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§1. Syntax of PL. The symbols of propositional logic (or the propo-
sitional calculus) are

()—|/\\/ — Ag Aq,...

where — is read “not”, A is read “and”, V is read “or” and — is read

“implies”. These are distinct objects and none of them is a sequence of
any of the others. We call Ag, Aq,... sentential or propositional symbols
or variables, and intuitively they stand for unspecified sentences like “it
is raining”, “there are infinitely many prime numbers”, etc. We use the

metavariables

p,q,7,pP1,41,-- -,

to name arbitrary propositional symbols, as we use the variables x,y, z in
algebra to name arbitrary numbers. We will also use Greek letters

aaﬁa77"' 7¢aX7¢a"-
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2 YIANNIS N. MOSCHOVAKIS

(perhaps with subscripts) to vary over strings (or expressions), i.e., finite
sequences of symbols. We use the symbol “=” for the identity relation
on strings of symbols and we denote the concatenation of two strings by
juxtaposition, so that

if a = Ap) and S = —(A17, then aff = Ag)—(A1r

1A. Formulas. The formulas (or well formed formulas) of PL are
defined recursively by the following three clauses:
(a) Each propositional variable A; is a formula (as a string of length 1).
(b) If ¢ and v are formulas, then the strings

(=¢) (@AY) (6VY) (¢ =)

are also formulas.
(c¢) No string is a formula except by virtue of (a) or (b).

This is a bit vague, and it is often abbreviated by the still vaguer (but

very suggestive) “recursive definition” in which we read “ | ” as or:

¢:=Ai | (=d1) | (P1 A 2) | (¢1V @2) | (d1 — b2)

The rigorous definition is as follows:

1A.1. Definition (Formulas). A set S of strings is propositionally closed
if it contains all the propositional variables A; (as strings of length 1) and
is closed under the sentential connectives: i.e., if @ € S, then (-«) € S,
and if a, 8 are any two strings in S and e is any binary connective, then
the string («ve ) is also in S.

A string is a formula if it belongs to every propositionally closed set S.

The propositional variables are called prime formulas, while the for-
mulas which are not prime are called composite. A formula ¢ is a
subformula of a formula 1 if for suitable strings «, 8, ¥ = a¢g.

The rigorous definition 1A.1 gives us a very useful method to prove that
every formula has a certain property P, by showing that the set of strings
which have property P s propositionally closed. In other words, to prove
that every formula has a certain property P, it is enough to check three
things:

(1) Every propositional variable A; has property P.
(2) If ¢ has property P, then (—¢) has property P.
(3) If ¢ and v have property P, then for any of the three binary con-
nectives e, (¢ 1)) has property P.
This method of proof is called (structural) induction on formulas. For
example:

1A.2. Lemma. (1) Parentheses match in every formula: i.e., the num-
ber of left parentheses which occur in a formula ¢ is equal to the number
of right parentheses which occur in ¢.

Math. 114L, Spring 2021, Y. N. Moschovakis
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1. THE PROPOSITIONAL CALCULUS PL 3

(2) If « is a proper, non-empty initial part of a formula ¢, then the
number of left parentheses in a is greater than the number of right paren-
theses in a.

PROOF. (1) The set S of all “balanced” strings (in which parenthe-
ses match) is (very easily) propositionally closed, and so it contains all
formulas.

We leave (2) for Problem x1.3. =

1A.3. Theorem (Unique readability). For every formula ¢, exactly one
of the following is true:

(1) ¢ is a propositional variable A;.

(2) There is a formula ¢ such that ¢ = (—1)).

(3) There are formulas v, x and a binary connective ® such that ¢ =
(Vex).

Moreover, ¢ is uniquely determined in Case (2), and ¥, x, ® are uniquely

determined in Case (3).

PROOF is by structural induction and we leave it for Problem x1.4*. -

This theorem is often called the Parsing Lemma for the propositional
calculus. Its last assertion implies, in particular, that if

(Y101 x1) = (Y2 92 X2)

for any formulas 1, x1, %2, X2, then 1 = 12, 81 = @5, and x1 = Xo.

