
Math 114L, Spring 2021, Solutions to HW #5

x2.8. Prove that for every structure A, the identity σ(x) = x on A
is an automorphism—the trivial one. Prove also that the structure N of
arithmetic has no other automorphisms—it is rigid.

Solution. To prove that id : N → N is an isomorphism we just need to
verify that it satisfies the conditions in Section 3B, and, of course, these
are all trivial

To prove that N = (N, 0, S,+, ·) is rigid, we need to verify that if σ :
N½→N is an isomorphism, then

for every n, σ(n) = n,

and we do this by induction.
Basis, σ(0) = 0. This is true because 0 is a “distinguished element”

(named by the constant 0), and so it is preserved by every isomorphism.
Induction Step. Assume σ(n) = n and compute:

σ(S(n) = S(σ(n)) ( because σ preserves S)

= S(n) (by the induction hypothesis).

x2.14. Prove that if a binary relation P (x, y) is elementary in a
structure A, then so is the converse relation

P̆ (x, y) ⇐⇒ P (y, x).

Solution. If P 2
1 (x, y) = x, P 2

2 (x, y) = y are the two projections, then

P̆ (x, y) ⇐⇒ P (y, x) ⇐⇒ P (P 2
2 (x, y), P 2

1 (x, y)),

and so P̆ (x, y) is elementary in A by (2) and (3) of Theorem 3J.1.

x2.15. Prove that if f(~x), g(~x) are elementary functions in a structure
A, then so is the relation

P (~x) ⇐⇒ f(~x) = g(~x).

Solution. The equality relation

Eq(u, v) ⇐⇒ u = v

is elementary by (1) of Theorem 3J.1, and hence so is

P (~x) ⇐⇒ Eq(f(~x), g(~x)) ⇐⇒ f(~x) = g(~x)

by (3) of the same theorem.

x2.17. Determine whether the (usual) ordering relation on real num-
bers is elementary on the field R = (R, 0, 1,+, ·), and if your answer is

1



2

positive, find a formula which defines them. (You need to know something
about the real numbers to do this.)

Solution. The ordering on R is elementary in R, because non-negative
real numbers have square roots and this characterizes them. So

x ≥ 0 ⇐⇒ (∃y)[x = y2], x ≤ y ⇐⇒ (y − x) ≥ 0.

x2.22. Prove that the following functions and relations on N are
arithmetical.

1. p(i) = pi = the i’th prime number, so that p0 = 2, p1 = 3, p2 = 5,
etc.

2. fn(x0, . . . , xn) = px0+1
0 · px1+1

1 · · · pxn+1
n . (This is a different function

of n + 1 arguments for each n.)
3. R(u) ⇐⇒ there exists some n and some x1, . . . , xn such that

u = fn(x1, . . . , xn).
Solution. 1. The function

h(u, i) = the least prime number which is greater than u

(which disregards its second argument) is arithmetical, because its graph
is arithmetical,

h(u, i) = w ⇐⇒ u < w ∧ Prime(w) ∧ (∀y)[(u < y ∧ Prime(y)) → w ≤ y];

and p(i) = pi is defined by the primitive recursion

p(0) = 2, p(i + 1) = h(p(i), i)

as in (4-1), and so it is arithmetical by Theorem 4A.1.
2. Here we are asked to prove that every one of the functions

f0(x0) = 2x0+1, f1(x0, x1) = 2x0+1 · 3x1+1, . . .

is arithmetical. and perhaps the simplest way is to do this by induction
on n.

At the basis, let 2(x) = 2, which is clearly arithmetical, and compute:

f0(x0) = 2x0+1 = exp(2(x), S(x)),

so that f0 is arithmetical by (3) of Theorem 3J.1 and the fact that
exp(u, v) is arithmetical.

At the induction step, the definition gives

fn+1(x0, . . . , xn, xn+1) = fn(x1, . . . , xn) · pxn+1+1
n+1 .

Letting ~x = (x0, . . . , xn) to simplify notation, set

f ′n(~x, xn+1) = fn(Pn+2
1 (~x, xn+1), . . . , Pn+2

n+1 (~x, xn+1)) = fn(~x);

the function

g(~x, xn+1) = p
xn+1+1
n+1

Let me know of errors or better solutions.
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is arithmetical. by similar arguments (and recalling that pn+1 is just a
number, like 2 = p0 in the basis); and finally

fn+1(x0, . . . , xn, xn+1) = f ′n(~x, xn+1) · g(~x, xn+1),

so fn+1 is arithmetical by Theorem 3J.1 again, as the product of two
arithmetical functions.

3. The observation here is that the numbers

px0+1
0 · px1+1

1 · · · pxn+1
n

are (easily) characterized by the fact that if some prime p divides them,
then every smaller prime q < p also divides them; but this is an arith-
metical condition:

R(u) ⇐⇒ u ≥ 2 ∧ (∀p)(∀q)[(Prime(p) ∧ Prime(q) ∧ p | u ∧ q < p)=⇒ q | u],

where x | y is the divisibility relation.

x2.25. Prove that the ring of integers Z admits coding of tuples
(Example 4B.2).

