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The development of Mathematical Logic
. . . (comic book version)

(1) Language (Frege 1879, Hilbert school).
First Order Language FOL is chosen as the most suitable
formal language: sufficiently rich so that mathematical
theories can be expressed in it and sufficiently simple to be
profitably studied with mathematical methods.

(2) Interpretations (Tarski).
A precise (set theoretic) interpretation of FOL is given in
first-order structures — Tarski’s definition of satisfaction and
truth.

(3) Proof theory (Hilbert school).
Precise (set theoretic) specification of proof systems for FOL.

(4) The Completeness Theorem (Gödel 1928).
Identification of the provable FOL sentences with those which
are valid (true in all first-order structures).

I Answers the question of what follows from what by logic alone
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Frege’s sense and denotation

I 1 + 1 = 2 vs. there are infinitely many prime numbers

Same truth value but different thoughts are expressed

I A −→ sense(A) −→ den(A)

I Terms denote objects and include sentences, which denote
either 1 (truth) or 0 (falsity).

I The sense (meaning) of a term “contains the mode of
presentation of the denotation”.

I The function A −→ sense(A) is compositional.
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Frege on sense (which he did not define)

“[the sense of a sign] may be the common property of many
people” Meanings are public (abstract?) objects

“The sense of a proper name is grasped by everyone who is
sufficiently familiar with the language . . . Comprehensive knowledge
of the thing denoted . . . we never attain”

Speakers of the language know the meanings of terms

“The same sense has different expressions in different languages or
even in the same language”

“The difference between a translation and the original text should
properly not overstep the [level of the idea]”

Faithful translation should preserve meaning

sense(A) ∼ the part of the semantic value of A which is preserved
under faithful translation (the elephant in the room)
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A logic of meaning and synonymy (simplified, all lies are white)

(1) Language. The typed λ-calculus with acyclic recursion Lλ
ar, an

extension of Richard Montague’s language of intensional logic.

(2) Interpretation. In every suitable higher type structure M, each
closed term A of Lλ

ar is assigned:

a value denM(A) and a referential intension intM(A)

intM(A) models the meaning of A and determines denM(A)

A ≈M B (A is synonymous with B in M)

⇐⇒ intM(A) ∼= intM(B) (naturally isomorphic, =)

(3) The Reduction Calculus of meaning and synonymy:

A ⇒ B ⇐⇒ A ≈` B (synonymous in all structures)

and B expresses int(A) = int(B) more (no less) directly than A.

(4) Completeness. There are decidable and complete
axiomatizations of (global) denotational identity and synonymy
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What is the referential intension of a term A?

I As a slogan: int(A) is the algorithm which computes den(A)

I The meaning of a term A is faithfully represented by an
(abstract) procedure which computes its denotation den(A).

I (1) If you know the meaning of A, then you have (in principle)
a method for determining its denotation.

(2) If you have a method for determining the denotation of A,
then you know the meaning of A.

I It has been argued that neither of these principles can be
found in Frege; and it has also been argued that this is exactly
what Frege means when he says

“The sense contains the mode of presentation of the denotation”

I The theory of referential intensions imports ideas from the
theory of programming languages that go beyond modelling
meanings by algorithms
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Outline

Introduction (already done)

1. Some remarks on the methodology we will follow

2. Syntax and denotational semantics of Lλ
ar

3. Examples from natural language (also throughout)

4. Overview of referential intension theory

5. The reduction calculus

6. Referential intensions; referential and logical synonymy

7. Propositional attitudes

Afterword

Sense and denotation as algorithm and value (1994)
A logical calculus of meaning and synonymy (2006)
Two aspects of situated meaning (with E. Kalyvianaki (2008))
Posted in www.math.ucla.edu/∼ynm
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Rendering (of natural language into Lλ
ar)

The rigorous logical analysis of a phrase from natural language will
start by rendering (translating) it into the formal language Lλ

ar.

every man loves some woman

render−−−→ every(man)
[
λ(u)

(
some(woman)(λ(v)loves(u, v))

)]
coordination:

Abelard loved and honored Eloise

render−−−→ λ(u, v)
(
loved(u, v) and honored(u, v)

)
(Abelard,Eloise)

coindexing:
Abelard loved Eloise and (he) honored her

render−−−→ loved(ȧ, ė) and honored(ȧ, ė) where {ȧ := Abelard, ė := Eloise}

natural language expression + informal context

render−−−→ formal Lλ
ar term + state
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Is all language situated?

He loves her
render−−−→ A ≡ loves(he, her)

I The truth and meaning of A depend on who “he” and “her”
are, when the utterance was made, etc.
These are all determined by the informal context and coded in
the state

I In Montague’s LIL, every term A which expresses a sentence
of natural language is interpreted by its Carnap intension

CI(A) : States → Truth values

a function which assigns a truth value to every state.

I Every term of LIL is interpreted by a function on the set of states.

Slogan: All language is situated

I In LIL den(3 + 2 = 5) is the constant function (a 7→ true)
. . . which has a different logical status (type) from the object “true”

I We will not adopt the slogan (will allow variables over states, etc.)
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Propositional attitudes

Peter declares that he loves John’s sister
formalize−−−−→ Decl.(Peter, loves(he, sister(John)))
coindex−−−→ A ≡ Decl.(ṗ, loves(ṗ, sister(John))) where {ṗ := Peter}

≡ Decl.(ṗ, L) where {ṗ := Peter}
where

L ≡ loves(ṗ, sister(John))

I The truth and meaning of A depend on the meaning of L (for
a fixed value of ṗ), not just its truth value

I Other attitudinal constants like Decl. include

Claims that . . . , Says that . . . , Believes that . . .

I We will first develop the theory of referential intensions for
the denotational part of the language
and then interpret the full language into its denotational part
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The λ-calculus with acyclic recursion Lλ
ar: types

Basic types Entities : e Truth values : t States : s

σ :≡ e | t | s | (σ1 → σ2)

Interpretations (standard)

Te = a given set (or class) of people, objects, etc.

Ts = a given set of states

{0, 1, er} ⊆ Tt = a given set of truth values ⊆ Te

T(σ→τ) = (Tσ → Tτ ) = the set of all functions p : Tσ → Tτ

State a = (world(a), time(a), location(a), agent (speaker)(a), δ)

δ(He1) = . . . , δ(this) = . . . , etc.

er = error
(
den(the King of France is bald(a) = er

)
x : σ ⇐⇒ x ∈ Tσ (x is an object of type σ)
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Special kinds of types and objects

Pure types σ :≡ e | t | (σ1 → σ2)

t̃ :≡ (s → t) (Carnap intensions)

ẽ :≡ (s → e) (state-dependent entities (individual concepts))

Natural language types σ :≡ ẽ | t̃ | (σ1 → σ2)

I The terms which are rendered by natural language phrases are
of natural language type (True?)

