I For every Presburger structure A = (N,Φ), there is an r > 0
such that for all b > 2, a = b2 − 1,

depth(A,⊥⊥, a, b) ≥ r log a

I For each of the unary relations

x is prime, x is a perfect square, x is square free

and every Presburger structure A, there is some r > 0 such
that for infinitely many a, R(a) and depth(A,R, a) ≥ r log a

I Divisibility. Let x | y ⇐⇒ x divides y . For every Presburger
structure A, there is an r > 0 such that for infinitely many a, b,

a | b & depth(A, | , a, b) ≥ r log b

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 5/10 33/49

(b) A lower bound for coprimeness on N from rem
Let A = (N, iq, rem,Ψ), with Ψ a finite set of Presburger functions

Theorem (van den Dries-ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),∣∣∣ξ − a

b

∣∣∣ < 1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (?)

In particular, the conclusion of (?) holds with some r
• for all solutions (a, b) of Pell’s equation a2 = 2b2 + 1, and

• for all successive Fibonacci pairs (Fk+1,Fk) with k ≥ 3.

I ξ is irrational and aξ2 + bξ + c = 0 with some a, b, c ∈ Z
I Infinitely many (a, b) satisfy the hypothesis of (?)
I Pell pairs: infinitely many, hyp. of (?) holds with ξ =

√
2

I F0 = 0,F1 = 1,Fk+2 = Fk + Fk+1

(Fk+1,Fk) satisfies the hyp. of (?) with ξ = 1+
√

5
2

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 6/10 34/49

How much number theory is needed?
• For every irrational real number ξ > 0, there are infinitely many
coprime pairs (a, b) such that∣∣∣ξ − a

b

∣∣∣ < 1

b2
.

These are the good approximations of ξ.

• Liouville’s Theorem for degree 2: For every quadratic irrational ξ,
there is a number C > 0 such that for all x , y ∈ Z,∣∣∣ξ − x

y

∣∣∣ > 1

Cy2
.

• If ξ > 1 is a quadratic irrational, then there is a number
c = c(ξ) > 1 such that every interval (2k , 2ck) contains a good
approximation (a, b) of ξ, i.e., 2k < a, b < 2ck .

• For the specific examples, we also need the quoted basic facts
about Pell pairs and Fibonacci numbers

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 7/10 35/49

The gist of the proof
Let A = (N, iq, rem,Ψ), with Ψ a finite set of Presburger functions

Theorem (van den Dries-ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),∣∣∣ξ − a

b

∣∣∣ < 1

b2
=⇒ depth(A,⊥⊥, a, b) ≥ r log log a. (?)

Lemma (Not so easy)

For every quadratic irrational ξ > 1, there is a number ` = `(ξ)
such that for all but finitely many good approximations (a, b) of ξ
and every m < 1

2` log log a, every number in Gm(A, a, b) can be
expressed uniquely in the form

x =
x0 + x1a + x2b

x3
with xi ∈ Z, |xi | < 22`m

for i ≤ 3.

Set π : Gm(A, a, b) � A by π(x) =
x0 + x1λa + x2λb

x3
, with λ = 1 + a!

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 8/10 36/49

(c) How much off are we?
I Conjecture: For some r > 0 and infinitely many a ≥ b ≥ 1,

calls{rem}(Nε,⊥⊥, a, b) ≥ r log a

I We have: For some r > 0 and all (Fk+1,Fk) with k ≥ 3,

depth{rem}(Nε,⊥⊥,Fk+1,Fk) ≥ r log log Fk+1

Theorem (Pratt, unpublished)

There is a non-deterministic Nε-program of εnd which decides
coprimeness, is not less effective than the Euclidean for all inputs and

calls(εnd ,Fk+1,Fk) ≤ K log log Fk+1

I The conclusion of our theorem is best possible for its hypotheses
I The Conjecture may still be true—for some infinite set of

inputs other than the successive Fibonacci numbers
I Pratt’s proof depends on classical (but not easy) properties of

the Fibonacci numbers

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 9/10 37/49

(d) Non-uniform complexity
Given N, how good can a coprimeness algorithm be if we only
insist that it works for n-bit numbers?

A = (N, iq, rem,Ψ) with Presburger Ψ as before. For any N, and
any one of the intrinsic complexities as above, let

Cµ(A, f ,N) = max{Cµ(A �[0, 2N), f , a, b) : a, b < 2N}

Theorem (van den Dries-ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(A,⊥⊥, 2N) ≥ size(A,⊥⊥, 2N) ≥ r log N.

I The proof requires a simple new idea (which introduces the
size measure) but no more number theory

I We do not know how to derive a non-uniform lower bound for
depth(A,⊥⊥, 2N).