1B. Structural recursion. The main connective of a formula (¢ e )
is e and its immediate parts are ¢ and ; similarly, the main connective
of (—¢) is — and its immediate part is ¢). Theorem 1A.3 insures that each
composite formulas ¢ has a uniquely determined main connective and
uniquely determined immediate parts, which are shorter formulas than ¢.
This means that we can define a function F(¢) on formulas by specifying
outright the value F'(A;) of F' on prime formulas, and then showing how
to compute F'(¢) for composite ¢ using the value of F' on the parts of ¢.
This sort of definition is justified by induction on the length of formulas,
and it is called structural recursion.

1C. Misspellings and abbreviations. In practice, we never put
down syntactically correct formulas because it is very tedious—too many
parentheses; we give instead instructions on how to construct specific for-
mulas, typically by putting down “mispelled” versions of formulas—with
metavariables p, q,r,p1,... instead of the formal A;, without all the
parentheses or with brackets in place of some of them, etc. For example,

p — (¢ A\ p) may stand for (Ay — (Ag7 A Ag))

Math. 114L, Spring 2021, Y. N. Moschovakis
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4 YIANNIS N. MOSCHOVAKIS

and

(p—q) = (p—>(q—>r))—>(p—>7‘)]
stands for ((p = ¢q) = ((p = (¢ = 7)) = (p = 1)))

with specific propositional variables in place of p, ¢, r.
Similarly, when we write (¢ V 1), we are using metavariables over
formulas to refer to any disjunction.

Biconditionals. We will consider the biconditional < as an abbrevi-
ation rather than a primitive connective,

(@)= (0 =)A= 9))

We could go further than that and take as primitive only — and A with
the rest defined as abbreviations:

(¢ —=9)=((=0) V), (pAY):=(2((=0)V(~¢)))

These definitions agree with our intuitive interpretation of the connectives
which we now make precise.

§2. Semantics of PL. Let B = {0, 1} be a fixed set with two members,
which (intuitively) we understand as truth values: 0 stands for falsity
and 1 for truth. In the primary interpretation of PL the formulas define
functions on B (bit functions). These are defined by structural recursion,
as follows.

2A. Bit functions and functional completeness. With each for-
mula ¢ and each list p’ = p1,...,p, of distinct propositional variables
which includes all the variables that occur in ¢, we associate the n-ary
bit function

¢ . R?
Fo p, B =B
by structural recursion, as follows.

(1) Prime formulas (propositional variables):

Fp i

P (15 -+ 5 0) = i

For example,
FR (2, m9) =31, FR* (x1,x9,23) =
A47A15 1,42 1y A12,A4,A7 142,43 2

and F:l‘* A is not defined because A4 does occur in the list A, Aqs.
(2) Negation:
- 1, if F¥(%) =0,
FCV@) =1 - i@, = b T @ =00
P P 0, otherwise, i.e., if F; (%) = 1.

Math. 114L, Spring 2021, Y. N. Moschovakis
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1. THE PROPOSITIONAL CALCULUS PL 5
(3) Conjunction:
1, if FY(#) =1 and FX(Z) =1
FWN)(2) = min(FY (), FX(7) = { P P ’
p (@) ( p( ) p( ) 0, otherwise.
(4) Disjunction:
1, if FY (%) =1or FX(Z) =1

0, otherwise.

FY(7) = max(FY (), FX(T)) = {

(5) Implication:
1, if FY (%) =0 or FX(Z) =1,

FU7(8) = max(1 — FY (&), FX(T)) =
P (%) = max( P (@) p(x)) 0, otherwise.

The bit function Fg depends only on the propositional variables in the
list p’ which actually occur in ¢ in the following sense:

2A.1. Lemma. If p,q,7 is a sequence of distinct variables and q does
not occur in a formula ¢, then for all Z,y,zZ € B,

¢ (= A b (o
F]S:qf(xa Y, Z) - Fﬁ’,f‘(xa Z)

We leave the proof for Problem x1.8.