State-dependent unary quantifier types (every(boy)):

q̃ :≡ ((ẽ → t̃) → t̃)

Abbreviations σ1 × σ2 → τ :≡ (σ1 → (σ2 → τ))
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Constants; the lexicon

Empirical (denotational) constants:

Entities 0, 1, 2,. . . , er: e
Names, demonstratives John, I, he, him, today: ẽ
Common nouns man, unicorn, temperature: ẽ → t̃
Adjectives tall, young: (ẽ → t̃) → (ẽ → t̃)
Propositions it rains: t̃
Intransitive verbs stand, run, rise: ẽ → t̃
Transitive verbs find, love, be, seek: (ẽ× ẽ) → t̃
Adverbs rapidly, allegedly: (ẽ → t̃) → (ẽ → t̃)

Logical constants:

=σ : σ × σ → t
¬ : t → t

&,∨,⇒ : t× t → t
∀σ,∃σ : (σ → t) → t

not,�, in the future : t̃ → t̃
and, or, if .. then .. : t̃× t̃ → t̃

every, some : (ẽ → t̃) → q̃
the : (ẽ → t̃) → ẽ

I A set K of typed constants determines the language Lλ
ar(K )
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Typed variables

Two kinds of (typed) variables

I Pure variables of type σ: vσ
0 , vσ

1 . . .

I Recursion variables or locations of type σ: v̇σ
0 , v̇σ

1 . . .

I Both vσ
i and v̇σ

i will be interpreted by arbitrary objects x : σ
. . . but they will be treated differently in the syntax

I Pure variables will be bound by the λ-operator (as in the
typed λ-calculus)

I Locations will be used to make (formal) assignments

ṗ := A

and will be bound by the recursion construct where
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Interpretations of Lλ
ar(K )

I A (standard) structure

M = (Te, Ts, Tt, {c}c∈K )

for Lλ
ar(K ) is specified by given sets of basic types and a given

denotation (value) c for each constant c ∈ K .

I There is a fixed structure

M0 = our universe

I A valuation (assignment) in M is any function g which assigns
to each variable x of type σ (of either kind) an object g(x) : σ.
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Terms

A :≡ x | c | A(B) | λ(u)(A) | A0 where {ṗ1 := A1, . . . , ṗn := An}

I Recursive definition, starting with the variables and the constants

I Three formations rules:
application, λ-abstraction and acyclic recursion

I Conditions for each of the three formation rules to apply

I Each term is assigned a type A : σ ⇐⇒ A is a term of type σ

I FV(A) = the set of free occurrences of variables in A

I den(A)M(g) = the denotation of A for the valuation g in M

(We will skip the superscript M in the definitions below)
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Abbreviations, congruence, formal replacement

Abbreviations and misspellings:

A(B)(C ) ≡ A(B,C ),

A[B(C ,D)] ≡ A(B(C )(D)),

A where { } ≡ A, etc.

Term Congruence: A ≡c B is an equivalence relation on terms
such that
I A ≡c B if B is constructed from A by alphabetic changes of

bound variables and
I A where {ṗ := B, q̇ := C} ≡c A where {q̇ := C , ṗ := B}

Term replacement:

A{x :≡ B} = the result of replacing every free occurrence

of the variable x in A by the term B

I Free if no free variable of B is bound in A{x :≡ B}
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Terms: constants and variables

A :≡ x | c︸︷︷︸ | A(B) | λ(u)(A) | A0 where {ṗ1 := A1, . . . , ṗn := An}

(T0) If x is a variable of type σ of either kind, then

x : σ, FV(x) = {x}, den(x)(g) = g(x)

If c is a constant of type σ, then

c : σ, FV(c) = ∅, den(c)(g) = c

Examples:

George, He : ẽ, runs,man : ẽ → t̃, loves : ẽ× ẽ → t̃
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Terms: application

A :≡ x | c | A(B)︸ ︷︷ ︸ | λ(u)(A) | A0 where {ṗ1 := A1, . . . , ṗn := An}

(T1) If A : (σ → τ) and B : σ, then

A(B) : τ, FV(A(B)) = FV(A) ∪ FV(B),

den(A(B))(g) = den(A)(g)(den(B)(g))

Examples (predication, quantification, etc.)

George runs
render−−−→ runs(George) : t̃

Abelard loved Eloise
render−−−→ loved(Abelard)(Eloise)

≡ loved(Abelard,Eloise) : t̃

Every man
render−−−→ every(man) : (ẽ → t̃) → t̃

Every man dies
render−−−→ every(man)(dies)

≡ every(man, dies) : t̃
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Terms: λ-abstraction

A :≡ x | c | A(B) | λ(u)(A)︸ ︷︷ ︸ | A0 where {ṗ1 := A1, . . . , ṗn := An}

(T2) If A : τ and u is a pure variable of type σ, then

λ(u)(A) : (σ → τ), FV(λ(u)(A)) = FV(A) \ {u}
den(λ(u)(A))(g) = h : Tσ → Tτ

such that h(x) = den(A)(g{u := x})

(g{u := x} is the update of g by the assignment u := x)

Example (coordination):

Abelard loved and honored Eloise

render−−−→ λ(u, v)
(
loved(u, v) and honored(u, v)

)
(Abelard,Eloise)
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Terms: acyclic recursion

A :≡ x | c | A(B) | λ(u)(A) | A0 where {ṗ1 := A1, . . . , ṗn := An}︸ ︷︷ ︸
An acyclic system is a sequence of term assignments

{ṗ1 := A1, . . . , ṗn := An} (type(ṗi ) = type(Ai ))

to the distinct locations ṗ1, . . . , ṗn, such that for suitable numbers
rank(ṗ1), . . . , rank(ṗn),

if ṗj occurs free in Ai , then rank(ṗj) < rank(ṗi )

(T3) If {ṗ1 := A1, . . . , ṗn := An} is an acyclic system and A0 : σ, then

A ≡ A0 where {ṗ1 := A1, . . . , ṗn := An} : σ,

FV(A) = FV(A0) ∪ FV(A1) ∪ · · · ∪ FV(An) \ {ṗ1, . . . , ṗn},
den(A)(g) = den(A0)(g{ṗ1 := p1, . . . , ṗn := pn})

where p1, . . . , pn are the unique solutions of the system

pi = den(Ai )(g{ṗ1 := p1, . . . , ṗn := pn}) (i = 1, . . . , n)
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John loves Mary and dislikes her husband