Solution. By Lagrange’s Theorem (which is needed here), every natural
number is the sum of four squares—and, obviously, every x ∈ Z which is
the sum of four (or any number of) squares is a natural number; so we
can set

x ∈ N′ ⇐⇒ ∃x1∃x2∃x3∃x4[x = x2
1 + x2

2 +2
3 +x2

4].

This is an elementary subset of Z. We also let 0′ = 0, and we take
S′.+′, ·′ to be the restrictions to N′ of the successor function addition and
multiplication on Z, so that (N′, 0′S′, , +′, ·′) is obviously isomorphic with
N. Moreover, these functions are elementary in Z (which simply means
that their graphs are elementary relations in Z), e.g.,

x +′ y = z ⇐⇒ x, y, z ∈ N′ ∧ x + y = z;

thus (N′, 0′S′, ,+′, ·′) is a copy of N in Z.

To code tuples in Z we use the fact that every integer is either a natural
number or the negation of a natural number, and so we can code an n-
tuple (w0, . . . , wn−1) by a natural number code of the sequence

(w0, sign(w0), . . . , wn−1, sign(wn−1))

of natural numbers, where

sign(w) =

{
0, if w ≥ 0,

1, otherwise.

Let me know of errors or better solutions.
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Using the β-function to code tuples of natural numbers, we set

γ(a, b, i) =





0, if a /∈ N′ ∨ b /∈ N′ ∨ i /∈ N′,
β(a, b, 2i), otherwise, if β(a, b, 2i + 1) = 0,
−β(a, b, 2i), otherwise,

and verify easily that this function is Z-elementary and that it codes
tuples in Z.

x2.23. The Ackermann function is defined by the following double
recursion:

A(0, x) = x + 1
A(n + 1, 0) = A(n, 1)

A(n + 1, x + 1) = A(n,A(n + 1, x))

1. Compute A(1, 2).
2. Compute A(2, 1).
3. Prove that the Ackermann function is arithmetical.
Solution.
1. We can compute A(1, 2) by applying the given equations as needed,

A(1, 2) = A(0, A(1, 1)) = A(1, 1) + 1 = A(0, A(1, 0)) + 1

= A(1, 0) + 2 = A(0, 1) + 2 = 2 + 2 = 4.

This is messy, not systematic, and does not help much in the next part
of the problem. It is better to prove the general formula

A(1, x) = x + 2,(∗)
which is almost immediate by induction on x: at the basis,

A(1, 0) = A(0, 1) = 1 + 1 = 2,

and at the induction step,

A(1, x + 1) = A(0, A(1, x)) = A(1, x) + 1 = (x + 2) + 1 = x + 3.

Now (∗) gives A(1, 2) = 4 immediately.
2. Applying (just once) the third of the given equations and (∗):
A(2, 1) = A(1, A(2, 0)) = A(2, 0) + 2 = A(1, 1) + 2 = 1 + 2 + 2 = 5.

It is also not difficult to prove by induction the general formula

A(2, x) = 2x + 3.

3. This is quite difficult, in fact, and requires an analysis of the def-
inition of A(n, x); the idea is that all the values of it can be computed
by applying the given equations, which we must make precise in a useful
way. We give the proof in some detail.

Let me know of errors or better solutions.
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A sequence of triples

α =
(
(n0, x0, w0), (n1, x1, w1), . . . , (nk, xk, wk)

)

is an Ackermann derivation if one of the following conditions holds for
each i ≤ k:
(1) ni = 0 and wi = xi + 1.
(2) ni > 0, xi = 0, and there is some j < i such that nj = ni−1, xj = 1,

and wi = wj .
(3) ni > 0, xi > 0, and there exist numbers j, l < i such that

nj = ni, xj = xi, nl = ni − 1, xl = wj , w = wl.

Intuitively, an Ackermann derivation is a “proof’ that A(ni, xi) = wi for
each triple in the derivation, and we establish this in two, simple lemmas:

Lemma 1. If α is an Ackermann derivation as above, then for each
i ≤ k, A(ni, xi) = wi.

Proof of this is by induction on i ≤ k, for the given Ackermann deriva-
tion.

Lemma 2. If A(n, x) = w, then there exists an Ackermann derivation
as above such that nk = n, xk = x and wk = w.

Proof is by induction on n and within this (in the induction step) in-
duction on x. (One uses the trivial fact that the concatenation of two
Ackermann derivations is also an Ackermann derivation.)

It follows that

A(n, x) = w ⇐⇒ there exists an Ackermann derivation
such that nk = n, xk = x,wk = w,

and from this we can get an arithmetical definition of the graph of A(n, x)
using the tuple-coding supplied by the β-function.

Let me know of errors or better solutions.


