The axiomatic derivation of absolute lower bounds

Yiannis N. Moschovakis UCLA and University of Athens

Oberwolfach, 10 November 2011

Algorithms from primitives — the Euclidean algorithm For $a, b \in \mathbb{N} = \{0, 1, ...\}, a \ge b \ge 1$,

(
$$\varepsilon$$
) $gcd(a, b) = if (rem(a, b) = 0)$ then b else $gcd(b, rem(a, b))$

where a = iq(a, b)b + rem(a, b) $(0 \le rem(a, b) < b)$

 $\operatorname{calls}(\varepsilon, a, b) = ext{the number of divisions } \varepsilon ext{ needs to compute } \operatorname{gcd}(a, b) \\ \leq 2 \log(b) \qquad (x \geq y \geq 2)$

Is the Euclidean optimal for computing gcd(a, b) from rem?

Is the Euclidean optimal for deciding coprimeness from rem?

$$a \bot b \iff \gcd(a, b) = 1$$

- And is this true among all algorithms from rem, $=_0, =_1$?
- Aim: derive provably robust (with respect to the choice of computation model) and plausibly absolute lower bounds for algorithms which compute a function from specified primitives

Outline

Slogan: Absolute lower bound results are the undecidability facts about decidable problems

- (1) Preliminaries
- (2) Uniform processes
- (3) Comprimeness in ℕ
- (4) Polynomial 0-testing

Is the Euclidean algorithm optimal among its peers? (with vDD, 2004) *Arithmetic complexity* (with vDD, 2009)

Y. Mansour, B. Schieber, and P. Tiwari (1991)
A lower bound for integer greatest common divisor computations, Lower bounds for computations with the floor operation
J. Meidânis (1991): Lower bounds for arithmetic problems
P. Bürgisser and T. Lickteig (1992) Verification complexity of linear prime ideals
P. Bürgisser, T. Lickteig, and M. Shub (1992), Test complexity of

generic polynomials

(Partial) structures

• A (partial) structure is a tuple $\mathbf{M} = (M, \Phi^{\mathbf{M}})$

where Φ is a set of function (and relation) symbols and $\Phi^{M} = \{\phi^{M}\}_{\phi \in \Phi}$, where

$$\phi^{\mathsf{M}}: \mathcal{M}^{n_{\phi}} \rightharpoonup \mathcal{M}_{s}$$
 i.e., $\phi^{\mathsf{M}}: \mathcal{M}^{n_{\phi}} \rightharpoonup \mathcal{M}$ or $\phi^{\mathsf{M}}: \mathcal{M}^{n_{\phi}} \rightharpoonup \{\mathfrak{t}, \mathsf{ff}\}$

▶
$$\mathbf{N}_{\varepsilon} = (\mathbb{N}, \text{rem}, =_0, =_1)$$
, the Euclidean structure
▶ $\mathbf{N}_{\varepsilon} \upharpoonright U = (U, \text{rem} \upharpoonright U, =_0 \upharpoonright U, =_1 \upharpoonright U)$ where $U \subseteq \mathbb{N}$ and
 $(f \upharpoonright U)(x, y) = w \iff \vec{x} \in U^n, w \in U_s \& f(\vec{x}) = w$

 The (equational) diagram of a Φ-structure is the set of its basic equations,

$$\mathsf{eqdiag}(\mathsf{M}) = \{(\phi, \vec{x}, w) : \vec{x}, w \in M \text{ and } \phi^{\mathsf{M}}(\vec{x}) = w\}$$

▶ We may assume that **M** is completely determined by eqdiag(**M**)

Homomorphisms and substructures

▶ A homomorphism $\pi : \mathbf{U} \rightarrow \mathbf{V}$ is any $\pi : U \rightarrow V$ such that for all $\phi \in \Phi, x_1, \dots, x_n \in U, w \in U_s$, (with $\pi(\mathtt{t}) = \mathtt{t}, \pi(\mathtt{ff}) = \mathtt{ff}$)

$$\phi^{\mathsf{U}}(x_1,\ldots,x_n)=w\implies\phi^{\mathsf{M}}(\pi x_1,\ldots,\pi x_n)=\pi w$$

It is an embedding if it is injective

Substructures:

 $\mathbf{U} \subseteq_{p} \mathbf{M} \iff U \subseteq M$ & the identity $I : \mathbf{U} \rightarrow \mathbf{M}$ is an embedding $\iff U \subseteq M \& \operatorname{eqdiag}(\mathbf{U}) \subseteq \operatorname{eqdiag}(\mathbf{M})$