A ≡ ṗ and q̇ where {ṗ := loves(j , ṁ), q̇ := dislikes(j , ḣ),

ḣ := husband(ṁ), j := John, ṁ := Mary} : t̃

Stage 1:  := John : ẽ, m := Mary : ẽ
Stage 2: h := husband(m) = Mary’s husband : ẽ

p := loves(,m) : t̃
Stage 3: q := dislikes(, h) : t̃
Stage 4: den(A) = p and q : t̃

For every state a,

den(A)(a) = (p and q)(a) = p(a) and q(a)

= the truth value of “John loves Mary and dislikes her husband”

in state a

(= er if Mary does not have exactly one husband in state a)
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The logic of denotations for Lλ
ar

There are many interpretations for Lλ
ar(K ), some non-standard

M0 = a specific standard interpretation (our universe)

M, g |= A = B ⇐⇒ den(A)(g) = den(B)(g) in M

M |= A = B ⇐⇒ for all g, M, g |= A = B

|= A = B ⇐⇒ for every M, M |= A = B

The key tool for establishing denotational identities is

|=
(
λ(u)A

)
(B) = A{u :≡ B} (β-conversion)

Theorem (from classical results about the typed λ-calculus)

There is a complete and decidable axiomatization of |= A = B

we only use this via: if |= A = B, then M0 |= A = B

Caution! β-conversion does not preserve meaning
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Descriptions

the(p)(a) =

{
the unique y ∈ Te such that p(b 7→ y , a), if it exists,

er, otherwise,

where b 7→ y is the constant function on the states with value y .

Mary’s husband
render−−−→ the(λ(x)married(x ,Mary))

≡ husband(Mary) : ẽ

Mary’s husband is tall
render−−−→ tall(man)(husband(Mary)) : t̃

den(tall(man)(husband(Mary)))(a)

=


1, if Mary’s husband in state a is tall among men in state a

0, if Mary’s husband in state a is not tall among men in state a

er, if Mary does not have a unique husband in state a
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Errors and presuppositions
I We use er to model simple, logical presuppositions
I A proposition P is a logical presupposition of a term A if

den(A) 6= er =⇒ den(P) = 1

(Frege, according to Soames)

I Mary has exactly one husband is a presupposition for both

husband(Mary) and tall(man)(husband(Mary))

I Basic examples (in Frege) are descriptions, but also, e.g.,
I Activity verbs: stop : ẽ× (ẽ → t̃) → t̃

den(stopped(George, running))(a)

=


1, if George was running and has stopped in state a,

0, if George was running and has not stopped in state a,

er if George was not running before state a
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Relative clauses
Mary, who loves him, suffers

We assume a constant who : ẽ× (ẽ → t̃) → ẽ such that

who(u)(x)(a) =

{
u(a), if x(u, a),

er, otherwise

Mary, who loves him
render−−−→ M ≡ who(Mary, λ(v)loves(v , him))

den(M)(a) =

{
Mary(a), if Mary loves him in state a,

er, otherwise

Mary, who loves him, suffers
render−−−→ suffers(M)

den(suffers(M)(a))

=


1, if Mary loves him and suffers in state a,

0, if Mary loves him and does not suffer in state a,

er, otherwise (if Mary does not love him in state a)

Hamm and Moschovakis: A logic of meaning and synonymy 25/72



Computation of errors

I We define erσ̃ for every natural language type σ̃ by the
recursion

erẽ = er̃t = er (given)

er(σ→τ) = h, where for each x : σ, h(x) = erτ

I if A : t̃ and den(A)(a) = er, then den(not(A))(a) = er

which is a basic condition for logical presupposition

Basic error propagation rule: if the computation of den(A)(g) re-
quires den(B)(g′) and den(B)(g′) = er, then den(A)(g) = er.

I So, if y(a) = er, then tall(x , y , a) = er,

I We may want to allow many error values, which code the (one
or many) sources of the problem in computing den(A)(g).

In programming languages these are called error messages
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Rigidity

A state dependent object x : s → σ is rigid if

for all states a, b, x(a) = x(b)

Historical proper names are typically assumed to be rigid,

Scott, Aristotle, . . .

The object

dereσ(x , a)(b) = x(a) (x : s → σ, a, b ∈ Ts) : ẽ

is rigid and denotes x(a) in every state b

I There is no obvious English word for the function “dere”

(and dere : ẽ× s → ẽ is not of natural language type)
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Modal operators: de dicto and de re interpretations

� : (̃t → t̃), �(p)(a) ⇐⇒ (∀b)p(b) (necessarily always)

Consider the following sentence, uttered by Barack Obama in 2010:

A ≡ it is necessary that I am American

The rendering A
render−−−→ �(American(I)) is clearly wrong

�1 : t̃× ẽ → t̃, �1(p, x)(a) = �(p(dere(x , a)))(a), so that

M0 |= �1(p, x)(a) ⇐⇒ x(a) necessarily has property p

It is necessary that I am American
render−−−→ �1(American, I)

which (uttered by Obama) says that Obama is necessarily American

I Kaplan’s interpretation of modal sentences with demonstratives
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Local and modal dependence
I p : (s → σ1)× (s → σ1) → (s → τ) is

— local in the first argument if p(x , y)(a) = p(dere(x , a), y)(a)

— local in the second argument if p(x , y)(a) = p(x , dere(y , a))(a)

otherwise p is modal in the relevant argument
I � is modal

�1 is modal in its first argument, local in the second
I and, runs, loves, etc. are local in all their arguments

the temperature is rising
render−−−→ rises(the(temp)), where

temp(x)(a) ⇐⇒ the temperature in state a is x(a) degrees (local),

I rises is a modal verb (Partee)

a{j := t} = the state which is a except that time(a{j := t}) = t,

rises(x , a) ⇐⇒ the function t 7→ x(a{j := t}) is increasing at time(a)

⇐⇒ ∂x(a{j := t})
∂t

(a) > 0
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Coindexing in the λ-calculus

John loves himself
formalize−−−−→ loves(John, himself)

coindex−−−→λ

(
λ()loves(, )

)
(John)

John kissed his wife
formalize−−−−→ kissed(John,wife(his))

coindex−−−→λ

(
λ()kissed(,wife())

)
(John)

John loves his wife and he honors her
formalize−−−−→ loves(John,wife(his))& honors(he, her)

coindex−−−→λ λ()
[
loves(,wife())& honors(, her)

