(A) Propositional axiom schemes, same as in PL.

- (1) $\phi \rightarrow (\psi \rightarrow \phi)$
- (2) $(\phi \rightarrow \psi) \rightarrow ((\phi \rightarrow (\psi \rightarrow \chi)) \rightarrow (\phi \rightarrow \chi))$
- $(3) \ (\phi \to \psi) \to ((\phi \to \neg \psi) \to \neg \phi)$
- $(4) \neg \neg \phi \rightarrow \phi$
- (5) $\phi \to (\psi \to (\phi \land \psi))$
- (6a) $(\phi \land \psi) \rightarrow \phi$ (6b) $(\phi \land \psi) \rightarrow \psi$
- (7a) $\phi \to (\phi \lor \psi)$ (7b) $\psi \to (\phi \lor \psi)$
- (8) $(\phi \to \chi) \to ((\psi \to \chi) \to ((\phi \lor \psi) \to \chi))$

(B) Predicate axiom schemes.

- (9) $\forall v \phi(v, \vec{u}) \to \phi(t, \vec{u})$ (t free for v in $\phi(v, \vec{u})$)
- (10) $\forall v(\phi \to \psi) \to (\phi \to \forall v\psi)$ (v not free in ϕ)
- (11) $\phi(t, \vec{u}) \to \exists v \phi(v, \vec{u})$ (t free for v in $\phi(v, \vec{u})$)

(C) Rules of inference.

- (12) From ϕ and $\phi \to \psi$, infer ψ . (Modus Ponens)
- (13) From ϕ , infer $\forall v\phi$. (Generalization)
- (14) From $\phi \to \psi$, infer $\exists v \phi \to \psi$, provided v is not free in ψ . (Exists Elimination)
 - (D) Identity axioms. Skipped.

Lemma 7C.4. The natural introduction rules for LPCI.

If T is a set of sentences, the indicated substitutions are free, and the indicated restrictions are obeyed, then the following hold:

- (\rightarrow) If $T, \chi \vdash \phi$, then $T \vdash \chi \rightarrow \phi$. Restriction: χ is a sentence.
- (\wedge) If $T \vdash \phi$ and $T \vdash \psi$, then $T \vdash \phi \land \psi$.
- (\vee) If $T \vdash \phi$ or $T \vdash \psi$, then $T \vdash \phi \lor \psi$.
- (\neg) If $T, \chi \vdash \psi$ and $T, \chi \vdash \neg \psi$, then $T \vdash \neg \chi$. Restriction: χ a sentence.
- (\forall) If $T \vdash \phi$, then $T \vdash \forall v \phi$.
- (\exists) If $T \vdash \phi\{v :\equiv t\}$, then $T \vdash \exists v\phi$.

Lemma 7C.5. The natural elimination rules for LPCI.

If T is a set of sentences, the indicated substitutions are free, and the indicated restrictions are obeyed, then the following hold:

- (\rightarrow) If $T \vdash \phi$ and $T \vdash \phi \rightarrow \psi$, then $T \vdash \psi$.
- (\wedge) If $T \vdash \phi \land \psi$, then $T \vdash \phi$ and $T \vdash \psi$.
- (\vee) If $T, \phi \vdash \chi$ and $T, \psi \vdash \chi$, then $T, \phi \lor \psi \vdash \chi$ Restriction: ϕ, ψ are sentences.
- (\neg) If $T \vdash \neg \neg \phi$, then $T \vdash \phi$.
- (\forall) If $T \vdash \forall v\phi$, then $T \vdash \phi\{v :\equiv t\}$
- $(\exists) \text{ If } T, \phi\{v :\equiv c\} \vdash \chi, \text{ then } T, \exists v \phi \vdash \chi$

Restriction: $\exists v \phi$ is a sentence and c is a constant which does not occur in T or in χ .

Math. 114L, Spring 2021, Y. N. Moschovakis Lower Predicate Calculus with identity