Kleene's amazing second recursion theorem

Yiannis N. Moschovakis UCLA and University of Athens www.math.ucla.edu/~ynm

CSL, 11 September, 2009

To commemorate 100 years from Stephen Cole Kleene's birth

The work of Stephen Cole Kleene (very roughly)

< 1952	Foundations of recursion theory
	Normal Form Theorem
	Arithmetical hierarchy
1952	Introduction to metamathematics
> 1952	Second and higher order definability
	(1955) On the form constructive ordinals, II
	Arithmetical predicates and function quantifiers
	Hierarchies of number theoretic predicates
	1959+ Recursion in higher types
	1965: Function realizability (book with Vesley)

- Steele Prize for the three 1955 articles
- 1938: On notation for ordinal numbers

(6 pages, The Second Recursion Theorem)

All work after 1955 uses SRT

Yiannis N. Moschovakis: Kleene's amazing second recursion theorem

The Second Recursion Theorem (SRT), 1938. Fix $\mathbb{V} \subseteq \mathbb{N}$, and suppose $\varphi^n : \mathbb{N}^{1+n} \rightarrow \mathbb{V}$ is recursive and such that with

$$\{\mathbf{e}\}(\vec{\mathbf{x}}) = \varphi_{\mathbf{e}}^{\mathsf{n}}(\vec{\mathbf{x}}) = \varphi^{\mathsf{n}}(\mathbf{e},\vec{\mathbf{x}}) \quad (\vec{\mathbf{x}} = (\mathbf{x}_{1},\ldots,\mathbf{x}_{\mathsf{n}}) \in \mathbb{N}^{\mathsf{n}}):$$

(1) Every recursive $f : \mathbb{N}^n \to \mathbb{V}$ is φ_e^n for some e.

(2) For all m, n, there is a recursive $S = S_n^m : \mathbb{N}^{m+1} \to \mathbb{N}$ such that

$$[\mathsf{S}(\mathsf{e},\vec{\mathsf{y}})\}(\vec{\mathsf{x}}) = \{\mathsf{e}\}(\vec{\mathsf{y}},\vec{\mathsf{x}}) \quad (\mathsf{e}\in\mathbb{N},\vec{\mathsf{y}}\in\mathbb{N}^m,\vec{\mathsf{x}}\in\mathbb{N}^n).$$

Then, for every recursive, partial function $f(t, \vec{x})$ with values in \mathbb{V} , there is a number \tilde{z} such that

$$\fbox{\begin{subarray}{c} \{\tilde{z}\}(\vec{x})=f(\tilde{z},\vec{x}) \end{subarray} \end{subarray} (\vec{x}\in\mathbb{N}^n).$$

Proof. Fix e_0 such that $\{e_0\}(t, \vec{x}) = f(S(t, t), \vec{x})$, and take $\tilde{z} = S(e_0, e_0)$.

 $\{\tilde{z}\}(\vec{x}) = \{\mathsf{S}(e_0,e_0)\}(\vec{x}) = \{e_0\}(e_0,\vec{x}) = \mathsf{f}(\mathsf{S}(e_0,e_0),\vec{x}) = \mathsf{f}(\tilde{z},\vec{x})$

• SCK: if you do not understand the difference between f and f(x) you should change fields

SRT: For every r.p.f. $f : \mathbb{N}^{1+m+n} \rightarrow \mathbb{V}$, there is a r.f. $\tilde{z}(\vec{y})$:

$$\{\tilde{z}(\vec{y})\}(\vec{x}) = f(\tilde{z}(\vec{y}), \vec{y}, \vec{x})$$

or with m = 0, there is a number \tilde{z} :

$$\{\tilde{z}\}(\vec{x}) = f(\tilde{z}, \vec{x})$$

- 12,000 Google hits for "second recursion theorem"
- Mostly called "recursion theorem" (45,400 Google hits)
- Easy to generalize (because the proof is so trivial)
- Large number of deep applications in many parts of logic In the full paper (on my homepage) there are 18 theorems with 13 (near complete) proofs

Outline:

- (A) Self-reference
- (B) Effective grounded recursion: hyperarithmetical hierarchy
- (C) Effective grounded recursion: descriptive set theory

