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Algorithms from primitives — the Euclidean algorithm
For a, b ∈ N = {0, 1, . . .}, a ≥ b ≥ 1,

(ε) gcd(a, b) = if (rem(a, b) = 0) then b else gcd(b, rem(a, b))

where a = iq(a, b)b + rem(a, b) (0 ≤ rem(a, b) < b)

calls(ε, a, b) = the number of divisions ε needs to compute gcd(a, b)

≤ 2 log(b) (x ≥ y ≥ 2)

I Is the Euclidean optimal for computing gcd(a, b) from rem?

I Is the Euclidean optimal for deciding coprimeness from rem?

a⊥⊥b ⇐⇒ gcd(a, b) = 1

I And is this true among all algorithms from rem,=0,=1?

I Aim: derive provably robust (with respect to the choice of
computation model) and plausibly absolute lower bounds for
algorithms which compute a function from specified primitives
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Outline
Slogan: Absolute lower bound results

are the undecidability facts about decidable problems

(1) Preliminaries
(2) Uniform processes
(3) Comprimeness in N
(4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004)
Arithmetic complexity (with vDD, 2009)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations,
Lower bounds for computations with the floor operation
J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992) Verification complexity of
linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992), Test complexity of
generic polynomials
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(Partial) structures

I A (partial) structure is a tuple M = (M,ΦM)

where Φ is a set of function (and relation) symbols

and ΦM = {φM}φ∈Φ, where

φM : Mnφ ⇀ Ms i.e., φM : Mnφ ⇀ M or φM : Mnφ ⇀ {tt,ff}

I Nε = (N, rem,=0,=1), the Euclidean structure

I Nε�U = (U, rem�U,=0�U,=1�U) where U ⊆ N and

(f �U)(x , y) = w ⇐⇒ ~x ∈ Un,w ∈ Us & f (~x) = w

I The (equational) diagram of a Φ-structure is the set of its
basic equations,

eqdiag(M) = {(φ,~x ,w) : ~x ,w ∈ M and φM(~x) = w}

I We may assume that M is completely determined by eqdiag(M)
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Homomorphisms and substructures

I A homomorphism π : U � V is any π : U → V such that for
all φ ∈ Φ, x1, . . . , xn ∈ U,w ∈ Us , (with π(tt) = tt, π(ff) = ff)

φU(x1, . . . , xn) = w =⇒ φM(πx1, . . . , πxn) = πw

It is an embedding if it is injective

I Substructures:

U ⊆p M ⇐⇒ U ⊆ M

& the identity I : U � M is an embedding

⇐⇒ U ⊆ M & eqdiag(U) ⊆ eqdiag(M)

I We use finite substructures U ⊆p M to represent calls to the
primitives executed during a computation in M
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Algorithms from primitives – the basic intuition

An n-ary algorithm α of M = (M,Φ) (or from Φ)“computes”
some n-ary partial function

α = αM : Mn ⇀ Ms

using the primitives in Φ as oracles

We understand this to mean that in the course of a “computation”
of α(~x), the algorithm may request from the oracle for any φM any
particular value φM(~u), for arguments ~u which it has already
computed, and that if the oracles cooperate, then “the
computation” of α(~x) is completed in a finite number of “steps”

I The notion of a uniform process attempts to capture
minimally (in the style of abstract model theory) these aspects
of algorithms from primitives

I It does not capture their effectiveness, but their uniformity
—that an algorithm applies “the same procedure” to all
arguments in its domain

Yiannis N. Moschovakis: The axiomatic derivation of absolute lower bounds 5/17



I The Locality Axiom

A uniform process α of arity n (and sort s) of a structure
M = (M,ΦM) assigns to each substructure U ⊆p M an n-ary
partial function

αU : Un ⇀ Us

It computes the partial function αM : Mn ⇀ Ms

I For an algorithm α, intuitively, αU is the restriction to U of
the partial function computed by α when the oracles respond
only to questions with answers in eqdiag(U)

