
English as a programming language?

Yiannis N. Moschovakis
UCLA and University of Athens

ESSLLI, 21 July, 2009

cf. Richard Montague (1970) English as a formal language

Everything is not like everything else!

1960 Seminar on the Theory of Knowledge with the authors of

A Logical Calculus of the Ideas Immanent in Nervous Activity ,
by Warren McCulloch and Walter Pitts, 1943

Student: Isn’t this very much like that, which we studied last week?

McCulloch: Many things are like many other things—and it is
useful to note this when we first encounter them;
to understand a phenomenon more deeply, however, you should
focus on how it differs from similar phenomena

Lesson: Not everything is like everything else!

Q: Is there a substantial common (or similar) important feature
of natural and formal or programming languages
which helps us understand them better?

Yiannis N. Moschovakis: English as a programming language? 1/22

How I got into this business

Scott’s denotational semantics for programming languages:

program P

den−−−−−−−−−→
−−−−−−−−−→

impls
−−−−−−−−−→

value(P)

Correct implementations compute the independent denotation

Tarski-type value conditions vs implementation rules

A program expresses an algorithm; where is it?

program P −−−−→ algorithm(P)

den−−−−−−−−−→
−−−−−−−−−→

impls
−−−−−−−−−→

value(P)

Frege: sentence A −−−−→ sense(A) −−−−→ den(A)

Yiannis N. Moschovakis: English as a programming language? 2/22

The talk in slogan form

The meaning of a term is the algorithm which computes its denotation

Meanings are algorithms?

It depends on what the meaning of the word ’is’ is

In mathematics, we say:

A point in the plane is a pair (x , y) of real numbers

(and worse, (x , y) = {{x}, {x , y}}!)

but Euclid did OK without “knowing” this!

The plane can be faithfully modeled by the Cartesian product R× R

and
Meanings can be faithfully modeled by algorithms

(meaning abstract, not necessarily implementable algorithms)

Yiannis N. Moschovakis: English as a programming language? 3/22

Frege on sense (which he did not define)

“[the sense of a sign] may be the common property of many
people” Meanings are public (abstract?) objects

“The sense of a proper name is grasped by everyone who is
sufficiently familiar with the language . . . Comprehensive knowledge
of the thing denoted . . . we never attain”

Speakers of the language know the meanings of terms

“The same sense has different expressions in different languages or
even in the same language”

“The difference between a translation and the original text should
properly not overstep the [level of the idea]”

Faithful translation should preserve meaning

sense(A) ∼ the part of the semantic value of A which is preserved
under faithful translation

Yiannis N. Moschovakis: English as a programming language? 4/22

Outline

(1) Formal Fregean semantics

(2) Meaning and synonymy

(3) What are the objects of belief? (Local synonymy)

(4) The decision problem for synonymy

Sense and denotation as algorithm and value (1994)
A logical calculus of meaning and synonymy (2006)
Two aspects of situated meaning (with E. Kalyvianaki (2008))
Posted in www.math.ucla.edu/∼ynm

Yiannis N. Moschovakis: English as a programming language? 5/22

The methodology of formal Fregean semantics

I An interpreted formalized language L is selected

I The rendering operation on a fragment of natural language:

natural language expression + informal context
render−−−→ formal expression + state

I Semantic values (denotations, meanings, etc.) are defined
rigorously for the formal expressions of L and assigned to
natural language expressions via the rendering operation

I Montague: L should be a higher type language
(to model co-ordination, co-indexing, . . .)

I Claim: L should have programming constructs
(to model co-indexing, self-reference, meanings, . . .)

Yiannis N. Moschovakis: English as a programming language? 6/22

The typed λ-calculus with recursion Lλ
r (K) - types

An extension of the typed λ-calculus, into which Montague’s
Language of Intensional Logic LIL can be easily interpreted (Gallin)

Basic types b ≡ e | t | s (entities, truth values, states)

Types: σ :≡ b | (σ1 → σ2)

Abbreviation: σ1 × σ2 → τ ≡ (σ1 → (σ2 → τ))

Every non-basic type is uniquely of the form

σ ≡ σ1 × · · · × σn → b

Yiannis N. Moschovakis: English as a programming language? 7/22

The typed λ-calculus with recursion Lλ
r (K) - syntax

Constants: A finite set K of typed constants (run, cow, he, the, every)
he : (s → e)

? Pure variables: vσ
0 , vσ

1 , . . . , for each type σ (v : σ)
? Recursive variables: pσ

0 , pσ
1 , . . . , for each type σ (p : σ)

Terms – with assumed type restrictions and assigned types (A : σ)

A :≡ v | p | c | B(C) | λ(v)(B)

|? A0 where {p1 := A1, . . . , pn := An}

C : σ,B : (σ → τ) =⇒ B(C) : τ

v : σ,B : τ =⇒ λ(v)(B) : (σ → τ)

A0 : σ =⇒ A0 where {p1 := A1, . . . , pn := An} : σ

Abbreviation: A(B,C ,D) ≡ A(B)(C)(D)