(A) Self-reproducing Turing machines

 Turing machine with states {0,...,K} on the alphabet Σ = {a₁,..., a_N} with a₁ ≡ 0, a₂ ≡ 1, a₃ ≡, : A finite sequence of quintuples

 Each M is (coded by) a Σ-string (no blanks, i.e. the sequence of its quintuples separated by commas) (A1) Thm For each N \geq 3 there is a TM M which started on the blank tape prints itself and quits

Proof. For each number u, let s(u) be its unique expansion in base N using the symbols of Σ for digits, and set

$$\varphi^{n}(e, \vec{x}) = w \iff s(e)$$
 is a Turing machine M
and if we start M on $s(x_1) \sqcup s(x_2) \sqcup \cdots \sqcup s(x_n)$
then it stops with the tape starting with $s(w) \sqcup$

- The standard assumptions hold.
 - M is tidy (with code e): if $\varphi_e^n(\vec{x}) = w$, then M stops on

 $s(x_1) \llcorner s(x_2) \llcorner \cdots \llcorner s(x_n)$ with just s(w) on the tape

• For each n, tidyⁿ(e) is the code of a tidy machine such that $\{tidy^n(e)\}(\vec{x}) = \{e\}\vec{x}\}$. $(tidy^n(e) recursive.)$

If $\varphi_{\tilde{z}}() = \operatorname{tidy}^{0}(\tilde{z})$, then the machine with code $\operatorname{tidy}^{0}(\tilde{z})$ is self-reproducing.

Recursively enumerable, complete, creative

A set $A \subseteq \mathbb{N}$ is recursively enumerable (r.e.) if for some e,

 $A = W_e = \{x : \{e\}(x) \downarrow\} =$ the domain of convergence of a r.p.f.

An r.e. set A is complete if for every r.e. set B, there exists a r.f. f(x) s.t.

$$x \in B \iff f(x) \in A$$

An r.e. set A is creative if there is a r.p.f. u(e) s.t.

 $\mathsf{A} \cap \mathsf{W}_{\mathsf{e}} = \emptyset \implies [\mathsf{u}(\mathsf{e}) \!\downarrow \, \& \, \mathsf{u}(\mathsf{e}) \notin \mathsf{A} \, \& \, \mathsf{u}(\mathsf{e}) \notin \mathsf{W}_{\mathsf{e}}]$

Thm (Post 1944). Every r.e. complete set is creative Converse?

(A2) Thm (Myhill 1955) Every creative set is r.e.-complete Proof. Assume that

 $\mathsf{A} \cap \mathsf{W}_{\mathsf{e}} = \emptyset \implies [\mathsf{u}(\mathsf{e}) \downarrow \And \mathsf{u}(\mathsf{e}) \notin \mathsf{A} \And \mathsf{u}(\mathsf{e}) \notin \mathsf{W}_{\mathsf{e}}]$

and for a fixed r.e. set B choose a function $\tilde{z}(x)$ by SRT s.t.

$$\{\tilde{z}(x)\}(t) = \begin{cases} 1, & \text{if } x \in B \& u(\tilde{z}(x)) \downarrow \& t = u(\tilde{z}(x)), \\ \bot & (\text{i.e., undefined}), \text{ otherwise.} \end{cases}$$

(1) For all x, $u(\tilde{z}(x)) \downarrow$ Otherwise $W_{\tilde{z}(x)} = \emptyset$ and so $u(\tilde{z}(x)) \downarrow$.

(2) If
$$x \notin B$$
, then $W_{\tilde{z}(x)} = \emptyset$ and so $u(\tilde{z}(x)) \notin A$

(3) If $x \in B$, then $u(\tilde{z}(x)) \in A$ (which completes the proof) Because if $x \in B$, then $W_{\tilde{z}(x)} = \{u(\tilde{z}(x))\}$ (the singleton); and

$$u(\tilde{z}(x))\notin A\implies W_{\tilde{z}(x)}\cap A=\emptyset\implies u(\tilde{z}(x))\notin\{u(\tilde{z}(x))\}$$

For a theory T in the language of Peano Arithmetic (PA) $Th(T) = \{\#\theta : \theta \text{ a sentence and } T \vdash \theta\}.$