]
(John)

coindex−−−→λ λ()
[
λ(w)

(
loves(,w) & honors(,w)

)
(wife())

]
(John)

I
render−−−→ =

formalize−−−−→ +
coindex−−−→1 + · · ·+ coindex−−−→k

I The last λ-rendering turns a conjunction into a predication
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Coindexing in Lλ
ar

John loves himself
formalize−−−−→ loves(John, himself)
coindex−−−→ar loves(j , j) where {j := John}

John kissed his wife
formalize−−−−→ kissed(John,wife(his))
coindex−−−→ar kissed(j ,wife(j)) where {j := John}

John loves his wife and he honors her
formalize−−−−→ loves(John,wife(his))& honors(he, her)
coindex−−−→ar loves(j ,wife(j))& honors(j , her) where {j := John}
coindex−−−→ar

(
loves(j , ẇ) & honors(j , ẇ) where {ẇ := wife(j)}

)
where {j := John}

≈` loves(j , ẇ) & honors(j , ẇ) where {ẇ := wife(j), j := John}

I The last Lλ
ar-rendering produces a conjunction
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Renderings which involve coindexing in Ty2 and Lλ
ar

John loves himself
render−−−→λ

(
λ()loves(, )

)
(John) (1a)

John loves himself
render−−−→ loves(j , j) where {j := John} (1b)

John kissed his wife
render−−−→λ

(
λ()kissed(,wife())

)
(John) (2a)

John kissed his wife (2b)
render−−−→ kissed(j ,wife(j)) where {j := John}

John loves his wife and he honors her (3a)

render−−−→λ λ()
[
λ(w)

(
loves(,w) & honors(,w)

)
(wife())

]
(John)

John loves his wife and he honors her (3b)
render−−−→ loves(j , ẇ) & honors(j , ẇ) where {ẇ := wife(j), j := John}

(1a) ≈` (1b) (2b) and (3b) are not synonymous with any Ty2 terms
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Proper nouns, demonstratives and quantifiers

Montague renders proper names by their evaluation quantifier:

JohnMont(p) = p(John)

so we get similar renderings for predication and quantification

John runs
render−−−→ JohnMont(runs), every man runs

render−−−→ every(man)(runs)

We follow the simpler type driven rendering by which John : ẽ,

John runs
render−−−→ runs(John), every man runs

render−−−→ every(man)(runs)

John loves every girl
formalize−−−−→ loves(John, every(girl))

render−−−→ every(girl)(λ(u)loves(John, u))

Hamm and Moschovakis: A logic of meaning and synonymy 33/72



Coordination using acyclic recursion

John entered the room and Mary entered the room (conjunction)

John and Mary entered the room (predication)

John and Mary entered the room

render−−−→λ λ(r)
(
r(John) and r(Mary)

)
(entered)

John and Mary entered the room

render−−−→ λ(r)
(
r(j)) and r(ṁ)

)
(entered) where {j := John, ṁ := Mary}

I These two renderings are not synonymous (Perhaps they should be!)

The teacher and every student laughed

render−−−→ λ(r)
(
r(ṫ) and ṡ(r)

)
(laughed)

where {ṫ := the(teacher), ṡ := every(student)}
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Identity statements
Frege’s original puzzle was about the identity statement

the morning star = the evening star

Montague would render this and its converse by

The evening star is the morning star
render−−−→ ESMont(λ(u)MSMont(λ(v)(u = v))),

The morning star is the evening star
render−−−→ MSMont(λ(u)ESMont(λ(v)(u = v)))

I These two terms are not referentially synonymous

With the type-driven renderings we use, for any A,B : σ

A = B
render−−−→ =σ (A,B), B = A

render−−−→=σ (B,A)

=σ (A,B) ≈` =σ (B,A)

I We understand these terms as expressing identity statements
(as Frege intended them to be understood)

Hamm and Moschovakis: A logic of meaning and synonymy 35/72



Overview: The Reduction Calculus

(1) We will define a reduction relation between terms so that intuitively

A ⇒ B ⇐⇒ A ≡c B (A is congruent with B)

or A and B have the same meaning

and B expresses that meaning “more directly”

I (Some terms, e.g., variables, will not be assigned meanings)

I A ⇒ A, (A ⇒ B and B ⇒ C ) =⇒ A ⇒ C

I Compositionality: C1 ⇒ C2 =⇒ A{x :≡ C1} ⇒ A{x :≡ C2}
I A ⇒ B is defined by ten simple rules, like a proof system

A term A is irreducible if

A ⇒ B =⇒ A ≡c B.

I Meaningful irreducible terms express their meaning directly:
their meaning is exhausted by their denotation
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Overview: Canonical and Logical Forms

Canonical Form Theorem
For each term A, there is a recursive, irreducible term

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}

such that each Ai is explicit, irreducible and A ⇒ cf(A)

Moreover, cf(A) can be effectively computed and is the unique (up
to congruence) irreducible term to which A can be reduced, i.e.,

if A ⇒ B and B is irreducible, then B ≡c cf(A)

We write: A ⇒cf B ⇐⇒ cf(A) ≡c B

A0,A1, . . . ,An are the parts of A, n is its dimension

I cf(A) models the logical form of A
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Overview: Referential intensions and truth conditions
I Variables and some simple immediate terms have no meaning,

they refer immediately.
I Constants, refer directly, but they have meanings, albeit trivial

ones which are exhausted by their denotations

The distinction between immediate and direct reference is a central
feature of referential intension theory

I If A is proper (not immediate) and

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An},
then the referential intension int(A) of A is (intuitively) the
abstract algorithm which computes for each valuation g the
denotation den(A)(g) as in the examples above: we solve the
acyclic system to find p1, . . . , pn and set

den(A)(g) = den(A0)(g{ṗ1 := p1, . . . , ṗn := pn})
I The parts A0, . . . ,An are the (generalized) truth conditions for A
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Overview: Referential and Logical Synonymy

Referential Synonymy Theorem

Two proper terms A,B are referentially synonymous if and only if

A ⇒cf A0 where {ṗ1 := A1, . . . , ṗn := An}
B ⇒cf B0 where {ṗ1 := B1, . . . , ṗn := Bn}

for some A0,A1, . . . ,An,B0,B1, . . . ,Bn such that

(RS1) The corresponding parts Ai ,Bi of A and B have the same free
variables, i.e., for every variable x of either kind,

x occurs free in Ai ⇐⇒ x occurs free in Bi , (i = 0, . . . , n).