Yiannis N. Moschovakis: Recursion and complexity 1.2. Lower bounds in arithmetic 10/10 38/49

Outline

1.1. Recursive (McCarthy) Programs.
Preliminaries and notation. The Church-Turing Thesis.

1.2. Uniform processes (The main dish).
An axiomatic approach to the theory of algorithms from
specified primitives in the style of abstract model theory.

2.1. Lower bounds in arithmetic (arithmetic complexity).
Robust lower bounds for coprimeness (joint with van den Dries).

• 2.2. Lower bounds in algebra (algebraic complexity).
Robust lower bounds results for 0-testing of polynomials
over fields, extending results of Peter Bürgisser (with others).

Yiannis N. Moschovakis: Recursion and complexity 39/49

Horner’s rule for polynomial evaluation
For any field F and n ≥ 1, the value of an n’th degree polynomial
can be computed from the coefficients and x using no more than n
multiplications and n additions in F :

a0 + a1x (1 multiplication and 1 addition)

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Subtractions and divisions might help, e.g., using

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x − 1

Theorem (Pan 1966, (Winograd 1967, 1970))

Every computation sequence in the real field (R, 0, 1,+,−, ·,÷)
requires at least n multiplications/divisions and at least n
additions/subtractions to compute a0 + a1x + a2x

2 + · · ·+ anx
n if

~a, x are algebraically independent real numbers

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 1/8 40/49

The optimality of Horner’s rule for polynomial 0-testing

The nullity relation on a field F (0-testing):

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Decide using Horner’s Rule: n multiplications, n additions, one = - test

Theorem
Let R = (R, 0, 1,+,−, ·,÷,=). If n ≥ 1 and a0, . . . , an, x are
algebraically independent (the generic case), then:

(1) calls{·,÷}(R,NR,~a, x) = n

(2) calls{·,÷,=}(R,NR,~a, x) = n + 1

(3) calls{+,−}(R,NR,~a, x) = n − 1 (Somewhat unexpected)

(4) calls{+,−,=}(R,NR,~a, x) = n (Horner’s Rule not optimal)

For algebraic decision trees, (1) is due to Bürgisser and Lickteig (1992)
and results like (2) – (4) are due to Bürgisser, Lickteig and Shub (1992)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 2/8 41/49

Lemma. If n ≥ 1, then calls{+,−}(R, NR,~a, x) ≤ n − 1
NR(a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x

2 + · · ·+ anx
n = 0

Proof. Using Horner’s rule and ≤ (n − 1) additions, compute

w = a1 + a2x + · · ·+ anx
n−1

and then follow the following steps to check if a0 + wx = 0
using only multiplications and equality tests:

I Give the correct answer if w = 0 or a0 = 0

I Ow., if a2
0 6= (xw)2, give output ff

I Ow., a0 = ±xw , so if a0 = xw , give output ff

I Ow., give output tt

(The algorithm works in every field of characteristic 6= 2)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 3/8 42/49

Lemma. If n ≥ 1 and ~a, x are algebraically independent,
then calls{+,−,=}(R, NR,~a, x) ≤ n

(Horner’s rule requires calls{+,−,=}(R,NR,~a, x) = n + 1 in this case)

Proof for the case n = 1. If a0, a1, x are algebraically independent
real numbers, U ⊆p R and

eqdiag(U) = {a1x = u, a0 + u = w ,
x

w
= v},

then every homomorphism π : U → R must be defined on v and satisfy

π(v) =
π(b)

π(w)
,

so π(w) = π(a0) + π(a1)π(x) 6= 0; Hence U R
c a0 + a1x 6= 0, and so

calls{+,−,=}(R,NR, a1, a2, b) ≤ 1.

I Used division rather than = - test. Not an algorithm of R

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 4/8 43/49

Thm. If n ≥ 1 and ~a, x are algebraically independent, then
calls{+,−,=}(R, NR,~a, x) ≥ n

By the hypothesis, a0 + a1x + a2x
2 + · · ·+ anx

n 6= 0;

so to appeal to the Homomorphism Test, we need to prove that

Lemma If U ⊆p R is finite, generated by ~a, x, and

|eqdiag(U �{+,−,=})| < n,

then there exists a homomorphism π : U → R such that

π(a0) + π(a1)π(x) + . . .+ π(an)π(x)n = 0

I Follows from a much stronger lemma, proved by induction on n

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 5/8 44/49

How much field theory is needed? (Very little)
I For a field F and indeterminates ~u = u1, . . . , uk ,

• F [~u] is the polynomial ring of all finite sums (finite X)

χ(~u) =
∑

fb1,...,bk
ub1

1 · · · ubk

k (b1, . . . , bk ∈ X ⊂ N, fb1,...,bk
∈ F)

• F (~u) is the field of rational functions

χ =
χn(~u)

χd(~u)
(χn(~u), χd(~u) ∈ F [~u], χd(~u) 6= 0)

I A partial field homomorphism π : F1 ⇀ F2 is a field
homomorphism π : F ′

1 → F2 on some subfield F ′
1 ⊆ F2.

