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The work of Stephen Cole Kleene (very roughly)

< 1952 | Foundations of recursion theory
Normal Form Theorem ...
Arithmetical hierarchy
1952 | Introduction to metamathematics
> 1952 | Second and higher order definability

(1955) On the form ... constructive ordinals, Il
Arithmetical predicates and function quantifiers
Hierarchies of number theoretic predicates

1959+ Recursion in higher types

1965: Function realizability (book with Vesley)

» Steele Prize for the three 1955 articles
» 1938: On notation for ordinal numbers

(6 pages, The Second Recursion Theorem)

» All work after 1955 uses SRT
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The Second Recursion Theorem (SRT), 1938. Fix V C N,

and suppose " : NI*" —~ V is recursive and such that with
{e}() = ¢1(0) = ¢"(@,%) (R= (x1,-.. %) € N :

(1) Every recursive f : N — V is ¢} for some e.

(2) For all m,n, there is a recursive S = S™ : N™*! — N such that

{S(e;9)}(x) = {e}(¥,X) (e €N,y e N",Xx e N").

Then, for every recursive, partial function f(t,X) with values
in V, there is a number Z such that

X)) =fz9)] Kenm.

Proof. Fix ep such that {eg}(t,X) = f(S(t, t),X), and take
Z = S(ep, ep)-
{2}(%) = {S(e0, €0) }(X) = {eo}(e0,X) = f(S(eo, e0),X) = f(2,%)
e SCK: if you do not understand the difference between f
and f(x) you should change fields
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SRT: For every r.p.f. f : NI*™+" LV, there is a r.f. Z(¥):

{25)}) = FE(), 5,9 |

or with m = 0, there is a number Z: ’{i}()‘(’) = f(z,X)

» 12,000 Google hits for “second recursion theorem”
» Mostly called “recursion theorem” (45,400 Google hits)
» Easy to generalize (because the proof is so trivial)

» Large number of deep applications in many parts of logic
In the full paper (on my homepage) there are
18 theorems with 13 (near complete) proofs

Outline:
(A) Self-reference

(B) Effective grounded recursion: hyperarithmetical
hierarchy

(C) Effective grounded recursion: descriptive set theory
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(A) Self-reproducing Turing machines

» Turing machine with states {0,...,K}
on the alphabet X = {aj,...,an} with
a; = O,az = 1,a3 =, .

A finite sequence of quintuples

7 4

(a s q s’ m) coded by the X-string q,s,q’,s’,m

q : state q : q in binary
s : symbol or s : symbol or nothing
q’ : new state q’ : q’ in binary
s’ : new symbol or s’ : symbol or nothing

m : move (left, stay, right) m : 10,00, or 01

qo u q2 , right‘ is specified by the string 0,,10,,,01

» Each M is (coded by) a X-string (no blanks,
i.e. the sequence of its quintuples separated by commas)
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(A1) Thm For each N > 3 there is a TM M which started on
the blank tape prints itself and quits

Proof. For each number u, let s(u) be its unique expansion
in base N using the symbols of X for digits, and set

¢"(e,X) =w <= s(e) is a Turing machine M
and if we start M on s(x1)us(x2)u + -+ - us(xn)
then it stops with the tape starting with s(w)u

e The standard assumptions hold.

e M is tidy (with code e): if ©?(X) = w, then M stops on
s(x1)us(x2)u - - - us(xn) with just s(w) on the tape

e For each n, tidy"(e) is the code of a tidy machine such
that {tidy"(e)}(X) = {e}X). (tidy"(e) recursive.)

If o3() = tidy®(Z), then the machine with code tidy®(2) is
self-reproducing. []
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Recursively enumerable, complete, creative

» A set A C N is recursively enumerable (r.e.) if for some e,
A=W, = {x:{e}(x)]} = the domain of convergence of a r.p.f.

» An r.e. set A is complete if for every r.e. set B, there
exists a r.f. f(x) s.t.

xeEB < f(x) €A
» An r.e. set A is creative if there is a r.p.f. u(e) s.t.
ANW,=0 = [u(e)] &u(e) ¢ A&u(e) & W]

Thm (Post 1944). Every r.e. complete set is creative
Converse?
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(A2) Thm (Myhill 1955) Every creative set is r.e.-complete
Proof. Assume that

ANWe=0 = [u(e)| &u(e) ¢ A&u(e) & W]
and for a fixed r.e. set B choose a function Z(x) by SRT s.t.

