x1.6. Construct the truth table for the formula $(p \to q) \land \neg(q \to p)$. Solution.

p	q	$(p \rightarrow q)$	$(q \rightarrow p)$	$\neg(q \rightarrow p)$	$(p \to q) \land \neg (q \to p)$
0	0	1	1	0	0
0	1	1	0	1	1
1	0	0	1	0	0
1	1	1	1	0	0

x1.15. Suppose R(i, j) is a relation defined for $i, j \leq n$, choose a doubly indexed sequence of distinct propositional variables $\{p_{ij}\}_{i,j\leq n}$, and consider the assignment

$$v(p_{ij}) = \begin{cases} 1, & \text{if } R(i,j), \\ 0, & \text{otherwise.} \end{cases}$$

The variables $\{p_{ij}\}$ can be used to express various properties about the relation R. Recall for example that

R is symmetric \iff (for all $i, j \le n$)[$R(i, j) \iff R(j, i)$];

now easily,

$$R \text{ is symmetric } \iff v \models \bigwedge_{i \le n} \bigwedge_{j \le n} [p_{ij} \leftrightarrow p_{ji}]$$

Find propositional formulas which express the following properties of R:

- (a) R is the graph of a function, i.e., $(R(i, j) \& R(i, k)) \Longrightarrow j = k$.
- (b) R is the graph of a one-to-one function.
- (c) R is the graph of a surjection—a function from $\{0, \ldots, n\}$ onto $\{0, \ldots, n\}$.

Solution. We will use the following extended version of the finite conjunction and disjunction constructs: for any finite sequence ϕ_0, \ldots, ϕ_n of formulas and any non-empty set $I \subseteq \{0, 1, \ldots, n\}$,

$$\bigwedge_{i \in I} \phi_i :\equiv \bigwedge_{j \le k} \phi_{f(j)}, \quad \bigvee_{i \in I} \phi_i :\equiv \bigvee_{j \le k} \phi_{f(j)}$$

where $f : \{0, \ldots, k\} \to \{0, \ldots, n\}$ enumerates I in increasing order; and in case $I = \emptyset$,

$$\bigwedge_{i\in\emptyset}\phi_i:=\phi_0\vee\neg\phi_0,\quad \bigvee_{i\in\emptyset}\phi_i:=\phi_0\wedge\neg\phi_0.$$

Fr example,

$$\bigwedge_{i \in \{2,5\}} \phi_i :\equiv \phi_2 \& \phi_5, \quad \bigvee_{i \in \{0,5,7\}} \phi_i :\equiv \phi_0 \lor \phi_5 \lor \phi_7$$

This makes it easier to manipulate finite conjunctions and disjunctions without even needing to worry whether they are empty. It is useful here to read

 $\bigwedge_{i \in I} \phi_i$ as "for all $i \in I, \phi_i$ ", $\bigvee_{i \in I} \phi_i$ as "there exists $i \in I$ such that ϕ_i ", where the set I will be defined by various conditions.

- (a) $\chi_a :\equiv \neg \left(\bigvee_{i,j,k \le n, j \ne k} [p_{ij} \land p_{ik}] \right).$
- (b) $\chi_b := \chi_a \wedge \neg (\bigvee_{i,j,k \le n, i \ne j} [p_{ik} \wedge p_{j,k}]).$
- (c) $\chi_b :\equiv \chi_a \land \bigwedge_{j \leq n} \bigvee_{i \leq n} p_{ij}$.

x1.17. Prove that the "repetition" clause (D2) in the definition of deduction is not needed: i.e., if $T \vdash \chi$, then there is a deduction of χ from T without repetitions. (The clause was included in the definition so that we can more easily combine deductions without restriction.)

Solution. A deduction χ_0, \ldots, χ_k from T as defined by (D1) – (D4) in 3A is also a deduction in which (D2) (repetition) is not allowed as a justification for including some formula χ_n ; because if $\chi \equiv \chi_n$ occurs earlier in the sequence and m is least such that $\chi \equiv \chi_m$, then χ is either an assumption (in T) or an axiom or follows from some χ_i, χ_j with i, j < m < n by Modus Ponens—and then it can be re-inserted in the deduction as χ_n with the same justification.

x1.19. Prove the (\neg) -introduction rule in Lemma 3A.4: that

if $T, \chi \vdash \phi$ and $T, \chi \vdash \neg \phi$, then $T \vdash \neg \chi$.

Solution. The hypothesis and the Deduction Theorem 3A.3 give us deductions (from T) of $\chi \to \phi$ and $\chi \to \neg \phi$. To get a deduction of $\neg \chi$ from T we put these two deductions together and then follow them with an instance of Axiom (3) and two applications of Modus Ponens as follows:

$$\dots, \chi \to \phi, \dots, \chi \to \neg \phi, (\chi \to \phi) \to [(\chi \to \neg \phi) \to \neg \chi],$$
$$(\chi \to \neg \phi) \to \neg \chi, \neg \chi.$$

x1.22. Prove that if T is not consistent, then $T \vdash \chi$ for every χ .

Solution. Assume that $T \vdash \phi$ and $T \vdash \neg \phi$, which with Axiom (1) give deductions from T of $\neg \chi \rightarrow \phi$ and $\neg \chi \rightarrow \neg \phi$. Now use Axiom (3) with two applications of Modus Ponens to get from T a proof of $\neg \neg \chi$, from which χ follows by Axiom (4) and another Modus Ponens.

x1.24. Prove that a set of formulas T is consistent if and only if every finite subset of T is consistent.

Let me know of errors or better solutions.

 $\mathbf{2}$

Solution. The key ideas are that provability is monotone and proofs are finite, and it is easier to prove the contrapositive claim, i.e.,

T is inconsistent \iff some finite subset of T is inconsistent.

In the direction (\Leftarrow), if $T_0 \vdash (\chi \land \neg \chi)$ for some finite $T_0 \subset T$, then also $T \vdash (\chi \land \neg \chi)$ by monotonicity; and in the direction (\Rightarrow), if $T \vdash (\chi \land \neg \chi)$, then there is a finite deduction from T

$$\phi_0, \phi_1, \dots, \phi_n \equiv (\chi \land \neg \chi),$$

and if we let $T_0 = \{\phi_i \mid i \leq n \& \phi_i \in T\}$, then T_0 is a finite subset of T and the same sequence of formulas is a deduction from T_0 , so $T_0 \vdash (\chi \land \neg \chi)$.

x1.27. Suppose T is an infinite set of formulas. Prove that if every finite subset $T_0 \subset T$ of T is satisfiable, then T is satisfiable.

Solution. If every finite subset T_0 of T is satisfiable, then every finite $T_0 \subset T$ is consistent, since it cannot be that $v \models (\chi \land \neg \chi)$; and so T is consistent by Problem x1.24, and hence T is satisfiable by the Completeness Theorem 3B.5. Note: The Compactness Theorem is useful in various applications (some of which we will meet later) and its formulation does not involve formal deductions; we proved it using formal deductions, of course, but it can also be proved directly from the semantics of PL using a bit of set theory.

Let me know of errors or better solutions.