2A.2. Theorem (Functional completeness of PL). For every n-ary bit
function f : B — B, there exists a PL-formula ¢ and a sequence p =
P1, ... ,Pn of distinct propositional variables which includes all the vari-
ables of ¢ such that

f@1,.. a) = Fi(y,...,2n)  (21,... 2, € B).

PROOF is by induction on n.
BaAsis, n = 1. There are only four unary bit functions, and each of
them is defined by the formula in the table, relative to the variable p:

fi(z) =1 pV-p
fo(x)=0 A D
f3(z) == p

falx)=1—-=x —p

INDUCTION STEP. Assume the result for n and suppose that f is (n+1)-
ary. Consider the two functions obtained by fixing the last variable of f
to be 1 or 0 and choose by the induction hypothesis formulas which define
them relative to the variables p1,... ,pn:

fl('rla"' ,xn):f(l'l,... ,l’n,l) defined by ¢1
fO(xlv"' 7xn):f(x17"' 7377170) deﬁned by ¢0

Math. 114L, Spring 2021, Y. N. Moschovakis
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Now use Lemma 2A.1 to check that if p,,41 is a new propositional variable,
then the formula

(Prt1 A ¢1> V (mPn+1 A do)
defines f relative to the list p1,... , pn, Pnt1- -

Simple as it is, the Functional Completeness is the basis of many useful
applications of Logic to Computer Science especially in the theory of
circuits.

2B. Truth tables. There are 2" n-tuples of 0’s and 1’s, and so the
n-ary bit function defined by a formula relative to the variables py,... ,py
can be pictured in a table with 2" lines. For example, in the case of a
formula with two variables (and including a column for the subformula
—p which is used in the computation):

pla|-»|-phg
0/0] 1 0
011 1 1
1[0 0 0
1[1]]0 0

It is also useful to put down the following truth table which specifies
succinctly the bit functions associated with all the connectives:

Pl P PNqPVq|P—4q
0(0] 1 0 0 1
011 1 0 1 1
1101 O 0 1 0
111 0 1 1 1

2C. Satisfaction and the Tarski conditions. If we understand the
propositional variables as standing for sentences with given truth values
1 or 0, then, directly from the definitions

Fg(f) =1 <= ¢ is true when each p; has the truth value z;,
F g () =0 <= ¢ is false when each p; has the truth value x;.

To put this idea another way, consider assignments (to the variables),
i.e., arbitrary functions

U:{AQ,Al,...,}%B

which assign truth values to the propositional variables. For each formula
¢, we set

7(¢) = F{(w(p1), .. ,v(pn))

Math. 114L, Spring 2021, Y. N. Moschovakis
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1. THE PROPOSITIONAL CALCULUS PL 7

where p’ is any list of distinct variables which includes all the variables
that occur in ¢. By Lemma 2A.1, the specific choice of the sequence of
variables p1, ... ,p, is immaterial, as long at it includes all the variables
which occur in ¢. We use the following terminology and notation for this
important notion:

V¢ = B() =1
<= v satisfies ¢ or ¢ is true for the assignment v.

An assignment satisfies a (possibly infinite) set of formulas T if it sat-
isfies every formula in T,

(2-1) vET <= v = x for every x € T}
and T is satisfiable if it is satisfied by some assignment v.

The only somewhat peculiar feature of this interpretation is for the
conditional, for which it gives (for each fixed assignment)

(¢p — 1)) is true <= ¢ is false or ¥ is true,
so that, for example, the sentence
if the moon is made of cheese, then I am 20 feet tall

comes out true. This is the material implication interpretation of condi-
tionals and it is the most useful one for mathematics.

The satisfaction relation between assignments and formulas obeys the
following classical rules which, in fact, determine it:

2C.1. Theorem (The Tarski conditions). For all variables p, formulas
¢, and assignments v:
vEp < v(p) =1,
vVE g = v,

vVEOANY <= v ¢and v =1,

vEOVY <= viEdorvE,

vE ¢ — 1) <= either v [~ ¢ or v = 1.
We leave the easy proof for Problem x1.9.