(RS2) M0 |= Ai = Bi , (i = 0, 1, . . . , n)

Def. A ≈` B ⇐⇒ A is logically synonymous with B

⇐⇒ (RS1) and (RS2l) : |= Ai = Bi , (i = 0, 1, . . . , n)

C. L. Dodgson ≈ Lewis Carroll but C. L. Dodgson 6≈` Lewis Carroll
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Overview: The calculi of referential and logical synonymy

∼ is either synonymy ≈ or logical synonymy ≈`

A ⇒ B
A ∼ B

A ∼ A
A ∼ B
B ∼ A

A ∼ B B ∼ C
A ∼ C

A1 ∼ B1 A2 ∼ B2

A1(A2) ∼ B1(B2)
A ∼ B

λ(u)A ∼ λ(u)B

A0 ∼ B0, A1 ∼ B1, . . . , An ∼ Bn

A0 where {ṗ1 := A1, . . . ṗn := An} ∼ B0 where {ṗ1 := B1, . . . , ṗn := Bn}

If C ,D are immediate or proper, explicit irreducible, FV(C ) = FV(D)

M0 |= C = D

C ≈ D

|= C = D

C ≈` D

I The proof systems are complete. The framed rule is not
effective for ≈ because M0 |= C = D is not decidable (?)
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The Reduction Calculus: the basic rules

Congruence, Transitivity, Compositionality

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)

(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {ṗ1 := A1, . . . , ṗn := An}
⇒ B0 where {ṗ1 := B1, . . . , ṗn := Bn}

I These do not produce any non-trivial reductions
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The Reduction Calculus: rules for recursion
For distinct locations ṗ1, . . . , ṗn and q̇1, . . . , q̇m, and terms Ai ,Bj , set

~̇p := ~A for ṗ1 := A1, . . . , ṗn = An,

~̇q := ~B for q̇1 := B1, . . . , q̇m = Bm,

(head)
(
A0 where {~̇p := ~A}

)
where {~̇q := ~B}

⇒ A0 where {~̇p := ~A, ~̇q := ~B}
(B-S) A0 where {ṙ :=

(
B0 where {~̇q := ~B}

)
, ~̇p := ~A}

⇒ A0 where {ṙ := B0, ~̇q := ~B, ~̇p := ~A}
I These just allow the “parallel” combination of assignments

(recap)
(
A0 where {~̇p := ~A}

)
(B) ⇒ A0(B) where {~̇p := ~A}

I The (recap) rule has an important consequence for any notion
of meaning which is preserved by reduction
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The Reduction Calculus: import of the (recap) rule

I We will see (after the next rule) that

I am tall
render−−−→ tall(I) ⇒cf A ≡ tall(i) where {i := I}

I Let u be a state variable and g(u) = a: clearly

den(A(u))(g) = 1 ⇐⇒ the speaker in state a is tall in state a

and so to compute den(A(u))(g) we only need to know the
property of “tallness” in state a and speaker(a)

I By the (recap) rule A(u) ⇒ tall(i)(u) where {i := I}
I To compute den(A(u))(g) using this expression we need to

know what “tall” means in a and the entire meaning of
“I”—that it assigns to every state b the entity speaker(b)

The meaning of
(
A0 where {ṗ1 := A1, . . . , ṗn := An}

)
(B)

depends on the meanings of A0(B),A1, . . . ,An
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The Reduction Calculus: immediate terms

I Immediate applicative terms

E :≡ u | ṗ | x(v1, . . . , vn) | ṗ(v1, . . . , vn)

where x , u, v1, . . . , vn are pure variables and ṗ is a recursion
variable (and the types match)

I Immediate λ-terms X :≡ λ(v1, . . . , vn)(E )

I X is immediate if it is applicative or λ-immediate
A is proper if it is not immediate

I Immediate terms act like generalized variables:
they denote immediately and they cannot be assigned meanings

I Plausible: Natural language phrases are rendered by proper terms

A strong version of the view that

there are no true variables in natural language
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The Reduction Calculus: the application rule

(ap) A(B) ⇒ A(ḃ) where {ḃ := B} (B proper, ḃ fresh)

I John is tall
render−−−→ tall(John) ⇒cf tall(j) where {j := John}

I Peter likes the blond
render−−−→ likes(Peter)(the(blond))

⇒ likes(Peter)(ḃ) where {ḃ = the(blond)} (ap)
⇒ likes(Peter)(ḃ)

where {ḃ = the(Ḃ) where {Ḃ := blond}} (ap, rep)
⇒ likes(Peter)(ḃ) where {ḃ = the(Ḃ), Ḃ := blond} (B-S)

⇒
(
likes(ṗ) where {ṗ := Peter}

)
(ḃ)

where {ḃ = the(Ḃ), Ḃ := blond} (ap,rep)

⇒
(
likes(ṗ)(ḃ) where {ṗ := Peter}

)
where {ḃ = the(Ḃ), Ḃ := blond} (recap,rep)

⇒ likes(ṗ)(ḃ) where {ṗ := Peter, ḃ = the(Ḃ), Ḃ := blond}
the last by (head,S-B,rep)

Hamm and Moschovakis: A logic of meaning and synonymy 45/72



The Reduction Calculus: an example of the λ-rule

every man danced with his wife

render−−−→ A ≡ every(man)
(
λ(u)danced(u,wife(u))

)
⇒ every(man)

[
λ(u)

(
danced(u, ẇ) where {ẇ := wife(u)}

)]
(ap,rep)

I A says that “every man has property R”, where, for each u,

R(u) ⇐⇒ u danced with wife(u)

So we want

λ(u)
(
danced(u, ẇ) where {ẇ := wife(u)}

)
⇒ λ(u)danced(u, ẇ ′(u)) where {ẇ ′ := λ(u)wife(u)}

I The rule “distributes the λ” over the parts of its scope
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The Reduction Calculus: the λ-rule

(λ-rule) λ(u)
(
A0 where {ṗ1 := A1, . . . , ṗn := An}

)
⇒ λ(u)A′0 where {ṗ′1 := λ(u)A′1, . . . , ṗ

′
n := λ(u)A′n}

where for i = 1, . . . , n, ṗ′i is a fresh recursion variable and

A′i :≡ Ai{ṗ1 :≡ ṗ′1(u), . . . , ṗn :≡ ṗ′n(u)}.
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The Reduction Calculus

(cong) If A ≡c B, then A ⇒ B

(trans) If A ⇒ B and B ⇒ C , then A ⇒ C

(rep1) If A ⇒ A′ and B ⇒ B ′, then A(B) ⇒ A′(B ′)

