
On defining “algorithm” — why and how?

Yiannis N. Moschovakis
UCLA and University of Athens (MPLA)

14th CLMPS of the DLMPS of the IUHPS, Nancy, 20 June, 2011

Outline

(I) Features of algorithms:
dependence on primitives, uniformity, effectiveness

(II) Recursion and computation

(III) Exploiting uniformity:
The axiomatic derivation of absolute lower bounds

Basic reference On founding the theory of algorithms, 1998

Together with other, newer articles and references to others’
articles in their bibliographies, on my homepage
www.math.ucla.edu∼ynm

Yiannis N. Moschovakis: On defining “algorithm” — why and how? 1/17

The Church-Turing Thesis (CT) for N = {0, 1, . . .}

I (CT): If f : Nn → N is computable (by some algorithm),
then f is also computed by a Turing machine

I Does not define (in fact avoids defining) algorithms

I Main application: undecidability results
To show that a relation cannot be decided (by any algorithm),
we prove that its characteristic function cannot be computed
by a Turing machine

I Key methods of proof: diagonalization and reduction
(of some known undecidable problem to the problem we want
to prove undecidable)

I The precise definition of algorithms is almost certainly
irrelevant to the development of undecidability theory on N.
(It may be useful for extending the theory to other domains)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 2/17

The Euclidean algorithm
For x , y ∈ N, x ≥ y ≥ 1,

(ε) gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))

where rem(x , y) is the remainder of the division of x by y ,

x = iq(x , y)y + rem(x , y) (0 ≤ iq(x , y), 0 ≤ rem(x , y) < y)

callsε(x , y) = the number of divisions (calls to rem)

required to compute gcd(x , y) by the Euclidean algorithm

≤ 2 log(y) (x ≥ y ≥ 2)

I Is the Euclidean optimal for computing gcd(x , y) from rem?

I Is the Euclidean optimal for deciding coprimeness from rem?

x⊥⊥y ⇐⇒ gcd(x , y) = 1

We need a notion of algorithm from rem to answer these questions

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 3/17

Dependence of algorithms on primitives

I Algorithms are not absolute but from (relative to) specified
primitives

I For simplicity, I will consider here only finitary algorithms:
they compute a partial function f : An ⇀ A on a given set A,
from given partial functions (of any arity) on A

I For convenience, we also assume (harmlessly):
A contains two distinct elements 0 =falsity and 1 =truth;
so each relation R ⊆ AN is identified with its
characteristic function χR : An → {0, 1} ⊆ A

I Algorithms of a partial algebra: A = (A, 0, 1, φA
1 , . . . , φA

k)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 4/17

A weak, relative lower bound for coprimeness

Theorem (van den Dries, ynm, 2004, 2009)

If a recursive algorithm α decides the coprimeness relation x⊥⊥y on
N from the primitives ≤, +,−, iq, rem, then for infinitely many x , y
with x > y,

callsα(x , y) ≥ depthα(x , y) >
1

10
log log x (*)

where depthα(x , y) is the least number of applications of the
primitives which must be executed in sequence in the computation

I depthα(x , y) is a natural parallel time complexity measure
I The result is one log short of establishing the optimality of the

Euclidean (and one log = ∞ in this context)
I (*) holds for all sufficiently large x , y such that

- x2 = 1 + 2y2 (solutions of Pell’s equation),
- or x = Fn+1, y = Fn (successive Fibonacci numbers)

I Claim: This applies to all algorithms from the specified primitives

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 5/17

Uniformity of algorithms

I To establish that

depthα(x , y) >
1

10
log log x

for the specified x , y , we appeal to the fact that

the same algorithm α decides whether λx⊥⊥λy, where λ = 1 + x!