2D. Tautologies and logical consequence. A tautology is a for-
mula whose associated bit function is the constant 1, i.e., every assign-
ment satisfies it. We write

(2-2) ¢ < ¢ is a tautology <= for every assignment v,v = ¢.
More generally, for any set T' of formulas and any formula ¢, we set

(2-3) T |=¢ <= for every assignment v,

if v satisfies all the formulas in 7', then v also satisfies ¢.

Math. 114L, Spring 2021, Y. N. Moschovakis
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If T = ¢, we say that ¢ is a logical consequence of T'.

Notational conventions: We write

¢17~-7¢n):¢ < {¢17"‘7¢n}):¢7
Tvgblv"'?d)n’:(b <~ TU{¢1a7¢n}):¢

In particular,

F¢ —= 09,

and this agrees with our notation above and exhibits the tautologies as
the logical consequences of the empty set of assumptions.

Notice that this “sequential notation” for sets allows repetitions and
reordering, e.g.,

.00 Ex = {6,0¢}Ex = {o¥}Ex — ¥, oEX

This is convenient when we have a list of formulas given in no particular
order and we do not know which of them may be equal to some others.

Replacement. Suppose ¢ is a formula, p1,... , pg are distinct variables
which may or may not occur in ¢, and 1, . .. , ¥ is a sequence of formulas.
We set

QS{pl = wl;" -5 Pk = @Z}k}

= the result of replacing each occurrence of each p; in ¢ by ;.

For example:

plp=v,q:=x}=v¢
p=(@—=p{p=v,¢:=xt =9 = (x =)
pAP—={p=v,a=x=0A Y= X)
2D.1. Theorem (The Replacement Theorem). If ¢ is a tautology, then

the result ¢{p1 := 1, ... ,pk = Y} of any simultaneous replacement on
¢ 1s also a tautology.

PROOF. We may assume that the sequence g = pq,... ,pg includes all
the variables which occur in ¢, by adding trivial replacements of the form
p; := p; if necessary. Let 7= q1,...,q be a sequence of distinct variables
which include all the variables in 1, ..., and let

X = ¢{p1 = 1/}15" -5 Pk = ,¢/€}

be the result of the replacement, so that the list ¢'includes all the variables

which occur in x. With these notation conventions and § = (y1,... ,y),
we can check that
(2-4) FX(§) = FE(F2 @), .., F2 (@),

Math. 114L, Spring 2021, Y. N. Moschovakis
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(cf. Problem x1.10). This basic equation implies the theorem immediately,
since when ¢ is a tautology, then F}? is the constant function with value
1—and hence so is Fqﬁ‘. =

Tautologies are easily recognized by inspection of their truth tables,
which must have only 1’s in the column under the formula—except that
it is very tedious to construct truth tables. An easier method is to use
the definition (2-2) and the Tarski conditions in Theorem 2C.1, as in this

2D.2. Lemma. For all formulas ¢ and ¢, = ¢ — (Y — ¢).

Proor. Following the hint above, we compute:

Eo— (Y= ¢) «— forallv,v=¢ — (Y — ¢)
<= for all v, either v = ¢ or v = (¢ — ¢)
<= for all v, either v [~ ¢ or (either v = ¢ or v = ¢)
<= for all v, either v = por v E 1y or v = ¢

and the condition on the last line is obviously true for every v. o

The formula ¢ — (¢ — ¢) is the first in the following list of tautologies
that we will find useful in the next section:

2D.3. Theorem. For all formulas ¢,, x,

) Eo— (¥ — )
(=)= (0= (W —=x)) = (6= X))
(¢ =) = (¢ = b)) = —9)

T

These are all quite easy to check as we proved Lemma 2D.2; cf. Prob-
lems x1.11, x1.12.

