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The Church-Turing Thesis (CT) for N = {0, 1, . . .}

I (CT): If f : Nn → N is computable (by some algorithm),
then f is also computed by a Turing machine

I Does not define (in fact avoids defining) algorithms

I Main application: undecidability results
To show that a relation cannot be decided (by any algorithm),
we prove that its characteristic function cannot be computed
by a Turing machine

I Key methods of proof: diagonalization and reduction
(of some known undecidable problem to the problem we want
to prove undecidable)

I The precise definition of algorithms is almost certainly
irrelevant to the development of undecidability theory on N.
(It may be useful for extending the theory to other domains)
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The Euclidean algorithm
For x , y ∈ N, x ≥ y ≥ 1,

(ε) gcd(x , y) = if (rem(x , y) = 0) then y else gcd(y , rem(x , y))

where rem(x , y) is the remainder of the division of x by y ,

x = iq(x , y)y + rem(x , y) (0 ≤ iq(x , y), 0 ≤ rem(x , y) < y)

callsε(x , y) = the number of divisions (calls to rem)

required to compute gcd(x , y) by the Euclidean algorithm

≤ 2 log(y) (x ≥ y ≥ 2)

I Is the Euclidean optimal for computing gcd(x , y) from rem?

I Is the Euclidean optimal for deciding coprimeness from rem?

x⊥⊥y ⇐⇒ gcd(x , y) = 1

We need a notion of algorithm from rem to answer these questions
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Dependence of algorithms on primitives

I Algorithms are not absolute but from (relative to) specified
primitives

I For simplicity, I will consider here only finitary algorithms:
they compute a partial function f : An ⇀ A on a given set A,
from given partial functions (of any arity) on A

I For convenience, we also assume (harmlessly):
A contains two distinct elements 0 =falsity and 1 =truth;
so each relation R ⊆ AN is identified with its
characteristic function χR : An → {0, 1} ⊆ A

I Algorithms of a partial algebra: A = (A, 0, 1, φA
1 , . . . , φA

k )
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A weak, relative lower bound for coprimeness

Theorem (van den Dries, ynm, 2004, 2009)

If a recursive algorithm α decides the coprimeness relation x⊥⊥y on
N from the primitives ≤, +,−, iq, rem, then for infinitely many x , y
with x > y,

callsα(x , y) ≥ depthα(x , y) >
1

10
log log x (*)

where depthα(x , y) is the least number of applications of the
primitives which must be executed in sequence in the computation

I depthα(x , y) is a natural parallel time complexity measure
I The result is one log short of establishing the optimality of the

Euclidean (and one log = ∞ in this context)
I (*) holds for all sufficiently large x , y such that

- x2 = 1 + 2y2 (solutions of Pell’s equation),
- or x = Fn+1, y = Fn (successive Fibonacci numbers)

I Claim: This applies to all algorithms from the specified primitives
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Uniformity of algorithms

I To establish that

depthα(x , y) >
1

10
log log x

for the specified x , y , we appeal to the fact that

the same algorithm α decides whether λx⊥⊥λy, where λ = 1 + x!

I An algorithm of A = (A, 0, 1, φA
1 , . . . , φA

k ) must compute

f (~x) for every ~x ∈ An such that f (~x) is defined (converges)
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General features of finitary algorithms

Suppose α is a finitary algorithm which computes some
f : An ⇀ A:

I Dependence on primitives: α computes f from specified
(partial) functions ψ1, . . . , ψk on A

I Uniformity: α computes f (~x) for every ~x in the domain of
convergence of f

I Effectiveness: α is effective

I Effectiveness is the most difficult feature of algorithms to
make precise in a general (abstract, logical, not ad hoc) way

I Surprizingly: Sometimes effectiveness does not come into the
derivation of interesting lower bounds for algorithms
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Iterative algorithms (mechanical procedures)

vs. recursive algorithms
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The mergesort (recursive) algorithm
L is a set , L∗ = {w = (w0, . . . , wn−1) | wi ∈ L}, |w | = n ≥ 0

x ∗ w = (x , w0, . . . ,wn−1), head(w) = w0, tail(w) = (w1, . . . , wn−1),

half1(w) = (w0, . . . , wiq(n,2)−̇1), half2(w) = (wiq(n,2), . . . ,wn−1)