(rep2) If A ⇒ B, then λ(u)(A) ⇒ λ(u)(B)

(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {~̇p := ~A} ⇒ B0 where {~̇p := ~B}

(head)
(
A0 where {~̇p := ~A}

)
where {~̇q := ~B} ⇒ A0 where {~̇p := ~A, ~̇q := ~B}

(B-S) A0 where {ṙ :=
(
B0 where {~̇q := ~B}

)
, ~̇p := ~A}

⇒ A0 where {ṙ := B0, ~̇q := ~B, ~̇p := ~A}

(recap)
(
A0 where {~̇p := ~A}

)
(B) ⇒ A0(B) where {~̇p := ~A}

(ap) A(B) ⇒ A(ḃ) where {ḃ := B} (B proper, ḃ fresh)

(λ-rule) λ(u)(A0 where {~̇p := ~A}) ⇒ λ(u)A′0 where {
−→
ṗ′ :=

−−−−→
λ(u)A′}
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Two simple results

Theorem (Reduction preserves denotations)

If A ⇒ B, then |= A = B

Proof is by induction on ⇒ (simple).

Theorem (Characterization of irreducible terms)

(a) Constants and immediate terms are irreducible.
(b) An application term A(B) is irreducible if and only if B is
immediate and A is explicit and irreducible.
(c) A λ-term λ(u)(A) is irreducible if and only if A is explicit and
irreducible.
(d) A recursive term A0 where {ṗ1 := A1, . . . , ṗn := An} is
irreducible if and only all the parts A0, . . . ,An are explicit and
irreducible.

Proof is by inspection of the reduction rules (simple).
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Canonical forms
For each term A, we define by recursion cf(A) so that:

Theorem

(1) cf(A) ≡ A0 where {p1 := A1, . . . , pn := An} (n ≥ 0)

with explicit, irreducible parts A0,A1, . . . ,An, so that it is
irreducible
A constant c or a variable x occurs free in cf(A) if and only if
it occurs free in A

(2) A ⇒ cf(A)

(3) If A is irreducible, then cf(A) ≡ A

(4) If A ⇒ B, then cf(A) ≡c cf(B)

(5) If A ⇒ B and B is irreducible, then B ≡c cf(A)

I (1) and (2) are easy, (3) is trivial and (5) follows from (3) and (4)

I The proof of (4) is by induction on A ⇒ B; complex
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Every man danced with his wife (if wife is a constant)

every man danced with his wife

render−−−→ A ≡ every(man)
(
λ(u)

(
danced(u, ẇ) where {ẇ := wife(u)}

))
⇒ every(man)

(
λ(u)danced(u, ẇ ′(u))

where {ẇ ′ := λ(u)wife(u)}
)

⇒ every(ṁ, ḋ) where
{

ṁ := man,

ḋ := λ(u)danced(u, ẇ(u)) where {ẇ := λ(u)wife(u)}
}

⇒cf every(ṁ, ḋ) where

{ṁ := man, ḋ := λ(u)danced(u, ẇ(u)), ẇ := λ(u)wife(u)}
≈` every(ṁ, ḋ) where {ṁ := man, ḋ := λ(u)danced(u, ẇ(u)), ẇ := wife}

I The reduction is more complex if wife(u) ≡ the(λ(v)married(u, v))
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Shapes cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}

~fi (A) = a listing of the variables which are free in Ai and A

= FV(Ai ) ∩ FV(A) (i = 0, . . . , n)

~ri (A) = a listing of the locations (ṗ1, . . . , ṗn) which occur free in Ai

= FV(Ai ) ∩ (ṗ1, . . . , ṗn) (i = 0, . . . , n)

shape(A) = (ṗ1, . . . , ṗn,~f0(A),~r0(A), . . . ,~fn(A),~rn(A))

shape
(
every(ṁ)(l̇) where {ṁ := man, l̇ := λ(x)loves(x , e)}

)
= (ṁ, l̇ , ∅, 〈ṁ, l̇〉, ∅, ∅, 〈e〉, ∅)

I shape(A) codes the number of parts of A, the free variables of
each part, and the putative dependence relation

ṗi → ṗj ⇐⇒ ṗj occurs free in Ȧi

I Synonymous terms have isomorphic shapes
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Referential intensions cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}

I αi (g, d1, . . . , dn) = den(Ai )(g{ṗ1 := d1, . . . , ṗn := dn}) (i ≤ n)
I system(A) = (α0, . . . , αn)

I int(A) = (shape(A), system(A))

For example,

int(loves(Abelard,Eloise))

= int(loves(ȧ, ė) where {ȧ := Abelard, ė = Eloise})
= ((ȧ, ė, ∅, 〈ȧ, ė〉, ∅, ∅, ∅, ∅), (α0, α1, α2)),

where α0(g, d1, d2) = den(loves(ȧ, ė))(g{ȧ := d1, ė := d2})
= loves(d1, d2)

α1(g) = Abelard, α2(g) = Eloise

I int(A) is an acyclic recursor
I There is a simple notion of natural isomorphism ∼= between

acyclic recursors, and int(A) is defined up to natural isomorphism
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What is an algorithm?
The referential intension of a term A is an acyclic recursor

int(A) = (shape(A), α0, . . . , αn)

where α0, . . . , αn are functions (on valuations and objects of M0)
and shape(A) codes some (basically syntactic) information about
the variables of αi and their “interdependence”

In what sense is this an algorithm?

I There is no general agreement on what algorithms are
I There is a robust class of computable functions associated

with each first order structure, characterized by various
models of computation—Turing machines, etc.
This is the Church-Turing Thesis

I The recursive programs of McCarthy is (perhaps) the most
natural model of computation; and its direct generalization to
structures M for Lλ

ar(K ) yields a class of algorithms which
includes the acyclic recursors we use to model meanings
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Referential and logical synonymy

A ≈ B ⇐⇒ A,B are immediate and M0 |= A = B,

or A and B are proper and int(A) ∼= int(B)

Referential Synonymy Theorem

Two proper terms A,B are referentially synonymous if and only if

A ⇒cf A0 where {ṗ1 := A1, . . . , ṗn := An}
B ⇒cf B0 where {ṗ1 := B1, . . . , ṗn := Bn}

for some A0,A1, . . . ,An,B0,B1, . . . ,Bn such that

(RS1) The corresponding parts Ai ,Bi of A and B have the same free
variables, i.e., for every variable x of either kind,

x occurs free in Ai ⇐⇒ x occurs free in Bi , (i = 0, . . . , n).