2D.4. Lemma (Modus Ponens). For any two formulas ¢,:

b0 >V EY.
It follows that for any set T' of assumptions and any ¢, v,

fTE=¢and T = ¢ — 1, then T |= 9.
PROOF is left for Problem x1.13. -

Math. 114L, Spring 2021, Y. N. Moschovakis
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§3. Formal deduction. Intuitively, a proof of a claim C' is a justi-
fication of the truth of C' on the basis of some logical azioms (which we
take to be self-evident) and some rules of inference for which it is evi-
dent that they preserve (respect) truth. Similarly with a deduction or
proof of C from a set T of assumptions: it should “certify” that every
interpretation which makes all the assumptions in 7' true also makes C
true. Here we make these notions precise for the propositional calculus,
for which the “claims” and the “assumptions” are propositional formulas.

3A. Axioms and proofs for PL. The Hilbert axioms for PL are
the formulas (1) — (8) in Theorem 2D.3; there are infinitely many of them
since ¢, ¥, x stand for arbitrary formulas, and so, more properly we should
refer to (1) — (8) as axiom schemes.

There is only one rule of inference in PL,
Modus Ponens: from ¢ and ¢ — ¥, infer 1.

A (propositional) deduction or proof from a set of formulas 7" is any
sequence of formulas

X0, X155 Xk
such for each n < k one of the following holds:
(D1) x, € T (assumption).
(D2) xn = x; for some ¢ < n (repetition).
(D3) Xy, is an axiom.
(D4) xn can be inferred with Modus Ponens from some x;, x; with 4, j < n.

We set
’T F x <= there exists a proof xo, X1, --- , Xt from 7" such that y = x& ‘

and (as with =), we just list T if it is finite and we skip it entirely when
it is empty,

T,01,...,¢mbx <= TU{d1,...,om}Fx, Fx < 0+ x.

If T+ x, we say that T proves y or x is deducible from T and we
call y a theorem of T

Combining deductions. If x1,...,x% and ¢4, ... ,¥,, are deductions
from T, then their concatenation

X1y anawlv"' 7wm

is also a deduction from 7', and a deduction from T'U S for any S. These
are two of several trivial properties of deductions which we will use, often
without explicit mention.

A set T of formulas is deductively closed if it contains all the axioms
and is closed under Modus Ponens, i.e.,

o, 0 >velT=—=1ypeTl.

Math. 114L, Spring 2021, Y. N. Moschovakis
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3A.1. Lemma. For every T and every ¢,
TkH¢ < ¢ €S for every deductively closed S O T

This is proved exactly like Problem x1.2 and we leave it for Prob-
lem x1.16.

3A.2. Lemma. For every formula ¢, - ¢ — ¢.

PROOF. Here is a fully annotated proof of this obvious tautology:
L (¢—=(¢—=9) = (0= (&= 0) =) = (6= 9))
Taking ¢ = (¢ — ¢) and x = ¢ in Axiom Scheme (2).
2. 9= (0= 9)
Taking 1) = ¢ in Axiom Scheme (1).
3. (0= (9= 0)—=9) = (60— 9)
By Modus Ponens on 1 and 2.
4. ¢ = ((0—¢) = 9)
Taking 1) = ¢ — ¢ in Axiom Scheme (1).
5 ¢ — ¢
By Modus Ponens on 4 and 3. o

3A.3. The Deduction Theorem for PL. For any set of formulas T
and all ¢, if T, ¢+, then T+ (¢ — ).

PROOF. Let xq,...,xx be the assumed deduction from 7'U {¢} with
¥ = xk. It is enough to show that T'F (¢ — x,,) for every n < k, and we
do this by (complete) induction on n < k.

If xpn, = ¢, then T F ¢ — ¢ by Lemma 3A.2, and if x,, = x; for some
1 < n then the induction hypothesis gives T' = ¢ — xp.