≤ a (total) ordering of L, w is sorted ⇐⇒ w0 ≤ w1 ≤ · · · ≤ wn−1,

sort(w) = the unique, sorted w ′ such that

for some π : {0, . . . , n − 1}½→{0, . . . , n − 1}, w ′
i = wπ(i)

sort(w) = merge(sort(half1(w)), sort(half2(w)))

merge(u, v) = if (|u| = 0) then v

else if (|v | = 0) then u

else if ( head(u) ≤ head(v) ) then head(u) ∗merge(tail(u), v)

else head(v) ∗merge(u, tail(v))

The mergesort computes sort(w) using ≤ |w |(log |w |)comparisons
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The (first order) Formal Language of Recursion FLR(Φ)
Φ = {φ1, . . . , φk} (partial function constants)

Variables : v0, v1, . . . pm
0 , pm

1 , . . . (for m-ary partial functions)

Terms (programs) : t :≡ 0 | 1 | vi | φi (t1, . . . , tki
) | pm

i (t1, . . . , tm)

| if (t0 = 0) then t1 else t2

| t0 where {p1(~u1) = t1, . . . , pn(~un) = tn}
(In the recursion construct p1, ~u1, p2, ~u2, . . . , pn, ~un are bound in t)

I FLR(Φ) is interpreted on (partial) Φ-algebras
A = (A, 0, 1, ΦA) = (A, 0, 1, φA, . . . φA

k )

I Denotational semantics: the recursion construct is interpreted
by the taking of least fixed points

REC(A) = the recursive partial functionals of A

the partial functionals on A defined by terms of FLR(Φ)

(For N = (N, 0, 1, S , Pd), essentially McCarthy 1963)
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The intensional semantics of FLR(Φ)
I A reduction calculus s ⇒ t is defined on the terms of FLR(Φ).

It models partial program compilation (not computation)
I It is shown (easily) that every term t reduces (compiles) to

exactly one (up to congruence) irreducible, recursive term

t ⇒ cf(t) ≡ t0 where {p1(~u1) = t1, . . . , pn(~un) = tn}
cf(t) is the canonical form of t

I If ~x contains all the free variables of t(~x) and A is a
Φ-algebra, we set

f A
i (~x , ~ui , p1, . . . , pn) = den(ti (~x))(A, ~ui , p1, . . . , pn) (i = 0, . . . , n)

intA(t(~x)) = (f A
0 , . . . , f A

n ) = the referential intension of t(~x) in A

I Claim: intA(t(~x)) models faithfully the recursive algorithm
expressed by t(~x) in A

Key assumption: mutual recursion is a primitive algorithmic construct
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Summary

I Every algorithm α of an algebra A = (A, 0, 1, ΦA) which
computes α : An ⇀ A is faithfully represented by the
referential intension intA(t(~x)) of some FLR(Φ) program t(~x)

I intA(t(~x)) is a recursor, a tuple of functionals on A satisfying
certain conditions. (It is a semantic object)

I Two algorithms are equal if their representing recursors are
naturally isomorphic
(the same tuples of functionals except for “rearrangement”)

I Suppose A = (0, 1, φA, ψA) and for all x ∈ A, φA(x) = ψA(x);
then

intA(φ(x)) = intA(ψ(x))
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Recursive vs. iterative algorithms

I Iterative algorithms can be viewed as special cases of recursive
algorithms (tail recursions)

I Many familiar complexity measures can be defined directly for
FLR(Φ) programs so that implementation independent upper
bounds for them can be easily established (e.g., the mergesort)

I Sample (classical) lower bound result: every recursive
algorithm which computes sort(w) for every w ∈ L∗ from the
primitives of the mergesort executes at least log(|w |!) comparisons