I An algorithm of A = (A, 0, 1, φA
1 , . . . , φA

k) must compute

f (~x) for every ~x ∈ An such that f (~x) is defined (converges)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 6/17

General features of finitary algorithms

Suppose α is a finitary algorithm which computes some
f : An ⇀ A:

I Dependence on primitives: α computes f from specified
(partial) functions ψ1, . . . , ψk on A

I Uniformity: α computes f (~x) for every ~x in the domain of
convergence of f

I Effectiveness: α is effective

I Effectiveness is the most difficult feature of algorithms to
make precise in a general (abstract, logical, not ad hoc) way

I Surprizingly: Sometimes effectiveness does not come into the
derivation of interesting lower bounds for algorithms

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 7/17

Iterative algorithms (mechanical procedures)

vs. recursive algorithms

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (I) Features of algorithms 8/17

The mergesort (recursive) algorithm
L is a set , L∗ = {w = (w0, . . . , wn−1) | wi ∈ L}, |w | = n ≥ 0

x ∗ w = (x , w0, . . . ,wn−1), head(w) = w0, tail(w) = (w1, . . . , wn−1),

half1(w) = (w0, . . . , wiq(n,2)−̇1), half2(w) = (wiq(n,2), . . . ,wn−1)

≤ a (total) ordering of L, w is sorted ⇐⇒ w0 ≤ w1 ≤ · · · ≤ wn−1,

sort(w) = the unique, sorted w ′ such that

for some π : {0, . . . , n − 1}½→{0, . . . , n − 1}, w ′
i = wπ(i)

sort(w) = merge(sort(half1(w)), sort(half2(w)))

merge(u, v) = if (|u| = 0) then v

else if (|v | = 0) then u

else if (head(u) ≤ head(v)) then head(u) ∗merge(tail(u), v)

else head(v) ∗merge(u, tail(v))

The mergesort computes sort(w) using ≤ |w |(log |w |)comparisons

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 9/17

The (first order) Formal Language of Recursion FLR(Φ)
Φ = {φ1, . . . , φk} (partial function constants)

Variables : v0, v1, . . . pm
0 , pm

1 , . . . (for m-ary partial functions)

Terms (programs) : t :≡ 0 | 1 | vi | φi (t1, . . . , tki
) | pm

i (t1, . . . , tm)

| if (t0 = 0) then t1 else t2

| t0 where {p1(~u1) = t1, . . . , pn(~un) = tn}
(In the recursion construct p1, ~u1, p2, ~u2, . . . , pn, ~un are bound in t)

I FLR(Φ) is interpreted on (partial) Φ-algebras
A = (A, 0, 1, ΦA) = (A, 0, 1, φA, . . . φA

k)

I Denotational semantics: the recursion construct is interpreted
by the taking of least fixed points

REC(A) = the recursive partial functionals of A

the partial functionals on A defined by terms of FLR(Φ)

(For N = (N, 0, 1, S , Pd), essentially McCarthy 1963)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 10/17

The intensional semantics of FLR(Φ)
I A reduction calculus s ⇒ t is defined on the terms of FLR(Φ).

It models partial program compilation (not computation)
I It is shown (easily) that every term t reduces (compiles) to

exactly one (up to congruence) irreducible, recursive term

t ⇒ cf(t) ≡ t0 where {p1(~u1) = t1, . . . , pn(~un) = tn}
cf(t) is the canonical form of t

I If ~x contains all the free variables of t(~x) and A is a
Φ-algebra, we set

f A
i (~x , ~ui , p1, . . . , pn) = den(ti (~x))(A, ~ui , p1, . . . , pn) (i = 0, . . . , n)

intA(t(~x)) = (f A
0 , . . . , f A

n) = the referential intension of t(~x) in A

I Claim: intA(t(~x)) models faithfully the recursive algorithm
expressed by t(~x) in A

Key assumption: mutual recursion is a primitive algorithmic construct

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 11/17

Summary

I Every algorithm α of an algebra A = (A, 0, 1, ΦA) which
computes α : An ⇀ A is faithfully represented by the
referential intension intA(t(~x)) of some FLR(Φ) program t(~x)

I intA(t(~x)) is a recursor, a tuple of functionals on A satisfying
certain conditions. (It is a semantic object)

I Two algorithms are equal if their representing recursors are
naturally isomorphic
(the same tuples of functionals except for “rearrangement”)

I Suppose A = (0, 1, φA, ψA) and for all x ∈ A, φA(x) = ψA(x);
then

intA(φ(x)) = intA(ψ(x))

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 12/17

Recursive vs. iterative algorithms

I Iterative algorithms can be viewed as special cases of recursive
algorithms (tail recursions)

I Many familiar complexity measures can be defined directly for
FLR(Φ) programs so that implementation independent upper
bounds for them can be easily established (e.g., the mergesort)

