Math 114L, Spring 2021, Solutions to HW #5

x2.8. Prove that for every structure A, the identity o(xz) = z on A
is an automorphism—the trivial one. Prove also that the structure N of
arithmetic has no other automorphisms—it is rigid.

Solution. To prove that id : N — N is an isomorphism we just need to
verify that it satisfies the conditions in Section 3B, and, of course, these
are all trivial

To prove that N = (N,0,S,+, ) is rigid, we need to verify that if o :
N>— N is an isomorphism, then

for every n,o(n) = n,

and we do this by induction.
Basis, 0(0) = 0. This is true because 0 is a “distinguished element”
(named by the constant 0), and so it is preserved by every isomorphism.
Induction Step. Assume o(n) =n and compute:

o(S(n) = S(o(n)) ( because o preserves S)
= S(n) (by the induction hypothesis).

x2.14. Prove that if a binary relation P(xz,y) is elementary in a
structure A, then so is the converse relation

P(z,y) < P(y,x).
Solution. If P}(z,y) = x, PZ(x,y) = y are the two projections, then
P(z,y) <= P(y,x) < P(P;(z,y), P{(z,y)),
and so P(z,y) is elementary in A by (2) and (3) of Theorem 3J.1.

x2.15. Prove that if f(Z), g(Z) are elementary functions in a structure
A, then so is the relation

P(¥) < [(Z) = g().
Solution. The equality relation
Eq(u,v) <= u=wv
is elementary by (1) of Theorem 3J.1, and hence so is
P(¥) <= Eq(f(9),9(7)) < [f(T)=9(7)
by (3) of the same theorem.

x2.17. Determine whether the (usual) ordering relation on real num-
bers is elementary on the field R = (R,0,1,4+,-), and if your answer is
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positive, find a formula which defines them. (You need to know something
about the real numbers to do this.)

Solution. The ordering on R is elementary in R, because non-negative
real numbers have square roots and this characterizes them. So

>0 <= Ir=y?, z<y < (y—x)>0.

x2.22.  Prove that the following functions and relations on N are
arithmetical.

1. p(i) = p; = the i’th prime number, so that pgp = 2,p;1 = 3,p2 = 5,

etc.
1 1
2. fn(l‘o, - ,xn) — pgo-&- .pgch_ ‘

of n 4+ 1 arguments for each n.)
3. R(u) <= there exists some n and some z1, ... ,x, such that
u= fu(x1,... ,xn).
Solution. 1. The function

--p%eFl (This is a different function

h(u,i) = the least prime number which is greater than u

(which disregards its second argument) is arithmetical, because its graph
is arithmetical,
h(u,i) =w <= u < w A Prime(w) A (Vy)[(u < y A Prime(y)) — w < y];

and p(i) = p; is defined by the primitive recursion

p(0) =2, p(i+1)=h(p(i),i)
as in (4-1), and so it is arithmetical by Theorem 4A.1.
2. Here we are asked to prove that every one of the functions

fo(xo) = 2x0+17 f1 (.To,xl) = 2x0+1 . 3x1+17 .

is arithmetical. and perhaps the simplest way is to do this by induction
on n.
At the basis, let 2(x) = 2, which is clearly arithmetical, and compute:

fo(zo) = 2% = exp(2(2), S(z)),
so that fy is arithmetical by (3) of Theorem 3J.1 and the fact that
exp(u, v) is arithmetical.
At the induction step, the definition gives

n 1
fn—i—l(xOy cee uxnaxn—i-l) = fn(xh cee 71'n) 'pii_;rll+
Letting Z = (zo, ... ,zy) to simplify notation, set
frlz(fa Tpi1) = fn(P{L+2(fa Tpt1)s- - s 7?112(57 Tnt1)) = fu(T);

the function

— n+1+1
9(&, wny1) = Py

Let me know of errors or better solutioms.
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is arithmetical. by similar arguments (and recalling that p,41 is just a
number, like 2 = pg in the basis); and finally

fn+1(x0a cee s Ty :ETL+1) = f'r,z('fa $n+1) . g(fv anrl)?
SO fpy1 is arithmetical by Theorem 3J.1 again, as the product of two
arithmetical functions.
3. The observation here is that the numbers

ro+1 r1+1 Tn+1
pOO . p11 . pn

are (easily) characterized by the fact that if some prime p divides them,
then every smaller prime q < p also divides them; but this is an arith-
metical condition:

R(u) <= u>2A (¥p)(Vq)[(Prime(p) A Prime(q) Ap | u A g <p)=q|ul,
where z | y is the divisibility relation.

x2.25.  Prove that the ring of integers Z admits coding of tuples
(Example 4B.2).

