Math 114L, Spring 2021, Solutions to HW #3

x1.6. Construct the truth table for the formula (p — ¢) A (¢ — p).
Solution.

plealp—aq)|(@—p)|~(g—p) | (p—q9A-(¢g—Dp)
010 1 1 0 0
01 1 0 1 1
1]0 0 1 0 0
11 1 1 0 0

x1.15. Suppose R(i,j) is a relation defined for i,7 < n, choose a
doubly indexed sequence of distinct propositional variables {p;; }i j<n, and
consider the assignment

1, if R(i, ),
0, otherwise.

v(pij) = {

The variables {p;;} can be used to express various properties about the
relation R. Recall for example that

R is symmetric <= (for all 4,5 < n)[R(i,j) < R(j,7)];
now easily,
R is symmetric <= v = M ;< /M j<nlPij < pjil-

Find propositional formulas which express the following properties of R:

(a) R is the graph of a function, i.e., (R(i,75) & R(i,k)) =7 = k.
(b) R is the graph of a one-to-one function.
(¢) R is the graph of a surjection—a function from {0,...,n} onto

{0,...,n}.

Solution. We will use the following extended version of the finite con-

junction and disjunction constructs: for any finite sequence ¢y, . .. , ¢, of
formulas and any non-empty set I C {0,1,... ,n},

Micr®i = N j<kPri),  Wier®i == Wi<i®r0)
where f:{0,...,k} — {0,... ,n} enumerates I in increasing order; and

in case I = (),

MNicp®i = oV 00, Wicp®i = do N ¢o.

Fr example,
Mica510i = 02&ds,  Wiego,5,11%i = oV &5V o7
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This makes it easier to manipulate finite conjunctions and disjunctions
without even needing to worry whether they are empty. It is useful here
to read

MNicr®i as “for alli € I,¢;”, W,;cr¢: as “there exists ¢ € I such that ¢;”,

where the set I will be defined by various conditions.
(a) Xa = _‘(\X/@',j,kgn,j;ék[pij A pzk])

(b) Xp = Xa A _'(\X/i,jykén,i#j [pik A pﬂ'vk])'
(©) Xb = Xa A M\ j<n Wi<nPij-

x1.17. Prove that the “repetition” clause (D2) in the definition of
deduction is not needed: i.e., if T F x, then there is a deduction of x
from T without repetitions. (The clause was included in the definition so
that we can more easily combine deductions without restriction.)

Solution. A deduction xo,...,xr from T as defined by (D1) — (D4)
in 3A is also a deduction in which (D2) (repetition) is not allowed as
a justification for including some formula y,; because if x = x, occurs
earlier in the sequence and m is least such that x = x,,, then x is either
an assumption (in 7') or an axiom or follows from some x;, x; with i,j <
m < n by Modus Ponens—and then it can be re-inserted in the deduction
as xn with the same justification.

x1.19. Prove the (—)-introduction rule in Lemma 3A.4: that
if T, xF¢and T, xF —¢, then T F —y.

Solution. The hypothesis and the Deduction Theorem 3A.3 give us
deductions (from T') of x — ¢ and x — —¢. To get a deduction of
-y from T we put these two deductions together and then follow them
with an instance of Axiom (3) and two applications of Modus Ponens as
follows:

X X = 0 (X — 0) = [(x — m9) — ],
(X = =) = =x, X
x1.22. Prove that if T" is not consistent, then T+ y for every y.
Solution. Assume that T+ ¢ and T+ —¢, which with Axiom (1) give
deductions from T" of =y — ¢ and —xy — —¢. Now use Axiom (3) with

two applications of Modus Ponens to get from T a proof of ==y, from
which y follows by Axiom (4) and another Modus Ponens.

x1.24. Prove that a set of formulas T is consistent if and only if every
finite subset of T' is consistent.

Let me know of errors or better solutioms.
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Solution. The key ideas are that provability is monotone and proofs are
finite, and it is easier to prove the contrapositive claim, i.e.,

T is inconsistent <= some finite subset of T is inconsistent.

In the direction (<), if Ty F (x A —x) for some finite Ty C 7', then also
T+ (x A =) by monotonicity; and in the direction (=), if T+ (x A —=x),
then there is a finite deduction from T'

¢Oa¢la"' 7¢HE(X/\_'X)5

and if we let Ty = {¢; | i <n & ¢; € T}, then Ty is a finite subset of T" and
the same sequence of formulas is a deduction from Tp, so Ty F (x A —x).

x1.27. Suppose T is an infinite set of formulas. Prove that if every
finite subset Ty C T of T is satisfiable, then T is satisfiable.

Solution. If every finite subset Ty of T' is satisfiable, then every finite
To C T is consistent, since it cannot be that v = (x A —x); and so T is
consistent by Problem x1.24, and hence T is satisfiable by the Complete-
ness Theorem 3B.5. Note: The Compactness Theorem is useful in various
applications (some of which we will meet later) and its formulation does
not involve formal deductions; we proved it using formal deductions, of
course, but it can also be proved directly from the semantics of PL using
a bit of set theory.

Let me know of errors or better solutioms.