It is proper on U ⊆ F ′
1, if

(
x ∈ U & π(x) = 0

)
=⇒ x = 0

I A substitution v 7→ ψ(v , ~u) defines a partial field
homomorphism π : F (v , ~u) ⇀ F (v , ~u)

π
(χn(v , ~u)

χd(v , ~u)

)
=
χn(ψ(v , ~u), ~u)

χd(ψ(v , ~u), ~u)

defined when χd(ψ(v , ~u), ~u) 6= 0 (a subfield of F (v , ~u))

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 6/8 45/49

Algebraic independence in R
I a1, . . . , ak in R are algebraically independent, if there is no
χ(u1, . . . , uk) ∈ Q[~u] such that

χ(a1, . . . , xa) = 0

I K is the field of algebraic real numbers,
satisfying q0 + q1x + · · ·+ qnx

n = 0 with some q0, . . . , qn ∈ Q
I For positive real numbers a1, . . . , an,

Roots(~a) = {ai
b | i = 1, . . . , n, b ∈ Q}

I For reals ~u = u1, . . . , uk and positive reals ~a,

K∗(~u;~a) = K({u1, . . . , uk} ∪ Roots(a1, . . . , an))

= the rational functions of algebraic numbers,

u1, . . . , uk and rational powers of a1, . . . , an

I K∗(~u;~a) = (K∗(~u;~a), 0, 1,+,−, ·,÷,=)

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 7/8 46/49

The lemma for calls{+,−,=}(R, NR,~a, x) ≥ n

I For U ⊆p K∗(x , z ;~a) and φ ∈ {+,−,=},
(φ, u, v ,w) ∈ eqdiag(U) is trivial if u, v ∈ K(x , z)

I Suppose

• n ∈ N, g ∈ K, g 6= 0,
• x , z , a1, . . . , an are algebraically independent with a1, . . . , an > 0,
• U ⊆p K∗(x , z ;~a) is finite, generated by

(U ∩K) ∪ {x , z} ∪ (U ∩ Roots(a1, . . . , an))

• eqdiag(U) has < n non-trivial {+,−,=}-entries;

I Then there is a partial field homomorphism

π : K∗(x , z ;~a) → K∗(x ;~a) such that:

(a) π is total and proper on U;
(b) π is the identity on K(x); and

(c) π(z) + g
(
π(a1)x + · · ·+ π(an)x

n
)

= 0.

Proof is by induction on n, using a sequence of substitutions

Yiannis N. Moschovakis: Recursion and complexity 1.1. Lower bounds in algebra 8/8 47/49

The good news

I Recursive programs on first order structures A = (A,Φ)

• Simulate faithfully “all” models of relative computation
• Much complexity theory can be studied directly for them
• Express faithfully all relative algorithms?

I Uniform processes on first order structures A = (A,Φ)

• Definition motivated by properties of recursive programs
• They capture the uniformity, not the effectiveness of algorithms
• The carry a rich theory of complexity
• They suggest the definition of intrinsic complexity measures for

functions and relations
• They justify the Homomorphism Test which can ground the

derivation of robust (absolute) lower bounds

I Applications to arithmetic and algebraic complexity

• Coprimeness on N, from various primitives
• Testing polynomials for 0

Yiannis N. Moschovakis: Recursion and complexity 48/49

The bad news
I The structure of binary numbers

Nb = (N, 0, parity, iq2, em, om, eq0),

where em(x) = 2x , om(x) = 2x + 1
I |x | = the length of the binary expansion of x , ∼ log x
I Thm For every unary relation R : N → {tt,ff} (e.g., Prime(x))

calls(Nb,R, x) ≤ |x | − 1
I Proof If x = x0 + 2x1 + 22x2 + · · ·+ 2mxm with |x | = m + 1 and

eqdiag(U) = {2xm + xm−1 = u1, 2u1 + xm−2 = u2,

. . . , 2um−1 + x0 = um},

then every π : U → Nb fixes x , so U Nb
c R(x) = w (correct w)

I Cannot prove by the Homomorphism Method that for all
Nb-algorithms α and some r > 0, calls(α,Prime, p) ≥ r(log p)2

I Ultimately, we need to analyze algorithms (recursive programs?)

Yiannis N. Moschovakis: Recursion and complexity 49/49

