
Definability theory

Once we know that there are functions on N which are not
computable, the subject splits into two:

• The theory of computable functions, comprising
the theory of algorithms, and complexity theory

• definability theory, which can be viewed as
complexity theory for non-computable functions (and relations)

• In definability theory we study the special (regularity) properties
of functions and relations which can be defined in various ways,
and structure properties of sets of definable functions.

Prim = the set of all primitive recursive functions and relations (on N)
Rec = the set of all recursive functions

• Prim and Rec are closed under substitutions, negations,
conjunctions and bounded quantification (∃i ≤ t)

. . . but Prim (Rec (the Ackermann function)

: L15, Feb 11, Mon, Section 4B, 1 1/30

More notations

Variations on the notation: with ~x = (x1, . . . , xn),

{e}(~x) = ϕe(~x) = ϕn
e(~x) = U(µyTn(e, ~x , y))

• The notation {e}(~x) puts the program e on the same level as
the data ~x and gives in which the Sm

n -Theorem takes the form

{e}(~z, ~x) = {Sm
n (e,~z)}(~x) [~z = (z1, . . . , zm), ~x = (x1, . . . , xn)]

We = {x | {e}(x)↓} = the domain of convergence of ϕ1
e

: L15, Feb 11, Mon, Section 4B, 2 2/30

Operations on total functions and relations

(¬) P(~x) ⇐⇒ ¬Q(~x) (negation)

(&) P(~x) ⇐⇒ Q(~x) & R(~x) (conjunction)

(∨) P(~x) ⇐⇒ Q(~x) ∨ R(~x) (disjunction)

(⇒) P(~x) ⇐⇒ Q(~x) =⇒ R(~x) (implication)

(∃) P(~x) ⇐⇒ (∃y)Q(~x, y) (existential quantification)

(∃≤) P(z ,~x) ⇐⇒ (∃i ≤ z)Q(~x, i) (bounded ex. quant.)

(∀) P(~x) ⇐⇒ (∀y)Q(~x, y) (universal quantification)

(∀≤) P(z ,~x) ⇐⇒ (∀i ≤ z)Q(~x, i) (bounded univ. quant.)

(substitution) P(~x) ⇐⇒ Q(f1(~x), . . . , fm(~x))

• Prim and Rec are closed under all these operations except for (∃) and (∀)

(with total prim substitution for Prim and recursive substitution for Rec)

• Neither of these sets of functions and relations is closed under (∃) or (∀)

: L15, Feb 11, Mon, Section 4B, 3 3/30

Semirecursive and Σ0
1

(1) A relation P(~x) is semirecursive if for some recursive partial
function f (~x),

P(~x) ⇐⇒ f (~x)↓ ⇐⇒ {e}(~x)↓ for some e

(2) A relation P(~x) is Σ0
1 if for some recursive relation Q(~x , y)

P(~x) ⇐⇒ (∃y)Q(~x, y).

• The following are equivalent, for any relation P(~x):
(1) P(~x) is semirecursive.
(2) P(~x) is Σ0

1.
(3) P(~x) satisfies an equivalence

P(~x) ⇐⇒ (∃y)Q(~x , y)

with some primitive recursive Q(~x , y)

Proof. (1) =⇒ (3) by the normal form theorem; (3) =⇒ (2)
trivially; and (2) =⇒ (1) setting f (~x) = µyQ(~x , y), so that

(∃y)Q(~x , y) ⇐⇒ f (~x)↓

: L15, Feb 11, Mon, Section 4B, 4 4/30

Σ0
1 ∩ ¬Σ0

1 = Rec

• The Halting problem H(e, x) is semirecursive but not recursive.

• Kleene’s Theorem. A relation P(~x) is recursive if and only if
both P(~x) and its negation ¬P(~x) are semirecursive.

Proof. P(~x) ⇐⇒ (∃y)P(~x), ¬P(~x) ⇐⇒ (∃y)¬P(~x) by
“vacuous quantification”, so if P(~x) is recursive, then both P(~x)
and ¬P(~x) are semirecursive.