Thm If T is axiomatizable, sufficiently strong and sound, then Th(T) is r.e.-complete (easy)

(A3) Thm (Myhill 1955) If T is axiomatizable, sufficiently strong and consistent, then Th(T) is creative, and so complete The proof uses SRT for binary r.p.f.'s ($\mathbb{V} = \{0, 1\}$) and the coding

 $\varphi_e^n(\vec{x}) = \begin{cases} 1, & \text{if e codes a formula } \theta(v_1, \dots, v_n) \text{ whose free variables} \\ & \text{are in the list } v_1, \dots, v_n, \text{ and } \mathsf{PA} \vdash \theta(\Delta x_1, \dots, \Delta x_n), \\ 0, & \text{if e codes a formula } \theta(v_1, \dots, v_n) \text{ whose free variables} \\ & \text{are in the list } v_1, \dots, v_n, \text{ and } \mathsf{PA} \vdash \neg \theta(\Delta x_1, \dots, \Delta x_n), \\ \bot, & \text{otherwise}, \end{cases}$

Provability logic

Axioms schemes and rules for GL, in the language with \bot, \rightarrow, \Box :

(GL0) All tautologies; (GL1) $\Box(\varphi \rightarrow \psi) \rightarrow (\Box \varphi \rightarrow \Box \psi)$ (transitivity of provability); (GL2) $\Box \varphi \rightarrow \Box \Box \varphi$ (provable sentences are provably provable); (GL3) $(\Box(\Box \varphi \rightarrow \varphi)) \rightarrow \Box \varphi$ (Löb's Theorem). (R1) $\varphi \rightarrow \psi, \varphi \implies \psi$ (Modus Ponens); and (R2) $\varphi \implies \Box \varphi$ (Necessitation).

Interpretation π : GL-formulas \rightarrow PA-sentences:

$$egin{aligned} \pi(\bot) \equiv 0 = 1, & \pi(arphi o \psi) \equiv (\pi(arphi) o \pi(\psi)), \ \pi(\Box arphi) \equiv (\exists \mathsf{u}) \mathsf{Proof}_{\mathsf{PA}}(\ulcorner \pi(arphi) \urcorner, \mathsf{u}). \end{aligned}$$

(A4) Thm (Solovay 1976) For every GL-formula φ ,

$$\mathsf{GL} \vdash \varphi \iff$$
 for every π , $\mathsf{PA} \vdash \pi(\varphi)$.

• Also GL is decidable, ...

(B) Constructive ordinals

An t-system is a pair $(S, | |_S)$ such that $| |: S \rightarrow \text{Ordinals:}$ (ON1) For a recursive, partial $K(x), x \in S \implies K(x) \downarrow$ and: $|x|_S = 0 \iff K(x) = 0,$ $|x|_S$ is a successor ordinal $\iff K(x) = 1,$ $|x|_S$ is a limit ordinal $\iff K(x) = 2.$

(ON2) For a recursive P(x),

$$[[x \in S \& K(x) = 1] \implies |x|_S = |P(x)|_S + 1.$$

(ON3) For a recursive Q(x, t),

$$\begin{bmatrix} x \in S \& K(x) = 2 \end{bmatrix}$$

$$\implies (\forall t) [|Q(x, t)|_{S} < |Q(x, t+1)|_{S}] \& |x|_{S} = \lim_{t} |Q(x, t)|_{S}$$

 An ordinal ξ is constructive if ξ = |x|_S for some x is some τ-system (S, | |_S)

The \mathfrak{r} -system $(S_1, | |)$

The numerals: $0_0 = 1$, $(t + 1)_0 = t_0^* = 2^{t_0}$ $e_t = \varphi_e(t_0)$

- $(S_1, | |)$ is the smallest set of pairs (a, |a|) such that
 - ▶ $1 \in S_1$, |1| = 0
 - If $a \in S_1$, then $a^* = 2^a \in S_1$, and $|a^*| = |a| + 1$
 - ▶ If for all t, $e_t \downarrow$, $e_t \in S_1$, $|e_t| < |e_{t+1}|$, then $3 \cdot 5^e \in S_1$ and $|3 \cdot 5^e| = \lim_t |e_t|$