We write

U ` α(~x) = w ⇐⇒ ~x ∈ Un,w ∈ Us and αU(~x) = w
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II The Homomorphism Axiom

If α is an n-ary uniform process of M, U,V ⊆p M, and π : U → V
is a homomorphism, then

U ` α(~x) = w =⇒ V ` α(π~x) = πw (x1, . . . , xn ∈ U,w ∈ Us)

In particular, if U ⊆p M, then αUvαM

I For algorithms: when asked for φU(~x), the oracle for φ may
consistently provide φV(π~x), if π is a homomorphism

I This is obvious for the identity embedding I : U � M, but it
is a strong restriction for algorithms from rich primitives
(stacks, higher type constructs, etc.)
It can be verified for the standard (deterministic and
non-deterministic) computation models
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III The Finiteness Axiom

If α is an n-ary uniform process of M, then

M ` α(~x) = w

=⇒ there is a finite U ⊆p M generated by ~x such that U ` α(~x) = w

I For every call φ(~u) to the primitives, the algorithm must
construct the arguments ~u , and so the entire computation
takes place within a finite substructure generated by the input ~x

We write

U `c α(~x) = w ⇐⇒ U is finite, generated by ~x and U ` α(~x) = w ,

and we think of (U,~x ,w) as a computation of α on the input ~x
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Complexity measures for uniform processes

Suppose α is an n-ary u.p. of M, Φ0 ⊆ Φ, M ` α(~x) = w ,
and µ is a substructure norm in M. Set:

I Cµ(α,~x) = min{µ(U,~x) : U `c α(~x) = w}

I callsΦ0(α,~x) = min{|eqdiag(U�Φ0)| : U `c α(~x) = w}
(the least number of calls to φ ∈ Φ0 α must do to compute αM(~x))

I sizeα(~x) = min{|U| : U `c α(~x) = w}
(the least number of elements of M that α must see)

I depthα(~x) = min{depth~x(U) : U `c α(~x) = w}
(the least number of calls α must execute in sequence)

Thm depth(α,~x) ≤ size(α,~x) ≤ calls(α,~x) (= callsΦ(α,~x))

These notions agree with standard definitions for concrete algorithms
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? The forcing and certification relations

Suppose f : Mn → Ms , f (~x)↓ , U ⊆p M.

I A homomorphism π : U → M respects f at ~x if

~x ∈ U & f (~x) ∈ Us & π(f (~x)) = f (π(~x))

U M f (~x) = w ⇐⇒ every homomorphism π : U → M respects f at ~x

U M
c f (~x) = w ⇐⇒ U is finite, generated by ~x and U M f (~x) = w

The intrinsic complexities of f in M

I Cµ(M, f ,~x) = min{µ(U,~x) : U c f (~x) = w}

I callsΦ0(M, f ,~x) = min{|eqdiag(U�Φ0)| : U M
c α(~x) = w}

I size(M, f ,~x) = min{|U| : U M
c α(~x) = w}

I depth(M, f ,~x) = min{depth~x(U) : U M
c α(~x) = w}
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The best uniform process for f : Mn ⇀ Ms in M

Define βf ,M by

β
U
f ,M(~x) = w ⇐⇒ U M f (~x) = w (U ⊆p M)

Theorem
The following are equivalent for a Φ-structure M and f : Mn ⇀ Ms :

(i) Some uniform process α of M computes f .

(ii) (∀~x ,w)
(
f (~x) = w =⇒ (∃U ⊆p M)[U M

c f (~x) = w ]
)
.

(iii) βf ,M is a uniform process of M which computes f .