In the other direction, if

P(~x) ⇐⇒ (∃y)Q(~x , y), ¬P(~x) ⇐⇒ (∃y)R(~x , y)

with recursive relations Q and R, then the function

f (~x) = µy [R(~x , y) ∨ Q(~x , y)]

is recursive, total, and P(~x) ⇐⇒ Q(~x , f (~x))

: L15, Feb 11, Mon, Section 4B, 5 5/30

Closure properties of Σ0
1

• Σ0
1 is closed under recursive substitutions, under the “positive”

propositional operators &,∨, under the bounded quantifiers ∃≤,
∀≤, and under the existential quantifier ∃

Proof. For closure under recursive substitution notice that if
P(~x) ⇐⇒ Q(f1(~x), f2(~x)), then

χP(~x) = χQ(f1(~x), f2(~x)).

For the rest use the equivalences

(∃y)Q(~x, y) ∨ (∃y)R(~x , y) ⇐⇒ (∃u)[Q(~x, u) ∨ R(~x , u)]

(∃y)Q(~x , y) & (∃y)R(~x , y) ⇐⇒ (∃u)[Q(~x, (u)0) & R(~x , (u)1)]

(∃z)(∃y)Q(~x, y , z) ⇐⇒ (∃u)R(~x , (u)0, (u)1)

(∃i ≤ z)(∃y)Q(~x, y , i) ⇐⇒ (∃u)[(u)0 ≤ z & Q(~x , (u)1, (u)0)

(∀i ≤ z)(∃y)Q(~x, y , i) ⇐⇒ (∃u)(∀i ≤ z)Q(~x , (u)i , i).

: L15, Feb 11, Mon, Section 4B, 6 6/30

• Σ0
1 is not closed under negation or the universal quantifier, since

otherwise the basic halting relation

H(e, x) ⇐⇒ (∃y)T1(e, x , y)

would have a semirecursive negation and so it would be recursive
by Kleene’s Theorem.

: L15, Feb 11, Mon, Section 4B, 7 7/30

The Graph Lemma
The graph of a partial function f (~x) is the relation

Gf (~x , w) ⇐⇒ f (~x) = w ,

• Graph Lemma A partial function f (~x) is recursive if and only if
its graph Gf (~x , w) is a semirecursive relation.

Proof If f (~x) is recursive with code f̂ , then

Gf (~x , w) ⇐⇒ (∃y)[Tn(f̂ , ~x , y) & U(y) = w],

so that Gf (~x , w) is semirecursive; and if

f (~x) = w ⇐⇒ (∃u)R(~x , w , u)

with some recursive R(~x , w , u), then

f (~x) =
(
µuR(~x , (u)0, (u)1)

)

0
,

so that f (~x) is recursive.

: L15, Feb 11, Mon, Section 4B, 8 8/30

The Σ0
1-Selection Lemma

• Σ0
1-Selection Lemma For every semirecursive relation R(~x , w),

there is a recursive partial function f (~x) such that for all ~x ,

(∃w)R(~x , w) ⇐⇒ f (~x)↓

(∃w)R(~x , w) =⇒ R(~x , f (~x)).

Proof. By the hypothesis, there exists a recursive relation
P(~x , w , y) such that

R(~x , w) ⇐⇒ (∃y)P(~x , w , y),

and the conclusion of the Lemma follows easily if we set

f (~x) =
(
µuP(~x , (u)0, (u)1)

)

0
.

: L15, Feb 11, Mon, Section 4B, 9 9/30

The aim to study and classify definable relations by the
complexity of their definitions

• The following are equivalent, for any relation P(~x):
(1) P(~x) is semirecursive, i.e.,

P(x) ⇐⇒ f (x)↓

with some recursive f : Nn ⇀ N.

(2) P(~x) is Σ0
1, i.e.,

P(~x) ⇐⇒ (∃y)[R(~x , y)]

with sone recursive R(~x , y)

We also proved several closure properties of these sets of relations

The proofs in this lecture (and later) depend heavily on these
closure properties and illustrate how closure properties of sets of
relations can be used

: L16, Feb 13, Wed, Section 4B, 1 10/30

Recursively enumerable sets
A set A ⊆ N is recursively enumerable (r.e.), if A = ∅ or some
recursive total function f : N → N enumerates A,

A = f [N] = {f (0), f (1), . . .}.

• The following are equivalent for any A ⊆ N:

(a) A is r.e.

(b) The relation x ∈ A is semirecursive (equivalently Σ0
1)

(c) A is finite, or there is a recursive injection f : N � N which
enumerates A = f [N] without repetitions.