We use finite substructures U ⊆_p M to represent calls to the primitives executed during a computation in M

Algorithms from primitives - the basic intuition

An *n*-ary algorithm α of $\mathbf{M} = (M, \Phi)$ (or from Φ) "computes" some *n*-ary partial function

$$\overline{\alpha} = \overline{\alpha}^{\mathsf{M}} : M^n \rightharpoonup M_s$$

using the primitives in Φ as oracles

We understand this to mean that in the course of a "computation" of $\overline{\alpha}(\vec{x})$, the algorithm may request from the oracle for any ϕ^{M} any particular value $\phi^{M}(\vec{u})$, for arguments \vec{u} which it has already computed, and that if the oracles cooperate, then "the computation" of $\overline{\alpha}(\vec{x})$ is completed in a finite number of "steps"

- The notion of a uniform process attempts to capture minimally (in the style of abstract model theory) these aspects of algorithms from primitives
- It does not capture their effectiveness, but their uniformity —that an algorithm applies "the same procedure" to all arguments in its domain

I The Locality Axiom

A uniform process α of arity n (and sort s) of a structure $\mathbf{M} = (M, \Phi^{\mathbf{M}})$ assigns to each substructure $\mathbf{U} \subseteq_{p} \mathbf{M}$ an n-ary partial function

 $\overline{\alpha}^{\mathbf{U}}: U^n \rightharpoonup U_s$

It computes the partial function $\overline{\alpha}^{\mathsf{M}}: M^n \rightharpoonup M_s$

For an algorithm α, intuitively, α^U is the restriction to U of the partial function computed by α when the oracles respond only to questions with answers in eqdiag(U)

We write

$$\mathbf{U}\vdash \alpha(\vec{x})=w\iff \vec{x}\in U^n, w\in U_s \text{ and } \overline{\alpha}^{\mathbf{U}}(\vec{x})=w$$

II The Homomorphism Axiom

If α is an n-ary uniform process of \mathbf{M} , $\mathbf{U}, \mathbf{V} \subseteq_{p} \mathbf{M}$, and $\pi : \mathbf{U} \to \mathbf{V}$ is a homomorphism, then

 $\mathbf{U}\vdash\alpha(\vec{x})=w\implies\mathbf{V}\vdash\alpha(\pi\vec{x})=\pi w\quad(x_1,\ldots,x_n\in U,w\in U_s)$

In particular, if $\mathbf{U} \subseteq_{p} \mathbf{M}$, then $\overline{\alpha}^{\mathbf{U}} \sqsubseteq \overline{\alpha}^{\mathbf{M}}$

- For algorithms: when asked for φ^U(x̄), the oracle for φ may consistently provide φ^V(πx̄), if π is a homomorphism
- This is obvious for the identity embedding *I* : U → M, but it is a strong restriction for algorithms from rich primitives (stacks, higher type constructs, etc.)
 It can be verified for the standard (deterministic and non-deterministic) computation models

III The Finiteness Axiom

If α is an n-ary uniform process of **M**, then

 $\mathbf{M}\vdash\alpha(\vec{x})=w$

 \implies there is a finite $\mathbf{U} \subseteq_p \mathbf{M}$ generated by \vec{x} such that $\mathbf{U} \vdash \alpha(\vec{x}) = w$

For every call \(\vec{u}\) to the primitives, the algorithm must construct the arguments \(\vec{u}\), and so the entire computation takes place within a finite substructure generated by the input \(\vec{x}\)
 We write

$$|\mathbf{U} \vdash_{c} \alpha(\vec{x}) = w \iff \mathbf{U}$$
 is finite, generated by \vec{x} and $\mathbf{U} \vdash \alpha(\vec{x}) = w$,

and we think of (\mathbf{U}, \vec{x}, w) as a computation of α on the input \vec{x}

Complexity measures for uniform processes

Suppose α is an *n*-ary u.p. of **M**, $\Phi_0 \subseteq \Phi$, **M** $\vdash \alpha(\vec{x}) = w$, and μ is a substructure norm in **M**. Set:

- calls_{Φ0}(α, x) = min{|eqdiag(U↾Φ0)| : U ⊢_c α(x) = w} (the least number of calls to φ ∈ Φ0 α must do to compute α^M(x))
- size_α(x) = min{|U| : U ⊢_c α(x) = w} (the least number of elements of M that α must see)
- depth_α(x) = min{depth_x(U) : U ⊢_c α(x) = w}
 (the least number of calls α must execute in sequence)

$$\mathsf{Thm} \, \left| \, \mathsf{depth}(\alpha, \vec{x}) \leq \mathsf{size}(\alpha, \vec{x}) \leq \mathsf{calls}(\alpha, \vec{x}) \right| \, (= \mathsf{calls}_{\Phi}(\alpha, \vec{x}))$$

These notions agree with standard definitions for concrete algorithms

\star The forcing and certification relations

Suppose $f: M^n \to M_s$, $f(\vec{x}) \downarrow$, $\mathbf{U} \subseteq_p \mathbf{M}$.

