
You may refer to and use every result in the Notes and the slides of the
lectures for Parts 1 and 2 of the class and every problem in the first eight
homework assignments whose solutions are posted.

Try to be concise and clear, making sure the grader understands how
you are going to prove something—the “architecture” of your argument.

There are 6 problems or parts of problems and they are all worth the
same, but they vary in difficulty: do first those which are easy.

Problem 1. Consider the following proposition about an arbitrary infi-
nite structure A:

(∗) If R(x, y) is an elementary relation on A and

P (x) ⇐⇒ the set {y | R(x, y)} is infinite,

then P (x) is also elementary on A.

For each of the following structures, determine whether (∗) is true or
false and outline a proof of your claim.

(1a) A = N = (N, 0, 1, S,+, ·) is the standard structure of arithmetic.

Solution. True:

P (x) ⇐⇒ (∀u)(∃y)[u ≤ y ∧R(x, y)].

where x ≤ y ⇐⇒ (∃t)[x + t = y].

(1b) A = (Z,≤), the rational integers Z = {. . . ,−2,−1, 0, 1, 2, . . . } with
their usual ordering.

Solution. True:

P (x) ⇐⇒ (∀u)(∃y)[u ≤ y ∧R(x, y)] ∨ (∀u)(∃y)[y ≤ u ∧R(x, y)].

To prove the implication (⇐) of this equivalence, we take cases on the
two disjuncts on the right. If the first disjunct (∀u)(∃y)[u ≤ y∧R(x, y)] is
true, then the set {y ≥ 0 | R(x, y)} has no maximum and so it is infinite;
and if the second disjunct (∀u)(∃y)[y ≤ u ∧ R(x, y)] is true, then the set
{y ≤ 0 | R(x, y)} has no minimum, and so its is again infinite.

To prove the converse implication (⇒) of the claimed equivalence, we
assume that for some fixed x, both disjuncts on the the right hand side
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are false. It follows that there are numbers ur, ul such that

for all y,R(x, y) =⇒ [y ≤ ur ∧ y ≥ ul],

so that either the set {y | R(x, y)} is empty, if ur < ul, or it is contained
in the interval

[ul, ul + 1, . . . , ur − 1, ur]

and is finite.

(1c) A is an arbitrary, infinite structure.

Solution. This is not always true. One counterexample is a non-
standard model of arithmetic

N∗ = (N∗, 0, 1, S∗,+∗, ·∗).
If we take

R(x, y) ⇐⇒ y ≤∗ x ⇐⇒ (∃z)[y +∗ z = x],

then clearly,

P (x) ⇐⇒ x has infinitely many elements below it ⇐⇒ x ∈ N∗ \ N,

so that if Proposition (∗) were true for N∗, then the non-standard part
N∗ \N of N∗ would be elementary; but it would then have a least member
which its does not, since (∀y)[y 6= 0 → (∃u)[u < y]] is true in N and so
also true in N∗.

Problem 2. To do this problem you will need to use the fact that

Every set can be ordered,(∗)
i.e., for every set A there exists a binary relation x ≤ y which is a linear
ordering of A. This is a non-trivial (but basic) set-theoretic fact about
sets which we will just assume here. (It is proved in every standard course
in set theory).

Recall also the first order definition of what it means for ≤ to be a
linear ordering,

LO ≡ ∀x[x ≤ x] ∧ ∀x∀y∀z[(x ≤ y ∧ y ≤ z) → x ≤ z]

∧ ∀x∀y[(x ≤ y ∧ y ≤ x) → x = y] ∧ ∀x∀y[x ≤ y ∨ y ≤ x].

Prove that if τ is any finite vocabulary without the binary relational
symbol ≤, T is a τ -theory and χ is a τ -sentence, then

if T, LO ` χ, then T ` χ.
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Solution. Let χ be any τ -sentence and assume that T, LO ` χ.

Let A be any model of T with universe A; choose by (∗) an ordering ≤
of A; and let (A,≤) be the expansion of A with that ordering ≤, so that

(A,≤) |= T ∪ {LO}.
By the Hypothesis and the Soundness Theorem,

(A,≤) |= χ;

by (1) of the Compositionality Theorem 3G.1 in the Notes,

A |= χ;

and since A was an arbitrary model of T , by the Completeness Theorem,
T ` χ, as required.

Problem 3. True or false: for any formula χ of the Propositional Calcu-
lus PL, any sequence p1, . . . , pn of distinct propositional variables which
includes all the variables which occur in χ and any sequence φ1, . . . , φn

of LPCI(τ)-formulas,

if χ is a tautology, then ` χ{p1 :≡ φ1, . . . , pn :≡ φn}.
You must prove your answer.

Solution. This is true, as follows.

By the hypothesis that χ is a tautology and the Completeness Theorem
for the Propositional Calculus, there is a PL-proof

χ0, χ2, . . . , χk ≡ χ.

If some propositional variable q other than p1, . . . , pn occurs in some χi,
replace it with p1, set

ψ{~p :≡ ~φ} : ⇐⇒df {p1 :≡ φ1, . . . , pn :≡ φn}
to save typing and then prove that the sequence of LPCI-formulas

χ0{~p :≡ ~φ}, χ2{~p :≡ ~φ}, . . . , χk{~p :≡ ~φ} ≡ χ{~p :≡ ~φ}
is a proof in LPCI; the argument is trivial, because

if ψ is a PL-axiom, then ψ{~p :≡ ~φ} is an LPCI-axiom,

and the only Inference Rule in PL is Modus Ponens, which is also an
Inference Rule of LPCI.
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Problem 4. Prove that if g(t, x) is arithmetical and the function f(t, x)
satisfies the equations

f(0, x) = x + 1,

f(t + 1, x) = f(t, g(t, x)),

then f is also arithmetical.

Solution. The definition of f is not by primitive recursion from g,
check it out; it is a simple case of what Rósza Petér called definition
by Nested Recursion. The proof that if g is arithmetical then so is f is
similar to the proof for the Ackermann function in Problem x2.23 (which
can be found in the solutions to Homework 5).

A sequence of triples

α =
(
(n0, x0, w0), (n1, x1, w1), . . . , (nk, xk, wk)

)

is a Petér derivation for f , if one of the following two conditions holds for
each i ≤ k:

(1) ni = 0 and wi = xi + 1.
(2) ni > 0 and there is a j < i such that

ni = nj + 1; wi = wj , xj = g(nj , xi).

Lemma 1. If α is a Petér derivation, then

for each i ≤ k, (i, xi, wi) ∈ α =⇒ f(i, xi) = wi.

Proof is by (complete) induction on i ≤ k for a given Petér derivation.

Case 1. If (ni, xi, wi) is in α and ni = 0, then wi = xi + 1 (by the
conditions on α) and (by the hypothesis on f),

f(ni, xi) = f(0, xi) = xi + 1 = wi.

Case 2. If ni > 0, then there is some j < i satisfying (2) and

wi = wj (by the conditions on α)

= f(nj , xj) (by the induction hypothesis)

= f(ni − 1, g(ni − 1, xi)) (by the conditions on α)

= f(ni, xi) (by the hypothesis on f).

Lemma 2. For all t and x, there is a Petér derivation α which includes
a triple (t, x, f(t, x)).
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This is proved by a routine induction on t.

Now the two Lemmas together give

f(t, x) = w

⇐⇒ there is a Petér derivation which contains the triple (t, x, w),

and from this we can get an arithmetical definition of the graph of f using
the tuple codings supplied by the β function.


