On defining "algorithm" — why and how?

Yiannis N. Moschovakis UCLA and University of Athens (MPLA)

14th CLMPS of the DLMPS of the IUHPS, Nancy, 20 June, 2011

Outline

(I) Features of algorithms:

dependence on primitives, uniformity, effectiveness

- (II) Recursion and computation
- Exploiting uniformity: The axiomatic derivation of absolute lower bounds

Basic reference On founding the theory of algorithms, 1998

Together with other, newer articles and references to others' articles in their bibliographies, on my homepage www.math.ucla.edu~ynm

The Church-Turing Thesis (CT) for $\mathbb{N} = \{0, 1, \ldots\}$

- (CT): If f : Nⁿ → N is computable (by some algorithm), then f is also computed by a Turing machine
- Does not define (in fact avoids defining) algorithms
- Main application: undecidability results To show that a relation cannot be decided (by any algorithm), we prove that its characteristic function cannot be computed by a Turing machine
- Key methods of proof: diagonalization and reduction (of some known undecidable problem to the problem we want to prove undecidable)
- ► The precise definition of algorithms is almost certainly irrelevant to the development of undecidability theory on N. (It may be useful for extending the theory to other domains)

The Euclidean algorithm

For
$$x, y \in \mathbb{N}, \ x \ge y \ge 1$$
,

(
$$\varepsilon$$
) $gcd(x, y) = if (rem(x, y) = 0)$ then y else $gcd(y, rem(x, y))$

where rem(x, y) is the remainder of the division of x by y, x = iq(x, y)y + rem(x, y) $(0 \le iq(x, y), 0 \le rem(x, y) < y)$ calls_{ε}(x, y) = the number of divisions (calls to rem) required to compute gcd(x, y) by the Euclidean algorithm $\le 2 \log(y)$ $(x \ge y \ge 2)$

- Is the Euclidean optimal for computing gcd(x, y) from rem?
- Is the Euclidean optimal for deciding coprimeness from rem?

$$x \perp y \iff \gcd(x, y) = 1$$

We need a notion of algorithm from rem to answer these questions

Dependence of algorithms on primitives

- Algorithms are not absolute but from (relative to) specified primitives
- ► For simplicity, I will consider here only finitary algorithms: they compute a partial function f : Aⁿ → A on a given set A, from given partial functions (of any arity) on A
- For convenience, we also assume (harmlessly):
 A contains two distinct elements 0 =falsity and 1 =truth;
 so each relation R ⊆ A^N is identified with its
 characteristic function χ_R : Aⁿ → {0,1} ⊆ A

Algorithms of a partial algebra: $\mathbf{A} = (A, 0, 1, \phi_1^{\mathbf{A}}, \dots, \phi_k^{\mathbf{A}})$

A weak, relative lower bound for coprimeness

Theorem (van den Dries, ynm, 2004, 2009)

If a recursive algorithm α decides the coprimeness relation $x \perp y$ on \mathbb{N} from the primitives $\leq, +, -, iq$, rem, then for infinitely many x, y with x > y,

$$\mathsf{calls}_lpha(x,y) \ge \mathsf{depth}_lpha(x,y) > rac{1}{10} \log\log x$$
 (*)

where depth_{α}(x, y) is the least number of applications of the primitives which must be executed in sequence in the computation

- depth_{α}(x, y) is a natural parallel time complexity measure
- ► The result is one log short of establishing the optimality of the Euclidean (and one log = ∞ in this context)
- (*) holds for all sufficiently large x, y such that
 - $x^2 = 1 + 2y^2$ (solutions of Pell's equation),

- or
$$x = F_{n+1}, y = F_n$$
 (successive Fibonacci numbers)

Claim: This applies to all algorithms from the specified primitives

Uniformity of algorithms

To establish that

$$\mathsf{depth}_\alpha(x,y) > \frac{1}{10} \log \log x$$

for the specified x, y, we appeal to the fact that

the same algorithm α decides whether $\lambda x \perp \lambda y$, where $\lambda = 1 + x!$