(RS2) M0 |= Ai = Bi , (i = 0, 1, . . . , n)

or (RS2′) |= Ai = Bi , (i = 0, 1, . . . , n) for logical synonymy
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Why not assign meanings to immediate terms?
Suppose there is a constant id : (e → e) for the identity function

id(x) = x (x : e)

Now both id(x) and x are irreducible with the same denotation,
and so they would be synonymous if x had a referential intension,

id(x) ≈ x

Then for any constant c,

c(id(x)) ⇒cf c(ṗ) where {ṗ := id(x)}, c(x) ⇒cf c(x) where { }

so that
id(x) ≈ x but c(id(x)) 6≈ c(x),

violating compositionality

I Immediate terms behave like 0 in the arithmetic of fractions:
it is not possible to assign a value to 1

0 without violating the
usual laws of that arithmetic (the field axioms)
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Using the axioms to prove synonymies

For proper A,B

A = B ⇒ ȧ = ḃ where {ȧ := A, ḃ := B}
≡c ȧ = ḃ where {ḃ := B, ȧ := A}
≈` ḃ = ȧ where {ḃ := B, ȧ := A}
≈` B = A,

where the crucial, second step is valid because

|= (ȧ = ḃ ⇐⇒ ḃ = ȧ).

I It is more difficult to establish non-synonymy, which
(basically) requires the full computation of canonical forms
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The unique occurrence property of explicit terms

Recall: A is explicit if no “where” occurs in it
—so it is a Ty2 term with (perhaps) some recursive variables in it.

Theorem
No location occurs in more than one part of an explicit term

Corollary

If a location ṗ occurs in two parts Ak and Al of a term A, then A
is not referentially synonymous with any explicit term

The theorem is proved by induction on the definition of explicit
terms (using the reduction calculus), and the corollary follows by
the Referential Synonymy Theorem
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New meanings expressed in Lλ
ar

John kissed his wife
formalize−−−−→ kissed(John,wife(his))

coindex−−−→ kissed(j ,wife(j)) where {j := John}
⇒cf kissed(j , ẇ) where {j := John, ẇ := wife(j)}

John loves his wife and he honors her
formalize−−−−→ loves(John,wife(his)) and honors(he, her)

render−−−→ loves(j , ẇ) & honors(j , ẇ) where {ẇ := wife(j), j := John}
⇒cf (l̇ and ḣ) where {l̇ := loves(j , ẇ), ḣ := honors(j , ẇ)

ẇ := wife(j), j := John}
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New meanings expressed in Lλ
ar; logical form

A : John stumbled and fell
render−−−→ λ(u)(stumbled(u) and fell(u))(John)

⇒cf

(
λ(u)(ṡ(u) and ḟ (u))

)
(j)

where {ṡ := λ(u)stumbled(u), ḟ := λ(u)fell(u), j := John}

≈`

(
λ(u)(ṡ(u) and ḟ (u))

)
(j) where {ṡ := stumbled, ḟ := fell, j := John}

B : John stumbled and he fell
formalize−−−−→ stumbled(John) and fell(John)

coindex−−−→ stumbled(j) and fell(j) where {j := John}
⇒cf (ṡ and ḟ ) where {ṡ := stumbled(j), ḟ := fell(j), j := John}

I Is there a difference in the logical meanings of A and B?

I A is a predication, B is a conjunction

I Renderings in Lλ
ar preserve logical form
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Propositional attitudes (work in progress)

Nixon claimed that he is not a crook
formalize−−−−→ Claimed(Nixon, not(crook(he)))
coindex−−−→ A ≡ Claimed(ṅ, not(crook(ṅ))) where {ṅ := Nixon}

I The truth and meaning of A depend on

the meaning of not(crook(ṅ)) when ṅ refers to Nixon

I Basic idea (close to Frege’s):

Referential intensions are (basically) tuples of functions in our
universe M0, and so Lλ

ar can talk about them
I Plan: make this precise and then (roughly) replace the

attitudinal constant Claimed by a denotational constant which
takes referential intensions as arguments

I The task is complicated by the free variable ṅ in the box

Other examples of attitudinal constants:

say that . . . , declare that . . . , know that . . . , believe that . . .
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Syntax

I We add attitudinal constants of type

C : ẽ× t̃ → t̃

(more complex ones are treated similarly)

I Extend the definition of terms: by

If C is an attitudinal constant, A : ẽ and B : t̃ is proper,
then C(A,B) : t̃

(B must be proper so it has a referential intension)

I Syncategorematic use of attitudinal constants:
Claims by itself is not a term

I Nesting is allowed:

Dean expected that Nixon would claim that he is not a crook
render−−−→ Expected(Dean,Claims(ṅ, not(crook(ṅ)) where {ṅ := Nixon}))
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The key idea: Penelope’s fears

Penelope thought that Ulysses was lost
render−−−→ Thought(Penelope, lost(Ulysses)︸ ︷︷ ︸)

int(lost(Ulysses)) = int(lost(u̇) where {u̇ := Ulysses})
= ((u̇, ∅, 〈u̇〉, ∅, ∅, (α0, α1))) = (s, (α0, α1)))

α0(g, d) = den(lost(u̇))(g{u̇ := d}) = lost(d),

α1(g) = Ulysses

I We can replace α0, α1 by

α′0(d) = lost(d), α′1 = Ulysses

set int′(lost(Ulysses)) = (s, lost,Ulysses) and “unabbreviate”

I Thought(Penelope, lost(Ulysses))
:≡ Thoughts(Penelope, lost,Ulysses)

I with Thoughts a suitably defined denotational constant
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Dealing with free variables: declaration of love (1)

Peter declares that he loves John’s sister
formalize−−−−→ Declares(Peter, loves(he, sister(John)))
coindex−−−→ A ≡ Declares(ṗ, loves(ṗ, sister(John))) where {ṗ := Peter}

⇒ Declares
(
ṗ, loves(ṗ, ṡ) where {ṡ := sister(j), j := John}

)
where {ṗ := Peter}

≡ Declares(ṗ, L) where {ṗ := Peter}

with the abbreviation

L ≡ loves(ṗ, ṡ) where {ṡ := sister(j), j := John} : t̃.