Proof. (a), (b), (c) are all true if A is empty, so assume A is not empty.
(a) =⇒ (b): If A = f [N], then x ∈ A ⇐⇒ (∃i)[f (i) = x], so A is Σ0

1

(b) =⇒ (a): if x0 ∈ A and x ∈ A ⇐⇒ (∃y)R(x , y), then A is
enumerated by the recursive total function

f (u) = if (R(u)0, (u)1) then (u)0 else x0

(c) =⇒ (a) is trivial. This leaves (a) =⇒ (c) for infinite A.

: L16, Feb 13, Wed, Section 4B, 2 11/30

Infinite r.e. sets can be enumerated without repetitions

• If A is infinite and A = f [N] with a recursive f : N → N, then
A = g [N] with a recursive injection g : N � N

Proof. The hypothesis gives a total, recursive f such that

A = {f (0), f (1), . . .},

and the obvious idea is to delete all the repetitions in this
enumeration of A, which will leave an enumeration of A without
repetitions. In full detail, let

B = {n | (∀i < n)[f (n) 6= f (i)]},

the (infinite) set of positions where f (n) puts a new element in A.
Now n ∈ B ⇐⇒ (∀i < n)[f (n) 6= f (i)], so B is recursive and it is
enumerated by h : N � N defined by the primitive recursion

h(0) = f (0), h(n + 1) = µi [i > n & i ∈ B]

Finally, the composition g(n) = f (h(n)) is a recursive injection and
enumerates A without repetitions

: L16, Feb 13, Wed, Section 4B, 3 12/30

Enumerations of recursive sets

• An infinite set A is recursive if and only if it can be enumerated
by an increasing recursive function f , i.e.,

A = {f (0) < f (1) < f (2) < · · · }

Proof. Suppose A is infinite and recursive and define f by

f (0) = µi [i ∈ A], f (n + 1) = µi [i > f (n) & i ∈ A].

This is total (because A is infinite); recursive (because A is
recursive); increasing (obviously); and it clearly enumerates A.

For the converse we need the simple fact that

if f : N � N is increasing, then (∀n)[n ≤ f (n)],

easily proved by induction; it implies that if A is enumerated by an
increasing f , then

n ∈ A ⇐⇒ (∃i)[n = f (i)] ⇐⇒ (∃i ≤ n)[n = f (i)],

so A is recursive.
: L16, Feb 13, Wed, Section 4B, 4 13/30

Comparing the complexity of arbitrary subsets of N
A reduction of A to B is any total function f : N → N such that

x ∈ A ⇐⇒ f (x) ∈ B (x ∈ N)

A ≤m B ⇐⇒ A is many-one reducible to B

⇐⇒ there is a recursive reduction of A to B

A ≤1 B ⇐⇒ A is one-one reducible to B

⇐⇒ there is a recursive, injective reduction of A to B

A ≡ B ⇐⇒ A is recursively equivalent to B

⇐⇒ there is a recursive permutation f : N�→N

which reduces A to B

• A ≡ B =⇒ A ≤1 B =⇒ A ≤m B

• A ≤m A, [A ≤m B & B ≤m C] =⇒ A ≤m C] and similarly with ≤1

• ≡ is an equivalence relation on the subsets of N

: L16, Feb 13, Wed, Section 4B, 5 14/30

Complete r.e. sets
The structure of r.e. sets has been studied intensively since the
30’s—and is still an active area of research today

Notation: We = {x | {e}(x) = ϕe(x)↓},
so W0, W1, . . . enumerates all r.e. sets

Def. A set B is r.e. complete if it is r.e. and every r.e. set A is
one-one reducible to it, A ≤1 B

• The set H ′ = {x | {(x)0}((x)1))↓}} is r.e. complete
Proof. H ′ is r.e., because

x ∈ H ′ ⇐⇒ µyT1((x)0, (x)1, y)↓ ,

so H ′ is the domain of convergence of a recursive partial function
It is r.e. complete, because for any, fixed e,

x ∈ We ⇐⇒ {e}(x)↓ ⇐⇒ 〈e, x〉 ∈ H ′

and the map x 7→ 〈e, x〉 is recursive and one-to-one

: L16, Feb 13, Wed, Section 4B, 6 15/30

Emil Post’s r.e. complete set K
Def. K = {x | x ∈ Wx} = {x | {x}(x)↓} = {x | (∃y)T1(x , x , y)}

• K r.e. (because the relation x ∈ K is Σ0
1)