Yiannis N. Moschovakis: English as a programming language? 8/22

Lλ
r (K) - denotational semantics

• We are given basic sets Ts , Te and Tt ⊆ Te for the basic types

Tσ→τ = the set of all functions f : Tσ → Tτ

Pb = Tb ∪ {⊥} = the “flat poset” of Tb

Pσ→τ = the set of all functions f : Tσ → Pτ

I vσ
i varies over Tσ, the total objects;

I pσ
i varies over Pσ, the partial objects

Tσ ⊆ Pσ and Pσ is a complete poset (with the pointwise ordering)

• We are given an object c : Pσ for each constant c : σ

I If A : σ and π is a type-respecting assignment to the variables,
then den(A)(π) ∈ Pσ (values are partial objects)

I Recursive terms are interpreted by the taking of
least-fixed-points

Yiannis N. Moschovakis: English as a programming language? 9/22

Rendering natural language in Lλ
r (K)

t̃ ≡ (s → t) (type of Carnap intensions)

ẽ ≡ (s → e) (type of individual concepts)

Abelard loves Eloise
render−−−→ loves(Abelard,Eloise) : t̃

Obama is the president
render−−−→ eq(Obama,the(president)) : t̃

He is the president
render−−−→ eq(He,the(president)) : t̃

liar
render−−−→ p where {p := ¬p} : t

truthteller
render−−−→ p where {p := p} : t

Abelard,Eloise,Obama,He : ẽ

president : ẽ → t̃, eq : ẽ × ẽ → t̃

¬ : t → t, the : (ẽ → t̃) → ẽ

den(liar) = den(truthteller) = ⊥
Yiannis N. Moschovakis: English as a programming language? 10/22

Co-ordination and co-indexing in Lλ
r (K)

John stumbled and John fell
render−−−→ stumbled(John) & fell(John)

(conjunction)

John stumbled and fell
render−−−→ λ(x)

(
stumbled(x) & fell(x)

)
(John)

(predication after co-ordination)

These are in Montague’s LIL (as it is interpreted in Lλ
r (K))

John stumbled and he fell
render−−−→ stumbled(j) & fell(j) where {j := John}

(conjunction after co-indexing)

The logical form of this sentence cannot be captured faithfully in
LIL — recursion models co-indexing preserving logical form

Yiannis N. Moschovakis: English as a programming language? 11/22

Can we say nonsense in Lλ
r (K)?

Yes!
In particular, we have variables over states—so we can explicitly
refer to the state (even to two states in one term); LIL does not
allow this, because we cannot do this in English

Consider the terms

A ≡ rapidly(tall)(John), B ≡ rapidly(sleeping)(John) : t̃

A and B are terms of LIL,
not the renderings of correct English sentences

I The target formal language is a tool for defining rigorously the
desired semantic values and it needs to be richer than a direct
formalization of the relevant fragment of natural language

—to insure compositionality, if for no other reason

Yiannis N. Moschovakis: English as a programming language? 12/22

Meaning and synonymy in Lλ
r (K)

I For a sentence A : t̃, the Montague sense of A is
den(A) : Ts → Tt , so that

there are infinitely many primes

is Montague-synonymous with 1 + 1 = 2

I In Lλ
r (K): The meaning of a term A is modeled by an

algorithm refint(A) which computes den(A)(π) for every π

I The referential intension refint(A) is compositionally
determined from A

I refint(A) is an abstract (not necessarily implementable)
recursive algorithm of Lλ

r (K)

I Referential synonymy: A ≈ B ⇐⇒ refint(A) ∼ refint(A)

Yiannis N. Moschovakis: English as a programming language? 13/22

Reduction, Canonical Forms and the Synonymy Theorem

I A reduction relation A ⇒ B is defined on terms of Lλ
r (K)

(B expresses more simply the meaning of A
5 trivial + 5 important clauses or meaning postulates)

I CF Theorem. Each term A is reducible to a unique (up to
congruence) irreducible recursive term, its canonical form

A ⇒ cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}

I refint(A) = (den(A0), den(A1), . . . , den(An))

I The parts A0, . . . ,An of A are irreducible, explicit terms

I cf(A) models the logical form of A

I Synonymy Theorem. A ≈ B if and only if

B ⇒ cf(B) ≡ B0 where {p1 := B1, . . . , pm := Bm}

so that n = m and for i ≤ n, den(Ai) = den(Bi)

Yiannis N. Moschovakis: English as a programming language? 14/22

Is this notion of meaning Fregean?

Evans (in a discussion of Dummett’s similar, computational
interpretations of Frege’s sense):

“This leads [Dummett] to think generally that the sense
of an expression is (not a way of thinking about its
[denotation], but) a method or procedure for determining
its denotation. So someone who grasps the sense of a
sentence will be possessed of some method for
determining the sentence’s truth value
. . . ideal verificationism
. . . there is scant evidence for attributing it to Frege”

Converse question: For a sentence A, if you possess the method
determined by A for determining its truth value, do you then
“grasp” the sense of A?