Solution. By Lagrange’s Theorem (which is needed here), every natural
number is the sum of four squares—and, obviously, every x € Z which is
the sum of four (or any number of) squares is a natural number; so we
can set

e N < Jr3xoTasIngfz = 23 + 23 43 +27).

This is an elementary subset of Z. We also let 0 = 0, and we take
S’.4', " to be the restrictions to N’ of the successor function addition and
multiplication on Z, so that (N, 0/'S’,,+, ") is obviously isomorphic with
N. Moreover, these functions are elementary in Z (which simply means
that their graphs are elementary relations in Z), e.g.,

r+ y=2 <= z,y,2e NAz+y=2

thus (N, 0'S’,,+',-/) is a copy of N in Z.

To code tuples in Z we use the fact that every integer is either a natural
number or the negation of a natural number, and so we can code an n-
tuple (wo, ... ,wn—1) by a natural number code of the sequence

(’UJ(), Sign(wO)a <oy Wn—1, Sign(wnfl))
of natural numbers, where

0, ifw>0,
1, otherwise.

sign(w) = {

Let me know of errors or better solutioms.
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Using the g-function to code tuples of natural numbers, we set
0, ifag NVbgNVigN,
v(a,b,i) = < B(a,b,2i),  otherwise, if 3(a,b,2i + 1) = 0,
—0(a,b,2i), otherwise,

and verify easily that this function is Z-elementary and that it codes
tuples in Z.

x2.23. The Ackermann function is defined by the following double
TECUTSION:

A0,z)=x+1
A(n+1,0)=A(n,1)
Aln+ 1,24+ 1)=A(n,A(n+ 1,2))
1. Compute A(1,2).
1).

2. Compute A(2,
3. Prove that the Ackermann function is arithmetical.

Solution.
1. We can compute A(1,2) by applying the given equations as needed,

A(1,2) = A0, A(1,1)) = A(1,1) + 1 = A(0, A(1,0)) + 1
= A(1,0)+2=A(0,1) +2=2+2=4.

This is messy, not systematic, and does not help much in the next part
of the problem. It is better to prove the general formula

(%) A(l,z) =2+ 2,
which is almost immediate by induction on x: at the basis,
A(1,0) = A(0,1) =1+1=2,
and at the induction step,
A(l,z+1) = A0, A(L,z)) = A(l,z)+ 1= (z+2)+ 1 =2+ 3.
Now (x) gives A(1,2) = 4 immediately.
2. Applying (just once) the third of the given equations and (x):
A(2,1) = A(1,A(2,0)) = A(2,00+2=A(1,1)+2=1+2+2=5.
It is also not difficult to prove by induction the general formula
A2,z) =22+ 3.

3. This is quite difficult, in fact, and requires an analysis of the def-
inition of A(n,x); the idea is that all the values of it can be computed
by applying the given equations, which we must make precise in a useful
way. We give the proof in some detail.

Let me know of errors or better solutioms.



A sequence of triples

o= ((n07$0,w0)7(n1,3¢17w1),-~ ,(nkﬁﬁk,wk))

is an Ackermann derivation if one of the following conditions holds for
each 1 < k:
(1) n; =0 and w; = x; + 1.
(2) n; > 0,2; = 0, and there is some j < i such that n; =n; —1, z; =1,
and w; = wj.
(3) n; > 0,2; > 0, and there exist numbers j,[ < i such that

n;g =mng, Tj; =1 n=n;—1, xp=wj, w=uw.

Intuitively, an Ackermann derivation is a “proof’ that A(n;,z;) = w; for
each triple in the derivation, and we establish this in two, simple lemmas:

Lemma 1. If « is an Ackermann derivation as above, then for each
7 S k, A(nz,xz) = Wj.

Proof of this is by induction on i < k, for the given Ackermann deriva-
tion.

Lemma 2. If A(n,x) = w, then there exists an Ackermann derivation
as above such that np =n,xr = x and wi = w.

Proof is by induction on n and within this (in the induction step) in-
duction on z. (One uses the trivial fact that the concatenation of two
Ackermann derivations is also an Ackermann derivation.)

It follows that

A(n,x) =w <= there exists an Ackermann derivation
such that ny =n,zr =z, wp = w,

and from this we can get an arithmetical definition of the graph of A(n,x)
using the tuple-coding supplied by the -function.

Let me know of errors or better solutioms.