• K is r.e. complete
Proof. If A is r.e., then there is a recursive g : N ⇀ N such that

x ∈ A ⇐⇒ g(x)↓ ⇐⇒ h(x , y)↓

where h(x , y) = g(x) is also recursive. Choose a code ĥ of h, and compute:

x ∈ A ⇐⇒ h(x , y)↓ ⇐⇒ {ĥ}(x , y)↓ ⇐⇒ {S1
1 (ĥ, x)}(y)↓

This equivalence holds for every y , so in particular

x ∈ A ⇐⇒ {S1
1 (ĥ, x)}(S1

1 (ĥ, x))↓ ⇐⇒ S1
1 (ĥ, x) ∈ K

and the function x 7→ S1
1 (ĥ, x) is (primitive) recursive and injective

This is the first of many important applications of the Sm
n functions

: L17, Feb 15, Fri, Section 4B, 1 16/30

Proofs of undecidability using K

• If K ≤m A, then A is not recursive — because K ≤m A with a
recursive A implies that every r.e. set is recursive, which is not true

• The set A = {e | We 6= ∅} is r.e. but not recursive.

Proof. e ∈ A ⇐⇒ (∃x)[x ∈ We], so A is r.e.

To show that K ≤1 A, we set

g(e, x) = µyT1(e, e, y)

so that the value g(e, x) is independent of x and

e ∈ K ⇐⇒ g(e, x)↓ (any x);

so if ĝ is a code of g(x , y), then

e ∈ K ⇐⇒ (∃x)[{ĝ}(e, x)↓] ⇐⇒ (∃x)[{S1
1 (ĝ , e)}(x)↓]

⇐⇒ WS1
1 (bg ,e) 6= ∅ ⇐⇒ S1

1 (ĝ , e) ∈ A

: L17, Feb 15, Fri, Section 4B, 2 17/30

Myhill’s Theorem

• For any two (arbitrary) sets A, B ⊆ N

(
A ≤1 B & B ≤1 A

)
=⇒ A ≡ B.

Proof. We are given two injections f , g : N � N and we must
produce a permutation h : N�→N such that for any two A, B,

(∗)
(
∀x)[x ∈ A ⇐⇒ f (x) ∈ B] & (∀y)[y ∈ B ⇐⇒ g(y) ∈ A]

)

=⇒ (∀x)[x ∈ A ⇐⇒ h(x) ∈ B]

The difficulty in the proof stems from the fact we must construct

h using only f and g , since we know nothing about the arbitrary
sets A and B other than (∗)

: L17, Feb 15, Fri, Section 4B, 3 18/30

Proof of Myhill’s Theorem

We are given injections f : N � N and g : N � N

Def A finite sequence of pairs W = (x0, y0), . . . , (xn, yn)

is injective if

i 6= j =⇒ [xi 6= xj & yi 6= yj] (i , j ≤ n)

W is good for A, B if in addition xi ∈ A ⇐⇒ yi ∈ B (i ≤ n)

We think of an injective sequence which is good for A, B as a finite
approximation of a permutation h : N�→N which reduces A to B

and the construction of the required h will follows from two
Lemmas which allow us to extend injective sequences so that
“goodness” for any A, B is preserved

: L17, Feb 15, Fri, Section 4B, 4 19/30

Lemma X: Given f : N � N, x ∈ A ⇐⇒ f (x) ∈ B

• From any injective sequence W = (x0, y0), . . . , (xn, yn) and any

x /∈ {x0, . . . , xn}, we can compute a number y such that:

(X1) The extension W ′ = (x0, y0), . . . , (xn, yn), (x , y) is injective, and

(X2) For any A, B, if W is good for A, B, then W ′ is also good for A, B

Proof. Follow the following procedure with

X = {x0, . . . , xn}, Y = {y0, . . . , yn}

(1) If f (x) /∈ Y , set y := f (x) and check (X1), (X2)

(2) If for some i , f (x) = yi and f (xi) /∈ Y , set y := f (xi) and
check (X1), (X2). For (X2):

x ∈ A ⇐⇒ f (x) ∈ B ⇐⇒ yi ∈ B ⇐⇒ xi ∈ A ⇐⇒ f (xi) = y ∈ B

(3) If for some i 6= j , f (x) = yi , f (xi) = yj and f (xj) /∈ Y , set y := f (xj)

· · ·

The process eventually stops and yields a y which works because
X ∪ {x} has one more element than Y (Pigeonhole Principle)