• An algorithm of $\mathbf{A} = (A, 0, 1, \phi_1^{\mathbf{A}}, \dots, \phi_k^{\mathbf{A}})$ must compute

 $f(\vec{x})$ for every $\vec{x} \in A^n$ such that $f(\vec{x})$ is defined (converges)

General features of finitary algorithms

Suppose α is a finitary algorithm which computes some $f: A^n \rightharpoonup A$:

- Dependence on primitives: α computes f from specified (partial) functions ψ₁,..., ψ_k on A
- Uniformity: α computes f(x) for every x in the domain of convergence of f
- Effectiveness: α is effective
- Effectiveness is the most difficult feature of algorithms to make precise in a general (abstract, logical, not ad hoc) way
- Surprisingly: Sometimes effectiveness does not come into the derivation of interesting lower bounds for algorithms

Iterative algorithms (mechanical procedures)

vs. recursive algorithms

The mergesort (recursive) algorithm

$$\begin{split} L \text{ is a set }, \quad L^* &= \{w = (w_0, \dots, w_{n-1}) \mid w_i \in L\}, \quad |w| = n \ge 0 \\ x * w &= (x, w_0, \dots, w_{n-1}), \quad \text{head}(w) = w_0, \quad \text{tail}(w) = (w_1, \dots, w_{n-1}), \\ \text{half}_1(w) &= (w_0, \dots, w_{\text{iq}(n,2)-1}), \quad \text{half}_2(w) = (w_{\text{iq}(n,2)}, \dots, w_{n-1}) \end{split}$$

 \leq a (total) ordering of *L*, *w* is sorted $\iff w_0 \leq w_1 \leq \cdots \leq w_{n-1}$, sort(*w*) = the unique, sorted *w'* such that for some $\pi : \{0, \ldots, n-1\} \rightarrow \{0, \ldots, n-1\}, w'_i = w_{\pi(i)}\}$

$$sort(w) = merge(sort(half_1(w)), sort(half_2(w)))$$
$$merge(u, v) = if(|u| = 0) then v$$
$$else if(|v| = 0) then u$$
$$else if(head(u) \le head(v)) then head(u) * merge(tail(u), v)$$
$$else head(v) * merge(u, tail(v))$$

The mergesort computes sort(w) using $\leq |w|(\log |w|)$ comparisons

The (first order) Formal Language of Recursion $FLR(\Phi)$ $\Phi = \{\phi_1, \dots, \phi_k\}$ (partial function constants) Variables : $v_0, v_1, \dots, p_0^m, p_1^m, \dots$ (for *m*-ary partial functions) Terms (programs) : $t :\equiv 0 | 1 | v_i | \phi_i(t_1, \dots, t_{k_i}) | p_i^m(t_1, \dots, t_m)$ $| if (t_0 = 0)$ then t_1 else t_2 $| t_0$ where $\{p_1(\vec{u}_1) = t_1, \dots, p_n(\vec{u}_n) = t_n\}$

(In the recursion construct $p_1, \vec{u}_1, p_2, \vec{u}_2, \dots, p_n, \vec{u}_n$ are bound in t)

- ► FLR(Φ) is interpreted on (partial) Φ -algebras $\mathbf{A} = (A, 0, 1, \Phi^{\mathbf{A}}) = (A, 0, 1, \phi^{\mathbf{A}}, \dots \phi^{\mathbf{A}}_{k})$
- Denotational semantics: the recursion construct is interpreted by the taking of least fixed points

 $REC(\mathbf{A}) = the recursive partial functionals of \mathbf{A}$

the partial functionals on A defined by terms of $FLR(\Phi)$ (For $\mathbf{N} = (\mathbb{N}, 0, 1, S, Pd)$, essentially McCarthy 1963)

Yiannis N. Moschovakis: On defining "algorithm" - why and how?