If xp, is an axiom or in 7', then the following is a deduction of ¢ — xj,
from T using Axiom Scheme (1) and Modus Ponens:

Xns Xn —7 (¢_>Xn)a ® = Xn

Finally, if x,, is inferred by Modus Ponens from previously listed for-
mulas x;, Xxj, then x; = x; — X» and the induction hypothesis gives us
deductions from T" of ¢ — x; and ¢ — (x; — Xxn); We construct a deduc-
tion of ¢ — x, from T starting with these and continuing using Axiom
Scheme (2) and two more applications of Modus Ponens as follows:

from T :....0 = Xiy-- &= (Xa = Xn)s
(0= xi) = (&= (i = xn)) = (& = Xn))s
(6 — (Xi = xn)) = (& = Xn),
¢_>Xn =

Math. 114L, Spring 2021, Y. N. Moschovakis
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The Deduction Theorem is an example of a metatheorem for PL, a
theorem about formal proofs which can be used to show that formal proofs
exist without actually constructing them. We list in the next two lemmas
some of the most useful metatheorems for PL, leaving the (quite easy)
proofs for problems.

3A.4. Lemma (The natural introduction rules for PL). For every set
of formulas T':
(=) If T,xF ¢, then T+ x — ¢.
(N If TH¢ and T, then T H ¢ A1p.
(V) If TE¢ orTH, then T ¢ V.
(=) If T,xE v and T, x = =, then T —y.

3A.5. Lemma (The natural elimination rules for PL). For every set of

formulas T':

(=) If TE¢ and T F ¢ — 2, then T + 1.

(N) If THoANY, thenT F ¢ and T+ 1.

(V) If T,ptx and T, & x, then T,V o = x
(=) If T+ —=¢, then T+ ¢.

3B. Soundness and Completeness of PL. We now turn to the two
basic results which relate the syntax and the semantics of PL:

3B.1. Theorem (Soundness). For any set of formulas T and every
formula ¢,

if TH¢, then T = ¢.

PRrROOF. The set L(T) of logical consequences of T" includes 7" and is de-
ductively closed, because every axiom is a tautology by Theorem 2D.3 and
the rule of Modus Ponens preserves logical consequence, by Lemma 2D.4.
By Lemma 3A.1 then, L(T") contains all the theorems of T'. =

For the converse result we need two basic notions:

3B.2. Definition (Consistency and strong completeness). A set of for-
mulas 7T is consistent if there is no formula ¢ such that

TH¢and T F —¢;
and T is strongly complete if for every formula ¢,
either ¢ € T or =¢p € T.

3B.3. Lemma. A set of formulas S is consistent and strongly complete
if and only if there is an assignment v to the propositional variables such
that for every formula ¢,

(3-1) VE@ <= ¢S

Math. 114L, Spring 2021, Y. N. Moschovakis
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PRroOOF. If (3-1) holds for S and some v, then S is obviously strongly
complete since for every ¢, either v |= ¢ or v |= =¢. To see that it is also
consistent, notice that by the Soundness Theorem 3B.1,

Sko=SEo=v0

which with (3-1) eliminates the possibility that for some ¢, S + ¢ and
also S F —¢.

For the converse, we assume that S is consistent and strongly complete.
Notice first that that S is closed under deduction, i.e.,

(3-2) Sko=¢cS;

because if S+ ¢ but ¢ ¢ S, then =¢ € S by the strong completeness, and
so S —¢ which makes it inconsistent. With this in mind, set

vip)=1 < pesS

and prove (3-1) by induction on ¢. It is true at the basis (when ¢ is a
propositional variable) by the definition of v, and to consider just two of
the cases at the induction step:

VED¢ <= v < ¢ ¢ S (ind. hyp)
<= —¢ € S (strong completeness),

VEONY <= vEdandvEY < ¢ Sandyp €S
— oANYES
the last step by (3-2), since
oY oA and GAYE GNP Y. -

3B.4. Lemma. If T is a consistent set of formulas and x is any for-

mula, then
either T'U {x} is consistent or T'U {—x} is consistent.
PRrROOF. If T'U {x} is inconsistent, then there is a formula ¢ such that
T,xF¢and T, xF —¢,
so that by the (—)-introduction rule in Lemma 3A 4,
TF=x;

and if T'U {—x} is also inconsistent, by the same argument, T+ ——y,
which by the (—)-elimination rule in Lemma 3A.5 gives

T x;

but now the last two displays imply that T is inconsistent, contrary to
the hypothesis. —|

Math. 114L, Spring 2021, Y. N. Moschovakis
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3B.5. Theorem (The Completeness Theorem for PL). (1) Every con-
sistent set of formulas is satisfiable.