• A homomorphism $\pi: \mathbf{U} \to \mathbf{M}$ respects f at \vec{x} if

$$\vec{x} \in U \& f(\vec{x}) \in U_s \& \pi(f(\vec{x})) = f(\pi(\vec{x}))$$

 $\mathbf{U} \Vdash^{\mathbf{M}} f(\vec{x}) = w \iff \text{every homomorphism } \pi : \mathbf{U} \to \mathbf{M} \text{ respects } f \text{ at } \vec{x}$ $\mathbf{U} \Vdash^{\mathbf{M}}_{c} f(\vec{x}) = w \iff \mathbf{U} \text{ is finite, generated by } \vec{x} \text{ and } \mathbf{U} \Vdash^{\mathbf{M}} f(\vec{x}) = w$

The intrinsic complexities of f in \mathbf{M}

- $C_{\mu}(\mathbf{M}, f, \vec{x}) = \min\{\mu(\mathbf{U}, \vec{x}) : \mathbf{U} \Vdash_{c} f(\vec{x}) = w\}$
- ► calls_{Φ_0}(**M**, *f*, *x*) = min{|eqdiag(**U** | Φ_0)| : **U** || $_c^{\mathbf{M}} \alpha(\vec{x}) = w$ }
- ► size(\mathbf{M}, f, \vec{x}) = min{ $|U| : \mathbf{U} \Vdash_{c}^{\mathbf{M}} \alpha(\vec{x}) = w$ }
- depth(\mathbf{M}, f, \vec{x}) = min{depth_{\vec{x}}(\mathbf{U}) : $\mathbf{U} \Vdash_{c}^{\mathbf{M}} \alpha(\vec{x}) = w$ }

The best uniform process for $f: M^n \rightarrow M_s$ in **M** Define $\beta_{f,\mathbf{M}}$ by

$$\overline{eta}_{f,\mathsf{M}}^{\mathsf{U}}(ec{x}) = w \iff \mathsf{U} \Vdash^{\mathsf{M}} f(ec{x}) = w \quad (\mathsf{U} \subseteq_{
ho} \mathsf{M})$$

Theorem

The following are equivalent for a Φ -structure **M** and $f: M^n \rightarrow M_s$:

(i) Some uniform process α of **M** computes f. (ii) $(\forall \vec{x}, w) (f(\vec{x}) = w \implies (\exists \mathbf{U} \subseteq_p \mathbf{M}) [\mathbf{U} \Vdash_c^{\mathbf{M}} f(\vec{x}) = w])$. (iii) $\beta_{f,\mathbf{M}}$ is a uniform process of **M** which computes f. Moreover, if these conditions hold, then for every uniform process α which computes f in **M** and all complexity measures C_{μ} as above,

$$C_{\mu}(\mathbf{M}, f, \vec{x}) = C_{\mu}(\beta_{f,\mathbf{M}}, \vec{x}) \le C_{\mu}(\alpha, \vec{x}) \qquad (f(\vec{x})\downarrow).$$

The Homomorphism Test

Lemma

Suppose μ is a substructure norm (calls $_{\Phi_0}$, size, depth) on a Φ -structure **M**, $f : M^n \rightarrow M_s$, $f(\vec{x}) \downarrow$, and

for every finite
$$\mathbf{U} \subseteq_{p} \mathbf{M}$$
 which is generated by \vec{x} ,
 $(f(\vec{x}) \in U_{s} \& \mu(\mathbf{U}, \vec{x}) < m) \implies (\exists \pi : \mathbf{U} \to \mathbf{M})[f(\pi(\vec{x})) \neq \pi(f(\vec{x}))];$

then $C_{\mu}(\mathbf{M}, f, \vec{x}) \geq m$.