: L17, Feb 15, Fri, Section 4B, 5 20/30

Given f , g : N � N, Good for A, B :
x ∈ A ⇐⇒ f (x) ∈ B , x ∈ B ⇐⇒ g(x) ∈ A

• (Lemma X) From any injective sequence

W = (x0, y0), . . . , (xn, yn) and any x /∈ {x0, . . . , xn}, compute y s.t.:

(X1) The extension W ′ = (x0, y0), . . . , (xn, yn), (x , y) is injective, and

(X2) For any A, B, if W is good for A, B, then W ′ is also good for A, B

• (Lemma Y) From any injective sequence

W = (x0, y0), . . . , (xn, yn) and any y /∈ {y0, . . . , yn}, compute x s.t.:

(Y1) The extension W ′ = (x0, y0), . . . , (xn, yn), (x , y) is injective, and

(Y2) For any A, B, if W is good for A, B, then x ∈ A ⇐⇒ y ∈ B

To finish the proof of Myhill’s Theorem: Start with
(x0, y0) = (0, f (0)); use Lemma Y on y1 = µi /∈ {y0} to get
(x0, y0), (x1, y1); use Lemma X on x2 = µi /∈ {x0, x1} to get
(x0, y0), (x1, y1), (x2, y2); etc, to construct h : N�→N

: L17, Feb 15, Fri, Section 4B, 6 21/30

Turing reducibility
Def A ≤T B ⇐⇒ χA is recursive in (N0, χB) = (N, 0, 1, S , Pd, χB)

• A ≤m B =⇒ A ≤T B

• A ≤T (N \ A) but N 6≤m ∅
so ≤T is the weakest of the four reducibilities introduced by Post

Post proved (and we will show) that there exist r.e. sets which are
neither recursive nor r.e. complete, but he could not answer the
corresponding question of intermediate Turing complexity for r.e.
sets he posed this problem in the following, stronger form:

Post’s Problem (1944) Are there r.e. sets A and B such that
A 6≤T B and B 6≤T A?

Post’s Problem was not solved until 1956 by Richard Friedberg and
Albert Muchnik who proved (independently) that such
Turing-incomparable r.e. sets exist using the same priority method

The study or Turing reducibility (on r.e. and larger classes of sets)
is still a very active research area—which, however, we will not pursue

: L18, Feb 20, Wed, Sections, 4B, 4C, 1 22/30

Productive and creative sets
Def. A productive function for a set B ⊂ N is a recursive
injection p : N � N such that

We ⊆ B =⇒ p(e) ∈ (B \ We)

and B is productive if it has a productive function

Def. A set A is creative if it is r.e. and its complement
Ac = {x ∈ N | x /∈ A} is productive

– Intuitively, an r.e. set is creative if it is effectively not recursive

• (Post) The set K is creative

Proof. The defs give t ∈ We ⇐⇒ {e}(t)↓ and e ∈ K ⇐⇒ {e}(e)↓ ;
and so to prove that the identity p(e) = e is a productive function
for K c we must check the trivial

(
(∀t)[{e}(t))↓ =⇒ {t}(t) ↑]

)
=⇒ {e}(e) ↑

• Every r.e. complete set is creative (Will be assigned)

: L18, Feb 20, Wed, Sections, 4B, 4C, 2 23/30

• Every productive B set has an infinite r.e. subset

Lemma. There is a recursive injection u(e, y) such that

Wu(e,y) = We ∪ {y} (e, y ∈ N)

Proof. The relation x ∈ Wu ∨ x = y is Σ0
1, so there is a ĝ such that

x ∈ We ∪ {y} ⇐⇒ {ĝ}(e, y , x)↓

⇐⇒ {S2
1 (ĝ , e, y)}(x)↓ ⇐⇒ x ∈ Wu(e,y)

with u(e, y) = S2
1 (ĝ , e, y). (Lemma)

To prove the result in the caption, fix e0 such that We0 = ∅, let
p(e) be a productive function for B, and define by primitive recursion

f (0) = e0, f (x + 1) = u(f (x), p(f (x)));

Now Wf (0) (Wf (1) (Wf (1) · · ·B and the set we need is
⋃

x Wf (x)

: L18, Feb 20, Wed, Sections, 4B, 4C, 3 24/30

Simple sets

Def (Post). A set A is simple if it is r.e., its complement Ac is
infinite and Ac has no infinite r.e. subsets, i.e.,

A is r.e., Ac is infinite, and (∀e)[We ∩ A = ∅ =⇒ We is finite].