N0 = {7 0 e e

(1) For all x, u((x))|  Otherwise W;(,) = 0 and so u(z(x)) .
(2) If x ¢ B, then W;(,) = 0 and so u(%(x)) ¢ A

(3) If x € B, then u(Z(x)) € A (which completes the proof)

Because if x € B, then W;(,) = {u(Z(x))} (the singleton);
and

u(Z(x)) ¢ A = Wi NA=0 = u(Z(x)) ¢ {u(Z(x))}
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For a theory T in the language of Peano Arithmetic (PA)

Th(T) = {#60 : 0 a sentence and T |- 6}.

Thm If T is axiomatizable, sufficiently strong and sound,
then Th(T) is r.e.-complete (easy)

(A3) Thm (Myhill 1955) If T is axiomatizable, sufficiently
strong and consistent, then Th(T) is creative, and so complete

The proof uses SRT for binary r.p.f.’s (V = {0,1}) and the
coding

1, if e codes a formula O(vy,...,v,) whose free variables
are in the list vi,...,v,, and PA - 0(Axy,...,Ax,),

¢a(X) = 10, if ecodesa formula 6(vi,...,v,) whose free variables

are in the list vq,...,v,, and PA - =0(Axy,.. ., Ax,),

1, otherwise,
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Provability logic

Axioms schemes and rules for GL, in the language with L, —, [:

GLO) All tautologies;
L1) O(e — ¥) — (Op — Oap) (transitivity of provability);

)

GL1)

GL2) Oy — OOp (provable sentences are provably provable);
)
)

(
(
(
(GL3 (D(Dcp - (p)) — Oy (Lob’s Theorem).
(R1) ¢ — ¥, = 1 (Modus Ponens); and
(R2) ¢ == [O¢ (Necessitation).
Interpretation 7 : GL-formulas — PA-sentences:
(L) =0=1, 7w(p— )= (n(p) — =(¥)),
7(Op) = (Ju)Proofpa("m ()7, u).
(A4) Thm (Solovay 1976) For every GL-formula ¢,
GLF ¢ <= for every w, PAF m(p).
e Also GL is decidable, ...
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(B) Constructive ordinals
An v-system is a pair (S,| |s) such that | | : S — Ordinals:
(ON1) For a recursive, partial K(x), x € S = K(x)| and:
|x|s =0 <= K(x) =0,
|x|s is a successor ordinal <—> K(x) =1,
|x|s is a limit ordinal <—> K(x) = 2.

(ON2) For a recursive P(x),
[x € S&K(x) =1 => |x|s = |P(x)]s + L.

(ON3) For a recursive Q(x, t),
[x € S&K(x) = 2]
= (M[Qx 1) [s <[Q(x,t+1) |s] & |x |s = lim [Q(x, 1) |s

e An ordinal £ is constructive if £ = |x|s
for some x is some r-system (S, | |s)
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The t-system (S1, | |)

The numerals: 0p = 1,(t + 1)p = tg = 2%
er = we(to)

® (S1,]| |) is the smallest set of pairs (a, |a|) such that
»1€S,[1[=0
» Ifa€ Sy, thena* =22 ¢ Sy, and |a* | =a|+1
» If for all t, et |, e € S1,|er| < |et+1 ],
then 3-5° € Sy and |3 -5°%| = limg |e; |

(B1) Thm (Kleene 1938) For every r-system (S, | |s), there
is a recursive function f(a) such that

acS = [f(a) € S1&lals = [f(a) ]

In particular, every constructive ordinal gets a notation in S
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(B1) Thm (Kleene 1938) For every r-system (S, | |s), there
is a recursive function f(a) such that

ac€sS = [f(a) € Si&|als =[f(a) [] (*)
Proof. Choose a number ey such that

{S(e0, 2, ) }(to) = | {eo}(z,x, to) = {z}(Q(x:t))

and choose by SRT a number Z such that
(at least when a € S)

9

1, if |al]s =0,
QDz(a) = Qoi(b)*’ if |a |S = |b |S + 17
3.55(e0:Z%)  otherwise

Set f(a) = ¢s(a) and prove (*) by induction on |a|s.

e Effective grounded recursion
(The only way in which Kleene applied SRT, as far as | know)
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Constructive and recursive ordinals

