
Math 114C, Winter 2019, Solutions to HW #4

x3A.1. Prove Lemma 3A.2.
Solution. Set f(l, u, i) = seg(u, i, i + l + 1), so that

seg(u, i, j) = f(j−· i−· 1, u, i) (0 ≤ i < j ≤ lh(u)),

and it is enough to prove that f(l, u, i) is primitive recursive. For this we com-
pute:

f(0, u, i) = seg(u, i, i + 1) = 〈(u)i〉 = 2(u)i+1,

f(l + 1, u, i) = seg(u, i, i + l + 1) = seg(u, i, l + 1) ∗ 〈(u)i+l〉
= seg(u, i, l + 1) · p(u)i+l+1

i+l ;

so f can be defined by primitive recursion from primitive recursive functions and
it is primitive recursive.

For the second claim, check that

〈u0, . . . , un−1〉 = x · pui+1
i p

ui+1+1
i+1 · · · puj−1+1

j−1 · y ≥ pui+1
i p

ui+1+1
i+1 · · · puj−1+1

j−1

for some x and y, and obviously,

pui+1
i p

ui+1+1
i+1 · · · puj−1+1

j−1 ≥ pui+1
0 p

ui+1+1
1 · · · puj−1+1

j−· i = seg(u, i, j).

The function seg(u, i, j) is primitive recursive for every primitive recursive
coding (by the proof above), but the inequality seg(u, i, j) ≤ u does not hold for
the primitive recursive coding which simply reverses the first two prime numbers
in the classical coding:

〈x0, . . . , xn−1〉′ = 3x0+1 · · · 2x1+1 · px2+1
2 · · · ,

because 〈0, 2〉′ = 3 · 23 = 24 < 27 = 33 = 〈2〉′.

x3A.2. Prove that every recursive partial function f(~x) has infinitely many
codes, i.e., there exist infinitely many numbers e such that f = ϕn

e .
Solution. If E is a program which computes f and p1

i is any one-place function
variable not occurring in E, then {p1

i (x) = p1
i (x)}+E again computes f , so that

if its code is ei, then f = ϕn
ei

; and there are infinitely many symbols which do
not occur in E.

The following alternative proof is a little better, as it does not refer to the
specific coding of the recursive partial functions: the partial function

g(m,~x) = f(~x)

is recursive; therefore, for some ĝ and all m,~x,

f(~x) = g(m,~x) = ϕn+1

ĝ
(m,~x) = ϕn

S1
n (̂g,m)

(~x),

so that for every m, S1
n(ĝ, m) is a code of f ; but S1

n is one-to-one, so f has
infinitely many codes.

x3A.3. Prove that if Tn(e, ~x, y) is defined by (67) and U(y) is defined by (70),
then (68) holds.

1



2

Solution. This involves unravelling the coding. If y is the code of a convergent
computation, then y = 〈[s0]5, . . . , [sn]5〉 where sn is the last stage, and so [sn]5 =
last(y). Since it is a terminal computation, sn is of the form : w for the output w,
and by the coding definition, [sn]5 = 〈1, 〈[w]1〉〉, so 〈[w]1〉 = ([sn]5)1 = last(y)1
and [w]1 = last(y)1,0. Finally, by the coding of numbers, [w]1 = 〈0, 1, w〉 and so
w = last(y)1,0,2. (The full proof needs some argument here, but this is given on
p. 60).

x3A.5. Prove that the relation Transition(e, s, s′) is primitive recursive.
(This computation has many details and it is not feasible to record them all.
What is required in this Problem is to explain the architecture of the proof, and
to work out some of the more interesting cases.)

Solution. There is no written solution of this problem: the best of the solutions
which will be turned in will be added here.

x3A.6. Prove that some primitive recursive function u(n) gives for each n a
code of the Ackermann section An(x).

Solution. Let a be some code of the Ackermann function, which is recursive;
we observe that

An(x) = ϕa(n, x) = ϕS1
1(a,n)(x),

so that for each n, the number S1
1(a, n) is a code of An(x).

x3A.8. Prove that there is a recursive partial function f(x) which does not
have a total recursive extension, i.e., there is no total recursive function g such
that f v g.

Solution. Let f(x) = 1−· ϕ1
x(x). If (towards a contradiction) f v ϕ1

e for some
total ϕ1

e, then we have, from the definition and the hypothesis

1−· ϕ1
x(x)↓ =⇒ 1−· ϕ1

x(x) = ϕ1
e(x),

which for x = e gives

1−· ϕ1
e(e)↓ =⇒ 1−· ϕ1

e(e) = ϕ1
e(e);

but the hypothesis of this implication is true (because ϕ1
e is total), so, with

ϕ1
e(e) = w we have 1−· w = w, which is absurd.

Let me know of errors or better solutions.


