Math 114L, Spring 2021, Solutions to HW #4

x2.2. Determine the free and bound occurrences of variables in the
following (misspelled) formula of LPCI(<):

¢ =Vy(z <y) AVzdy(z <y A-(y <))

Which are the free variables of ¢ and which are its bound variables?
Solution. The only free occurrence of a variable in ¢ is the first occur-
rence of x, boxed in this copy:

¢ =Vy(z]<y) AVaIy(z <y A-(y < x2))

The only free variable of ¢ is  while the bound variables of ¢ are x
and y. (So x is both a free and a bound variable of ¢.)

x2.3. Consider the following two sentences in the language of posets:
¢ = FviIveVva[vy < vo], ¢ = FviVvodvalvy < val.

What do they mean, and do they have the same truth value in every
poset?

Solution. ¢ says that the poset has a least element; 1 says that the
poset has a member less-equal to it, and is always true.

x2.5. Write out the correctly spelled form of (3!z)¢ in (2-2).
Solution. Assuming that x = v;, choose a variable v; which does not
occur in ¢ and set (3'v;)¢ := Iv;Vvi((¢ — vi = vj) A (vi = v — @)).

x2.6. Give an example of a term «, variables v1,vo and terms t1,to
such that a{vy = t1}{ve :=ta} Z a{v1 = t1,v2 = ta}.

Solution. Take o = f(v1,v2) with two distinct variables and let ¢ be a
constant; then

f(v1,v2){v1 = w9, Hva := ¢} = f(ve,v2){va :=c} = f(c, ),

f(vr,v2){v1 = va,v9 := ¢} = f(v2,0).

x2.16. Determine whether the following relations are elementary on a
fixed, symmetric graph G = (G, E), and if your answer is positive, find a
formula which defines them.

(1) P(z,y) <= d(z,y) <2

P(z,y) < d(z,y) = 2.

P(z,y) < d(z,y) < cc.

P(z,y,2) <= d(z,y) < d(z,2)

P(x) <= every y can be joined to z.
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Solution. Recall that (by convention), d(z,z) = 0.
The first two of the relations in the problem are obviously elementary
on every symmetric graph,

dz,y) <2 <= z=yV E(z,y) V (32)[E(z,2) N E(z,9)],
d(z,y) =2 <= z#yA-E(z,y) AN (3z)[E(z,2) A\ E(2,y)].

(3): this relation is not elementary on some graphs. We will construct
graphs with this property further on.

(4): this is not also not elementary on some graphs, like (3). We will
eventually prove this.

(5): this relation is elementary on every symmetric graph, which is a
surprize because it looks complex, a bit like (3) and (4). To prove this,
we consider two cases on any given graph:

Case 1, G is connected. In this case every node can be connected with
any given = so that P(x) is true of all  and is defined by the formula
T =

Case 2, G is not connected, so that there are two points y, z such that
no path connects y with z. In this case, P(x) fails for every z; because
if every point could be connected by a path to z, then there would be a
path from y to z, going first from y to = and then from z to z. So P(x)
is always false and can be defined by the formula x # x.

The result looks surprizing because the natural way to understand the
question is whether there is a single extended formula ¢(x) which defines
the relation P; and this indeed fails on some graphs, as we will see further
on.

x2.18. Prove that every two structures
N; = (N1,01,51,+1,-1), N2 = (Ng,02,52,+2,2)

which satisfy the Peano axioms in 1D are isomorphic. HINT: Let

X = {t € Nj | there exists a function f: A — B such that
01 € A, f(01) =02 € Ng, and for all ¢t € Ny,
Si(t) € A= [t € A& f(t) € Ny & f(S1(1) = Sa(f ()] }.

Use the Induction Axiom on N to prove that X = Nj and there is an
injection o : Ny = Ny such that

o(01) = 03 and for all t € Ny, 0(S1(t)) = Sa(o(t));

and then use the Induction Axiom on N2 to prove that o[Ni] = Na.

Solution. The hint amounts to a full proof for those who know a bit
of set theory, which, in any case, is needed to prove Dedekind’s charac-
terization of N.

Let me know of errors or better solutioms.