I Sample (classical) lower bound result: every recursive
algorithm which computes sort(w) for every w ∈ L∗ from the
primitives of the mergesort executes at least log(|w |!) comparisons

? The theory extends naturally to infinitary algorithms:
• Algorithms which interact with their environment, drop bombs, . . .
• Recursion in higher types (Kleene). Adds algorithmic content:

I Gentzen’s infinitary cut elimination algorithm for arithmetic
I Modeling Frege’s sense of a term t in Montague semantics by

the referential intension of t (which computes its denotation)

Model theory of arbitrary structures ⇒ finite model theory

vs. direct and independent development of finite model theory

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 13/17

The Recursive Computability Thesis

• RCT: If a partial function f : An ⇀ A is recursively computable
from ψ1, . . . , ψk , then f ∈ REC(A, 0, 1, ψ1, . . . , ψk)

I RCT basically accepts calling (composition) and branching as
fundamental algorithmic constructs, and claims that the
primary (algorithmic) interpretation of self-referential
definitions is by the taking of least fixed points (grounded recursion)

I The definition of REC(A) does not involve any objects outside A
I A-recursion is a logical notion, preserved by isomorphisms

Theorem (RCT). f : N ⇀ N is recursively computable

if and only if f is Turing computable (No primitives mentioned)
Proof. If f is recursive on the natural numbers, then
f ∈ REC(N, 0, 1, S , =) because (up to isomorphism)

the natural numbers are the algebra (N, 0, 1, S , =)

and hence f is Turing computable, by classical results a
Computability on N = recursive computability + what the numbers are

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (II) Recursion and computation 14/17

Uniform processes (skipping definitions of underlined terms)
An n-ary uniform process α of an algebra A = (A, 0, 1,ΦA) is a mapping

A ⊇p U 7→ αU : Un ⇀ U

on subalgebras of A to partial functions on their universes such that:

(1) Embedding property: If π : U ½ V is an embedding of one
subalgebra of A into another, then

αU(~x) = w =⇒ αV(π(~x)) = π(w)

(2) Finiteness property: If αA(~x) = w , then there exists a finite
U ⊆p A, generated by {0, 1,~x} such that αU(~x) = w

A uniform process α of A computes the partial function αA : An ⇀ A

I Every recursive algorithm of A induces a uniform process
which computes the same function and with the same
complexity measures. Plausibly: every “algorithm” of A, too

I Every f : N→ N is computed by a uniform process of (N, 0, 1, S)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (III) Exploiting uniformity 15/17

Some lower bounds depend only on uniformity

Theorem (van den Dries, ynm, 2004, 2009)

If a uniform process α of (N, 0, 1,≤, +,−, iq, rem), decides the
coprimeness relation x⊥⊥y on N, then for infinitely many x , y with
x > y (e.g., if x2 = 1 + 2y2 or x = Fn+1, y = Fn, x , y large)

callsα(x , y) ≥ depthα(x , y) >
1

10
log log x

So, in particular, this holds for all recursive programs and all other,
familiar models of relative computation (deterministic or
non-deterministic) which decide coprimeness from the primitives of
(N, 0, 1,≤,+,−, iq, rem)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (III) Exploiting uniformity 16/17

Poly evaluation and 0-testing in C = (C, 0, 1, +,−, ·,÷, =)

For a0, . . . , an, x ∈ C and n ≥ 1:

Value(a0, a0, . . . , an, x) = V (~a, x) = a0 + a1x + · · ·+ anx
n,

Nullity(a0, a0, . . . , an, x) ⇐⇒ N(~a, x) ⇐⇒ a0 + a1x + · · ·+ anx
n = 0

I Horner’s Rule: V (~a, x) can be computed by a straight line
program using n (·) and n (+)

I (Pan 1966, Winograd 1967): Every straight line program
which computes V (~a, x) for all ~a, x ∈ C executes at least n
(·/÷) and n (+/−) when ~a, x are algebraically independent

I Every uniform process of C which decides N(~a, x) for all
~a, x ∈ C executes at least n (·/÷) when ~a, x are algebraically
independent

(Bürgisser, Lickteig 1991 for straight line programs with conds)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (III) Exploiting uniformity 17/17