Moreover, if these conditions hold, then for every uniform process
α which computes f in M and all complexity measures Cµ as above,

Cµ(M, f ,~x) = Cµ(βf ,M,~x) ≤ Cµ(α,~x) (f (~x)↓).
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The Homomorphism Test

Lemma
Suppose µ is a substructure norm (callsΦ0 , size, depth) on a
Φ-structure M, f : Mn ⇀ Ms , f (~x)↓ , and

for every finite U ⊆p M which is generated by ~x ,(
f (~x) ∈ Us & µ(U,~x) < m

)
=⇒ (∃π : U → M)[f (π(~x)) 6= π(f (~x))];

then Cµ(M, f ,~x) ≥ m.
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A lower bound for coprimeness on N
Let M = (Nε,Ψ) with Ψ any finite set of Presburger functions

Theorem (van den Dries, ynm, 2004, 2009)

If ξ > 1 is quadratic irrational, then for some r > 0 and all
sufficiently large coprime (a, b),∣∣∣ξ − a

b

∣∣∣ <
1

b2
=⇒ depth(M,⊥⊥, a, b) ≥ r log log a. (1)

In fact, the conclusion of (1) holds with some r
I for all positive solutions (a, b) of Pell’s equation a2 = 2b2 + 1, and

I for all successive Fibonacci pairs (Fk+1,Fk). with k ≥ 3.

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm εnd of Nε which decides
coprimeness, is at least as effective as the Euclidean everywhere and

calls(εnd ,Fk+1,Fk) ≤ K log log Fk+1

I The theorem is best possible from its hypotheses
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Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only
insist that it works for n-bit numbers?

M = (Nε,Ψ) as before. For any N, and any one of the intrinsic
complexities as above, let

Cµ(M, f ,N) = max{Cµ(M�[0, 2N), f , a, b) : a, b < 2N}

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

calls(M,⊥⊥, 2N) ≥ size(M,⊥⊥, 2N) ≥ r log N.

I Non-uniform lower bound for depth(M,⊥⊥, 2N)?
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Horner’s rule

For any field F and n ≥ 1, the value of an n’th degree polynomial
can be computed using no more than n multiplications and n
additions in F :

a0 + a1x + a2x
2 + · · ·+ anx

n = a0 + x
(
a1 + a2x + · · ·+ anx

n−1
)

Divisions might help:

1 + x + x2 + · · ·+ xn =
xn+1 − 1

x − 1

Theorem (Pan 1966, (Winograd 1967, 1970))

Every straight line algorithm from the real field operations requires
at least n multiplications/divisions and at least n
additions/subtractions to compute a0 + a1x + a2x

2 + · · ·+ anx
n,

when ~a, x are algebraically independent real numbers
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The optimality of Horner’s rule for polynomial 0-testing

The nullity relation on a field F :

NF (a0, . . . , an, x) ⇐⇒ a0 + a1x + a2x
2 + · · ·+ anx

n = 0

Theorem
Let R = (R, 0, 1,+,−, ·,÷,=). If n ≥ 1 and a0, . . . , an, x are
algebraically independent, then:

(1) calls{·,÷}(R,NR,~a, x) = n

(2) calls{+,−}(R,NR,~a, x) = n − 1

(3) calls{+,−,=}(R,NR,~a, x) = n + 1

For algebraic decision trees, (1) is due to Bürgisser and Lickteig
(1992), and a result equivalent to (3) is due to Bürgisser, Lickteig
and Shub (1992)
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The lemma for calls{+,−}(R, NR,~a, x) = n − 1

Roots(a1, . . . , an) = {a
1
m
i : m > 0, i = 1, . . . , n} (a1, . . . , an > 0)

An operation u ◦ v is trivial if u, v ∈ K(x , z)

Lemma
Suppose n ≥ 2, g ∈ K (= real algebraic numbers), g 6= 0,
z , a1, . . . , an, x are positive, algebraically independent real
numbers, and U is a finite substructure of R generated by

(U ∩K) ∪ {x , z} ∪ (U ∩ Roots(a1, . . . , an))

which has < (n − 1) non-trivial additions and subtractions. Then
there is a field homomorphism π : K(x , z ,Roots(~a)) → K(x ,Roots(~a))
such that

(a) π(u) = u for every u ∈ K(x),

(b) π is totally defined and injective on U, and

(c) π(z) + g
(
π(a1)x

1 + · · ·+ π(an)x
n
)

= 0.
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