• (Post) There exists a simple set

Proof. Let R(x , y) ⇐⇒ y ∈ Wx & y > 2x

This is Σ0
1, so by Σ0

1-Selection there is a recursive f : N ⇀ N s.t.

(∗) (∃y)[y ∈ Wx & y > 2x] ⇐⇒ f (x)↓ ,

and f (x)↓ =⇒ f (x) ∈ Wx & f (x) > 2x

We set A = {f (x) | f (x)↓} and we need to prove that A is simple

(1) A is r.e., because y ∈ A ⇐⇒ (∃x)[f (x) = y]

: L18, Feb 20, Wed, Sections, 4B, 4C, 4 25/30

Continuing the proof that there exists a simple set

We have proved that there is a recursive f : N ⇀ N such that

(∗) (∃y)[y ∈ Wx & y > 2x] ⇐⇒ f (x)↓ ,

and f (x)↓ =⇒ f (x) ∈ Wx & f (x) > 2x ,

set A = {f (x) | f (x)↓} and checked that A is r.e.

(2) Ac is infinite, because for any z ,

y ∈ A & y ≤ z =⇒ (∃x)[y = f (x) & 2x < y ≤ 2z]

=⇒ (∃x)[y = f (x) & x < z];

which means that from the 2z +1 numbers ≤ 2z at most z belong to A;
which means that for every z , sone y ≥ z belongs to Ac so Ac is
infinite.

: L18, Feb 20, Wed, Sections, 4B, 4C, 5 26/30

Finishing the proof that there exists a simple set

We have proved that there is a recursive f : N ⇀ N such that

(∗) (∃y)[y ∈ Wx & y > 2x] ⇐⇒ f (x)↓ ,

and f (x)↓ =⇒ f (x) ∈ Wx & f (x) > 2x ,

set A = {f (x) | f (x)↓} and proved that A is r.e. and its

complement Ac is infinite. It remains to prove

(3) For any r.e. set We ,

We is infinite =⇒ (∃y)[y ∈ We & y > 2e]

=⇒ f (e)↓ & f (e) ∈ We =⇒ f (e) ∈ We ∩ A,

so there is no infinite, r.e. subset of Ac

: L18, Feb 20, Wed, Sections, 4B, 4C, 6 27/30

• (Post) A simple set A is r.e., but neither recursive nor

r.e. complete

Recap: we have defined creative sets and proved

(1) Every r.e. complete set is creative

(2) If B is creative, then its complement Bc has an infinite, r.e.
subset

By def, a simple set A is r.e. and its complement Ac is infinite but
has no infinite r.e. subsets

• A is not recursive; because if it were, then its infinite complement
Ac would be recursive and hence an r.e. infinite subset of itself

• A is not r.e complete, by (1) and (2)

: L18, Feb 20, Wed, Sections, 4B, 4C, 7 28/30

The Second Recursion Theorem

• (Kleene) For every recursive partial function f (z , ~x), there is a
number z∗ such that for all ~x

(RT2) φz∗(~x) = {z∗}(~x) = f (z∗, ~x)

• There is a number z∗ such that

φz∗(x) = z∗ (x ∈ N)

The function φz∗ : N → N is total, constant, and assigns to every
number x a code of itself.

Using this, you can produce a recursive program E on an algebra
of strings of symbols which on the empty input outputs itself, i.e.,

(E) p0 : → · · · →: E

It is by no means obvious how todo this!

• There exist z1, z2 such that Wz1 = {z1}, Wz2 = {0, 1, . . . , z2}

: L18, Feb 20, Wed, Section 4D, 8 29/30

Proof of the Second Recursion Theorem

• (Kleene) For every recursive partial function f (z , ~x), there is a
number z∗ such that for all ~x

(RT2) f (z∗, ~x) = {z∗}(~x) (= φz∗(~x)).

Proof. Given f (z , ~x) with ~x = (x1, . . . , xn), define the recursive
partial function

g(z , ~x) = f (S1
n (z , z), ~x)

and let ĝ be a code of it, so that

f (S1
n (z , z), ~x) = {ĝ}(z , ~x) = {S1

n (ĝ , z)}(~x) (for all z , ~x);

and if we set z := ĝ in this equation, we get

f (S1
n (ĝ , ĝ), ~x) = {S1

n (ĝ , ĝ)}(~x)

which is the desired result with z∗ = S1
n (ĝ , ĝ)

: L18, Feb 20, Wed, Section 4D, 9 30/30