I ṗ is free in L (quantifying in)
I Peter declares L for a specific value of ṗ (himself in this case)

Some man claims he loves Mary
render−−−→ some(man)(λ(u)Claims(u, loves(u,Mary)))
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Declaration of love (2)

L ≡ loves(ṗ, ṡ) where {ṡ := sister(j), j := John} : t̃

s = shape(L) = (ṡ, j , 〈ṗ〉, 〈ṡ〉, ∅, 〈j〉, ∅, ∅)
system(L) = (α0, α1, α2), int(L) = (s, system(L)), with

α0(g, d1, d2) = loves(d1, d2), α1(g, d) = sister(d), α2(g) = John

We replace these by

α′0(d1, d2) = loves(d1, d2), α′1(d) = sister(d), α′2 = John

which determine system(L) The crucial move:

Declares(ṗ, L) :≡ Declaress(ṗ, fint(L) )

≡ Declaress(ṗ, ṗ, λ(p, s)loves(p, s), λ()sister(), John )

fint(L) is the formal referential intension of L (a tuple of terms)
and Declaress is a a denotational constant—defined empirically
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The λr operator

I To define formal referential intensions, we need to apply the
λ-operator with recursive variables

λr(x)(A) :≡

{
λ(x)(A), if x is a pure variable,

λ(x ′)(A{x :≡ x ′}), if x is a recursion variable,

where x ′ is a fresh, pure variable of the same type as x , so

λr(ṗ, ṡ)loves(ṗ, ṡ) ≡ λ(p, s)loves(p, s)

I If A is immediate or irreducible, then λr(x)(A) is also
immediate or irreducible accordingly
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Formal referential intensions
and the elimination of attitudinal constants (1)

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}

I FV(A) = (x1, . . . , xk) = the free variables of A
I ~fi (A) = (xs1 , . . . , xsi ) = FV(A) ∩ FV(Ai )
I ~ri (A) = (ṗt1 , . . . , ṗti ) = FV(Ai ) ∩ (ṗ1, . . . , ṗn)
I s = shape(A) = (ṗ1, . . . , ṗn,~f0(A),~r0(A), . . . ,~fn(A),~rn(A))
I αi (us1 , . . . , usi , vt1 , . . . , vti )

= den(Ai )({xs1 := us1 , . . . , xsi := usi , ṗt1 := vt1 , . . . , ṗti := vti}
I int′(A) = (α0, . . . , αn) (needs shape(A) to compute den(A)(g))

I fint(A) ≡ (x1, . . . , xk , λr(~f0,~r0)A0, . . . , λ
r(~fn,~rn)An)

a sequence of formal terms
I shape(A) and den(fint(A)) determine int(A)

C(B,A) :≡ Cshape(A)(B, fint(A))
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Formal referential intensions
and the elimination of attitudinal constants (2)

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}
FV(A) = (x1, . . . , xk) = the free variables of A

C(B,A) :≡ Cshape(A)(B, fint(A))

≡ Cshape(A)(B, x1, . . . , xk , λr(~f0,~r0)A0, . . . , λ
r(~fn,~rn)An)

Claims
s
(y , u1, . . . , uk , r0, r1, . . . rn)(a) = 1

⇐⇒ there is an irreducible term

D ≡ D0 where {ṗ1 := D1, . . . , ṗn := Dn} : t̃

with shape(D) = s and such that

r0 = den(λr(~f0,~r0)D0) . . . , rn = den(λr(~fn,~rn)Dn)

and in state a, y claims D for the values x1 := u1, . . . , xk := uk
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The form of formal referential intensions

cf(A) ≡ A0 where {ṗ1 := A1, . . . , ṗn := An}
FV(A) = (x1, . . . , xk) = the free variables of A

fint(A) ≡ (x1, . . . , xk , λr(~f0,~r0)A0, . . . , λ
r(~fn,~rn)An)︸ ︷︷ ︸

closed irreducible terms

)

I A is strictly proper if every part Ai is proper

I Not strictly proper: ṗ where {ṗ := q̇, q̇ := John} (umm . . . John)

I Natural language phrases are rendered by strictly proper terms (?)

I If A is strictly proper and C is attitudinal, then

C(B,A) :≡ Cshape(A)(B, fint(A))

≡ Cshape(A)(B, x1, . . . , xk , λr(~f0,~r0)A0, . . . , λ
r(~fn,~rn)An)

⇒ Cshape(A)(B, x1, . . . , xk ,
−→̇
p ) where {−→̇p :=

−−−−−→
λr(~f,~r)A}
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Attitudes on propositions with free variables

A ≡ Claims(Dean, crook(Nixon))

≡ Claimss1(Dean, crook,Nixon)

s1 = shape(crook(Nixon)) = shape(crook(ṅ) where {ṅ := Nixon})

B ≡ Claims(Dean, crook(ṅ)) where {ṅ := Nixon}
≡ Claimss2(Dean, ṅ, crook) where {ṅ := Nixon}

s2 = shape(crook(ṅ))

I No assumptions are made on whether M0 |= A = B or A ≈ B

I Do we have intuitions about “claiming open propositions”?

I Could the answers be different for “Claims” and for
“Believes”, so that they are not a matter of logic?

(?) Claims(x , crook(ṅ))(a) when ṅ refers to N
∼ Claims(x , crook(He))(a) with He(a) = N(a)
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Coindexing of meanings

Peter claims that Mary likes John but Mary denies it
formalize−−−−→ Claims(P, likes(M, J)) but Denies(M, it)

≡ Claimss1(P, likes,M, J) but Denies(M, it)
coindex−−−→ Claimss1(P, l̇ , ṁ, j) but Deniess1(M, l̇ , ṁ, j)

where {l̇ := likes, ṁ := M, j := J}
s1 = shape(likes(M, J)) s2 = shape(likes(ṁ, J))

Peter claims that Mary likes John but she denies it
formalize−−−−→ Claims(P, likes(M, J)) but Denies(she, it)

coindex−−−→ Claims(P, likes(ṁ, J)) but Denies(ṁ, it) where {ṁ := M}
≡ Claimss2(P, ṁ, likes, J) but Denies(ṁ, it)

coindex−−−→ Claimss2(P, ṁ, l̇ , j) but Deniess2(ṁ, ṁ, l̇ , j)

where {l̇ := likes, ṁ := M, j := J}
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Afterward

I Better title: A theory of logical meaning and synonymy

I The language Lλ
ar: an extension of Montague’s language of

intensional logic with assignments, using ideas from
programming languages

I Mathematical modeling of meanings and synonymy, and the
development of a (suitably) complete logic for synonymy

I Logical form ∼ canonical form

I New tools to coindex, with novel results

I A (quasi)-Fregean modeling of propositional attitudes
(preliminary)

Missing:

I Utterances and local meanings (in the manuscript)

I Factual content (Eleni Kalyvianaki)

I Vagueness: “approximate synonymy”

Hamm and Moschovakis: A logic of meaning and synonymy 72/72


