
Math 114C, Winter 2019, Solutions to HW #7

x4C.1. Prove that if A is creative, B is r.e. and A ≤1 B, then B is also
creative.

Solution. The hypothesis gives us one-to-one, recursive functions f and p such
that

x ∈ A ⇐⇒ f(x) ∈ B,

We ⊆ Bc =⇒ p(e) ∈ Bc \We.

From the figure it is obvious that the productive function for Bc which we need
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is the function

pB(e) = f(p(g(e))),

where g has the property that

Wg(e) = f−1[We];

and a g with this property is the function g(e) = S1
1(ĥ, e), where ĥ is a code of

h(e, x) = {e}(f(x)).

x4C.2. Prove that if A is simple and B is r.e., infinite, then the intersection
A ∩B is infinite.

Solution. If the intersection A ∩B were finite, then there would exist some k
such that x ≥ k =⇒x /∈ (A ∩ B); and in this case, the infinite, r.e. set {x ∈ B |
x ≥ k} would be a subset of the complement Ac of A, which is absurd, since A
is simple.

x4C.3. Prove that if A and B are simple sets, then their intersection A ∩B
is also simple.

Solution. The set A∩B is r.e., and its complement is infinite (since it contains
the complement of A), so that it is enough to show that

We infinite =⇒We ∩A ∩B 6= ∅.
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Towards a contradiction, let We be infinite such that

We ⊆ (A ∩B)c = Ac ∪Bc,

and let
C = We ∩B.

C is r.e., and

t ∈ C =⇒ t ∈ We & t ∈ B

=⇒ [t ∈ Ac ∨ t ∈ Bc] & t ∈ B

=⇒ t ∈ Ac,

i.e., C ⊆ Ac and so (since A is simple), C is finite. It follows that

We ∩Bc = We \ C

is infinite, r.e. (as the difference of an infinite, r.e. and a finite set) and We∩Bc ⊆
Bc, which is absurd, since B is simple.

x4D.1. Prove that for some z, Wz = {z, z + 1, . . . } = {x | x ≥ z}.
Solution. By the 2nd Recursion Theorem, there exists some z such that

ϕz(x) =

{
1, if z ≤ t,

↑, otherwise,

and obviously,

Wz = {t | ϕz(t)↓} = {z, z + 1, . . . }.

x4D.2. Prove that for some z, ϕz(t) = t · z.
Solution. The function

f(z, t) = z · t
is recursive, and so there exists some z such that

ϕz(t) = f(z, t) = z · t.

Let me know of errors or better solutions.
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x5A.1. Classify in the arithmetical hierarchy the set

A = {e | We ⊆ {0, 1}}.
Solution. A is Π0

1-complete, so in the class Π0
1 \ Σ0

1. Proof:

x ∈ A ⇐⇒ (∀y)[y ∈ We =⇒ y ≤ 1],

so A is Π0
1. To show the Π0

1-completeness, we define for each recursive relation
P (x, y) the partial function

g(x, t) = µy[¬P (x, y)],

with values depending only on x, so that if ĝ is a code of it and

f(x) = S1
1(ĝ, x),

then

(∀y)P (x, y) =⇒ (∀t)g(x, t) ↑ =⇒Wf(x) = ∅,
¬(∀y)P (x, y) =⇒ (∀t)g(x, t)↓ =⇒Wf(x) = N;

more specifically,

(∀y)P (x, y) ⇐⇒ Wf(x) ⊆ {0, 1} ⇐⇒ f(x) ∈ A,

and A is Π0
1-complete.

x5A.2. Classify in the arithmetical hierarchy the set

B = {e | We is finite and non-empty}.
Solution. The proof is exactly as for (2) of 5A.6, with a small change in the

definition of the function g,

g(x, u) = µy[u = 0 ∨ (∀i ≤ u)¬Q(x, i, (y)i)].

x5A.3. Classify in the arithmetical hierarchy the set

C = {x | there exist infinitely many twin primes ≥ x},
where y is a twin prime number if both y and y + 2 are prime.

Solution. If there exist infinitely many twin primes, then C = N; and if not,
then C = ∅, so that whatever the correct answer to the classical, open problem,
C is recursive.

Let me know of errors or better solutions.


