
You may refer to and use every result in the Notes and the slides of
the lectures for all three Parts of the class and every problem in the
nine homework assignments whose solutions have been posted, except
for Problem 3.

Try to be concise and clear, making sure the grader understands how
you are going to prove something—the “architecture” of your argument.

All problems are worth the same, but they vary greatly in difficulty:
make sure you do all the easy ones.

Problem 1. Prove that for any signature τ , every LPCI(τ)-term t satisfies
exactly one of the following three conditions.

(a) t ≡ v for a uniquely determined variable v.
(b) t ≡ c for a uniquely determined constant c.
(c) t ≡ f(t1, . . . , tn) for a uniquely determined function symbol f and

uniquely determined terms t1, . . . , tn.

Solution. As explained in Section 2B (page 5) of Part 2 of the Notes,
for any signature τ ,

t is an LPCI(τ)-term if it is a member of every set S of strings which
is closed under LPCI(τ)-term-formation, i.e.,

(1) every variable vi is a member of S (as a string of length 1);
(2) every τ -constant is a member of S (as a string of length 1);
(3) If f is a function symbol in τ with arity n and t1, . . . , tn are all

members of S, then the string f(t1, . . . , tn) is a member of S.

So to prove the Parsing Lemma for LPCI(τ) terms claimed by this prob-
lem, we need to show that the set of strings S which satisfy (a) – (c) is
closed is closed under LPCI(τ)-term formation. This is quite simple and
we will skip writing it down.

Problem 2. For the signature τ = (E) with just one binary relation
symbol, decide whether the following properties of τ -structures (graphs)
are basic elementary or elementary and prove your answer:

(1) (G,E) is a symmetric graph.
(2) (G,E) is symmetric and connected.
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Solution. A structure (G,E) is a symmetric graph if it satisfies (the
universal closures of) the formulas

¬E(v, v), E(u, v) → E(v, u).

so the class of symmetric graphs is basic elementary.

On the other hand, the class of connected graphs is not elementary. To
prove this by contradiction, suppose it were, so

(G,E) is a connected graph ⇐⇒ (A,E) |= T

for some T , choose two fresh constants a, b and consider the theory

T ∗ = T ∪ {d(a, b) > 1, d(a, b) > 2, d(a, b) > 3, . . . }
where d(x, y) is the distance from x to y, the length of the smallest path
from x to y. Now every finite subset T0 of T ∗ has a model, e.g.,

G(n) = (N, an, bn, E)

where E(i, j) ⇐⇒ |i − j| = 1 and an = 0, bn = n, so d(0, bn) = n for
some n (which depends on T0). Now the Compactness Theorem gives us
a model (A, aA, bA, EA) of T ∗ which is not connected, because d(aA, bA) =
∞.

Problem 3. (For this problem, you can only use results earlier in the
LPCI Notes than 7C.4.)

Prove the (¬)-Introduction Rule in Lemma 7C.4 of the Notes for LPCI,
that if χ is a sentence, then for any theory T ,

if T, χ ` ψ and T, χ ` ¬ψ, then T ` ¬χ.

Solution. The hypothesis and the Deduction Theorem give us that

T ` χ → ψ and T ` χ → ¬ψ;

we put these proofs together to get from T

T : . . . , χ → ψ, . . . , χ → ¬ψ,

(χ → ψ) → ((χ → ¬ψ) → ¬χ) (Axiom (3) of the Hilbert system),

(Modus Ponens twice) ¬χ.

Problem 4. Let T be a (0, +)-theory such that

if A = (A, 0A,+A) |= T,

then A has an expansion B = (A, 0A, +A, SB, ·B) such that B |= PA.
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Determine whether for every (0, +)-sentence χ,

PA ` χ=⇒T ` χ(∗)
and prove your answer.

Solution. The claim is true. To prove it, suppose that χ is an arbi-
trary (0,+)-sentence such that PA ` χ, so by the Soundness Theorem,

B |= PA=⇒B |= χ (B any τ
PA

-structure).

Now let A be any (0, +)-structure such that A |= T ; by the hypothesis
of the problem, A has an expansion B such that B |= PA; so B |= χ; so
A |= χ by Compositionality; and since A was an arbitrary model of T ,
T |= χ; and so T ` χ by the Completeness Theorem.

Problem 5. Let N+ = (N, 0, +) be the reduct of N to the vocabulary
(0,+);

let N∗
+ = (N∗, 0, +) be the corresponding reduct of a non-standard

model of true arithmetic, as these were defined in the last Section 7E of
the LPCI Notes;

and let E+ = (E, 0, +E) where E is the set of even numbers and +E is
the restriction of addition in N to the even numbers.

Prove that these three structures are elementarily equivalent, i.e., for
every LPCI(0, +)-sentence χ,

N+ |= χ ⇐⇒ N∗
+ |= χ ⇐⇒ E+ |= χ.

Solution. We need to prove two equivalences in this problem, and
what makes it interesting is that they hold for entirely different reasons.

(1) By Compositionality and the basic property of N∗, for any LPCI(0, +)-
sentence χ,

N+ |= χ ⇐⇒ N |= χ ⇐⇒ N∗ |= χ ⇐⇒ N∗
+ |= χ.

(2) The “doubling” map σ(n) = 2n is (easily) an isomorphism of the
structure N+ = (N, 0,+) with E+ = (E, 0, +E) and hence, for every
LPCI(0, +)-sentence χ,

N+ |= χ ⇐⇒ E+ |= χ.
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Now (1) and (2) taken together show that

E+ |= χ ⇐⇒ N+ |= χ ⇐⇒ N∗
+ |= χ

as required.

