Math 114L, Spring 2021, Solutions to HW \#8

x2.44. Prove the Compactness Theorem 7D.1.
Solution. Suppose every finite subset of a theory T has a model; then every finite subset of T is consistent; so T is consistent Lemma 2C.9; and so T has a model by the Completeness Theorem II, 7C.10.
x2.45. Prove the Skolem-Löwenheim Theorem 7D.2.
Solution. If a theory T has a model, it is consistent, and then (by the proof of the Completeness Theorem) it has a model \mathbf{A} whose universe is a subset

$$
A \subset \operatorname{Const}_{\tau} \cup\left\{d_{0}, d_{1}, \ldots\right\}=\left\{c_{0}, \ldots, c_{n-1}, d_{0}, d_{1}, \ldots\right\}=\left\{e_{0}, e_{1}, \ldots\right\}
$$

of the set of constants in the expanded signature τ^{*}; now A can be enumerated, by deleting from the sequence e_{0}, e_{1}, \ldots those constants which are not in A.
x2.48. Prove that if a τ-theory T has arbitrarily large, finite models, then it has an infinite model.

Solution. Suppose T has arbitrarily large finite models and let

$$
\begin{array}{r}
T^{*}=T \cup\left\{\exists \mathrm{v}_{1} \exists \mathrm{v}_{2}\left(\mathrm{v}_{1} \neq \mathrm{v}_{2}\right), \exists \mathrm{v}_{1} \exists \mathrm{v}_{2} \exists \mathrm{v}_{3}\left(\mathrm{v}_{1} \neq \mathrm{v}_{2} \wedge \mathrm{v}_{1} \neq \mathrm{v}_{3} \wedge \mathrm{v}_{2} \neq \mathrm{v}_{3}\right)\right. \\
\left.\ldots, \exists \mathrm{v}_{1} \cdots \exists \mathrm{v}_{n} \mathbb{X}_{1 \leq i<j \leq n}\left(\mathrm{v}_{i} \neq \mathrm{v}_{j}\right), \ldots\right\}
\end{array}
$$

Every finite subset of T^{*} is a subset of $T \cup\left\{\chi_{2}, \ldots, \chi_{n}\right\}$ where each χ_{i} (with $i \geq 2$) asserts that there are at least i distinct elements in the universe and so has a model, any model of T with at least n elements; so T^{*} has a model, by the Compactness Theorem, which is a model of T and is infinite.
$\mathbf{x 2 . 4 9}$. For the empty signature τ (for which the τ-structures are just sets) decide whether the following properties of τ-structures are basic elementary or elementary, and prove your answer.

1. A is finite.
2. A is infinite.

Solution. 1. The class of all finite structure (A) is not elementary; because if for some theory T (in the empty vocabulary)
(*)

$$
(A) \models T \Longleftrightarrow A \text { is finite, }
$$

then T has arbitrarily large finite models and so it would have an infinite model by Problem x2.48, which contradicts ($*$).
2. The class of all infinite structures (in the empty vocabulary) is elementary, axiomatized by the theory

$$
T_{\mathrm{inf}}=\left\{\chi_{2}, \chi_{3}, \ldots\right\}
$$

where (as usual) for $n \geq 2, \chi_{n} \equiv \exists \mathrm{v}_{1} \cdots \exists \mathrm{v}_{n} \mathbb{X}_{1 \leq i<j \leq n}\left(\mathrm{v}_{i} \neq \mathrm{v}_{j}\right)$. It is not basic elementary because if

$$
A \text { is infinite } \Longleftrightarrow \mathbf{A} \models \phi \text {, then } A \text { is finite } \Longleftrightarrow \mathbf{A} \models \neg \phi,
$$

contradicting 1 .
Note: With a bit more care, this result can be proved for arbitrary vocabularies τ; you just need to show that for any τ, there are arbitrarily large τ-structures (in which all the primitives are interpreted trivially).
x2.50. For the signature $\tau=(E)$ with just one, binary relation symbol, prove that the class of structures which are symmetric, connected graphs is not elementary.
Solution. Recall the definitions in Section $\S 1$ and assume towards a contradiction that there is a theory T such that

$$
(G, E) \text { is a connected, symmetric graph } \Longleftrightarrow(G, E) \models T \text {. }
$$

Let a, b be two distinct constants and let

$$
T^{*}=T \cup\{d(a, b)>2, d(a, b)>3, \ldots d(a, b)>n, \ldots\}
$$

where the distance $d(a, b)$ is defined in $\S 1$ and each condition $d(a, b)>n$ is defined by a sentence,

$$
\begin{aligned}
& d(a, b)>n \\
& \Longleftrightarrow(G, E, a, b) \models \forall \mathrm{v}_{0} \cdots \forall \mathrm{v}_{n} \neg\left(\mathbb{M}_{0 \leq i<n} E\left(\mathrm{v}_{i}, \mathrm{v}_{i+1}\right) \wedge \mathrm{v}_{1}=a \wedge \mathrm{v}_{n}=b\right) .
\end{aligned}
$$