(B1) Thm (Kleene 1938) For every $\mathfrak{r}\text{-system}$ (S, $|\ |_S)$, there is a recursive function f(a) such that

$$\mathsf{a} \in \mathsf{S} \implies [\mathsf{f}(\mathsf{a}) \in \mathsf{S}_1 \& |\mathsf{a}|_{\mathsf{S}} = |\mathsf{f}(\mathsf{a})|]$$

In particular, every constructive ordinal gets a notation in S_1

(B1) Thm (Kleene 1938) For every \mathfrak{r} -system (S, | |_S), there is a recursive function f(a) such that

$$a \in S \implies [f(a) \in S_1 \& |a|_S = |f(a)|]$$
 (*) Choose a number e_0 such that

$$\{S(e_0, z, x)\}(t_0) = \{e_0\}(z, x, t_0) = \{z\}(Q(x, t)),\$$

and choose by SRT a number \tilde{z} such that (at least when $a \in S$)

$$\varphi_{\tilde{z}}(a) = \begin{cases} 1, & \text{if } |a|_{S} = 0, \\ \varphi_{\tilde{z}}(b)^{*}, & \text{if } |a|_{S} = |b|_{S} + 1, \\ 3 \cdot 5^{S(e_{0}, \tilde{z}, x)}, & \text{otherwise} \end{cases}$$

Set $f(a) = \varphi_{\tilde{z}}(a)$ and prove (*) by induction on $|a|_{S}$.

• Effective grounded recursion (The only way in which Kleene applied SRT, as far as I know)

Proof.

Constructive and recursive ordinals

(B2) Thm (Markwald 1955) An ordinal ξ is constructive if and only if it is finite or the order type of a recursive wellordering of \mathbb{N}

 $\omega_1^{\rm \scriptscriptstyle CK} =$ the least non-constructive ordinal

- Baire space $\mathcal{N} = (\mathbb{N} \to \mathbb{N})$
- ► a(t) = ⟨a(0), a(1), ..., a(t 1)⟩ (sequence code of the first t values)
- A relation $P(\vec{x})$ is Π_1^1 iff
 - $\mathsf{P}(\vec{\mathsf{x}}) \iff (\forall \alpha) (\exists \mathsf{t}) \mathsf{R}(\vec{\mathsf{x}}, \overline{\alpha}(\mathsf{t})) \quad (\mathsf{R}(\vec{\mathsf{x}}, \mathsf{u}) \text{ recursive})$
- $R(\vec{x})$ is Δ_1^1 iff both $R(\vec{x})$ and $\neg R(\vec{x})$ are Π_1^1 .

Thm (Spector 1955) An ordinal ξ is constructive if and only if it is finite or the order type of a Δ_1^1 wellordering of \mathbb{N}

The hyperarithmetical hierarchy (Mostowski, Davis, Kleene)

With each $a \in S_1$ we associate the set $H_a \subseteq \mathbb{N}$:

• $H_1 = \mathbb{N}$.

•
$$H_{2^b} = H'_b$$
 (= the jump of H_b).

• If $a = 3 \cdot 5^e$, then $x \in H_a \iff (x)_0 \in H_{e_{(x)_1}}$.

- A set A is arithmetical if and only if it is recursive in some H_a with finite |a |
- If |a| = ω, then H_a is Turing equivalent to the set of (codes of) true sentences of arithmetic
- A set A ⊆ N is hyperarithmetical (HYP) if it is recursive in some H_a

(B3) Thm (Kleene 1955) HYP = Δ_1^1

(B4) Thm (Spector 1955) There is a recursive function u(a,b) such that if $a,b\in S_1$ and $|a|\leq |b|$, then H_a is recursive in H_b with code u(a,b)