(B2) Thm (Markwald 1955) An ordinal £ is constructive if
and only if it is finite or the order type of a recursive
wellordering of N

wi = the least non-constructive ordinal

» Baire space N = (N — N)
> @(t) = ((0), (1), ..., a(t — 1))
(sequence code of the first t values)
> A relation P(X) is N} iff
P(X) < (Va)(3t)R(X,a(t)) (R(X,u) recursive)
» R(X) is A% iff both R(X) and —R(X) are I'I%.
Thm (Spector 1955) An ordinal £ is constructive if and only
if it is finite or the order type of a A{ wellordering of N

Yiannis N. Moschovakis: Kleene's amazing second recursion theorem 13/19



The hyperarithmetical hierarchy (Mostowski, Davis, Kleene)

With each a € S; we associate the set H;, C N:
» Hy = N.
» Hy = H| (= the jump of Hy).
» Ifa=3.5%thenx € H, <= (x)oeH

€(x); "

> A set A is arithmetical if and only if it is recursive in
some H, with finite |a|

v

If |a| = w, then H, is Turing equivalent to the set of
(codes of) true sentences of arithmetic

A set A C N is hyperarithmetical (HYP)
if it is recursive in some H,

v

(B3) Thm (Kleene 1955) HYP = A}
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Spector’'s Uniqueness Theorem

(B4) Thm (Spector 1955) There is a recursive function
u(a, b) such that if a,b € S; and |a| < |b|, then H, is
recursive in Hp, with code u(a, b)

In particular, if [a| = |b| = £ < w{", then H, and H}, have
the same degree of unsolvability d¢, and

n<§{§ = d, <dg
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(C) Descriptive Set Theory — classical and effective

» Polish space X': separable, complete metric space
» Presentation of X’: (S, P, Q) where

e S ={rg,r, ...} isdense in X

e P(i,jm,k) < d(r,r) <35

® Q(i,jym k) < d(ri,n) < i3
(S, P, Q) is recursive if P, Q are recursive

Examples: A, R (the real numbers), N

Bs = {x € X : d(r(s)o,x) < (s()s;)j-l}

» G C X is open if for some € € N (a code of G),

v

v

v

x € G <= (3s][x € Bs&e(s) = 0]

» G C X is effectively open if it has a recursive code

» F is effectively closed if F© = X \ F is effectively open, etc.
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The Suslin - Kleene Theorem
In a Polish space X, with A C X:
» A is Borel if it belongs to the smallest o-field of X
which contains the open sets
> A is analytic (X}) if

x €A < (Fo)R(x,a) (RC X x N, closed)
> Ais A} if both A and A€ are analytic
Suslin’s Theorem (1917): A is Al <= A is Borel

’AII these classes of sets are naturally coded in J\f‘

(C1) Thm (The Suslin-Kleene Theorem)
There are recursive functions u(e), v(e) such that

A is Borel with code ¢ = A is Al with code u(e)
A is A} with code ¢ = A is Borel with code v(¢)
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Recursion on N

(C1) Thm (The Suslin-Kleene Theorem)
There are recursive functions u(e), v(e) such that

A is Borel with code e = A'is Ai with code u(e)
A is Al with code ¢ = A is Borel with code v(¢)

» The S-K Theorem implies easily both Suslin’s Theorem
and Kleene’s Al = HYP on N
» Its precise statement presupposes a recursion theory on N

» It is proved by “effectivizing” a classical proof of the
Suslin Theorem (in Kuratowski’s book) using SRT for
recursion on N
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The axiom of determinacy

» AD : every game A C N is determined

» AD is inconsistent with the Axiom of Choice

» AD implies an almost-complete structure theory for L(R)

» Thm (Martin, Steel, Woodin ~ 1987) If sufficiently
strong axioms of infinity (large cardinal axioms) are true,
then AD is true in the inner model L(R)

(C2) Thm (The Coding Lemma, in ZF + AD, ynm 1970)
If k is a cardinal number and there exists a surjection
7w : N —> K, then there exists a surjection 7* : N —» P (k)

(Uses SRT for a recursion theory associated with the given )
Thm (In ZF 4+ AD, Jackson 1970)

the smallest weakly inaccessible cardinal number
= sup{rank( 3 ) : X is a well-founded relation on N/,

Kleene-hyperanalytic in some a}
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