Every finite subset of T^{*} includes $d(a, b)>i$ only for $i \leq n$ for some n and has models, for example the finite, symmetric graph

$$
a-0-1-\cdots-n-b
$$

which has $n+3$ elements, each joined by an edge with the next. By the Compactness Theorem then, T^{*} has a model ($\left.G^{*}, E^{*}, a^{*}, b^{*}\right)$ in which the elements interpreting the constants a, b are infinitely far apart, i.e., they are not connected by a (finite) path; the reduct $\left(G^{*}, E^{*}\right)$ is then a disconnected, symmetric graph which satisfies T, contradicting our assumption.
x2.53. Let \mathbf{N}^{*} be a non-standard model of true arithmetic as in Section 7 E , i.e., \mathbf{N}^{*} is elementarily equivalent but not isomorphic with \mathbf{N}. Prove that if we define on \mathbf{N}^{*} the relation

$$
x E^{*} y \Longleftrightarrow\left(x+{ }^{*} 1=y\right) \vee\left(y+{ }^{*} 1=x\right),
$$

then the following two relations (from Problem x2.16*) are not elementary in \mathbf{N}^{*} - and hence not elementary in the graph $\left(\mathbb{N}^{*}, E^{*}\right)$:
(3) $P(x, y) \Longleftrightarrow d(x, y)<\infty$.
(4) $P(x, y, z) \Longleftrightarrow d(x, y) \leq d(x, z)$.

Hint: The standard part of \mathbf{N}^{*} is an initial segment of \mathbf{N}^{*} which is isomorphic with \mathbf{N}. We may assume that it is \mathbf{N} and put

$$
\operatorname{Inf}=\mathbb{N}^{*} \backslash \mathbb{N}=\text { the set of "infinite numbers" in } \mathbb{N}^{*} \text {. }
$$

This set is not empty. For (3), prove and use the fact that Inf is not elementary; and for (4) prove and use the stronger fact, that Inf is not elementary from a parameter, i.e., for every extended formula $\chi(u, v)$ of arithmetic and every $z \in \mathbb{N}^{*}$,

$$
\operatorname{Inf} \neq\left\{x \in \mathbb{N}^{*} \mid \chi^{\mathbf{N}^{*}}[x, z]\right\} .
$$

Solution. A subset $X \subseteq A$ of the universe of a τ-structure \mathbf{A} is elementary from the parameter $z \in A$ if there is an extended τ-formula $\chi(u, v)$ such that

$$
x \in X \Longleftrightarrow \chi^{\mathbf{A}}[x, z] .
$$

The usual ordering on the natural numbers is defined by

$$
x \leq y \Longleftrightarrow(\exists t)[x+t=y],
$$

and it is a wellordering, i.e., every non-empty subset of \mathbb{N} has a least member. This holds, in particular, for subsets of \mathbb{N} which are elementary from a parameter; which means that for every extended formula $\chi(u, v)$ as above

$$
\mathbf{N} \models(\forall v)\left((\exists u) \chi(u, v) \rightarrow(\exists u)\left[\chi(u, v) \wedge\left(\forall u^{\prime}\right)\left[\chi\left(u^{\prime}, v\right) \rightarrow u \leq u^{\prime}\right]\right]\right)
$$

and so the same holds for \mathbf{N}^{*}.
Let \leq^{*} be the natural ordering of \mathbb{N}^{*} and for any $\chi(u, v)$ as above and any $y \in \mathbb{N}^{*}$, put

$$
X^{\chi, y}=\left\{x \in \mathbb{N}^{*} \mid \chi^{\mathbf{N}^{*}}[x, y] ;\right.
$$

the claim above means that for every $\chi(u, v)$ and $y \in \mathbb{N}^{*}$,

$$
\text { if } X^{\chi, y} \text { is not empty, then it has a } \leq^{*} \text {-least member. }
$$

In particular, if $\operatorname{Inf}=\mathbb{N}^{*} \backslash \mathbb{N}$ were definable from a parameter in \mathbf{N}^{*}, then it would have a \leq-least member, which it does not.
For (3) and (4),

$$
\begin{aligned}
& d(x, y)=\text { the length of the shortest path } \\
& \qquad \quad \text { which joins } x \text { to } y \text { in } E^{*} \quad\left(x, y \in \mathbb{N}^{*}\right)
\end{aligned}
$$

and it is $=\infty$ if there is no such path, e.g., if $x \in \mathbb{N}$ and $y \in \operatorname{Inf}$.
We can now prove (3) and (4) following the hint.
(3) $x \in \operatorname{Inf} \Longleftrightarrow d(x, 0)<\infty$; so $d(x, y)<\infty$ cannot be elementary.
(4) If, towards a contradiction, the relation

$$
P(x, y, z) \Longleftrightarrow d(x, y) \leq d(x, z)
$$

were elementary in \mathbf{N}^{*}, then its negation

$$
\neg P(x, y, z) \Longleftrightarrow d(x, z)<d(x, y)
$$

would also be elementary; but for any $y^{*} \in \operatorname{Inf}$, easily,

$$
d(x, 0)<d\left(x, y^{*}\right) \Longleftrightarrow x \in \mathbb{N}
$$

so \mathbb{N} is elementary from a parameter in \mathbf{N}^{*}, so Inf is also elementary from a parameter, which it is not.