The intensional semantics of $FLR(\Phi)$

- A reduction calculus s ⇒ t is defined on the terms of FLR(Φ). It models partial program compilation (not computation)
- It is shown (easily) that every term t reduces (compiles) to exactly one (up to congruence) irreducible, recursive term

$$t \Rightarrow \mathsf{cf}(t) \equiv t_0$$
 where $\{p_1(ec{u}_1) = t_1, \dots, p_n(ec{u}_n) = t_n\}$

cf(t) is the canonical form of t

 If x contains all the free variables of t(x) and A is a Φ-algebra, we set

$$\begin{aligned} f_i^{\mathbf{A}}(\vec{x}, \vec{u}_i, p_1, \dots, p_n) &= \operatorname{den}(t_i(\vec{x}))(\mathbf{A}, \vec{u}_i, p_1, \dots, p_n) \quad (i = 0, \dots, n) \\ \\ \overbrace{\operatorname{int}^{\mathbf{A}}(t(\vec{x})) = (f_0^{\mathbf{A}}, \dots, f_n^{\mathbf{A}})} &= \operatorname{the \ referential \ intension \ of \ } t(\vec{x}) \ \operatorname{in \ } \mathbf{A} \end{aligned}$$

► Claim: int^A(t(x)) models faithfully the recursive algorithm expressed by t(x) in A

Key assumption: mutual recursion is a primitive algorithmic construct

Summary

- Every algorithm α of an algebra A = (A, 0, 1, Φ^A) which computes ᾱ : Aⁿ → A is faithfully represented by the referential intension int^A(t(x̄)) of some FLR(Φ) program t(x̄)
- int^A(t(x)) is a recursor, a tuple of functionals on A satisfying certain conditions. (It is a semantic object)
- Two algorithms are equal if their representing recursors are naturally isomorphic (the same tuples of functionals except for "rearrangement")

Suppose
$$\mathbf{A} = (0, 1, \phi^{\mathbf{A}}, \psi^{\mathbf{A}})$$
 and for all $x \in A$, $\phi^{\mathbf{A}}(x) = \psi^{\mathbf{A}}(x)$; then

$$\operatorname{int}^{\mathbf{A}}(\phi(x)) = \operatorname{int}^{\mathbf{A}}(\psi(x))$$

Recursive vs. iterative algorithms

- Iterative algorithms can be viewed as special cases of recursive algorithms (tail recursions)
- Many familiar complexity measures can be defined directly for FLR(Φ) programs so that implementation independent upper bounds for them can be easily established (e.g., the mergesort)
- Sample (classical) lower bound result: every recursive algorithm which computes sort(w) for every w ∈ L* from the primitives of the mergesort executes at least log(|w|!) comparisons
- \star The theory extends naturally to infinitary algorithms:
 - Algorithms which interact with their environment, drop bombs, ...
 - Recursion in higher types (Kleene). Adds algorithmic content:
 - Gentzen's infinitary cut elimination algorithm for arithmetic
 - Modeling Frege's sense of a term t in Montague semantics by the referential intension of t (which computes its denotation)

Model theory of arbitrary structures \Rightarrow finite model theory

vs. direct and independent development of finite model theory

The Recursive Computability Thesis

• RCT: If a partial function $f : A^n \rightarrow A$ is recursively computable from ψ_1, \ldots, ψ_k , then $f \in \text{REC}(A, 0, 1, \psi_1, \ldots, \psi_k)$

- RCT basically accepts calling (composition) and branching as fundamental algorithmic constructs, and claims that the primary (algorithmic) interpretation of self-referential definitions is by the taking of least fixed points (grounded recursion)
- ▶ The definition of REC(A) does not involve any objects outside A
- A-recursion is a logical notion, preserved by isomorphisms