(2) For every set of formulas T and every ¥,
if T = x, then T+ .

PROOF. (1) The idea is to extend T by adding to it successively each
formula or its negation, using the preceding Lemma 3B.4, until we get in
the end a consistent, strongly complete set of formulas T* O T which has
a satisfying assignment by Lemma 3B.3.

In detail, let F}, be the set of formulas of length < n 4+ 1 in which only
the variables Ay,..., A, may occur, e.g., Fy = {Ag}. This set is finite,
for every n, so we can fix an enumeration

of it. Lining up these enumerations in sequence, one after another, we
obtain an enumeration (with many irrelevant repetitions)

X0s X1y---

of all PL-formulas, which we fix. We now define a sequence of sets
TyCh CTy- -
by setting recursively

T, U{xn} i T,U{xn} is consistent,

To=T, Tyt =
0 e {Tnu{ﬂxn} otherwise,

so that (inductively) each T}, is consistent, so T* = |J,, T, 2 T is also
consistent by Problem x1.24, and it is obviously strongly complete.

(2) Assume, towards a contradiction that

T E x but Tt/ x.

It follows that the set T'U {—x} is consistent, since if
T,-xF¢and T, ~x - =9,

then T'F ——x and hence T I x, as above, which contradicts the hypothe-
sis. So there is an assignment v which satisfies every formula in T'U {—x}
by (1), contradicting the assumption 7" |= . -

It is Part (2) which is properly called the Completeness Theorem, but
Part (1) is the version of it which is more useful for many applications.
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§4. Problems.

x1.1. Prove that the set of propositional formulas defined in 1A.1 is
the smallest set of strings which is propositionally closed; i.e., it is propo-
sitionally closed and it is a subset of every propositionally closed set of
strings.

x1.2. A sequence «, ...,y of strings is a propositional formula con-
struction if for each n < k, either a, is a propositional variable, or
o, = (—ay) for some i < n, or oy, = (a; ® ) for some binary connective
e and some i, j < n.

Prove that a string of symbols ¢ is a propositional formula if and only
if it occurs in some propositional formula construction.

x1.3. Prove (2) of Lemma 1A.2, that for every non-empty, proper,
initial part « of a formula ¢, the number of left parentheses “(” in « is
greater than the number of right parentheses “)” in a.

x1.4* (Parsing Lemma for PL). Prove Theorem 1A.3. HINT: For the
most interesting part (3) of the uniqueness claim, suppose

(Y101 x1) = (Y202 X2)

with 11 shorter than 1 and derive a contradiction using Lemma 1A.2.

x1.5. For each of the following equations between strings, determine
whether there are formulas ¢, v, x, ¢',4’, X’ which make them true:

(a) ((GAD)Vx)=(¢'V (' AX)).
(b) ((eAP)VX) = (& AWV X))

You must prove your answers.
x1.6. Construct the truth table for the formula (p — ¢) A =(¢ — p).

x1.7. Let | be the Sheffer stroke, the binary connective defined by the
truth table

plalprla
ojof 1
o[1] o
1(o0] o
1[1] o

We read (¢ | ¥) as “neither ¢ nor 1. Define the |-formulas using only
this connective (rather than —, A, V,—, <), and prove that every n-ary
bit function can be defined by a |-formula with n propositional variables.

x1.8. Prove Lemma 2A.1.

x1.9. Prove the Tarski conditions, Theorem 2C.1.
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x1.10. Prove equation (2-4) in the proof of the Replacement Theo-
rem 2D.1, i.e., the following: for every formula ¢ whose variables are
in the list p1,... ,pr, if § = q1,...,q is a sequence of distinct variables
which include all the variables in ¥1,... , ¥, ¥ = y1,... ,y; and