(Sounds more like Davidson rather than Frege)

Yiannis N. Moschovakis: English as a programming language? 15/22

Some referential synonymies and non-synonymies

I There are infinitely many primes 6≈ 1 + 1 = 2

I A & B ≈ B & A

I The morning star is the evening star
≈The evening star is the morning star

(This fails with Montague’s renderings)

I Abelard loves Eloise ≈ Eloise is loved by Abelard (Frege)

I 2 + 3 = 6 ≈ 3 + 2 = 6 (with + and the numbers primitive)

I liar 6≈ truthteller

I John stumbled and he fell
render−−−→

A ≡ stumbled(j) & fell(j) where {j := John}
A is not ≈ with any explicit term (including any term from LIL)

Yiannis N. Moschovakis: English as a programming language? 16/22

Utterances, local meanings, local synonymy

An utterance is a pair (A, u), where A is a sentence, A : t̃ and u is
a state.

We add to the language (for convenience only) a parameter ū for
each state u and express (A, u) by the term A(ū)

The local meaning of A at the state u is refint(A(ū))

A ≈u B ⇐⇒ A(ū) ≈ B(ū)

Obama is the president(ū)

⇒cf eq(b)(L)(ū) where {b := Obama, L := the(p), p := president}

He is the president(ū)

⇒cf eq(b)(L)(ū) where {b := He, L := the(p), p := president}

Obama is the president 6≈u He is the president

even if at the state ū, He(ū) := Obama(ū)

Yiannis N. Moschovakis: English as a programming language? 17/22

Three aspects of meaning for a sentence A : t̃

Referential intension refint(A) Referential synonymy ≈
Local meaning at u refint(A(ū)) Local synonymy ≈u

Factual content at u FC(A, u) Factual synonymy ≈f ,u

The factual content of a sentence at a state u gives a
representation of the world at u (Eleni Kalyvianaki’s Ph.D. Thesis)

Obama is the president 6≈u He is the president

Obama is the president ≈f ,u He is the president

Claim: The objects of belief are local meanings

The distinction between local meaning and factual content are
related to David Kaplan’s distinction between the character and
content of a sentence at a state

Yiannis N. Moschovakis: English as a programming language? 18/22

Is referential synonymy decidable?

Synonymy Theorem. A ≈ B if and only if

A ⇒ cf(A) ≡ A0 where {p1 := A1, . . . , pn := An}
B ⇒ cf(B) ≡ B0 where {p1 := B1, . . . , pn := Bn}

so that for i = 0, . . . , n and all π, den(Ai)(π) = den(Bi)(π).

I Synonymy is reduced to denotational equality for
explicit, irreducible terms (the “truth conditions” of A)

I Denotational equality for arbitrary terms is undecidable
(there are constants, with fixed interpretations)

I The explicit, irreducible terms are very special
— but by no means trivial!

Yiannis N. Moschovakis: English as a programming language? 19/22

The synonymy problem for Lλ
r (K) (with finite K)

I The decision problem for Lλ
r (K)-synonymy is open

Theorem If the set of constants K is finite, then synonymy is
decidable for terms of adjusted level ≤ 2

These include terms constructed “simply” from

Names of “pure” objects 0, 1, 2, ∅, . . . : e
Names, demonstratives John, I, he, him : ẽ
Common nouns man, unicorn, temperature : ẽ → t̃
Adjectives tall, young : (ẽ → t̃) → (ẽ → t̃)
Propositions it rains : t̃
Intransitive verbs stand, run, rise : ẽ → t̃
Transitive verbs find, loves, be : ẽ × ẽ → t̃
Adverbs rapidly : (ẽ → t̃) → (ẽ → t̃)

Proof is by reducing this claim to the Main Theorem in the 1994
paper (for a corrected version see www.math.ucla.edu/∼ynm)

Yiannis N. Moschovakis: English as a programming language? 20/22

Explicit, irreducible identities that must be known

I Los Angeles = LA (Athens = ÁèÞíá)

I x & y = y & x

I between(x , y , z) = between(x , z , y)

I love(x , y) = be loved(y , x)

A dictionary is needed—but what kind and how large?

ev2(λ(u1, u2)r(u1, u2,~a), b, z) = ev1(λ(v)r(v , z ,~a), b)

Evaluation functions: both sides are equal to r(b, z ,~a)

The dictionary line which determines this is (essentially)

λ(s)x(s, z) = λ(s)y(s) =⇒ ev2(x , b, z) = ev1(y , b)

Yiannis N. Moschovakis: English as a programming language? 21/22

The form of the decision algorithm

I A finite list of true dictionary lines is constructed, which
codifies the relationships between the constants

I Given two explicit, irreducible terms A,B of adjusted level
≤ 2, we construct (effectively) a finite set L(A,B) of lines
such that

|= A = B

⇐⇒ every line in L(A,B) is congruent to one in the dictionary

I It is a lookup algorithm, justified by a finite basis theorem

I Complexity: NP; the graph isomorphism problem is reducible
to the synonymy problem for very simple (propositional)
recursive terms

Yiannis N. Moschovakis: English as a programming language? 22/22