Problem 6. Construct a model of Raphael Robinson’s τ
PA

-theory Q
defined in 6B.5 of the LPCI Notes which is not elementarily equivalent
with N.

Solution. Let A = N ∪ {a}, where a is any object not in N (that we
think of as being infinitely large). We interpret 0 by 0, and the functions
S, +, · as usual on N, and for a we set (for any n ∈ N):

1. S(a) = a.
2. a + n = n + a = a + a = a.
3. a · 0 = 0; a · (n + 1) = a · a = a.

We now must check all the axioms of the Robinson system, but this is
quite trivial. For example: S is clearly one-to-one and never takes on
the value 0; the Robinson axiom holds because every x ∈ A is either 0
or the successor of something—that something being a, if x = a; and for
addition, in the cases when one of the arguments is a:

a + 0 = a; a + S(n) = a = S(a) = S(a + n);

n + S(a) = n + a = a = S(a) = S(n + a);

a + S(a) = a + a = a = S(a) = S(a + a).

The computation is similar for multiplication.

This structure is not elementarily equivalent with N because it satisfies
the sentence (∃x)[S(x) = x] which, of course, fails in N.

Problem 7. Call (for this problem only) a τ -structure A = (A, . . . ) nice
if for each x ∈ A, there is a closed term tx (no variables) such that

valueA(tx) = x;

for example, N is nice because n = valueN(∆(n)) (as in (2-2) of the Notes
on LPCI).

Prove that if A is nice, then for all x ∈ A and all assignments π into A,

A, π{v := x} |= φ ⇐⇒ A, π |= (∃v)[φ ∧ v = tx]
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Solution. This is a simple generalization of Lemma 2.1 in TG of the
third part of the Notes and it can be proved by (basically) copying the
proof of that lemma and replacing ∆(n) by tx throughout.

Problem 8. True or False: A unary relation R(n) is arithmetical if and
only if there is a number f such that

R(n) ⇐⇒ D(f, n) ∈ Truth(N),

where

D(f, n) = #
(∃v0

) ∗ f ∗#(∧v0 =) ∗ δ(n) ∗ 〈sc[)]〉
is the arithmetical function defined in the proof of Lemma 2.2 of Part 3
of the Notes. (To get some credit you must give the correct answer; and
to get full credit, you must prove it.)

Solution. By Lemma 2.1 and the definition of D(f, n) in Lemma
2.2 of Part 3 of the Notes reproduced here, for every, unary arithmetical
relation R(n), there is a formula φ with just v0 free such that

R(n) ⇐⇒ N |= ∃v0(φ ∧ v0 = ∆(n)) ⇐⇒ D(#(φ), n) ∈ Truth(N),

which gives R(n) ⇐⇒ D(f, n) ∈ Truth(N) with f = #(φ).

For the converse, we assume that a relation R(n) satisfies

R(n) ⇐⇒ D(f, n) ∈ Truth(N)

⇐⇒ #
(∃v0

) ∗ f ∗#(∧v0 =) ∗ δ(n) ∗ 〈sc[)]〉 ∈ Truth(N)

with some f , and we must prove that it is arithmetical.

We fix f and n and assume that D(f, n) ∈ Truth(N).

By (1) of Lemma 1.2 of Part 3 of the Notes where the concatenation
operation u ∗ v on (codes of) strings is defined,

if u and v are not both codes of strings, then u ∗ v = 0.

This means that f is the code of a string, since every member of Truth(N)
is the code of a string and 0 is not the code of a string. More than that,
every member of Truth(N) is the code of a formula; so D(f, n) is the
code of a formula; and by the Parsing Lemma for formulas, f must be
the code of a formula φ, uniquely determined by the formula whose code
is D(f, n). And finally, no variable other than v0 can be free in φ since
D(f, n) is the code of a sentence; so

R(n) ⇐⇒ N |= ∃v0(φ ∧ v0 = ∆(n)),

which by the Lemma 2.1 quoted in the beginning of this solution implies
that R(n) is arithmetical.
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Problem 9. Suppose A(n, x) is an arithmetical relation. For each of the
following claims, decide whether it is true or false and prove your answer.

(1) The relation

B(n) ⇐⇒df there is a finite sequence (x0, x1, . . . , xk)

such that A(n, x0), A(n, x1), . . . , A(n, xk) are all true

is arithmetical.

(2) The relation

B(n) ⇐⇒df there is an infinite sequence x0 < x1 < . . . ,

such that A(n, x0), A(n, x1), . . . , are all true

is arithmetical.

Solution. Both are true. The first uses the tuple coding to quantify
over finite sequences; for the second we use the equivalence

B(n) ⇐⇒ (∀x)(∃y > x)A(n, y)

Problem 10. Let γPA be the Gödel sentence for PA used in the Second
Proof of the First Incompleteness Theorem 2.7 of the third Part of the
Notes (with T = PA). Let

T1 = PA ∪ {γPA}, T2 = PA ∪ {¬γPA}.

(1) Is T1 consistent?

(2) Is T1 sound for N?

(3) Is T2 consistent?

(4) Is T2 sound for N?

You must prove your answers.

Solution. (1) – (3) are true and (4) is false.

(2) is true, because one of the two basic properties of γPA is that it is
true in N, so N |= T1; and this implies (1), since a theory which has a
model is consistent.

(3). T2 is consistent, because the second of the basic properties of γPA

is that PA 6` γPA.
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(4) is false because by the first basic property of γPA again, N 6|= γPA.