? The theory extends naturally to infinitary algorithms:
• Algorithms which interact with their environment, drop bombs, . . .
• Recursion in higher types (Kleene). Adds algorithmic content:

I Gentzen’s infinitary cut elimination algorithm for arithmetic
I Modeling Frege’s sense of a term t in Montague semantics by

the referential intension of t (which computes its denotation)

Model theory of arbitrary structures ⇒ finite model theory

vs. direct and independent development of finite model theory
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The Recursive Computability Thesis

• RCT: If a partial function f : An ⇀ A is recursively computable
from ψ1, . . . , ψk , then f ∈ REC(A, 0, 1, ψ1, . . . , ψk)

I RCT basically accepts calling (composition) and branching as
fundamental algorithmic constructs, and claims that the
primary (algorithmic) interpretation of self-referential
definitions is by the taking of least fixed points (grounded recursion)

I The definition of REC(A) does not involve any objects outside A
I A-recursion is a logical notion, preserved by isomorphisms

Theorem (RCT). f : N ⇀ N is recursively computable

if and only if f is Turing computable (No primitives mentioned)
Proof. If f is recursive on the natural numbers, then
f ∈ REC(N, 0, 1, S , =) because (up to isomorphism)

the natural numbers are the algebra (N, 0, 1, S , =)

and hence f is Turing computable, by classical results a
Computability on N = recursive computability + what the numbers are
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Uniform processes (skipping definitions of underlined terms)
An n-ary uniform process α of an algebra A = (A, 0, 1,ΦA) is a mapping

A ⊇p U 7→ αU : Un ⇀ U

on subalgebras of A to partial functions on their universes such that:

(1) Embedding property: If π : U ½ V is an embedding of one
subalgebra of A into another, then

αU(~x) = w =⇒ αV(π(~x)) = π(w)

(2) Finiteness property: If αA(~x) = w , then there exists a finite
U ⊆p A, generated by {0, 1,~x} such that αU(~x) = w

A uniform process α of A computes the partial function αA : An ⇀ A

I Every recursive algorithm of A induces a uniform process
which computes the same function and with the same
complexity measures. Plausibly: every “algorithm” of A, too

I Every f : N→ N is computed by a uniform process of (N, 0, 1, S)
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Some lower bounds depend only on uniformity

Theorem (van den Dries, ynm, 2004, 2009)

If a uniform process α of (N, 0, 1,≤, +,−, iq, rem), decides the
coprimeness relation x⊥⊥y on N, then for infinitely many x , y with
x > y (e.g., if x2 = 1 + 2y2 or x = Fn+1, y = Fn, x , y large)

callsα(x , y) ≥ depthα(x , y) >
1

10
log log x

So, in particular, this holds for all recursive programs and all other,
familiar models of relative computation (deterministic or
non-deterministic) which decide coprimeness from the primitives of
(N, 0, 1,≤,+,−, iq, rem)

Yiannis N. Moschovakis: On defining “algorithm” — why and how? (III) Exploiting uniformity 16/17



Poly evaluation and 0-testing in C = (C, 0, 1, +,−, ·,÷, =)

For a0, . . . , an, x ∈ C and n ≥ 1:

Value(a0, a0, . . . , an, x) = V (~a, x) = a0 + a1x + · · ·+ anx
n,

Nullity(a0, a0, . . . , an, x) ⇐⇒ N(~a, x) ⇐⇒ a0 + a1x + · · ·+ anx
n = 0

I Horner’s Rule: V (~a, x) can be computed by a straight line
program using n (·) and n (+)

I (Pan 1966, Winograd 1967): Every straight line program
which computes V (~a, x) for all ~a, x ∈ C executes at least n
(·/÷) and n (+/−) when ~a, x are algebraically independent

I Every uniform process of C which decides N(~a, x) for all
~a, x ∈ C executes at least n (·/÷) when ~a, x are algebraically
independent

(Bürgisser, Lickteig 1991 for straight line programs with conds)
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