X = ¢{p1 = 1/)17 <oy PE = ¢k:}>
then
X7 — (%17 Yk (=
(%) F2(§) = F5 (FZN (), - F25(9)-
HinT: Use structural induction on ¢.
x1.11. Prove that the formula (2) in Theorem 2D.3 is a tautology.
x1.12. Prove that the formula (8) in Theorem 2D.3 is a tautology.
x1.13. Prove Lemma 2D.4, the Modus Ponens Rule.
x1.14. Prove that
it T.¢ =1, then T = ¢ — .
4.1. Definition. For any finite sequence of formulas xg, x1,- - - , Xn, set
WicnXi = X0V X1 V-V xn
so that, for example
Wi<oXi = X0, WiciXi = x0V x1, WicaXi = X0 VX1V xe-
Similarly for abbreviation of finite conjunctions:
M icnXi = X0AXTA A Xn

x1.15*. Suppose R(i,j) is a relation defined for i,j < n, choose a
doubly indexed sequence of distinct propositional variables {p;;}i j<n, and
consider the assignment

o) = {1’ A,

0, otherwise.
The variables {p;;j} can be used to express various properties about the
relation R. Recall for example that
R is symmetric <= (for all 4,j < n)[R(i,j) <= R(j,7)];
now easily,
R is symmetric <= v = M\lgn/)(\ jgn[Pij < pjil.
Find propositional formulas which express the following properties of R:
(a) R is the graph of a function, i.e., (R(i,j) & R(i,k)) =j = k.

(b) R is the graph of a one-to-one function.
(¢) R is the graph of a surjection—a function from {0,...,n} onto

{0,...,n}.

Math. 114L, Spring 2021, Y. N. Moschovakis
Propositional Calculus 16



1. THE PROPOSITIONAL CALCULUS PL 17

x1.16. Prove Lemma 3A.1, that for every T and every ¢,
TkF¢ < ¢ € S for every deductively closed S O T

x1.17. Prove that the “repetition” clause (D2) in the definition of de-
duction is not needed: i.e., if T+ x, then there is a deduction of x from
T without repetitions. (The clause was included in the definition so that
we can more easily combine deductions without restriction.)

x1.18. Prove the (A)-introduction rule in Lemma 3A.4: that
if T+ ¢and T+ 1, then T+ (¢ A1p).
x1.19. Prove the (—)-introduction rule in Lemma 3A.4: that
ifT,xF¢and T, x - ¢, then T F —x.
x1.20. Prove the (V)-elimination rule in Lemma 3A.5, that
ifT, ¢ xand T,¢¥ F x, then T, ¢ V¢ F x.
x1.21. Prove the (—)-elimination rule in Lemma 3A.5, that
if T+ =@, then T F 6.
x1.22. Prove that if T is not consistent, then T F x for every x.

x1.23* (The law of excluded middle). Prove that for every formula x,
FxV—x.
HINT: Prove ——(x V —x) and then use Axiom (4), or use the natural

introduction and elimination rules in Lemmas 3A.4, 3A.5.

x1.24. Prove that a set of formulas T is consistent if and only if every
finite subset of T' is consistent.

x1.25*. Prove Peirce’s Law, the formula

(((p—4q) —p) = Dp)

Note: Tt is trivial to check that Peirce’s Law is valid, i.e., every as-
signment v satisfies it: just take cases on whether v = p or v = —p.
The challenge is to give a proof and check which axioms or which natural
introduction and elimination rules are needed.

x1.26. Two formulas ¢ and 1) are (logically) equivalent if ¢ = 1 and
¥ = ¢. Prove that for each sequence p1,... ,p, of distinct propositional
variables, there is a sequence

X1s...,xN with N = 2%"

of inequivalent formulas in the variables p1, ..., pn, such that every for-
mula in which only these variables occur is equivalent to some y;. (For
example, when n = 1, the required sequence is p, =p,p Ap,pV —p.) HINT:
Count truth tables.
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x1.27 (The Compactness Theorem for PL). Suppose T is an infinite
set of formulas. Prove that if every finite subset Ty C T of T is satis-
fiable, then T is satisfiable.

Math. 114L, Spring 2021, Y. N. Moschovakis
Propositional Calculus 18