In particular, if $|a| = |b| = \xi < \omega_1^{c\kappa}$, then H_a and H_b have the same degree of unsolvability d_{ξ} , and

$$\eta < \xi \implies \mathsf{d}_\eta < \mathsf{d}_\xi$$

(C) Descriptive Set Theory — classical and effective

- ▶ Polish space X: separable, complete metric space
- Presentation of \mathcal{X} : (S, P, Q) where
 - $S=\{r_0,r,\ldots\}$ is dense in ${\mathcal X}$
 - $P(i, j, m, k) \iff d(r_i, r_j) \le \frac{m}{k+1}$
 - $Q(i, j, m, k) \iff d(r_i, r_j) < \frac{m}{k+1}$
- ▶ (S, P, Q) is recursive if P, Q are recursive
- Examples: \mathcal{N} , \mathbb{R} (the real numbers), \mathbb{N}
- $\blacktriangleright \mathsf{B}_{\mathsf{s}} = \{\mathsf{x} \in \mathcal{X} : \mathsf{d}(\mathsf{r}_{(\mathsf{s})_0}, \mathsf{x}) < \frac{(\mathsf{s})_1}{(\mathsf{s})_2 + 1}\}$
- $G \subseteq \mathcal{X}$ is open if for some $\varepsilon \in \mathcal{N}$ (a code of G),

$$\mathsf{x} \in \mathsf{G} \iff (\exists \mathsf{s}][\mathsf{x} \in \mathsf{B}_{\mathsf{s}} \& \varepsilon(\mathsf{s}) = \mathbf{0}]$$

- $G \subseteq \mathcal{X}$ is effectively open if it has a recursive code
- F is effectively closed if $F^c = X \setminus F$ is effectively open, etc.

The Suslin - Kleene Theorem

In a Polish space \mathcal{X} , with $A \subseteq \mathcal{X}$:

- A is Borel if it belongs to the smallest σ-field of X which contains the open sets
- A is analytic (Σ¹₁) if

 $\mathsf{x} \in \mathsf{A} \iff (\exists lpha)\mathsf{R}(\mathsf{x}, lpha) \quad (\mathsf{R} \subseteq \mathcal{X} \times \mathcal{N}, \text{ closed})$

• A is Δ_1^1 if both A and A^c are analytic

Suslin's Theorem (1917): A is $\Delta_1^1 \iff$ A is Borel

All these classes of sets are naturally coded in \mathcal{N}

(C1) Thm (The Suslin-Kleene Theorem) There are recursive functions $u(\varepsilon), v(\varepsilon)$ such that

- A is Borel with code $\varepsilon \implies A$ is Δ_1^1 with code $u(\varepsilon)$
 - A is Δ_1^1 with code $\varepsilon \implies$ A is Borel with code $v(\varepsilon)$

Recursion on ${\cal N}$

(C1) Thm (The Suslin-Kleene Theorem) There are recursive functions $u(\varepsilon), v(\varepsilon)$ such that

A is Borel with code $\varepsilon \implies A$ is Δ_1^1 with code $u(\varepsilon)$ A is Δ_1^1 with code $\varepsilon \implies A$ is Borel with code $v(\varepsilon)$

- ► The S-K Theorem implies easily both Suslin's Theorem and Kleene's Δ_1^1 = HYP on $\mathbb N$
- Its precise statement presupposes a recursion theory on ${\cal N}$
- \blacktriangleright It is proved by "effectivizing" a classical proof of the Suslin Theorem (in Kuratowski's book) using SRT for recursion on ${\cal N}$

The axiom of determinacy

- AD : every game $A \subseteq \mathcal{N}$ is determined
- ► AD is inconsistent with the Axiom of Choice
- AD implies an almost-complete structure theory for $L(\mathbb{R})$
- ► Thm (Martin, Steel, Woodin ~ 1987) If sufficiently strong axioms of infinity (large cardinal axioms) are true, then AD is true in the inner model L(R)

(C2) Thm (The Coding Lemma, in ZF + AD, ynm 1970) If κ is a cardinal number and there exists a surjection $\pi : \mathcal{N} \longrightarrow \kappa$, then there exists a surjection $\pi^* : \mathcal{N} \longrightarrow \mathcal{P}(\kappa)$ (Uses SRT for a recursion theory associated with the given π)

Thm (In ZF + AD, Jackson 1970)

the smallest weakly inaccessible cardinal number = sup{rank(\preceq): \preceq is a well-founded relation on \mathcal{N} , Kleene-hyperanalytic in some α }