A lower bound for coprimeness on $\ensuremath{\mathbb{N}}$

Let $\mathbf{M} = (\mathbf{N}_{\varepsilon}, \Psi)$ with Ψ any finite set of *Presburger functions* Theorem (van den Dries, ynm, 2004, 2009) If $\xi > 1$ is quadratic irrational, then for some r > 0 and all sufficiently large coprime (a, b),

$$\left|\xi - \frac{a}{b}\right| < \frac{1}{b^2} \implies \operatorname{depth}(\mathbf{M}, \mathbb{L}, a, b) \ge r \log \log a.$$
 (1)

In fact, the conclusion of (1) holds with some r

- for all positive solutions (a, b) of Pell's equation $a^2 = 2b^2 + 1$, and
- for all successive Fibonacci pairs (F_{k+1}, F_k) . with $k \ge 3$.

Theorem (Pratt, unpublished)

There is a non-deterministic algorithm ε_{nd} of \mathbf{N}_{ε} which decides coprimeness, is at least as effective as the Euclidean everywhere and

$$calls(\varepsilon_{nd}, F_{k+1}, F_k) \leq K \log \log F_{k+1}$$

▶ The theorem is best possible from its hypotheses

Non-uniform complexity

Given N, how good can a coprimeness algorithm be if we only insist that it works for n-bit numbers?

 $\mathbf{M} = (\mathbf{N}_{\varepsilon}, \mathbf{\Psi})$ as before. For any *N*, and any one of the intrinsic complexities as above, let

$$C_{\mu}(\mathbf{M}, f, N) = \max\{C_{\mu}(\mathbf{M} \upharpoonright [0, 2^N), f, a, b) : a, b < 2^N\}$$

Theorem (van den Dries, ynm 2009)

For some rational number r > 0 and all sufficiently large N,

$$\mathsf{calls}(\mathbf{M}, \bot, 2^N) \ge \mathsf{size}(\mathbf{M}, \bot, 2^N) \ge r \log N.$$

▶ Non-uniform lower bound for depth($\mathbf{M}, \perp, 2^N$)?

Horner's rule

For any field F and $n \ge 1$, the value of an n'th degree polynomial can be computed using no more than n multiplications and n additions in F:

$$a_0 + a_1x + a_2x^2 + \dots + a_nx^n = a_0 + x(a_1 + a_2x + \dots + a_nx^{n-1})$$

Divisions might help:

$$1 + x + x^{2} + \dots + x^{n} = \frac{x^{n+1} - 1}{x - 1}$$

Theorem (Pan 1966, (Winograd 1967, 1970))

Every straight line algorithm from the real field operations requires at least n multiplications/divisions and at least n additions/subtractions to compute $a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, when \vec{a}, x are algebraically independent real numbers The optimality of Horner's rule for polynomial 0-testing

The nullity relation on a field F:

$$N_F(a_0,\ldots,a_n,x) \iff a_0+a_1x+a_2x^2+\cdots+a_nx^n=0$$

Theorem

Let $\mathbf{R} = (\mathbb{R}, 0, 1, +, -, \cdot, \div, =)$. If $n \ge 1$ and a_0, \ldots, a_n, x are algebraically independent, then:

(1)
$$\operatorname{calls}_{\{\cdot, \div\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n$$

(2) $\operatorname{calls}_{\{+, -\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n - 1$
(3) $\operatorname{calls}_{\{+, -, =\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n + 1$

For algebraic decision trees, (1) is due to Bürgisser and Lickteig (1992), and a result equivalent to (3) is due to Bürgisser, Lickteig and Shub (1992)

The lemma for calls $_{\{+,-\}}(\mathbf{R}, N_{\mathbb{R}}, \vec{a}, x) = n-1$

 $Roots(a_1, \dots, a_n) = \{a_i^{\frac{1}{m}} : m > 0, i = 1, \dots, n\} \qquad (a_1, \dots, a_n > 0)$ An operation $u \circ v$ is trivial if $u, v \in \mathbb{K}(x, z)$

Lemma

Suppose $n \ge 2$, $\overline{g} \in \mathbb{K}$ (= real algebraic numbers), $\overline{g} \ne 0$, z, a_1, \ldots, a_n, x are positive, algebraically independent real numbers, and **U** is a finite substructure of **R** generated by

$$(U \cap \mathbb{K}) \cup \{x, z\} \cup (U \cap \operatorname{Roots}(a_1, \ldots, a_n))$$

which has < (n-1) non-trivial additions and subtractions. Then there is a field homomorphism $\pi : \mathbb{K}(x, z, \text{Roots}(\vec{a})) \to \mathbb{K}(x, \text{Roots}(\vec{a}))$ such that