Theorem (RCT). $f : \mathbb{N} \to \mathbb{N}$ is recursively computable if and only if f is Turing computable (No primitives mentioned) Proof. If f is recursive on the natural numbers, then $f \in \text{REC}(\mathbb{N}, 0, 1, S, =)$ because (up to isomorphism) the natural numbers are the algebra $(\mathbb{N}, 0, 1, S, =)$

and hence f is Turing computable, by classical results

Computability on $\ensuremath{\mathbb{N}}=$ recursive computability + what the numbers are

 \neg

Uniform processes (skipping definitions of underlined terms) An *n*-ary uniform process α of an algebra $\mathbf{A} = (A, 0, 1, \Phi^{\mathbf{A}})$ is a mapping

$$\mathbf{A} \supseteq_{p} \mathbf{U} \mapsto \overline{\alpha}^{\mathbf{U}} : U^{n} \rightharpoonup U$$

on subalgebras of A to partial functions on their universes such that:

(1) Embedding property: If $\pi : \mathbf{U} \rightarrow \mathbf{V}$ is an embedding of one subalgebra of **A** into another, then

$$\overline{\alpha}^{\mathsf{U}}(\vec{x}) = w \implies \overline{\alpha}^{\mathsf{V}}(\pi(\vec{x})) = \pi(w)$$

(2) Finiteness property: If $\overline{\alpha}^{\mathbf{A}}(\vec{x}) = w$, then there exists a finite $\mathbf{U} \subseteq_{p} \mathbf{A}$, generated by $\{0, 1, \vec{x}\}$ such that $\overline{\alpha}^{\mathbf{U}}(\vec{x}) = w$

A uniform process α of **A** computes the partial function $\overline{\alpha}^{\mathbf{A}} : A^n \rightharpoonup A$

- Every recursive algorithm of A induces a uniform process which computes the same function and with the same complexity measures. Plausibly: every "algorithm" of A, too
- Every $f : \mathbb{N} \to \mathbb{N}$ is computed by a uniform process of $(\mathbb{N}, 0, 1, S)$

Some lower bounds depend only on uniformity

Theorem (van den Dries, ynm, 2004, 2009)

If a uniform process α of $(\mathbb{N}, 0, 1, \leq, +, -, iq, rem)$, decides the coprimeness relation $x \perp y$ on \mathbb{N} , then for infinitely many x, y with x > y (e.g., if $x^2 = 1 + 2y^2$ or $x = F_{n+1}, y = F_n$, x, y large)

$$\mathsf{calls}_lpha(x,y) \geq \mathsf{depth}_lpha(x,y) > rac{1}{10} \log \log x$$

So, in particular, this holds for all recursive programs and all other, familiar models of relative computation (deterministic or non-deterministic) which decide coprimeness from the primitives of $(\mathbb{N}, 0, 1, \leq, +, -, iq, rem)$

Poly evaluation and 0-testing in $\mathbf{C} = (\mathbb{C}, 0, 1, +, -, \cdot, \div, =)$

For $a_0, \ldots, a_n, x \in \mathbb{C}$ and $n \geq 1$:

 $Value(a_0, a_0, \dots, a_n, x) = V(\vec{a}, x) = a_0 + a_1 x + \dots + a_n x^n,$ Nullity $(a_0, a_0, \dots, a_n, x) \iff N(\vec{a}, x) \iff a_0 + a_1 x + \dots + a_n x^n = 0$

- ► Horner's Rule: V(*a*, x) can be computed by a straight line program using n (·) and n (+)
- ▶ (Pan 1966, Winograd 1967): Every straight line program which computes $V(\vec{a}, x)$ for all $\vec{a}, x \in \mathbb{C}$ executes at least n (\cdot/\div) and n (+/-) when \vec{a}, x are algebraically independent
- ► Every uniform process of C which decides N(*ā*, x) for all *ā*, x ∈ C executes at least n (·/÷) when *ā*, x are algebraically independent

(Bürgisser, Lickteig 1991 for straight line programs with conds)